NASA Technical Reports Server (NTRS)
Hakkinen, Raimo J; Richardson, A S , Jr
1957-01-01
Sinusoidally oscillating downwash and lift produced on a simple rigid airfoil were measured and compared with calculated values. Statistically stationary random downwash and the corresponding lift on a simple rigid airfoil were also measured and the transfer functions between their power spectra determined. The random experimental values are compared with theoretically approximated values. Limitations of the experimental technique and the need for more extensive experimental data are discussed.
Raybould, J N; Mhiddin, H K
1974-01-01
The maintenance of Simulium adults in the laboratory is necessary for many experimental investigations and is a prerequisite to laboratory colonization. A simple technique for this purpose is described in which each fly is kept separately in a hole bored in a block of expanded polystyrene.
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Gündüz, Bayram
2017-06-01
In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.
Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics
ERIC Educational Resources Information Center
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-01-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
Raybould, John N.; Mhiddin, Haji K.
1974-01-01
The maintenance of Simulium adults in the laboratory is necessary for many experimental investigations and is a prerequisite to laboratory colonization. A simple technique for this purpose is described in which each fly is kept separately in a hole bored in a block of expanded polystyrene. ImagesFig. 1 PMID:4549353
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
The Use of Techniques of Sensory Evaluation as a Framework for Teaching Experimental Methods.
ERIC Educational Resources Information Center
Bennett, R.; Hamilton, M.
1981-01-01
Describes sensory assessment techniques and conditions for their satisfactory performance, including how they can provide open-ended exercises and advantages as relatively inexpensive and simple methods of teaching experimentation. Experiments described focus on diffusion of salt into potatoes after being cooked in boiled salted water. (Author/JN)
NASA Astrophysics Data System (ADS)
Karimi, M.; Seraji, F. E.
2010-01-01
We report a new simple technique for the simultaneous measurements of absorption-, emission cross-sections, background loss coefficient, and dopant density of doped optical fibers with low dopant concentration. Using our proposed technique, the experimental characterization of a sample Ge-Er-doped optical fiber is presented, and the results are analyzed and compared with other reports. This technique is suitable for production line of doped optical fibers.
ERIC Educational Resources Information Center
Birk, James P., Ed.
1989-01-01
Presented is a simple laboratory set-up for teaching microprocessor-controlled data acquisition as a part of an instrumental analysis course. Discussed are the experimental set-up, experimental procedures, and technical considerations for this technique. (CW)
A simple model of proton damage in GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Walker, G. H.; Outlaw, R. A.
1982-01-01
A simple proton damage model for GaAs solar cells is derived and compared to experimental values of change in short circuit currents. The recombination cross section associated with the defects was determined from the experimental comparison to be approximately 1.2 x 10 to the -13th power sq cm in fair agreement with values determined from the deep level transient spectroscopy technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Christopher A.
In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Hanson, Sonya M.; Ekins, Sean; Chodera, John D.
2015-01-01
All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques—illustrated with an accompanying IPython notebook—can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals. PMID:26678597
[Developments in preparation and experimental method of solid phase microextraction fibers].
Yi, Xu; Fu, Yujie
2004-09-01
Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.
Blending and nudging in fluid dynamics: some simple observations
NASA Astrophysics Data System (ADS)
Germano, M.
2017-10-01
Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed.
Speckle techniques for determining stresses in moving objects
NASA Technical Reports Server (NTRS)
Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.
1978-01-01
Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.
Optical aberrations measurement with a low cost optometric instrument
NASA Astrophysics Data System (ADS)
Furlan, Walter D.; Muñoz-Escrivá, L.; Pons, A.; Martínez-Corral, M.
2002-08-01
A simple experimental method for measuring optical aberrations of a single lens is proposed. The technique is based on the use of an optometric instrument employed for the assessment of the refractive state of the eye: the retinoscope. Experimental results for spherical aberration and astigmatism are obtained.
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.
Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.
Chaos in plasma simulation and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, C.; Newman, D.E.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C
2014-01-10
The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honorio, J.; Goldstein, R.; Honorio, J.
We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statisticalmore » theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.« less
Practical uncertainty reduction and quantification in shock physics measurements
Akin, M. C.; Nguyen, J. H.
2015-04-20
We report the development of a simple error analysis sampling method for identifying intersections and inflection points to reduce total uncertainty in experimental data. This technique was used to reduce uncertainties in sound speed measurements by 80% over conventional methods. Here, we focused on its impact on a previously published set of Mo sound speed data and possible implications for phase transition and geophysical studies. However, this technique's application can be extended to a wide range of experimental data.
Architectural-level power estimation and experimentation
NASA Astrophysics Data System (ADS)
Ye, Wu
With the emergence of a plethora of embedded and portable applications and ever increasing integration levels, power dissipation of integrated circuits has moved to the forefront as a design constraint. Recent years have also seen a significant trend towards designs starting at the architectural (or RT) level. Those demand accurate yet fast RT level power estimation methodologies and tools. This thesis addresses issues and experiments associate with architectural level power estimation. An execution driven, cycle-accurate RT level power simulator, SimplePower, was developed using transition-sensitive energy models. It is based on the architecture of a five-stage pipelined RISC datapath for both 0.35mum and 0.8mum technology and can execute the integer subset of the instruction set of SimpleScalar . SimplePower measures the energy consumed in the datapath, memory and on-chip buses. During the development of SimplePower , a partitioning power modeling technique was proposed to model the energy consumed in complex functional units. The accuracy of this technique was validated with HSPICE simulation results for a register file and a shifter. A novel, selectively gated pipeline register optimization technique was proposed to reduce the datapath energy consumption. It uses the decoded control signals to selectively gate the data fields of the pipeline registers. Simulation results show that this technique can reduce the datapath energy consumption by 18--36% for a set of benchmarks. A low-level back-end compiler optimization, register relabeling, was applied to reduce the on-chip instruction cache data bus switch activities. Its impact was evaluated by SimplePower. Results show that it can reduce the energy consumed in the instruction data buses by 3.55--16.90%. A quantitative evaluation was conducted for the impact of six state-of-art high-level compilation techniques on both datapath and memory energy consumption. The experimental results provide a valuable insight for designers to develop future power-aware compilation frameworks for embedded systems.
The Measurement of Wettability
ERIC Educational Resources Information Center
Pirie, Brian J. S.; Gregory, David W.
1973-01-01
Discusses the use of a simple apparatus to measure contact angles between a liquid drop and a solid surface which are determining factors of wettability. Included are examples of applying this technique to various experimental situations. (CC)
Application of single-shot spiral scanning for volume localization.
Ra, J B; Rim, C Y; Cho, Z H
1991-02-01
A new technique using a spiral scan single-shot RF pulse for localized volume selection has been developed and its experimental results are presented. This technique employs an additional radial-gradient coil in conjunction with the oscillating gradients for the spiral scan to localize the 3D volume. The short selection time in this technique minimizes both signal contamination from unwanted regions and signal attenuation due to T2 decay. We provide both the theoretical background of the technique and the experimental results obtained from a phantom as well as a human volunteer. The proposed method appears simple and accurate in localizing a volume which would be used as either fast imaging or localized spectroscopy.
Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics
NASA Astrophysics Data System (ADS)
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-07-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers
Zapateiro De la Hoz, Mauricio; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes. PMID:26413563
Dynamic Constitutive/Failure Models
1988-12-01
compressive failure--microfracture versus microplasticity . Actual traces observed in plate impact tests on ceramic targets are hardly ever as simple as the...observa- tions for microfracture and microplasticity . Unfortunately, each team of investigators has used slightly different experimental techniques and
ERIC Educational Resources Information Center
Bagdadi, Andrea; Orona, Nadia; Fernandez, Eugenio; Altamirano, Anibal; Amorena, Carlos
2010-01-01
We have realized that our Biology undergraduate students learn biological concepts as established truths without awareness of the body of experimental evidence supporting the emerging models as usually presented in handbooks and texts in general. Therefore, we have implemented a laboratory practice in our course of Physiology and Biophysics, aimed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Jihuan; Zhao Jiarong; Huang Xuguang
A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with amore » simple, solid, and compact structure.« less
Wing download reduction using vortex trapping plates
NASA Technical Reports Server (NTRS)
Light, Jeffrey S.; Stremel, Paul M.; Bilanin, Alan J.
1994-01-01
A download reduction technique using spanwise plates on the upper and lower wing surfaces has been examined. Experimental and analytical techniques were used to determine the download reduction obtained using this technique. Simple two-dimensional wind tunnel testing confirmed the validity of the technique for reducing two-dimensional airfoil drag. Computations using a two-dimensional Navier-Stokes analysis provided insight into the mechanism causing the drag reduction. Finally, the download reduction technique was tested using a rotor and wing to determine the benefits for a semispan configuration representative of a tilt rotor aircraft.
ERIC Educational Resources Information Center
Holt, S.
1972-01-01
Short articles describing a model of protein synthesis, a simple constant temperature incubator, techniques for determining the age structure of populations from qualitative characters, an experimental demonstration of proteolytic enzyme action, and apparatus for demonstrating hydrotrophic response of roots and for measuring photosynthetic rate of…
Bisquert, Juan; Henn, François; Giuntini, Jean-Charles
2005-03-01
Strong changes in relaxation rates observed at the glass transition region are frequently explained in terms of a physical singularity of the molecular motions. We show that the unexpected trends and values for activation energy and preexponential factor of the relaxation time tau, obtained at the glass transition from the analysis of the thermally stimulated current signal, result from the use of the Arrhenius law for treating the experimental data obtained in nonstationary experimental conditions. We then demonstrate that a simple model of structural relaxation based on a time dependent configurational entropy and Adam-Gibbs relaxation time is sufficient to explain the experimental behavior, without invoking a kinetic singularity at the glass transition region. The pronounced variation of the effective activation energy appears as a dynamic signature of entropy relaxation that governs the change of relaxation time in nonstationary conditions. A connection is demonstrated between the peak of apparent activation energy measured in nonequilibrium dielectric techniques, with the overshoot of the dynamic specific heat that is obtained in calorimetry techniques.
Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi
2018-01-01
The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.
Z-scan: A simple technique for determination of third-order optical nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com; Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to bemore » 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.« less
Development of Experience-based Visible-type Electromagnetic Teaching Materials
NASA Astrophysics Data System (ADS)
Suzuki, Masayoshi; Shima, Kenzou
Electromagnetism is the base of electrical engineering, however, it is one of the most difficult subjects to learn. The small experiments which show the principles of electricity visibly are useful technique to promote these comprehension. For classroom experimental materials to learn basic electromagnetism, we developed rotating magnetic field visualizer, gravity-use generators, simple motors, and electric-field visualizer. We report how we visualized the principles of motors and generators in classroom experiments. In particular, we discuss in detail how to visualize the mechanism of very simple motors. We have been demonstrating the motors in children science classes conducted all over Japan. We developed these experimental materials, and we achieved remarkable results using these materials in the electromagnetism class.
NASA Astrophysics Data System (ADS)
Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos
2018-04-01
The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.
NASA Astrophysics Data System (ADS)
Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.
2015-11-01
New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.
Vibrational pumping and heating under SERS conditions: fact or myth?
Le Ru, E C; Etchegoin, P G
2006-01-01
We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.
Sharma, Avnish Kumar; Patidar, Rajesh Kumar; Daiya, Deepak; Joshi, Anandverdhan; Naik, Prasad Anant; Gupta, Parshotam Dass
2013-04-20
In this paper, a new method for alignment of the pinhole of a spatial filter (SF) has been proposed and demonstrated experimentally. The effect of the misalignment of the pinhole on the laser beam profiles has been calculated for circular and elliptical Gaussian laser beams. Theoretical computation has been carried out to illustrate the effect of an intensity mask, placed before the focusing lens of the SF, on the spatial beam profile after the pinhole of the SF. It is shown, both theoretically and experimentally, that a simple intensity mask, consisting of a black dot, can be used to visually align the pinhole with a high accuracy of 5% of the pinhole diameter. The accuracy may be further improved using a computer-based image processing algorithm. Finally, the proposed technique has been demonstrated to align a vacuum SF of a compact 40 J Nd:phosphate glass laser system.
An Acoustic Method for the Determination of Avogadro's Number
ERIC Educational Resources Information Center
Houari, Ahmed
2011-01-01
To diversify the measurement techniques of Avogadro's number in physics teaching, I propose a simple acoustic method for the experimental determination of Avogadro's number based only on the measurement of the speed of sound in metals, provided that their Debye temperatures are known. (Contains 2 figures.)
Registration of heat capacity mapping mission day and night images
NASA Technical Reports Server (NTRS)
Watson, K.; Hummer-Miller, S.; Sawatzky, D. L.
1982-01-01
Registration of thermal images is complicated by distinctive differences in the appearance of day and night features needed as control in the registration process. These changes are unlike those that occur between Landsat scenes and pose unique constraints. Experimentation with several potentially promising techniques has led to selection of a fairly simple scheme for registration of data from the experimental thermal satellite HCMM using an affine transformation. Two registration examples are provided.
Direct conversion of rheological compliance measurements into storage and loss moduli.
Evans, R M L; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [G'(omega) and G''(omega), respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Direct conversion of rheological compliance measurements into storage and loss moduli
NASA Astrophysics Data System (ADS)
Evans, R. M. L.; Tassieri, Manlio; Auhl, Dietmar; Waigh, Thomas A.
2009-07-01
We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli [ G'(ω) and G″(ω) , respectively], from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.
Fiber fault location utilizing traffic signal in optical network.
Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi
2013-10-07
We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.
RADIOISOTOPE EXPERIMENTS IN HIGH SCHOOL BIOLOGY, AN ANNOTATED SELECTED BIBLIOGRAPHY.
ERIC Educational Resources Information Center
HURLBURT, EVELYN M.
SELECTED REFERENCES ON THE USE OF RADIOISOTOPES IN BIOLOGY ARE CONTAINED IN THIS ANNOTATED BIBLIOGRAPHY FOR SECONDARY SCHOOL STUDENTS. MATERIALS INCLUDED WERE PUBLISHED AFTER 1960 AND DEAL WITH THE PROPERTIES OF RADIATION, SIMPLE RADIATION DETECTION PROCEDURES, AND TECHNIQUES FOR USING RADIOISOTOPES EXPERIMENTALLY. THE REFERENCES ARE LISTED IN…
Some Practical Aspects of Sugar Fermentation by Baker's Yeast (Saccharomyces cerevisiae)
ERIC Educational Resources Information Center
Freeland, P. W.
1973-01-01
Describes simple quantitative determinations for ethanol and carbon dioxide, together with techniques for examining the effects of a number of environmental factors on their production. The experimental work centers around the growth of a cell population of yeast, and is suitable for senior high school students. (JR)
Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen
2014-01-27
A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.
Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen
2014-01-01
A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment. PMID:24473282
NASA Astrophysics Data System (ADS)
Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin
2015-09-01
In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
Time-lapse and slow-motion tracking of temperature changes: response time of a thermometer
NASA Astrophysics Data System (ADS)
Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.
2017-03-01
We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure in a simple yet rigorous way the response time of an alcohol thermometer and show its critical dependence on the properties of the surrounding environment giving insight into instrument characteristics, heat transfer and thermal equilibrium concepts.
Small, J R
1993-01-01
This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434
Real-time determination of laser beam quality by modal decomposition.
Schmidt, Oliver A; Schulze, Christian; Flamm, Daniel; Brüning, Robert; Kaiser, Thomas; Schröter, Siegmund; Duparré, Michael
2011-03-28
We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.
Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory
ERIC Educational Resources Information Center
Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.
2007-01-01
A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…
Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.
Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B
2016-09-14
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
Akram, M Nadeem; Tong, Zhaomin; Ouyang, Guangmin; Chen, Xuyuan; Kartashov, Vladimir
2010-06-10
We utilize spatial and angular diversity to achieve speckle reduction in laser illumination. Both free-space and imaging geometry configurations are considered. A fast two-dimensional scanning micromirror is employed to steer the laser beam. A simple experimental setup is built to demonstrate the application of our technique in a two-dimensional laser picture projection. Experimental results show that the speckle contrast factor can be reduced down to 5% within the integration time of the detector.
A coherent detection technique via optically biased field for broadband terahertz radiation.
Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu
2017-09-01
We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.
NASA Technical Reports Server (NTRS)
Witmer, E. A.; Merlis, F.; Rodal, J. J. A.; Stagliano, T. R.
1977-01-01
The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large deflection 3-d transient and/or permanent strain data on simple well defined structural specimens and materials: initially-flat 6061-T651 aluminum panels with all four sides ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides "forcing function information" of small uncertainty. These data will be useful for evaluating pertinent 3-d structural response prediction methods.
On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam
NASA Astrophysics Data System (ADS)
Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon
2018-05-01
We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.
On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam.
Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon
2018-05-04
We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.
Correcting For Seed-Particle Lag In LV Measurements
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Gartrell, Luther R.; Kamemoto, Derek Y.
1994-01-01
Two experiments conducted to evaluate effects of sizes of seed particles on errors in LV measurements of mean flows. Both theoretical and conventional experimental methods used to evaluate errors. First experiment focused on measurement of decelerating stagnation streamline of low-speed flow around circular cylinder with two-dimensional afterbody. Second performed in transonic flow and involved measurement of decelerating stagnation streamline of hemisphere with cylindrical afterbody. Concluded, mean-quantity LV measurements subject to large errors directly attributable to sizes of particles. Predictions of particle-response theory showed good agreement with experimental results, indicating velocity-error-correction technique used in study viable for increasing accuracy of laser velocimetry measurements. Technique simple and useful in any research facility in which flow velocities measured.
Time-Lapse and Slow-Motion Tracking of Temperature Changes: Response Time of a Thermometer
ERIC Educational Resources Information Center
Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.
2017-01-01
We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure…
NASA Astrophysics Data System (ADS)
Zhaunerchyk, V.; Frasinski, L. J.; Eland, J. H. D.; Feifel, R.
2014-05-01
Multidimensional covariance analysis and its validity for correlation of processes leading to multiple products are investigated from a theoretical point of view. The need to correct for false correlations induced by experimental parameters which fluctuate from shot to shot, such as the intensity of self-amplified spontaneous emission x-ray free-electron laser pulses, is emphasized. Threefold covariance analysis based on simple extension of the two-variable formulation is shown to be valid for variables exhibiting Poisson statistics. In this case, false correlations arising from fluctuations in an unstable experimental parameter that scale linearly with signals can be eliminated by threefold partial covariance analysis, as defined here. Fourfold covariance based on the same simple extension is found to be invalid in general. Where fluctuations in an unstable parameter induce nonlinear signal variations, a technique of contingent covariance analysis is proposed here to suppress false correlations. In this paper we also show a method to eliminate false correlations associated with fluctuations of several unstable experimental parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, H. J.; Proud, W. G.
2006-07-28
A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less
Simple electrical model and initial experiments for intra-body communications.
Gao, Y M; Pun, S H; Du, M; Mak, P U; Vai, M I
2009-01-01
Intra-Body Communication(IBC) is a short range "wireless" communication technique appeared in recent years. This technique relies on the conductive property of human tissue to transmit the electric signal among human body. This is beneficial for devices networking and sensors among human body, and especially suitable for wearable sensors, telemedicine system and home health care system as in general the data rates of physiologic parameters are low. In this article, galvanic coupling type IBC application on human limb was investigated in both its mathematical model and related experiments. The experimental results showed that the proposed mathematical model was capable in describing the galvanic coupling type IBC under low frequency. Additionally, the calculated result and experimental result also indicated that the electric signal induced by the transmitters of IBC can penetrate deep into human muscle and thus, provide an evident that IBC is capable of acting as networking technique for implantable devices.
Sousa, Cláudia Maria; Moreira, Luis; Coimbra, Daniela; Machado, Jorge; Greten, Henry J
2015-07-01
Musicians are a prone group to suffer from working-related musculoskeletal disorder (WRMD). Conventional solutions to control musculoskeletal pain include pharmacological treatment and rehabilitation programs but their efficiency is sometimes disappointing. The aim of this research is to study the immediate effects of Tuina techniques on WRMD of professional orchestra musicians from the north of Portugal. We performed a prospective, controlled, single-blinded, randomized study. Professional orchestra musicians with a diagnosis of WRMD were randomly distributed into the experimental group (n=39) and the control group (n=30). During an individual interview, Chinese diagnosis took place and treatment points were chosen. Real acupoints were treated by Tuina techniques into the experimental group and non-specific skin points were treated into the control group. Pain was measured by verbal numerical scale before and immediately after intervention. After one treatment session, pain was reduced in 91.8% of the cases for the experimental group and 7.9% for the control group. Although results showed that Tuina techniques are effectively reducing WRMD in professional orchestra musicians of the north of Portugal, further investigations with stronger measurements, double-blinding designs and bigger simple sizes are needed.
Determination of high temperature strains using a PC based vision system
NASA Astrophysics Data System (ADS)
McNeill, Stephen R.; Sutton, Michael A.; Russell, Samuel S.
1992-09-01
With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain.
Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge
2015-01-01
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
Measurement of fracture properties of concrete at high strain rates
Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.
2017-01-01
An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510
Gelman, Hannah; Gruebele, Martin
2014-01-01
Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816
Mechanical system diagnostics using vibration testing techniques
NASA Technical Reports Server (NTRS)
Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.
1990-01-01
The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.
Simplified Estimation and Testing in Unbalanced Repeated Measures Designs.
Spiess, Martin; Jordan, Pascal; Wendt, Mike
2018-05-07
In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.
Effect of Methods of Learning and Self Regulated Learning toward Outcomes of Learning Social Studies
ERIC Educational Resources Information Center
Tjalla, Awaluddin; Sofiah, Evi
2015-01-01
This research aims to reveal the influence of learning methods and self-regulated learning on students learning scores for Social Studies object. The research was done in Islamic Junior High School (MTs Manba'ul Ulum), Batuceper City Tangerang using quasi-experimental method. The research employed simple random technique to 28 students. Data were…
Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2003-01-01
A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.
ERIC Educational Resources Information Center
Ikram, I. Mohamed; Rabinal, M. K.; Mulimani, B. G.
2009-01-01
Here, we propose a simple method for measuring the built-in potential and its temperature dependence of a photodiode by a photosaturation technique. The experimental design facilitates both current-voltage and null voltage measurements as a function of white light intensity. This method gives the built-in potential directly; as a result its…
ERIC Educational Resources Information Center
Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone
2012-01-01
An experimental setup, based on a plastic scintillator with an embedded wavelength shifter fibre and photosensors at the two ends, has been used to detect cosmic muons in undergraduate laboratory activities. Time and amplitude information from the two photosensors were measured using the time-over-threshold technique. The distribution of the…
ERIC Educational Resources Information Center
Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel
2015-01-01
This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…
Rowland, Benjamin; Jones, Jonathan A
2012-10-13
We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.
High-speed holocinematographic velocimeter for studying turbulent flow control physics
NASA Technical Reports Server (NTRS)
Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.
1985-01-01
Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.
Measurement of contact angle in a clearance-fit pin-loaded hole
NASA Technical Reports Server (NTRS)
Prabhakaran, R.; Naik, R. A.
1986-01-01
A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.
Comparative Behaviour of Nitrite and Nitrate for the Protection of Rebar Corrosion
NASA Astrophysics Data System (ADS)
Ahmad, Altaf; Kumar, Anil
2017-10-01
Corrosion of rebar steel due to environmental causes has been studied through various approaches, and among the protection techniques use of inhibitors has gained encouragement. Nitrites and nitrates of sodium have gained sufficient scientific coverage. Recently, nitrites and nitrates of calcium have been verified in some studies, which, however, needs further experimentation through different angles. Simple polarization technique has been utilized in the present study to compare inhibitive efficiency of these salts of sodium and calcium, which indicate that calcium salts are more efficient.
Relationships between chromosome structure and chromosomal aberrations
NASA Astrophysics Data System (ADS)
Eidelman, Yuri; Andreev, Sergey
An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.
Generating constrained randomized sequences: item frequency matters.
French, Robert M; Perruchet, Pierre
2009-11-01
All experimental psychologists understand the importance of randomizing lists of items. However, randomization is generally constrained, and these constraints-in particular, not allowing immediately repeated items-which are designed to eliminate particular biases, frequently engender others. We describe a simple Monte Carlo randomization technique that solves a number of these problems. However, in many experimental settings, we are concerned not only with the number and distribution of items but also with the number and distribution of transitions between items. The algorithm mentioned above provides no control over this. We therefore introduce a simple technique that uses transition tables for generating correctly randomized sequences. We present an analytic method of producing item-pair frequency tables and item-pair transitional probability tables when immediate repetitions are not allowed. We illustrate these difficulties and how to overcome them, with reference to a classic article on word segmentation in infants. Finally, we provide free access to an Excel file that allows users to generate transition tables with up to 10 different item types, as well as to generate appropriately distributed randomized sequences of any length without immediately repeated elements. This file is freely available from http://leadserv.u-bourgogne.fr/IMG/xls/TransitionMatrix.xls.
Thermodynamics and Mechanics of Membrane Curvature Generation and Sensing by Proteins and Lipids
Baumgart, Tobias; Capraro, Benjamin R.; Zhu, Chen; Das, Sovan L.
2014-01-01
Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations. PMID:21219150
Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments
NASA Technical Reports Server (NTRS)
Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.
Neural-network quantum state tomography
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe
2018-05-01
The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors
Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2016-01-01
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.
Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2016-10-20
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.
Haddock, Luis J; Kim, David Y; Mukai, Shizuo
2013-01-01
Purpose. We describe in detail a relatively simple technique of fundus photography in human and rabbit eyes using a smartphone, an inexpensive app for the smartphone, and instruments that are readily available in an ophthalmic practice. Methods. Fundus images were captured with a smartphone and a 20D lens with or without a Koeppe lens. By using the coaxial light source of the phone, this system works as an indirect ophthalmoscope that creates a digital image of the fundus. The application whose software allows for independent control of focus, exposure, and light intensity during video filming was used. With this app, we recorded high-definition videos of the fundus and subsequently extracted high-quality, still images from the video clip. Results. The described technique of smartphone fundus photography was able to capture excellent high-quality fundus images in both children under anesthesia and in awake adults. Excellent images were acquired with the 20D lens alone in the clinic, and the addition of the Koeppe lens in the operating room resulted in the best quality images. Successful photodocumentation of rabbit fundus was achieved in control and experimental eyes. Conclusion. The currently described system was able to take consistently high-quality fundus photographs in patients and in animals using readily available instruments that are portable with simple power sources. It is relatively simple to master, is relatively inexpensive, and can take advantage of the expanding mobile-telephone networks for telemedicine.
Extremely simple holographic projection of color images
NASA Astrophysics Data System (ADS)
Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej
2012-03-01
A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).
Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping
2014-04-01
Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.
Liu, D D; Hsieh, N-K; Chen, H I
2008-11-01
Several experimental models have been used to produce intravascular fat embolism. We have developed a simple technique to induce fat embolism using corn oil emulsified with distilled water to form fatty micelles. Fat embolism was produced by intravenous administration of these fatty micelles in anaesthetised rats, causing alveolar oedema, haemorrhage and increased lung weight. Histopathological examination revealed fatty droplets and fibrin thrombi in the lung, kidney and brain. The arteriolar lumen was filled with fatty deposits. Following fat embolism, hypoxia and hypercapnia occurred. The plasma phospholipase A(2), nitrate/nitrite, methylguidanidine and proinflammatory cytokines were significantly increased. Mass spectrometry showed that the main ingredient of corn oil was oleic acid. This simple technique may be applied as a new animal model for the investigation of the mechanisms involved in the fat embolism syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M
2014-01-01
Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insightsmore » into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.« less
Reconfigurable ultra-wideband waveform generation with simple photonic devices
NASA Astrophysics Data System (ADS)
Dastmalchi, Mansour; Abtahi, Mohammad; Lemus, David; Rusch, Leslie A.; LaRochelle, Sophie
2012-08-01
We propose and experimentally demonstrate a low cost, low power consumption technique for ultra-wideband pulse shaping. Our approach is based on thermal apodization of two identical linearly chirped fiber Bragg gratings (LCFBG) placed in both arms of a balanced photodetector. Resistive heating elements with low electrical power consumption are used to tune the LCFBG spectral responses. Using a standard gain switched distributed feedback laser as a pulsed optical source and a simple energy detector receiver, we measured a bit error rate of 1.5×10-4 at a data rate of 1 Gb/s after RF transmission over a 1-m link.
Simple Form of MMSE Estimator for Super-Gaussian Prior Densities
NASA Astrophysics Data System (ADS)
Kittisuwan, Pichid
2015-04-01
The denoising method that become popular in recent years for additive white Gaussian noise (AWGN) are Bayesian estimation techniques e.g., maximum a posteriori (MAP) and minimum mean square error (MMSE). In super-Gaussian prior densities, it is well known that the MMSE estimator in such a case has a complicated form. In this work, we derive the MMSE estimation with Taylor series. We show that the proposed estimator also leads to a simple formula. An extension of this estimator to Pearson type VII prior density is also offered. The experimental result shows that the proposed estimator to the original MMSE nonlinearity is reasonably good.
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of piezoelectric impedance-based health monitoring of structure interface debonding
NASA Astrophysics Data System (ADS)
Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong
2016-04-01
Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.
Quantum simulation of a quantum stochastic walk
NASA Astrophysics Data System (ADS)
Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.
2017-03-01
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.
Bubbles in an acoustic field: an overview.
Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz
2007-04-01
Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.
Advanced experimental techniques for transonic wind tunnels - Final lecture
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.
1987-01-01
A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.
In vivo measurement of mechanical properties of human long bone by using sonic sound
NASA Astrophysics Data System (ADS)
Hossain, M. Jayed; Rahman, M. Moshiur; Alam, Morshed
2016-07-01
Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.
Principal components colour display of ERTS imagery
NASA Technical Reports Server (NTRS)
Taylor, M. M.
1974-01-01
In the technique presented, colours are not derived from single bands, but rather from independent linear combinations of the bands. Using a simple model of the processing done by the visual system, three informationally independent linear combinations of the four ERTS bands are mapped onto the three visual colour dimensions of brightness, redness-greenness and blueness-yellowness. The technique permits user-specific transformations which enhance particular features, but this is not usually needed, since a single transformation provides a picture which conveys much of the information implicit in the ERTS data. Examples of experimental vector images with matched individual band images are shown.
Quantitative polarized light microscopy using spectral multiplexing interferometry.
Li, Chengshuai; Zhu, Yizheng
2015-06-01
We propose an interferometric spectral multiplexing method for measuring birefringent specimens with simple configuration and high sensitivity. The retardation and orientation of sample birefringence are simultaneously encoded onto two spectral carrier waves, generated interferometrically by a birefringent crystal through polarization mixing. A single interference spectrum hence contains sufficient information for birefringence determination, eliminating the need for mechanical rotation or electrical modulation. The technique is analyzed theoretically and validated experimentally on cellulose film. System simplicity permits the possibility of mitigating system birefringence background. Further analysis demonstrates the technique's exquisite sensitivity as high as ∼20 pm for retardation measurement.
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.
Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.
McIlrath, Victoria; Trye, Alice; Aguanno, Ann
2015-06-18
Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.
Uhlirova, Hana; Tian, Peifang; Kılıç, Kıvılcım; Thunemann, Martin; Sridhar, Vishnu B; Chmelik, Radim; Bartsch, Hauke; Dale, Anders M; Devor, Anna; Saisan, Payam A
2018-05-04
The importance of sharing experimental data in neuroscience grows with the amount and complexity of data acquired and various techniques used to obtain and process these data. However, the majority of experimental data, especially from individual studies of regular-sized laboratories never reach wider research community. A graphical user interface (GUI) engine called Neurovascular Network Explorer 2.0 (NNE 2.0) has been created as a tool for simple and low-cost sharing and exploring of vascular imaging data. NNE 2.0 interacts with a database containing optogenetically-evoked dilation/constriction time-courses of individual vessels measured in mice somatosensory cortex in vivo by 2-photon microscopy. NNE 2.0 enables selection and display of the time-courses based on different criteria (subject, branching order, cortical depth, vessel diameter, arteriolar tree) as well as simple mathematical manipulation (e.g. averaging, peak-normalization) and data export. It supports visualization of the vascular network in 3D and enables localization of the individual functional vessel diameter measurements within vascular trees. NNE 2.0, its source code, and the corresponding database are freely downloadable from UCSD Neurovascular Imaging Laboratory website 1 . The source code can be utilized by the users to explore the associated database or as a template for databasing and sharing their own experimental results provided the appropriate format.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
Options for Hardening FinFETS with Flowable Oxide Between Fins
2017-03-01
thus hardening by process is needed. Using the methodology of CV measurements on inexpensive experimental blanket oxides we have determined options...NY 10598 Abstract: A methodology using radiation-induced charge measurements by CV techniques on blanket oxides is shown to aid in the choice...of process options for hardening FinFETs. Net positive charge in flowable oxides was reduced by 50 % using a simple non -intrusive process change
Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello
2008-12-01
This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
Mayhew, T M; Desoye, G
2004-07-01
Colloidal gold-labelling, combined with transmission electron microscopy, is a valuable technique for high-resolution immunolocalization of identified antigens in different subcellular compartments. Whilst the technique has been applied to placental tissues, few quantitative studies have been made. Subcellular compartments exist in three main categories (viz. organelles, membranes, filaments/tubules) and this affects the possibilities for quantification. Generally, gold particles are counted in order to compare either (a) compartments within an experimental group or (b) compartmental labelling distributions between groups. For the former, recent developments make it possible to test whether or not there is differential (nonrandom) labelling of compartments. The methods (relative labelling index and labelling density) are ideally suited to analysing label in one category of compartment (organelle or membrane or filament) but may be adapted to deal with a mixture of categories. They also require information about compartment size (e.g. profile area or trace length). Here, a simple and efficient method for drawing between-group comparisons of labelling distributions is presented. The method does not require information about compartment size or specimen magnification. It relies on multistage random sampling of specimens and unbiased counting of gold particles associated with different compartments. Distributions of observed gold counts in different experimental groups are compared by contingency table analysis with degrees of freedom for chi-squared (chi(2)) values being determined by the numbers of compartments and experimental groups. Compartmental values of chi(2)which contribute substantially to total chi(2)identify the principal subcellular sites of between-group differences. The method is illustrated using datasets from immunolabelling studies on the localization of GLUT1 glucose transporters in cultured human trophoblast cells exposed to different treatments.
New analytical technique for carbon dioxide absorption solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouryousefi, F.; Idem, R.O.
2008-02-15
The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive indexmore » models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.« less
Sujithra, S
2014-01-01
An experimental study was conducted among 60 menopausal women, 30 each in experimental and control group who met inclusion criteria. The menopausal women were identified in both the groups and level of depression was assessed using Cornell Dysthmia rating scale. Simple random sampling technique by lottery method was used for selecting the sample. Autogenic relaxation was practiced by the menopausal women for four weeks. The findings revealed that in experimental group, after intervention of autogenic relaxation on depression among menopausal women, 23 (76.7%) had mild depression. There was a statistically significant effectiveness in experimental group at the level of p < 0.05. There was a statistically significant association between the effectiveness of autogenic relaxation on depression among menopausal women in the post-experimental group with the type of family at the level of p < 0.05.
Numerical study on the effect of configuration of a simple box solar cooker for boiling water
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-02-01
In this work, a numerical study is carried out to investigate the effect of configuration of a simple box solar cooker. In order to validate the numerical results, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. The solar box cooker is employed to boil water by exposing to the solar radiation in Medan city of Indonesia. In the numerical method, a set of transient governing equations are developed. The governing equations are solved using forward time step marching technique. The main objective is to explore the effect of double glasses cover, dimensions of the cooking vessel, and depth of the box cooker to the performance of the solar box cooker. The results show that the experimental and numerical results show good agreement. The performance of the solar box cooker strongly affected by the distance of the double glass cover, the solar cooker depth, and the solar collector length.
Formulation of aerodynamic prediction techniques for hypersonic configuration design
NASA Technical Reports Server (NTRS)
1979-01-01
An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Supersonic second order potential theory was examined in detail to meet this objective. Shock layer integral techniques were considered as an alternative means of predicting gross aerodynamic characteristics. Several numerical pilot codes were developed for simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the second order computations indicated good agreement with higher order solutions and experimental results for a variety of wing like shapes and values of the hypersonic similarity parameter M delta approaching one.
A new experimental method to determine the sorption isotherm of a liquid in a porous medium.
Ouoba, Samuel; Cherblanc, Fabien; Cousin, Bruno; Bénet, Jean-Claude
2010-08-01
Sorption from the vapor phase is an important factor controlling the transport of volatile organic compounds (VOCs) in the vadose zone. Therefore, an accurate description of sorption behavior is essential to predict the ultimate fate of contaminants. Several measurement techniques are available in the case of water, however, when dealing with VOCs, the determination of sorption characteristics generally relies on gas chromatography. To avoid some drawbacks associated with this technology, we propose a new method to determine the sorption isotherm of any liquid compounds adsorbed in a soil. This method is based on standard and costless transducers (gas pressure, temperature) leading to a simple and transportable experimental device. A numerical estimation underlines the good accuracy and this technique is validated on two examples. Finally, this method is applied to determine the sorption isotherm of three liquid compounds (water, heptane, and trichloroethylene) in a clayey soil.
In vivo measurement of mechanical properties of human long bone by using sonic sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed
Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with themore » previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.« less
Underwater Turbulence Detection Using Gated Wavefront Sensing Technique
Bi, Ying; Xu, Xiping; Chow, Eddy Mun Tik
2018-01-01
Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments. PMID:29518889
Smartphone schlieren and shadowgraph imaging
NASA Astrophysics Data System (ADS)
Settles, Gary S.
2018-05-01
Schlieren and shadowgraph techniques are used throughout the realm of scientific experimentation to reveal transparent refractive phenomena, but the requirement of large precise optics has kept them mostly out of reach of the public. New developments, including the ubiquity of smartphones with high-resolution digital cameras and the Background-Oriented Schlieren technique (BOS), which replaces the precise optics with digital image processing, have changed these circumstances. This paper demonstrates a number of different schlieren and shadowgraph setups and image examples based only on a smartphone, its software applications, and some inexpensive accessories. After beginning with a simple traditional schlieren system the emphasis is placed on what can be visualized and measured using BOS and digital slit-scan imaging on the smartphone. Thermal plumes, liquid mixing and glass are used as subjects of investigation. Not only recreational and experimental photography, but also serious scientific imaging can be done.
Experimental verification of a radiofrequency power model for Wi-Fi technology.
Fang, Minyu; Malone, David
2010-04-01
When assessing the power emitted from a Wi-Fi network, it has been observed that these networks operate at a relatively low duty cycle. In this paper, we extend a recently introduced model of emitted power in Wi-Fi networks to cover conditions where devices do not always have packets to transmit. We present experimental results to validate the original model and its extension by developing approximate, but practical, testbed measurement techniques. The accuracy of the models is confirmed, with small relative errors: less than 5-10%. Moreover, we confirm that the greatest power is emitted when the network is saturated with traffic. Using this, we give a simple technique to quickly estimate power output based on traffic levels and give examples showing how this might be used in practice to predict current or future power output from a Wi-Fi network.
Determining Kinetic Parameters for Isothermal Crystallization of Glasses
NASA Technical Reports Server (NTRS)
Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.
2006-01-01
Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.
Simple Organics and Biomonomers Identified in HCN Polymers: An Overview
Ruiz-Bermejo, Marta; Zorzano, María-Paz; Osuna-Esteban, Susana
2013-01-01
Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system. PMID:25369814
Shi, Zhenyu; Wedd, Anthony G.; Gras, Sally L.
2013-01-01
The development of synthetic biology requires rapid batch construction of large gene networks from combinations of smaller units. Despite the availability of computational predictions for well-characterized enzymes, the optimization of most synthetic biology projects requires combinational constructions and tests. A new building-brick-style parallel DNA assembly framework for simple and flexible batch construction is presented here. It is based on robust recombination steps and allows a variety of DNA assembly techniques to be organized for complex constructions (with or without scars). The assembly of five DNA fragments into a host genome was performed as an experimental demonstration. PMID:23468883
High-pressure-assisted X-ray-induced damage as a new route for materials synthesis
Evlyukhin, Egor; Kim, Eunja; Goldberger, David; ...
2018-01-01
X-ray radiation induced damage has been known for decades and has largely been viewed as a tremendous nuisance; e.g., most X-ray-related studies of organic and inorganic materials suffer X-ray damage to varying degrees. Although, recent theoretical and experimental investigation of the response of simple chemical systems to X-rays offered better understanding of the mechanistic details of X-ray induced damage, the question about useful applicability of this technique is still unclear. Furthermore we experimentally demonstrate that by tuning pressure and X-ray energy, the radiation induced damage can be controlled and used for synthesis of novel materials.
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
Coherent Transition Radiation Generated from Transverse Electron Density Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Tyukhtin, A. V.
Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.
1990-08-22
Six of the 3 perfluorinated ethers prepared have been previously synthesized by other methods: perfluoro -5,5-bis(ethoxy- f methyl) -3,7-dioxanonane...from partially fluorinated starting material [34]. Third, as with perfluoroalkanes and simple perfluoroethers , Clark’s experimental results indicated 3...a highly branched perfluoroether ) by direct fluorination 3 in solution. Second, since some of these perfluorinated compounds had been previously
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
Aerodynamic prediction techniques for hypersonic configuration design
NASA Technical Reports Server (NTRS)
1981-01-01
An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Potential theory was examined in detail to meet this objective. Numerical pilot codes were developed for relatively simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body, and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; ...
2016-04-12
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. Furthermore, this observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
NASA Astrophysics Data System (ADS)
Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S.; Tumas, William; Perkins, John D.; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M.; Zakutayev, Andriy
2016-04-01
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures.
Caskey, Christopher M; Holder, Aaron; Shulda, Sarah; Christensen, Steven T; Diercks, David; Schwartz, Craig P; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S; Tumas, William; Perkins, John D; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M; Zakutayev, Andriy
2016-04-14
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskey, Christopher M.; Colorado School of Mines, Golden, Colorado 80401; Larix Chemical Science, Golden, Colorado 80401
2016-04-14
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less
Structural health monitoring in composite materials using frequency response methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos
2001-08-01
Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.
Shift-phase code multiplexing technique for holographic memories and optical interconnection
NASA Astrophysics Data System (ADS)
Honma, Satoshi; Muto, Shinzo; Okamoto, Atsushi
2008-03-01
Holographic technologies for optical memories and interconnection devices have been studied actively because of high storage capacity, many wiring patterns and high transmission rate. Among multiplexing techniques such as angular, phase code and wavelength-multiplexing, speckle multiplexing technique have gotten attention due to the simple optical setup having an adjustable random phase filter in only one direction. To keep simple construction and to suppress crosstalk among adjacent page data or wiring patterns for efficient holographic memories and interconnection, we have to consider about optimum randomness of the phase filter. The high randomness causes expanding an illumination area of reference beam on holographic media. On the other hands, the small randomness causes the crosstalk between adjacent hologram data. We have proposed the method of holographic multiplexing, shift-phase code multiplexing with a two-dimensional orthogonal matrix phase filter. A lot of orthogonal phase codes can be produced by shifting the phase filter in one direction. It is able to read and record the individual holograms with low crosstalk. We give the basic experimental result on holographic data multiplexing and consider the phase pattern of the filter to suppress the crosstalk between adjacent holograms sufficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in; Jotania, Rajshree, E-mail: rbjotania@gmail.com
2016-05-06
The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carriedmore » out by SEM analysis.« less
Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco
2013-09-03
Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.
A simple nonlocal damage model for predicting failure of notched laminates
NASA Technical Reports Server (NTRS)
Kennedy, T. C.; Nahan, M. F.
1995-01-01
The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
Tanahashi, Mitsuru
2010-01-01
Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.
Laser-self-mixing interferometry for mechatronics applications.
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems.
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
NASA Astrophysics Data System (ADS)
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.
NASA Astrophysics Data System (ADS)
Jahedi, Mohammad; Ardeljan, Milan; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Knezevic, Marko
2015-06-01
We use a multi-scale, polycrystal plasticity micromechanics model to study the development of orientation gradients within crystals deforming by slip. At the largest scale, the model is a full-field crystal plasticity finite element model with explicit 3D grain structures created by DREAM.3D, and at the finest scale, at each integration point, slip is governed by a dislocation density based hardening law. For deformed polycrystals, the model predicts intra-granular misorientation distributions that follow well the scaling law seen experimentally by Hughes et al., Acta Mater. 45(1), 105-112 (1997), independent of strain level and deformation mode. We reveal that the application of a simple compression step prior to simple shearing significantly enhances the development of intra-granular misorientations compared to simple shearing alone for the same amount of total strain. We rationalize that the changes in crystallographic orientation and shape evolution when going from simple compression to simple shearing increase the local heterogeneity in slip, leading to the boost in intra-granular misorientation development. In addition, the analysis finds that simple compression introduces additional crystal orientations that are prone to developing intra-granular misorientations, which also help to increase intra-granular misorientations. Many metal working techniques for refining grain sizes involve a preliminary or concurrent application of compression with severe simple shearing. Our finding reveals that a pre-compression deformation step can, in fact, serve as another processing variable for improving the rate of grain refinement during the simple shearing of polycrystalline metals.
Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"
NASA Astrophysics Data System (ADS)
Pal, Sangita; Singha, Mousumi; Meena, Sher Singh
2018-04-01
Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-01
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430
Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pries, Jason L.; Tang, Lixin; Burress, Timothy A.
This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less
Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus
2016-02-01
We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.
A new simple technique for improving the random properties of chaos-based cryptosystems
NASA Astrophysics Data System (ADS)
Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Celma, S.
2018-03-01
A new technique for improving the security of chaos-based stream ciphers has been proposed and tested experimentally. This technique manages to improve the randomness properties of the generated keystream by preventing the system to fall into short period cycles due to digitation. In order to test this technique, a stream cipher based on a Skew Tent Map algorithm has been implemented on a Virtex 7 FPGA. The randomness of the keystream generated by this system has been compared to the randomness of the keystream generated by the same system with the proposed randomness-enhancement technique. By subjecting both keystreams to the National Institute of Standards and Technology (NIST) tests, we have proved that our method can considerably improve the randomness of the generated keystreams. In order to incorporate our randomness-enhancement technique, only 41 extra slices have been needed, proving that, apart from effective, this method is also efficient in terms of area and hardware resources.
Forces between permanent magnets: experiments and model
NASA Astrophysics Data System (ADS)
González, Manuel I.
2017-03-01
This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.
Multivariate analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendavid, Josh; Fisher, Wade C.; Junk, Thomas R.
2016-01-01
The end products of experimental data analysis are designed to be simple and easy to understand: hypothesis tests and measurements of parameters. But, the experimental data themselves are voluminous and complex. Furthermore, in modern collider experiments, many petabytes of data must be processed in search of rare new processes which occur together with much more copious background processes that are of less interest to the task at hand. The systematic uncertainties on the background may be larger than the expected signal in many cases. The statistical power of an analysis and its sensitivity to systematic uncertainty can therefore usually bothmore » be improved by separating signal events from background events with higher efficiency and purity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, C.; Brizuela, H.; Heluani, S. P.
2014-05-21
The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less
NASA Astrophysics Data System (ADS)
Adler, Ronald S.; Swanson, Scott D.; Yeung, Hong N.
1996-01-01
A projection-operator technique is applied to a general three-component model for magnetization transfer, extending our previous two-component model [R. S. Adler and H. N. Yeung,J. Magn. Reson. A104,321 (1993), and H. N. Yeung, R. S. Adler, and S. D. Swanson,J. Magn. Reson. A106,37 (1994)]. The PO technique provides an elegant means of deriving a simple, effective rate equation in which there is natural separation of relaxation and source terms and allows incorporation of Redfield-Provotorov theory without any additional assumptions or restrictive conditions. The PO technique is extended to incorporate more general, multicomponent models. The three-component model is used to fit experimental data from samples of human hyaline cartilage and fibrocartilage. The fits of the three-component model are compared to the fits of the two-component model.
Simulation of wind turbine wakes using the actuator line technique
Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.
2015-01-01
The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862
da Rosa, Fernando William Figueiredo; Pohl, Pedro Henrique Isoldi; Mader, Ana Maria Amaral Antônio; de Paiva, Carla Peluso; dos Santos, Aline Amaro; Bianco, Bianca; Rodrigues, Luciano Miller Reis
2015-01-01
ABSTRACT Objective To evaluate inflammatory reaction, fibrosis and neovascularization in dural repairs in Wistar rats using four techniques: simple suture, bovine collagen membrane, silicon mesh and silicon mesh with suture. Methods Thirty Wistar rats were randomized in five groups: the first was the control group, submitted to dural tear only. The others underwent durotomy and simple suture, bovine collagen membrane, silicon mesh and silicon mesh with suture. Animals were euthanized and the spine was submitted to histological evaluation with a score system (ranging from zero to 3) for inflammation, neovascularization and fibrosis. Results Fibrosis was significantly different between simple suture and silicon mesh (p=0.005) and between simple suture and mesh with suture (p=0.015), showing that fibrosis is more intense when a foreign body is used in the repair. Bovine membrane was significantly different from mesh plus suture (p=0.011) regarding vascularization. Inflammation was significantly different between simple suture and bovine collagen membrane. Conclusion Silicon mesh, compared to other commercial products available, is a possible alternative for dural repair. More studies are necessary to confirm these findings. PMID:26761555
NASA Astrophysics Data System (ADS)
Setiya Pradana, Jalu; Hidayat, Rahmat
2018-04-01
In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.
Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.
2015-01-01
Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.
Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws.
Titze, Tobias; Lauerer, Alexander; Heinke, Lars; Chmelik, Christian; Zimmermann, Nils E R; Keil, Frerich J; Ruthven, Douglas M; Kärger, Jörg
2015-11-23
Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex. The limitations of the diffusion model are also discussed with reference to the extensive literature on this subject. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Topological characterization versus synchronization for assessing (or not) dynamical equivalence
NASA Astrophysics Data System (ADS)
Letellier, Christophe; Mangiarotti, Sylvain; Sendiña-Nadal, Irene; Rössler, Otto E.
2018-04-01
Model validation from experimental data is an important and not trivial topic which is too often reduced to a simple visual inspection of the state portrait spanned by the variables of the system. Synchronization was suggested as a possible technique for model validation. By means of a topological analysis, we revisited this concept with the help of an abstract chemical reaction system and data from two electrodissolution experiments conducted by Jack Hudson's group. The fact that it was possible to synchronize topologically different global models led us to conclude that synchronization is not a recommendable technique for model validation. A short historical preamble evokes Jack Hudson's early career in interaction with Otto E. Rössler.
Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc
2011-08-01
A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.
Laser-Self-Mixing Interferometry for Mechatronics Applications
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems. PMID:22412324
Reflotron cholesterol measurement in general practice: accuracy and detection of errors.
Ball, M J; Robertson, I K; Woods, M
1994-11-01
Comparison of cholesterol determinations by nurses using a Reflotron analyser in a general practice setting showed a good correlation with plasma cholesterol determinations by wet chemistry in a clinical biochemistry laboratory. A limited number of comparisons did, however, give a much lower result on the Reflotron. In an experimental situation, small sample volumes (which could result from poor technique) were shown to produce falsely low readings. A simple method which may immediately detect falsely low Reflotron readings is discussed.
Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.
Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H
2011-01-28
Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
DNA nanosensor surface grafting and salt dependence
NASA Astrophysics Data System (ADS)
Carvalho, B. G.; Fagundes, J.; Martin, A. A.; Raniero, L.; Favero, P. P.
2013-02-01
In this paper we investigated the Paracoccidoides brasiliensis fungus nanosensor by simulations of simple strand DNA grafting on gold nanoparticle. In order to improve the knowledge of nanoparticle environment, the addiction of salt solution was studied at the models proposed by us. Nanoparticle and DNA are represented by economic models validated by us in this paper. In addition, the DNA grafting and salt influences are evaluated by adsorption and bond energies calculations. This theoretical evaluation gives support to experimental diagnostics techniques of diseases.
Graph-theoretic strengths of contextuality
NASA Astrophysics Data System (ADS)
de Silva, Nadish
2017-03-01
Cabello-Severini-Winter and Abramsky-Hardy (building on the framework of Abramsky-Brandenburger) both provide classes of Bell and contextuality inequalities for very general experimental scenarios using vastly different mathematical techniques. We review both approaches, carefully detail the links between them, and give simple, graph-theoretic methods for finding inequality-free proofs of nonlocality and contextuality and for finding states exhibiting strong nonlocality and/or contextuality. Finally, we apply these methods to concrete examples in stabilizer quantum mechanics relevant to understanding contextuality as a resource in quantum computation.
Lu, Feng; Belkin, Mikhail A
2011-10-10
We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.
Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures
NASA Astrophysics Data System (ADS)
Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.
1992-03-01
A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.
Using heterologous expression systems to characterize potassium and sodium transport activities.
Rodríguez, Alonso; Benito, Begoña; Cagnac, Olivier
2012-01-01
The expression of plant transporters in simple well-characterized cell systems is an irreplaceable technique for gaining insights into the kinetic and energetic features of plant transporters. Among all the available expression systems, yeast cells offer the highest simplicity and have the capacity to mimic the in vivo properties of plant transporters. Here, we describe the use of yeast mutants to express K(+) and Na(+) plant transporters and discuss some experimental problems that can produce misleading results.
Current sensing using bismuth rare-earth iron garnet films
NASA Astrophysics Data System (ADS)
Ko, Michael; Garmire, Elsa
1995-04-01
Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.
de Bruin, Donny; Bossert, Nelli; Aartsma-Rus, Annemieke; Bouwmeester, Dirk
2018-04-06
Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.
Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G
2017-11-03
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
NASA Astrophysics Data System (ADS)
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.
2017-11-01
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
A new technique for long time catheterization of sacral epidural canal in rabbits.
Erkin, Yüksel; Aydın, Zeynep; Taşdöğen, Aydın; Karcı, Ayşe
2013-01-01
In this study we aimed to develop a simple and practical technique for chronic sacral epidural catheterization of rabbits. We included ten rabbits weighing 2-2.5 kg in the study. After anesthesia and analgesia, we placed an epidural catheter by a 2 cm longitudinal skin incision in the tail above the sacral hiatus region. We confirmed localization by giving 1% lidocaine (leveling sensory loss and motor function loss of the lower extremity). The catheter was carried forward through a subcutaneous tunnel and fixed at the neck. Chronic caudal epidural catheter placement was succesful in all rabbits. The catheters stayed in place effectively for ten days. We encountered no catheter complications during this period. The localization of the catheter was reconfirmed by 1% lidocaine on the last day. After animals killing, we performed a laminectomy and verified localization of the catheter in the epidural space. Various methods for catheterization of the epidural space in animal models exist in the literature. Epidural catheterization of rabbits can be accomplished by atlanto-occipital, lumbar or caudal routes by amputation of the tail. Intrathecal and epidural catheterization techniques defined in the literature necessitate surgical skill and knowledge of surgical procedures like laminectomy and tail amputation. Our technique does not require substantial surgical skill, anatomical integrity is preserved and malposition of the catheter is not encountered. In conclusion, we suggest that our simple and easily applicable new epidural catheterization technique can be used as a model in experimental animal studies.
Herler, Jürgen; Dirnwöber, Markus
2011-10-31
Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements.
Experimental Demonstration and Circuitry for a Very Compact Coil-Only Pulse Echo EMAT
Rueter, Dirk
2017-01-01
This experimental study demonstrates for the first time a solid-state circuitry and design for a simple compact copper coil (without an additional bulky permanent magnet or bulky electromagnet) as a contactless electromagnetic acoustic transducer (EMAT) for pulse echo operation at MHz frequencies. A pulsed ultrasound emission into a metallic test object is electromagnetically excited by an intense MHz burst at up to 500 A through the 0.15 mm filaments of the transducer. Immediately thereafter, a smoother and quasi “DC-like” current of 100 A is applied for about 1 ms and allows an echo detection. The ultrasonic pulse echo operation for a simple, compact, non-contacting copper coil is new. Application scenarios for compact transducer techniques include very narrow and hostile environments, in which, e.g., quickly moving metal parts must be tested with only one, non-contacting ultrasound shot. The small transducer coil can be operated remotely with a cable connection, separate from the much bulkier supply circuitry. Several options for more technical and fundamental progress are discussed. PMID:28441722
LaDisa, John F.; Taylor, Charles A.; Feinstein, Jeffrey A.
2010-01-01
Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest otherwise as life expectancies are decades less than in the average population and substantial morbidity often exists. What follows is an expanded version of collective work conducted by the authors’ and numerous collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital Heart Disease pertaining to recent advances for CoA. The work begins by focusing on what is known about blood flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy from both clinical imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented for these patient populations. Finally, recent work from a representative experimental animal model of CoA that may offer insight into proposed mechanisms of long-term morbidity in CoA is presented. PMID:21152106
A Simple Model of Pulsed Ejector Thrust Augmentation
NASA Technical Reports Server (NTRS)
Wilson, Jack; Deloof, Richard L. (Technical Monitor)
2003-01-01
A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.
Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model.
Mesquita, Ana; Cardenal-Muñoz, Elena; Dominguez, Eunice; Muñoz-Braceras, Sandra; Nuñez-Corcuera, Beatriz; Phillips, Ben A; Tábara, Luis C; Xiong, Qiuhong; Coria, Roberto; Eichinger, Ludwig; Golstein, Pierre; King, Jason S; Soldati, Thierry; Vincent, Olivier; Escalante, Ricardo
2017-01-02
Autophagy is a fast-moving field with an enormous impact on human health and disease. Understanding the complexity of the mechanism and regulation of this process often benefits from the use of simple experimental models such as the social amoeba Dictyostelium discoideum. Since the publication of the first review describing the potential of D. discoideum in autophagy, significant advances have been made that demonstrate both the experimental advantages and interest in using this model. Since our previous review, research in D. discoideum has shed light on the mechanisms that regulate autophagosome formation and contributed significantly to the study of autophagy-related pathologies. Here, we review these advances, as well as the current techniques to monitor autophagy in D. discoideum. The comprehensive bioinformatics search of autophagic proteins that was a substantial part of the previous review has not been revisited here except for those aspects that challenged previous predictions such as the composition of the Atg1 complex. In recent years our understanding of, and ability to investigate, autophagy in D. discoideum has evolved significantly and will surely enable and accelerate future research using this model.
Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.
Amiri-Rigi, Atefeh; Abbasi, Soleiman
2016-04-15
Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
The KACST Heavy-Ion Electrostatic Storage Ring
NASA Astrophysics Data System (ADS)
Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.
2011-10-01
A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.
NASA Astrophysics Data System (ADS)
Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.
2018-03-01
We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.
NASA Astrophysics Data System (ADS)
Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.
2015-02-01
This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.
Statistical Inference of a RANS closure for a Jet-in-Crossflow simulation
NASA Astrophysics Data System (ADS)
Heyse, Jan; Edeling, Wouter; Iaccarino, Gianluca
2016-11-01
The jet-in-crossflow is found in several engineering applications, such as discrete film cooling for turbine blades, where a coolant injected through hols in the blade's surface protects the component from the hot gases leaving the combustion chamber. Experimental measurements using MRI techniques have been completed for a single hole injection into a turbulent crossflow, providing full 3D averaged velocity field. For such flows of engineering interest, Reynolds-Averaged Navier-Stokes (RANS) turbulence closure models are often the only viable computational option. However, RANS models are known to provide poor predictions in the region close to the injection point. Since these models are calibrated on simple canonical flow problems, the obtained closure coefficient estimates are unlikely to extrapolate well to more complex flows. We will therefore calibrate the parameters of a RANS model using statistical inference techniques informed by the experimental jet-in-crossflow data. The obtained probabilistic parameter estimates can in turn be used to compute flow fields with quantified uncertainty. Stanford Graduate Fellowship in Science and Engineering.
Reducing Brain Signal Noise in the Prediction of Economic Choices: A Case Study in Neuroeconomics
Sundararajan, Raanju R.; Palma, Marco A.; Pourahmadi, Mohsen
2017-01-01
In order to reduce the noise of brain signals, neuroeconomic experiments typically aggregate data from hundreds of trials collected from a few individuals. This contrasts with the principle of simple and controlled designs in experimental and behavioral economics. We use a frequency domain variant of the stationary subspace analysis (SSA) technique, denoted as DSSA, to filter out the noise (nonstationary sources) in EEG brain signals. The nonstationary sources in the brain signal are associated with variations in the mental state that are unrelated to the experimental task. DSSA is a powerful tool for reducing the number of trials needed from each participant in neuroeconomic experiments and also for improving the prediction performance of an economic choice task. For a single trial, when DSSA is used as a noise reduction technique, the prediction model in a food snack choice experiment has an increase in overall accuracy by around 10% and in sensitivity and specificity by around 20% and in AUC by around 30%, respectively. PMID:29311784
Reducing Brain Signal Noise in the Prediction of Economic Choices: A Case Study in Neuroeconomics.
Sundararajan, Raanju R; Palma, Marco A; Pourahmadi, Mohsen
2017-01-01
In order to reduce the noise of brain signals, neuroeconomic experiments typically aggregate data from hundreds of trials collected from a few individuals. This contrasts with the principle of simple and controlled designs in experimental and behavioral economics. We use a frequency domain variant of the stationary subspace analysis (SSA) technique, denoted as DSSA, to filter out the noise (nonstationary sources) in EEG brain signals. The nonstationary sources in the brain signal are associated with variations in the mental state that are unrelated to the experimental task. DSSA is a powerful tool for reducing the number of trials needed from each participant in neuroeconomic experiments and also for improving the prediction performance of an economic choice task. For a single trial, when DSSA is used as a noise reduction technique, the prediction model in a food snack choice experiment has an increase in overall accuracy by around 10% and in sensitivity and specificity by around 20% and in AUC by around 30%, respectively.
Cunningham, J C; Sinka, I C; Zavaliangos, A
2004-08-01
In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2022-2039, 2004
Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits
NASA Astrophysics Data System (ADS)
Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.
2018-04-01
Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.
A comparison of simple shear characterization methods for composite laminates
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Brinson, H. F.
1978-01-01
Various methods for the shear stress/strain characterization of composite laminates are examined and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the (+/- 45 deg)s tensile test method and the (0/90 deg)s symmetric rail shear test method. It is shown that the first technique indicates the shear properties of the graphite/epoxy laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that these laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress/strain curves utilizing the various different shear behaviour methods as input information are presented and discussed.
A comparison of simple shear characterization methods for composite laminates
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Brinson, H. F.
1977-01-01
Various methods for the shear stress-strain characterization of composite laminates are examined, and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the + or - 45 degs tensile test method and the 0 deg/90 degs symmetric rail shear test method. It is shown that the first technique indicates that the shear properties of the G/E laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that the G/E laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress-strain curves utilizing the various different shear behavior methods as input information are presented and discussed.
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.
2013-04-01
We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.
NASA Astrophysics Data System (ADS)
Taniguchi, Kenji
2018-04-01
To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.
Precision atomic beam density characterization by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxley, Paul; Wihbey, Joseph
2016-09-15
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less
Precision atomic beam density characterization by diode laser absorption spectroscopy.
Oxley, Paul; Wihbey, Joseph
2016-09-01
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.
Hamilton, Kirk L
2014-04-15
An old proverb states "necessity is the mother of invention." This certainly holds true in science as one pursues research questions. Experimental techniques have evolved as scientists have asked more specific research questions. Indeed, techniques such as the Ussing chamber, the perfused renal tubule preparation, patch-clamp, polymerase chain reaction, and site-directed mutagenesis have been developed over the past 60 years. However, sometimes, simple techniques may be useful and still very informative, and this certainly applies to intestinal physiology. Indeed, Gerald Wiseman and Thomas Hastings Wilson described the intestinal everted sac preparation some 60 years ago. Since then, this technique has been used for numerous research purposes including determining ion, amino acid, water and solute transport across the intestinal epithelium; and drug metabolism, absorption, and interactions in pharmaceutical/pharmacological research and even in education. This article provides a historical review of the development of the in vitro intestinal preparation that led to the everted sac preparation and its use in science.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.
Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L
The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.
Virtual-stereo fringe reflection technique for specular free-form surface testing
NASA Astrophysics Data System (ADS)
Ma, Suodong; Li, Bo
2016-11-01
Due to their excellent ability to improve the performance of optical systems, free-form optics have attracted extensive interest in many fields, e.g. optical design of astronomical telescopes, laser beam expanders, spectral imagers, etc. However, compared with traditional simple ones, testing for such kind of optics is usually more complex and difficult which has been being a big barrier for the manufacture and the application of these optics. Fortunately, owing to the rapid development of electronic devices and computer vision technology, fringe reflection technique (FRT) with advantages of simple system structure, high measurement accuracy and large dynamic range is becoming a powerful tool for specular free-form surface testing. In order to obtain absolute surface shape distributions of test objects, two or more cameras are often required in the conventional FRT which makes the system structure more complex and the measurement cost much higher. Furthermore, high precision synchronization between each camera is also a troublesome issue. To overcome the aforementioned drawback, a virtual-stereo FRT for specular free-form surface testing is put forward in this paper. It is able to achieve absolute profiles with the help of only one single biprism and a camera meanwhile avoiding the problems of stereo FRT based on binocular or multi-ocular cameras. Preliminary experimental results demonstrate the feasibility of the proposed technique.
Non-invasive absolute measurement of leaf water content using terahertz quantum cascade lasers.
Baldacci, Lorenzo; Pagano, Mario; Masini, Luca; Toncelli, Alessandra; Carelli, Giorgio; Storchi, Paolo; Tredicucci, Alessandro
2017-01-01
Plant water resource management is one of the main future challenges to fight recent climatic changes. The knowledge of the plant water content could be indispensable for water saving strategies. Terahertz spectroscopic techniques are particularly promising as a non-invasive tool for measuring leaf water content, thanks to the high predominance of the water contribution to the total leaf absorption. Terahertz quantum cascade lasers (THz QCL) are one of the most successful sources of THz radiation. Here we present a new method which improves the precision of THz techniques by combining a transmission measurement performed using a THz QCL source, with simple pictures of leaves taken by an optical camera. As a proof of principle, we performed transmission measurements on six plants of Vitis vinifera L. (cv "Colorino"). We found a linear law which relates the leaf water mass to the product between the leaf optical depth in the THz and the projected area. Results are in optimal agreement with the proposed law, which reproduces the experimental data with 95% accuracy. This method may overcome the issues related to intra-variety heterogeneities and retrieve the leaf water mass in a fast, simple, and non-invasive way. In the future this technique could highlight different behaviours in preserving the water status during drought stress.
NASA Astrophysics Data System (ADS)
Dyakov, Y. A.; Kazaryan, M. A.; Golubkov, M. G.; Gubanova, D. P.; Bulychev, N. A.; Kazaryan, S. M.
2018-04-01
Studying the processes occurring in biological systems under irradiation is critically important for understanding the principles of working of biological systems. One of the main problems, which stimulate interest to the processes of photo-induced excitation and ionization of biomolecules, is the necessity of their identification by various mass spectrometry (MS) methods. While simple analysis of small molecules became a standard MS technique long time ago, recognition of large molecules, especially carbohydrates, is still a difficult problem, and requires sophisticated techniques and complicated computer analysis. Due to the large variety of substances in the samples, as far as the complexity of the processes occurring after excitation/ionization of the molecules, the recognition efficiency of MS technique in terms of carbohydrates is still not high enough. Additional theoretical and experimental analysis of ionization and dissociation processes in various kinds of polysaccharides, beginning from the simplest ones, is necessary. In our work, we extent previous theoretical and experimental studies of saccharides, and concentrate our attention to protonated glucose. In this article we paid the most attention to the cross-ring dissociation and water loss reactions due to their importance for identification of various isomers of hydrocarbon molecules (for example, distinguish α- and β-glucose).
NASA Astrophysics Data System (ADS)
Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.
2012-01-01
This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.
NASA Technical Reports Server (NTRS)
Lockard, David P.
2011-01-01
Fifteen submissions in the tandem cylinders category of the First Workshop on Benchmark problems for Airframe Noise Computations are summarized. Although the geometry is relatively simple, the problem involves complex physics. Researchers employed various block-structured, overset, unstructured and embedded Cartesian grid techniques and considerable computational resources to simulate the flow. The solutions are compared against each other and experimental data from 2 facilities. Overall, the simulations captured the gross features of the flow, but resolving all the details which would be necessary to compute the noise remains challenging. In particular, how to best simulate the effects of the experimental transition strip, and the associated high Reynolds number effects, was unclear. Furthermore, capturing the spanwise variation proved difficult.
Simulation of speckle patterns with pre-defined correlation distributions.
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S
2016-03-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques.
Simulation of speckle patterns with pre-defined correlation distributions
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.
2016-01-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589
NASA Astrophysics Data System (ADS)
Azmi, Asrul Izam; Raju, Raju; Peng, Gang-Ding
2012-02-01
This paper reports an application of phase shifted fiber Bragg grating (PS-FBG) intensity-type acoustic sensor in a continuous and in-situ failure testing of an E-glass/vinylester top hat stiffener (THS). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in an effective acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.
Failure monitoring of E-glass/vinylester composites using fiber grating acoustic sensor
NASA Astrophysics Data System (ADS)
Azmi, A. I.; Raju; Peng, G. D.
2013-06-01
This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted fiber Bragg grating (PS-FBG). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.
Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheps, Leonid; Chandler, David W.
Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transientmore » reaction intermediates in a simple, inexpensive, and robust experimental package.« less
NASA Astrophysics Data System (ADS)
Crâştiu, I.; Nyaguly, E.; Deac, S.; Gozman-Pop, C.; Bârgău, A.; Bereteu, L.
2018-01-01
The purpose of this paper is the development and validation of an impulse excitation technique to determine flexural critical speeds of a single rotor shaft and multy-rotor shaft. The experimental measurement of the vibroacoustic response is carried out by using a condenser microphone as a transducer. By the means of Modal Analysis using Finite Element Method (FEM), the natural frequencies and shape modes of one rotor and three rotor specimens are determined. The vibration responses of the specimens, in simple supported conditions, are carried out using algorithms based on Fast Fourier Transform (FFT). To validate the results of the modal parameters estimated using Finite Element Analysis (FEA) these are compared with experimental ones.
Single-molecule techniques in biophysics: a review of the progress in methods and applications.
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J M; Leake, Mark C
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Single-molecule techniques in biophysics: a review of the progress in methods and applications
NASA Astrophysics Data System (ADS)
Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J. M.; Leake, Mark C.
2018-02-01
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in ‘force spectroscopy’ techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.
Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less
Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holleis, S.; Hoinkes, T.; Wuttke, C.
2014-04-21
We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; ...
2017-11-03
Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.
Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P
2014-06-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation
Scheff, Jeremy D.; Griffel, Benjamin; Corbett, Siobhan A.; Calvano, Steve E.; Androulakis, Ioannis P.
2014-01-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. PMID:24680646
Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young
2017-01-01
[Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27–46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice. PMID:28265144
Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young
2017-02-01
[Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27-46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice.
Application of simple adaptive control to water hydraulic servo cylinder system
NASA Astrophysics Data System (ADS)
Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji
2012-09-01
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates.
Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo
2017-03-14
The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardes, Alexandre M.; Ahn, Sungmo; Rourke, Devin
2016-12-01
We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution-processed organic photovoltaic (OPV) devices. The tailored 'photonic electrode' nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantummore » efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure.« less
Semantic wireless localization of WiFi terminals in smart buildings
NASA Astrophysics Data System (ADS)
Ahmadi, H.; Polo, A.; Moriyama, T.; Salucci, M.; Viani, F.
2016-06-01
The wireless localization of mobile terminals in indoor scenarios by means of a semantic interpretation of the environment is addressed in this work. A training-less approach based on the real-time calibration of a simple path loss model is proposed which combines (i) the received signal strength information measured by the wireless terminal and (ii) the topological features of the localization domain. A customized evolutionary optimization technique has been designed to estimate the optimal target position that fits the complex wireless indoor propagation and the semantic target-environment relation, as well. The proposed approach is experimentally validated in a real building area where the available WiFi network is opportunistically exploited for data collection. The presented results point out a reduction of the localization error obtained with the introduction of a very simple semantic interpretation of the considered scenario.
A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching
NASA Astrophysics Data System (ADS)
Ge, Yixian; Zhou, Junping; Wang, Tingting
2011-11-01
A miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber is presented. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only cleaving, wet chemical etching and fusion splicing. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. Experimental results show the sensor has a good linearity. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost.
NASA Astrophysics Data System (ADS)
Ishikawa, Atsushi; Kato, Taiki; Takeyasu, Nobuyuki; Fujimori, Kazuhiro; Tsuruta, Kenji
2017-10-01
A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology.
Compartmental analysis and its manifold applications to pharmacokinetics.
Rescigno, Aldo
2010-03-01
In this paper, I show how the concept of compartment evolved from the simple dilution of a substance in a physiological volume to its distribution in a network of interconnected spaces. The differential equations describing the fate of a substance in a living being can be solved, qualitatively and quantitatively, with the help of a number of mathematical techniques. A number of parameters of pharmacokinetic interest can be computed from the experimental data; often, the data available are not sufficient to determine some parameters, but it is possible to determine their range.
Rail Inductance Calculations for Some Simple Current Distributions,
1986-02-01
defence and anti- armour weapons. One experimental railgun used at MRL consists basically of an electric power supply connected to two long parallel...rrn6) .’." -2 2 2 2 2 + -x’.- 6) 2(x’ - 6) - h /2 - h (( - y’) + (x’ - 6) + h /- 4p + (x’ - artan - ,- 2(x’ -6) (. - y’ ) 2 -2 2 2. h y’ + h( + (x...instabilities and this would require investigation. The techniques for such analysis, though under consideration, do not yet seem to be adequately developed. It
NASA Astrophysics Data System (ADS)
Yüksel, Kivilcim; Yilmaz, Anil
2018-07-01
We present the analysis of a remote sensor based on fiber Cavity Ring-Down (CRD) loop interrogated by an Optical Time Domain Reflectometer (OTDR) taking into account both practical limitations and the related signal processing. A commercial OTDR is used for both pulse generation and sensor output detection. This allows obtaining a compact and simple design for intensity-based sensor applications. This novel sensor interrogation approach is experimentally demonstrated by placing a variable attenuator inside the fiber loop that mimics a sensor head.
Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems
NASA Astrophysics Data System (ADS)
Hurtado, A.; Schires, K.; Henning, I. D.; Adams, M. J.
2012-03-01
We report an approach based upon vertical cavity surface emitting lasers (VCSELs) to reproduce optically different behaviors exhibited by biological neurons but on a much faster timescale. The technique proposed is based on the polarization switching and nonlinear dynamics induced in a single VCSEL under polarized optical injection. The particular attributes of VCSELs and the simple experimental configuration used in this work offer prospects of fast, reconfigurable processing elements with excellent fan-out and scaling potentials for use in future computational paradigms and artificial neural networks.
Ordering of the nanoscale step morphology as a mechanism for droplet self-propulsion.
Hilner, Emelie; Zakharov, Alexei A; Schulte, Karina; Kratzer, Peter; Andersen, Jesper N; Lundgren, Edvin; Mikkelsen, Anders
2009-07-01
We establish a new mechanism for self-propelled motion of droplets, in which ordering of the nanoscale step morphology by sublimation beneath the droplets themselves acts to drive them perpendicular and up the surface steps. The mechanism is demonstrated and explored for Ga droplets on GaP(111)B, using several experimental techniques allowing studies of the structure and dynamics from micrometers to the atomic scale. We argue that the simple assumptions underlying the propulsion mechanism make it relevant for a wide variety of materials systems.
Dynamic modal characterization of musical instruments using digital holography
NASA Astrophysics Data System (ADS)
Demoli, Nazif; Demoli, Ivan
2005-06-01
This study shows that a dynamic modal characterization of musical instruments with membrane can be carried out using a low-cost device and that the obtained very informative results can be presented as a movie. The proposed device is based on a digital holography technique using the quasi-Fourier configuration and time-average principle. Its practical realization with a commercial digital camera and large plane mirrors allows relatively simple analyzing of big vibration surfaces. The experimental measurements given for a percussion instrument are supported by the mathematical formulation of the problem.
Self-optimization and auto-stabilization of receiver in DPSK transmission system.
Jang, Y S
2008-03-17
We propose a self-optimization and auto-stabilization method for a 1-bit DMZI in DPSK transmission. Using the characteristics of eye patterns, the optical frequency transmittance of a 1-bit DMZI is thermally controlled to maximize the power difference between the constructive and destructive output ports. Unlike other techniques, this control method can be realized without additional components, making it simple and cost effective. Experimental results show that error-free performance is maintained when the carrier optical frequency variation is approximately 10% of the data rate.
Contact angle determination procedure and detection of an invisible surface film
NASA Technical Reports Server (NTRS)
Meyer, G.; Grat, R.
1990-01-01
The contact angle value, i.e., the tangent angle of liquid resting on a planar solid surface, is a basic parameter which can be applied to a wide range of applications. The goal is to provide a basic understanding of the contact angle measurement technique and to present a simple illustration that can be applied as a quality control method; namely, detection of a surface contaminant which exists on a surface that appears clean to the unaided eye. The equipment and experimental procedures are detailed.
Color temperature measurement in laser-driven shock waves
NASA Astrophysics Data System (ADS)
Hall, T. A.; Benuzzi, A.; Batani, D.; Beretta, D.; Bossi, S.; Faral, B.; Koenig, M.; Krishnan, J.; Löautwer, Th.; Mahdieh, M.
1997-06-01
A simultaneous measurement of color temperature and shock velocity in laser-driven shocks is presented. The color temperature was measured from the target rear side emissivity, and the shock velocity by using stepped targets. A very good planarity of the shock was ensured by the phase zone plate smoothing technique. A simple model of the shock luminosity has been developed in order to estimate the shock temperature from the experimental rear side emissivity. Results have been compared to temperatures obtained from the shock velocity for a material of a known equation of state.
Shadow-free single-pixel imaging
NASA Astrophysics Data System (ADS)
Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang
2017-11-01
Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.
A technique for computation of noise temperature due to a beam waveguide shroud
NASA Technical Reports Server (NTRS)
Veruttipong, W.; Franco, M. M.
1993-01-01
Direct analytical computation of the noise temperature of real beam waveguide (BWG) systems, including all mirrors and the surrounding shroud, is an extremely complex problem and virtually impossible to achieve. Yet the DSN antennas are required to be ultra low-noise in order to be effective, and a reasonably accurate prediction is essential. This article presents a relatively simple technique to compute a real BWG system noise temperature by combining analytical techniques with data from experimental tests. Specific expressions and parameters for X-band (8.45-GHz) BWG noise computation are obtained for DSS 13 and DSS 24, now under construction. These expressions are also valid for various conditions of the BWG feed systems, including horn sizes and positions, and mirror sizes, curvatures, and positions. Parameters for S- and Ka-bands (2.3 and 32.0 GHz) have not been determined; however, those can be obtained following the same procedure as for X-band.
Synthetic schlieren—application to the visualization and characterization of air convection
NASA Astrophysics Data System (ADS)
Taberlet, Nicolas; Plihon, Nicolas; Auzémery, Lucile; Sautel, Jérémy; Panel, Grégoire; Gibaud, Thomas
2018-05-01
Synthetic schlieren is a digital image processing optical method relying on the variation of optical index to visualize the flow of a transparent fluid. In this article, we present a step-by-step, easy-to-implement and affordable experimental realization of this technique. The method is applied to air convection caused by a warm surface. We show that the velocity of rising convection plumes can be linked to the temperature of the warm surface and propose a simple physical argument to explain this dependence. Moreover, using this method, one can reveal the tenuous convection plumes rising from one’s hand, a phenomenon invisible to the naked eye. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques (refer to the video abstract).
Lewis, George K; Lewis, George K; Olbricht, William
2008-01-01
This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2−5 MHz piezoelectrics, but the methodology applies for 700 kHz–20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773
NASA Technical Reports Server (NTRS)
Chien, C. H.; Swinson, W. F.; Turner, J. L.; Moslehy, F. A.; Ranson, W. F.
1980-01-01
A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed.
Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho
2007-08-20
In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.
Evidence of complex contagion of information in social media: An experiment using Twitter bots.
Mønsted, Bjarke; Sapieżyński, Piotr; Ferrara, Emilio; Lehmann, Sune
2017-01-01
It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion), or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion)? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using 'social bots' deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.
Simulation of wind turbine wakes using the actuator line technique.
Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J
2015-02-28
The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Villalobos, Michael J; Betti, Christopher J; Vaughan, Andrew T M
2006-01-01
Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter and gene-specific primers. The rate of appearance and loss of specific PCR products allows detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks introduced into any identifiable genomic location.
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron
2015-04-01
We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.
Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.
Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo
2013-02-01
Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.
An R package for the integrated analysis of metabolomics and spectral data.
Costa, Christopher; Maraschin, Marcelo; Rocha, Miguel
2016-06-01
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as nuclear magnetic resonance, gas or liquid chromatography, mass spectrometry, infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung
2018-02-01
The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.
Miller, Kai J; Honey, Christopher J; Hermes, Dora; Rao, Rajesh PN; denNijs, Marcel; Ojemann, Jeffrey G
2013-01-01
We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naïve decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20–50ms, they provide a powerful and widely applicable experimental tool. PMID:24018305
Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla
2010-06-01
A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.
A Numerical and Experimental Study of Damage Growth in a Composite Laminate
NASA Technical Reports Server (NTRS)
McElroy, Mark; Ratcliffe, James; Czabaj, Michael; Wang, John; Yuan, Fuh-Gwo
2014-01-01
The present study has three goals: (1) perform an experiment where a simple laminate damage process can be characterized in high detail; (2) evaluate the performance of existing commercially available laminate damage simulation tools by modeling the experiment; (3) observe and understand the underlying physics of damage in a composite honeycomb sandwich structure subjected to low-velocity impact. A quasi-static indentation experiment has been devised to provide detailed information about a simple mixed-mode damage growth process. The test specimens consist of an aluminum honeycomb core with a cross-ply laminate facesheet supported on a stiff uniform surface. When the sample is subjected to an indentation load, the honeycomb core provides support to the facesheet resulting in a gradual and stable damage growth process in the skin. This enables real time observation as a matrix crack forms, propagates through a ply, and then causes a delamination. Finite element analyses were conducted in ABAQUS/Explicit(TradeMark) 6.13 that used continuum and cohesive modeling techniques to simulate facesheet damage and a geometric and material nonlinear model to simulate core crushing. The high fidelity of the experimental data allows a detailed investigation and discussion of the accuracy of each numerical modeling approach.
Analysis of pre-service physics teacher skills designing simple physics experiments based technology
NASA Astrophysics Data System (ADS)
Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.
2018-03-01
Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.
Simple laser vision sensor calibration for surface profiling applications
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.
2016-09-01
Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.
Chai, X S; Schork, F J; DeCinque, Anthony
2005-04-08
This paper reports an improved headspace gas chromatographic (GC) technique for determination of monomer solubilities in water. The method is based on a multiple headspace extraction GC technique developed previously [X.S. Chai, Q.X. Hou, F.J. Schork, J. Appl. Polym. Sci., in press], but with the major modification in the method calibration technique. As a result, only a few iterations of headspace extraction and GC measurement are required, which avoids the "exhaustive" headspace extraction, and thus the experimental time for each analysis. For highly insoluble monomers, effort must be made to minimize adsorption in the headspace sampling channel, transportation conduit and capillary column by using higher operating temperature and a short capillary column in the headspace sampler and GC system. For highly water soluble monomers, a new calibration method is proposed. The combinations of these technique modifications results in a method that is simple, rapid and automated. While the current focus of the authors is on the determination of monomer solubility in aqueous solutions, the method should be applicable to determination of solubility of any organic in water.
Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.
1996-07-01
The authors explore several practical experimental issues in measuring ultrashort laser pulses using the technique of frequency-resolved optical gating (FROG). They present a simple method for checking the consistency of experimentally measured FROG data with the independently measured spectrum and autocorrelation of the pulse. This method is a powerful way of discovering systematic errors in FROG experiments. They show how to determine the optimum sampling rate for FROG and show that this satisfies the Nyquist criterion for the laser pulse. They explore the low- and high-power limits to FROG and determine that femtojoule operation should be possible, while the effectsmore » of self-phase modulation limit the highest signal efficiency in FROG to 1%. They also show quantitatively that the temporal blurring due to a finite-thickness medium in single-shot geometries does not strongly limit the FROG technique. They explore the limiting time-bandwidth values that can be represented on a FROG trace of a given size. Finally, they report on a new measure of the FROG error that improves convergence in the presence of noise.« less
The KACST Heavy-Ion Electrostatic Storage Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.
2011-10-27
A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The developmentmore » of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.« less
Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.
Yeo, Leslie Y; Matar, Omar K; Perez de Ortiz, E Susana; Hewitt, Geoffrey F
2002-04-15
A speculative study on the conditions under which phase inversion occurs in agitated liquid-liquid dispersions is conducted using a Monte Carlo technique. The simulation is based on a stochastic model, which accounts for fundamental physical processes such as drop deformation, breakup, and coalescence, and utilizes the minimization of interfacial energy as a criterion for phase inversion. Profiles of the interfacial energy indicate that a steady-state equilibrium is reached after a sufficiently large number of random moves and that predictions are insensitive to initial drop conditions. The calculated phase inversion holdup is observed to increase with increasing density and viscosity ratio, and to decrease with increasing agitation speed for a fixed viscosity ratio. It is also observed that, for a fixed viscosity ratio, the phase inversion holdup remains constant for large enough agitation speeds. The proposed model is therefore capable of achieving reasonable qualitative agreement with general experimental trends and of reproducing key features observed experimentally. The results of this investigation indicate that this simple stochastic method could be the basis upon which more advanced models for predicting phase inversion behavior can be developed.
Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup
NASA Astrophysics Data System (ADS)
Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.
2012-01-01
In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.
A new technique for thermodynamic engine modeling
NASA Astrophysics Data System (ADS)
Matthews, R. D.; Peters, J. E.; Beckel, S. A.; Shizhi, M.
1983-12-01
Reference is made to the equations given by Matthews (1983) for piston engine performance, which show that this performance depends on four fundamental engine efficiencies (combustion, thermodynamic cycle or indicated thermal, volumetric, and mechanical) as well as on engine operation and design parameters. This set of equations is seen to suggest a different technique for engine modeling; that is, that each efficiency should be modeled individually and the efficiency submodels then combined to obtain an overall engine model. A simple method for predicting the combustion efficiency of piston engines is therefore required. Various methods are proposed here and compared with experimental results. These combustion efficiency models are then combined with various models for the volumetric, mechanical, and indicated thermal efficiencies to yield three different engine models of varying degrees of sophistication. Comparisons are then made of the predictions of the resulting engine models with experimental data. It is found that combustion efficiency is almost independent of load, speed, and compression ratio and is not strongly dependent on fuel type, at least so long as the hydrogen-to-carbon ratio is reasonably close to that for isooctane.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
NASA Astrophysics Data System (ADS)
Sanger, Demas S.; Haneishi, Hideaki; Miyake, Yoichi
1995-08-01
This paper proposed a simple and automatic method for recognizing the light sources from various color negative film brands by means of digital image processing. First, we stretched the image obtained from a negative based on the standardized scaling factors, then extracted the dominant color component among red, green, and blue components of the stretched image. The dominant color component became the discriminator for the recognition. The experimental results verified that any one of the three techniques could recognize the light source from negatives of any film brands and all brands greater than 93.2 and 96.6% correct recognitions, respectively. This method is significant for the automation of color quality control in color reproduction from color negative film in mass processing and printing machine.
An interactive driving simulation for driver control and decision-making research
NASA Technical Reports Server (NTRS)
Allen, R. W.; Hogge, J. R.; Schwartz, S. H.
1975-01-01
Display techniques and equations of motion for a relatively simple fixed base car simulation are described. The vehicle dynamics include simplified lateral (steering) and longitudinal (speed) degrees of freedom. Several simulator tasks are described which require a combination of operator control and decision making, including response to wind gust inputs, curved roads, traffic signal lights, and obstacles. Logic circuits are used to detect speeding, running red lights, and crashes. A variety of visual and auditory cues are used to give the driver appropriate performance feedback. The simulated equations of motion are reviewed and the technique for generating the line drawing CRT roadway display is discussed. On-line measurement capabilities and experimenter control features are presented, along with previous and current research results demonstrating simulation capabilities and applications.
Mousseau, Normand; Béland, Laurent Karim; Brommer, Peter; ...
2014-12-24
The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this evolution through simulation has been a challenge for many years. For lattice-based activated diffusion, kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems. There is still a desire and need, however, for methods able to handle complex materials such as alloys and disordered systems. In this paper, we review the kinetic Activation–Relaxation Technique (k-ART), one of a handful of off-lattice kineticmore » Monte Carlo methods, with on-the-fly cataloging, that have been proposed in the last few years.« less
Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred
2011-10-01
A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.
NASA Astrophysics Data System (ADS)
Poppett, Claire; Allington-Smith, Jeremy
2010-07-01
We investigate the FRD performance of a 150 μm core fibre for its suitability to the SIDE project.1 This work builds on our previous work2 (Paper 1) where we examined the dependence of FRD on length in fibres with a core size of 100 μm and proposed a new multi-component model to explain the results. In order to predict the FRD characteristics of a fibre, the most commonly used model is an adaptation of the Gloge8model by Carrasco and Parry3 which quantifies the the number of scattering defects within an optical bre using a single parameter, d0. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core diameter increases, and also as wavelength increases. However the model also predicts a strong dependence on FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre, we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to experimental data we find that polishing the fibre causes a small increase in stress to be induced in the end of the fibre compared to a simple cleave technique.
Alternate methodologies to experimentally investigate shock initiation properties of explosives
NASA Astrophysics Data System (ADS)
Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger
2017-01-01
Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.
Energy awareness for supercapacitors using Kalman filter state-of-charge tracking
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Hassanalieragh, Moeen; Sharma, Gaurav; Soyata, Tolga
2015-11-01
Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability. Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can improve energy awareness. However, a simple capacitive approximation cannot adequately represent the stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides more accurate energy awareness. This equivalent circuit uses three capacitances and associated resistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be determined from one observation of the terminal voltage, and must be tracked over time using inexact measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors. Validation is done within the operating range of a solar powered application and the associated power variability due to energy harvesting. The proposed techniques are benchmarked against the simple capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-square error for predicting usable buffered energy.
Dyeing Insects for Behavioral Assays: the Mating Behavior of Anesthetized Drosophila
Verspoor, Rudi L.; Heys, Chloe; Price, Thomas A. R.
2015-01-01
Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs. PMID:25938821
Booth, Jonathan; Vazquez, Saulo; Martinez-Nunez, Emilio; Marks, Alison; Rodgers, Jeff; Glowacki, David R; Shalashilin, Dmitrii V
2014-08-06
In this paper, we briefly review the boxed molecular dynamics (BXD) method which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this paper, we review previous applications of BXD to peptide cyclization, solution phase organic reaction dynamics and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in atomic force microscopy experiments. The latter demonstrate a correlation between the protein's structural motifs and its potential of mean force. Simulations of these processes by standard molecular dynamics (MD) is typically not possible, because the experimental time scales are very long. However, BXD yields well-converged and physically meaningful results. Compared with other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely.
Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique
NASA Astrophysics Data System (ADS)
Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.
2017-12-01
Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.
Electrokinetic dispersion in microfluidic separation systems
NASA Astrophysics Data System (ADS)
Molho, Joshua Irving
Numerous efforts have focused on engineering miniaturized chemical analysis devices that are faster, more portable and consume smaller volumes of expensive reagents than their macroscale counterparts. Many of these analysis devices employ electrokinetic effects to transport picoliter volumes of liquids and to separate chemical species from an initially mixed sample volume. In these microfluidic separation systems, dispersion must be minimized to obtain the highest resolution separation possible. This work focuses on modeling, simulation and experimental measurement of two electrokinetic dispersion mechanisms that can reduce the effectiveness of microfluidic separation systems: dispersion resulting from non-uniform wall zeta-potential, and dispersion caused by microchannel turns. When the surface of a microchannel has non-uniform zeta-potential (e.g., if the surface charge varies along the length of the microchannel), an applied electric field creates both electroosmotic and pressure-driven flow. A caged-fluorescence imaging technique was used to visualize the dispersion caused by this electrokinetically induced pressure-driven flow. A simple model for a single channel with an axially varying surface charge is presented and compared to experimental measurements. Microchannel turns have been shown to create dispersion of electrokinetically transported analyte bands. Using a method of moments analysis, a model is developed that quantifies this dispersion and identifies the conditions under which turn dispersion limits the resolution of a microfluidic separation system. Measurements using the caged-fluorescence visualization technique were used to verify this model. New turn geometries are presented and were optimized using both a reduced parameter technique as well as a more generalized, numerical shape optimization approach. These improved turn designs were manufactured using two fabrication techniques and then tested experimentally. The turn optimization approaches and resulting turn geometries described here are shown to reduce turn dispersion to less than 1% of the dispersion caused by unoptimized, constant-width turns.
From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal
2016-02-01
X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.
Pastoret, Marie-Hélène; Bühler, Julia; Weiger, Roland
2017-01-01
PURPOSE To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (± SD). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS Dimensional changes compared to reference values varied between -74.01 and 32.57 µm (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth. PMID:28874996
Note: a simple experimental arrangement to generate optical vortex beams.
Kumar, Dhirendra; Das, Abhijit; Boruah, Bosanta R
2013-02-01
In this Note, we present a simple experimental arrangement to generate optical vortex beams. We have demonstrated how by taking print of an interferogram on a transparent sheet, vortex beams with various topological charges can be generated. Experimental results show that the vortex beam indeed carries the topological charge that is used to compute the interferograms. In addition to being simple and inexpensive, one major advantage of the arrangement is that it makes it possible to generate different vortex beams quickly, unlike using the photographic process to create the holograms.
Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub
2016-12-02
We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.
Segmentation of remotely sensed data using parallel region growing
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Cox, S. C.
1983-01-01
The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.
Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus
NASA Astrophysics Data System (ADS)
Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.
2015-10-01
A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.
Modular experimental platform for science and applications
NASA Technical Reports Server (NTRS)
Hill, A. S.
1984-01-01
A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.
Non-invasive heart rate monitoring system using giant magneto resistance sensor.
Kalyan, Kubera; Chugh, Vinit Kumar; Anoop, C S
2016-08-01
A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication. A prototype of the system has been built and test results on 26 volunteers have been reported. The error in HR estimation of the system is merely 1 beat per minute. The performance of the system when layer of cloth is present between the sensor and the human body is investigated. The capability of the system as a HR variability estimator has also been established through experimentation. The proposed technique can be used as an efficient alternative to conventional HR monitors and is well suited for remote and continuous monitoring of HR.
NASA Technical Reports Server (NTRS)
Brunstrom, Anna; Leutenegger, Scott T.; Simha, Rahul
1995-01-01
Traditionally, allocation of data in distributed database management systems has been determined by off-line analysis and optimization. This technique works well for static database access patterns, but is often inadequate for frequently changing workloads. In this paper we address how to dynamically reallocate data for partionable distributed databases with changing access patterns. Rather than complicated and expensive optimization algorithms, a simple heuristic is presented and shown, via an implementation study, to improve system throughput by 30 percent in a local area network based system. Based on artificial wide area network delays, we show that dynamic reallocation can improve system throughput by a factor of two and a half for wide area networks. We also show that individual site load must be taken into consideration when reallocating data, and provide a simple policy that incorporates load in the reallocation decision.
Hall effect in a moving liquid
NASA Astrophysics Data System (ADS)
Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero
2012-01-01
A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple example of an electromagnetic flowmeter, a device which is commonly used both in industrial and physiological techniques. The phenomenology observed is similar to that of the Hall effect in the absence of an electric current in the direction of motion of the carriers. The experimental results show a dependence on the intensity of the magnetic field and on the carrier velocity, in good agreement with the theory. Discussion of the system, based on classical electromagnetism, indicates that the effect depends only on the flow rate, and is independent both of the velocity profile and of the electrical conductivity of the medium.
Draft SEI Program Plans: 1995-1999
1994-08-01
risk management because we believe that (a) structured techniques, even quite simple ones, can be effective in identifying and quantifying risk ; and (b...belief that (1) structured techniques, even quite simple ones, could be effective in identifying and quantifying risk ; and (2) techniques existed to
Boddula, Madhav R; Adamson, Gregory J; Gupta, Akash; McGarry, Michelle H; Lee, Thay Q
2012-04-01
Both simple and mattress repair techniques have been utilized with success for type II superior labral anterior-posterior (SLAP) lesions; however, direct anatomic and biomechanical comparisons of these techniques have yet to be clearly demonstrated. For type II SLAP lesions, the mattress suture repair technique will result in greater labral height and better position on the glenoid face and exhibit stronger biomechanical characteristics, when cyclically loaded and loaded to failure through the biceps, compared with the simple suture repair technique. Controlled laboratory study. Six matched pairs of cadaveric shoulders were dissected, and a clock face was created on the glenoid from 9 o'clock (posterior) to 3 o'clock (anterior). For the intact specimen, labral height and labral distance from the glenoid edge were measured using a MicroScribe. A SLAP lesion was then created from 10 o'clock to 2 o'clock. Lesions were repaired with two 3.0-mm BioSuture-Tak anchors placed at 11 o'clock and 1 o'clock. For each pair, a mattress repair was used for one shoulder, and a simple repair was used for the contralateral shoulder. After repair, labral height and labral distance from the glenoid edge were again measured. The specimens were then cyclically loaded and loaded to failure through the biceps using an Instron machine. A paired t test was used for statistical analysis. After mattress repair, a significant increase in labral height occurred compared with intact from 2.5 ± 0.3 mm to 4.3 ± 0.3 mm at 11 o'clock (P = .013), 2.7 ± 0.5 mm to 4.2 ± 0.7 mm at 12:30 o'clock (P = .007), 3.1 ± 0.5 mm to 4.2 ± 0.7 mm at 1 o'clock (P = .006), and 2.8 ± 0.7 mm to 3.7 ± 0.8 mm at 1:30 o'clock (P = .037). There was no significant difference in labral height between the intact condition and after simple repair at any clock face position. Labral height was significantly increased in the mattress repairs compared with simple repairs at 11 o'clock (mean difference, 2.0 mm; P = .008) and 12:30 o'clock (mean difference, 1.3 mm; P = .044). Labral distance from the glenoid edge was not significantly different between techniques. No difference was observed between the mattress and simple repair techniques for all biomechanical parameters, except the simple technique had a higher load and energy absorbed at 2-mm displacement. The mattress technique created a greater labral height while maintaining similar biomechanical characteristics compared with the simple repair, with the exception of load and energy absorbed at 2-mm displacement, which was increased for the simple technique. Mattress repair for type II SLAP lesions creates a higher labral bumper compared with simple repairs, while both techniques resulted in similar biomechanical characteristics.
Experimental model with bilioenteric anastomosis in rats--technique and significance.
Nagai, T; Yamakawa, T
1992-08-01
A simple technique of hepaticojejunostomy in rats is introduced in this paper and its suitability for use as an experimental model was evaluated histologically. Hepaticojejunostomy was performed as follows; the stump of the supra-pancreatic common bile duct (CBD), detached from adjacent tissue, was introduced into the jejunal lumen using the outer catheter previously inserted into the jejunum, and the jejunal wall close to the implantation site of the CBD was fixed to the porta hepatitis with a suture. Among 40 rats in which hepaticojejunostomy was performed, the postoperative mortality rate was 17.5%. The remaining experimental animals (33 rats, 82.5%) survived for the duration of this study. The rats were sacrificed at 3, 5, 8, and 12 months after surgery, and liver function tests, macroscopic and histological studies of the biliary tract were carried out. No signs of cholangitis or liver abscess were noted in any experimental animals during this period. The median values of liver function tests were within normal limits in almost all of the experimental rats. The anastomotic stoma was also patent, and free drainage of bile was noted, but the bile duct proximal to the site of anastomosis was generally macroscopically dilated. Histologically, epithelial hyperplasia and fibrous thickening of the wall accompanied by inflammatory cell infiltration were noted in the rats sacrificed at 3 and 5 months postoperatively. Marked hyperplasia of mucous glands, goblet cell metaplasia and atypical epithelium were usually seen in the rats killed at 8 months and 12 months after surgery.(ABSTRACT TRUNCATED AT 250 WORDS)
Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture
NASA Astrophysics Data System (ADS)
Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.
2018-04-01
The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.
Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis
NASA Astrophysics Data System (ADS)
Hölscher, H.; Schwarz, U. D.
2006-08-01
An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.
Polarization manipulation in single refractive prism based holography lithography
NASA Astrophysics Data System (ADS)
Xiong, Wenjie; Xu, Yi; Xiao, Yujian; Lv, Xiaoxu; Wu, Lijun
2015-01-01
We propose theoretically and demonstrate experimentally a simple but effective strategy for polarization manipulation in single refractive prism based holographic lithography. By tuning the polarization of a single laser beam, we can obtain the pill shape interference pattern with a high-contrast where a complex optical setup and multiple polarizers are needed in the conventional holography lithography. Fabrication of pill shape two-dimensional polymer photonic crystals using one beam and one shoot holography lithography is shown as an example to support our theoretical results. This integrated polarization manipulation technique can release the crucial stability restrictions imposed on the multiple beams holography lithography.
Evaluation of Fiber Reinforced Cement Using Digital Image Correlation
Melenka, Garrett W.; Carey, Jason P.
2015-01-01
The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590
A Computational Behaviorist Takes Turing's Test
NASA Astrophysics Data System (ADS)
Whalen, Thomas E.
Behaviorism is a school of thought in experimental psychology that has given rise to powerful techniques for managing behavior. Because the Turing Test is a test of linguistic behavior rather than mental processes, approaching the test from a behavioristic perspective is worth examining. A behavioral approach begins by observing the kinds of questions that judges ask, then links the invariant features of those questions to pre-written answers. Because this approach is simple and powerful, it has been more successful in Turing competitions than the more ambitious linguistic approaches. Computational behaviorism may prove successful in other areas of Artificial Intelligence.
Horno, J; González-Caballero, F; González-Fernández, C F
1990-01-01
Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.
Measurement techniques for analysis of fission fragment excited gases
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Carroll, E. E.; Davis, J. F.; Davie, R. N.; Maguire, T. C.; Shipman, R. G.
1976-01-01
Spectroscopic analysis of fission fragment excited He, Ar, Xe, N2, Ne, Ar-N2, and Ne-N2 have been conducted. Boltzmann plot analysis of He, Ar and Xe have indicated a nonequilibrium, recombining plasma, and population inversions have been found in these gases. The observed radiating species in helium have been adequately described by a simple kinetic model. A more extensive model for argon, nitrogen and Ar-N2 mixtures was developed which adequately describes the energy flow in the system and compares favorably with experimental measurements. The kinetic processes involved in these systems are discussed.
Analysis of dynamic hydrogen (H2) generation
NASA Astrophysics Data System (ADS)
Buford, Marcelle C.
2003-03-01
The focus of this research is on-demand hydrogen generation for applications such as electric vehicles and electric appliances. Hydrogen can be generated by steam reformation of alcohols, hydrocarbons and other hydrogen containing complexes. Steam reformation can be represented as a simple chemical reaction between an alcohol, commonly methanol, and water vapor to produce hydrogen and carbon dioxide. A fuel cell can then be employed to produce electrical power from hydrogen and air. Numerical and experimental techniques are employed to analyze the most appropriate reforming fuel to maximize H2 yield and minimize by-products of which carbon monoxide is the most harmful
Physical layer security in fiber-optic MIMO-SDM systems: An overview
NASA Astrophysics Data System (ADS)
Guan, Kyle; Cho, Junho; Winzer, Peter J.
2018-02-01
Fiber-optic transmission systems provide large capacities over enormous distances but are vulnerable to simple eavesdropping attacks at the physical layer. We classify key-based and keyless encryption and physical layer security techniques and discuss them in the context of optical multiple-input-multiple-output space-division multiplexed (MIMO-SDM) fiber-optic communication systems. We show that MIMO-SDM not only increases system capacity, but also ensures the confidentiality of information transmission. Based on recent numerical and experimental results, we review how the unique channel characteristics of MIMO-SDM can be exploited to provide various levels of physical layer security.
NPAC-Nozzle Performance Analysis Code
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.
1997-01-01
A simple and accurate nozzle performance analysis methodology has been developed. The geometry modeling requirements are minimal and very flexible, thus allowing rapid design evaluations. The solution techniques accurately couple: continuity, momentum, energy, state, and other relations which permit fast and accurate calculations of nozzle gross thrust. The control volume and internal flow analyses are capable of accounting for the effects of: over/under expansion, flow divergence, wall friction, heat transfer, and mass addition/loss across surfaces. The results from the nozzle performance methodology are shown to be in excellent agreement with experimental data for a variety of nozzle designs over a range of operating conditions.
[Histochemical stains for minerals by hematoxylin-lake method].
Miyagawa, Makoto
2013-04-01
The present study was undertaken to establish the experimental animal model by histological staining methods for minerals. After intraperitoneal injections of minerals, precipitates deposited on the surface of the liver. Liver tissues were fixed in paraformaldehyde, embedded in paraffin and cut into thin sections which were used as minerals containing standard section. Several reagents for histological stains and spectrophotometry for minerals were applied in both test-tube experiments and stainings of tissue sections to test for minerals. Hematoxylin-lake was found of capable of staining minerals in tissue. A simple technique used was described for light microscopic detection of minerals.
Experimental QR code optical encryption: noise-free data recovering.
Barrera, John Fredy; Mira-Agudelo, Alejandro; Torroba, Roberto
2014-05-15
We report, to our knowledge for the first time, the experimental implementation of a quick response (QR) code as a "container" in an optical encryption system. A joint transform correlator architecture in an interferometric configuration is chosen as the experimental scheme. As the implementation is not possible in a single step, a multiplexing procedure to encrypt the QR code of the original information is applied. Once the QR code is correctly decrypted, the speckle noise present in the recovered QR code is eliminated by a simple digital procedure. Finally, the original information is retrieved completely free of any kind of degradation after reading the QR code. Additionally, we propose and implement a new protocol in which the reception of the encrypted QR code and its decryption, the digital block processing, and the reading of the decrypted QR code are performed employing only one device (smartphone, tablet, or computer). The overall method probes to produce an outcome far more attractive to make the adoption of the technique a plausible option. Experimental results are presented to demonstrate the practicality of the proposed security system.
Hernandez, Purnima; Ikkanda, Zachary
2011-03-01
There are a limited number of studies addressing behavior management techniques and procedural modifications that dentists can use to treat people with an autism spectrum disorder (ASD). The authors conducted a search of the dental and behavioral analytic literature to identify management techniques that address problem behaviors exhibited by children with ASDs in dental and other health-related environments. Applied behavior analysis (ABA) is a science in which procedures are based on the principles of behavior through systematic experimentation. Clinicians have used ABA procedures successfully to modify socially significant behaviors of people with ASD. Basic behavior management techniques currently used in dentistry may not encourage people with cognitive and behavioral disabilities, such as ASD, to tolerate simple in-office dental procedures consistently. Instead, dental care providers often are required to use advanced behavior management techniques to complete simple in-office procedures such as prophylaxis, sealant placement and obtaining radiographs. ABA procedures can be integrated in the dental environment to manage problem behaviors often exhibited by children with an ASD. The authors found no evidence-based procedural modifications that address the behavioral characteristics and problematic behaviors of children with an ASD in a dental environment. Further research in this area should be conducted. Knowledge and in-depth understanding of behavioral principles is essential when a dentist is concerned with modifying behaviors. Using ABA procedures can help dentists manage problem behaviors effectively and systematically when performing routine dental treatment. Being knowledgeable about each patient's behavioral characteristics and the parents' level of involvement is important in the successful integration of the procedures and reduction of in-office time.
Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface
NASA Astrophysics Data System (ADS)
Delléa, Olivier; Lebaigue, Olivier
2017-12-01
CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.
Simple Technique for Dark-Field Photography of Immunodiffusion Bands
Jensh, Ronald P.; Brent, Robert L.
1969-01-01
A simple dark-field photographic technique was developed which enables laboratory personnel with minimal photographic training to easily record antigen-antibody patterns on immunodiffusion plates. Images PMID:4979944
Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions
NASA Astrophysics Data System (ADS)
Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.
2016-04-01
We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.
Kong, Muwen; Van Houten, Bennett
2017-08-01
Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.
2017-01-01
Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949
Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave
NASA Astrophysics Data System (ADS)
Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.
2017-08-01
In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.
Mohammadi Ayenehdeh, Jamal; Niknam, Bahareh; Hashemi, Seyed Mahmoud; Rahavi, Hossein; Rezaei, Nima; Soleimani, Masoud; Tajik, Nader
2017-07-01
Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functional islets and transplantation are crucial. The present study has introduced an experimental model that overcomes some critical issues in islet transplantation, including in situ pancreas perfusion by digestive enzymes through common bile duct. In comparison with conventional methods, we inflated the pancreas in Petri dishes with only 1 ml collagenase type XI solution, which was followed by hand-picking isolation or Ficoll gradient separation to purify the islets. Then we used a hydrogel composite in which the islets were embedded and transplanted into the peritoneal cavity of the streptozotocin-induced diabetic C57BL/6 mice. As compared to the yield of the classical methods, in our modified technique, the mean yield of isolation was about 130-200 viable islets/mouse pancreas. In vitro glucose-mediated insulin secretion assay indicated an appropriate response in isolated islets. In addition, data from in vivo experiments revealed that the allograft remarkably maintained blood glucose levels under 400 mg/dl and hydrogel composite prevents the passage of immune cells. In the model presented here, the rapid islet isolation technique and the application of biomimetic hydrogel wrapping of islets could facilitate islet transplantation procedures.
Brewer, Devon D; Potterat, John J; Muth, Stephen Q; Malone, Patricia Z; Montoya, Pamela; Green, David L; Rogers, Helen L; Cox, Patricia A
2005-03-01
People with multiple sex partners tend to forget a significant proportion when recalling them. Randomized trial of supplementary interviewing techniques during routine partner notification contact interviews for chlamydia, gonorrhea, and syphilis in Colorado Springs, CO. Cases with multiple sex partners in the last 3 months (n = 123) participated. Interviewers prompted nonspecifically and read back the list of elicited partners after cases recalled partners on their own. We then randomly assigned cases to receive 1 of 3 sets of recall cues: (1) an experimental set of cues consisting of locations where people meet partners, role relationships, network ties, and first letters of names; (2) another experimental set including common first names; and (3) control cues referring to individual characteristics (e.g., physical appearance). Nonspecific prompting and reading back the list each increased the number of additional partners elicited and located by 3% to 5% on average. On average, the combined location/role/letter/network cues elicited more additional partners (0.57) than did the first-name (0.29) and individual characteristics (0.28) cues. The location and first-name cues were the most effective in eliciting located partners. The supplementary techniques increased the number of new cases found by 12% and, importantly, identified branches of the sexual network that would not otherwise have been discovered. Elicitation of sex partners can be enhanced in contact interviews with simple interviewing techniques, resulting in improved network ascertainment and sexually transmitted disease case finding.
Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A
2011-10-14
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
Development of a Fluid Structures Interaction Test Technique for Fabrics
NASA Technical Reports Server (NTRS)
Zilliac, Gregory G.; Heineck, James T.; Schairer, Edward T.; Mosher, Robert N.; Garbeff, Theodore Joseph
2012-01-01
Application of fluid structures interaction (FSI) computational techniques to configurations of interest to the entry, descent and landing (EDL) community is limited by two factors - limited characterization of the material properties for fabrics of interest and insufficient experimental data to validate the FSI codes. Recently ILC Dover Inc. performed standard tests to characterize the static stress-strain response of four candidate fabrics for use in EDL applications. The objective of the tests described here is to address the need for a FSI dataset for CFD validation purposes. To reach this objective, the structural response of fabrics was measured in a very simple aerodynamic environment with well controlled boundary conditions. Two test series were undertaken. The first series covered a range of tunnel conditions and the second focused on conditions that resulted in fabric panel buckling.
Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE; Department of Physics & Astronomy, University College London, London WC1E 6BT
2015-09-21
Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by specklemore » tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.« less
Soft magnetic tweezers: a proof of principle.
Mosconi, Francesco; Allemand, Jean François; Croquette, Vincent
2011-03-01
We present here the principle of soft magnetic tweezers which improve the traditional magnetic tweezers allowing the simultaneous application and measurement of an arbitrary torque to a deoxyribonucleic acid (DNA) molecule. They take advantage of a nonlinear coupling regime that appears when a fast rotating magnetic field is applied to a superparamagnetic bead immersed in a viscous fluid. In this work, we present the development of the technique and we compare it with other techniques capable of measuring the torque applied to the DNA molecule. In this proof of principle, we use standard electromagnets to achieve our experiments. Despite technical difficulties related to the present implementation of these electromagnets, the agreement of measurements with previous experiments is remarkable. Finally, we propose a simple way to modify the experimental design of electromagnets that should bring the performances of the device to a competitive level.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Horizontal Running Mattress Suture Modified with Intermittent Simple Loops
Chacon, Anna H; Shiman, Michael I; Strozier, Narissa; Zaiac, Martin N
2013-01-01
Using the combination of a horizontal running mattress suture with intermittent loops achieves both good eversion with the horizontal running mattress plus the ease of removal of the simple loops. This combination technique also avoids the characteristic railroad track marks that result from prolonged non-absorbable suture retention. The unique feature of our technique is the incorporation of one simple running suture after every two runs of the horizontal running mattress suture. To demonstrate its utility, we used the suturing technique on several patients and analyzed the cosmetic outcome with post-operative photographs in comparison to other suturing techniques. In summary, the combination of running horizontal mattress suture with simple intermittent loops demonstrates functional and cosmetic benefits that can be readily taught, comprehended, and employed, leading to desirable aesthetic results and wound edge eversion. PMID:23723610
Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming
2014-12-31
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
NASA Astrophysics Data System (ADS)
Ennevor, Sean J.; Castro, Dan J.; Girardi, Gino; Lufkin, Robert B.; Farahani, Keyvan; Cho, Richard C.; Soudant, Jacques
1993-07-01
Interstitial tumor therapy guided by imaging techniques is minimally invasive and a promising surgical approach which will become clinically practical only when effective, simple, and safe modalities for tumor excision and control of tumor vascular supply are available. In a novel experiment utilizing a 1.5 T magnetic resonance (MR) scanner, the carotid artery of a New Zealand white rabbit was identified and then clamped using the Premium Surgicliptm 9.0' disposable automatic clip applier. The magnetic resonance imager equipped with an angiography package was used to locate vasculature in the carotid triangle of the rabbit via fast scan techniques. The artery was then clamped with titanium clips, and repeat magnetic resonance angiography (MRA) clearly demonstrated the cessation of blood flow within the chosen vessel. The experimental results are promising, since the angiography package not only provided the visualization of the arterial vessel, but was also used to guide an MR compatible surgical instrument to the vessel, with no artifact seen.
NASA Astrophysics Data System (ADS)
Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi
2018-01-01
This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.
Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.
An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen
2016-09-16
This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.
High-speed transport-of-intensity phase microscopy with an electrically tunable lens.
Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand
2013-10-07
We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.
Development of multi-component explosive lenses for arbitrary phase velocity generation
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan
2013-06-01
The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.
Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener
An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen
2016-01-01
This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ. PMID:27649200
Optical contrast for identifying the thickness of two-dimensional materials
NASA Astrophysics Data System (ADS)
Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan
2018-01-01
One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.
A simple technique for laparoscopic gastrostomy.
Murphy, C; Rosemurgy, A S; Albrink, M H; Carey, L C
1992-05-01
While endoscopically placed gastrostomy tubes are routinely simple, they are not always feasible. Endoscopic technique also does not uniformly secure the tube to the abdominal wall, which presents possible complications, including leakage, accidental early tube removal, intraperitoneal catheter migration and necrosis of the stomach or abdominal wall because of excessive traction. Presented herein is a technique that is rapid, simple and eliminates some of these potential complications. The technique is easily combined with other operative procedures, such as tracheostomy, is done under direct vision, can be performed quickly with intravenous sedation and local anesthetic and is a safe method of tube placement for enteral feeding or gastric decompression.
DNA-based cryptographic methods for data hiding in DNA media.
Marwan, Samiha; Shawish, Ahmed; Nagaty, Khaled
2016-12-01
Information security can be achieved using cryptography, steganography or a combination of them, where data is firstly encrypted using any of the available cryptography techniques and then hid into any hiding medium. Recently, the famous genomic DNA has been introduced as a hiding medium, known as DNA steganography, due to its notable ability to hide huge data sets with a high level of randomness and hence security. Despite the numerous cryptography techniques, to our knowledge only the vigenere cipher and the DNA-based playfair cipher have been combined with the DNA steganography, which keeps space for investigation of other techniques and coming up with new improvements. This paper presents a comprehensive analysis between the DNA-based playfair, vigenere, RSA and the AES ciphers, each combined with a DNA hiding technique. The conducted analysis reports the performance diversity of each combined technique in terms of security, speed, hiding capacity in addition to both key size and data size. Moreover, this paper proposes a modification of the current combined DNA-based playfair cipher technique, which makes it not only simple and fast but also provides a significantly higher hiding capacity and security. The conducted extensive experimental studies confirm such outstanding performance in comparison with all the discussed combined techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Guided mass spectrum labelling in atom probe tomography.
Haley, D; Choi, P; Raabe, D
2015-12-01
Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 "significant figures" (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. Copyright © 2015 Elsevier B.V. All rights reserved.
The effects of relaxation breathing on procedural pain and anxiety during burn care.
Park, Eunok; Oh, Hyunjin; Kim, Taeim
2013-09-01
Burn patients experience high levels of pain and anxiety during dressing changes. Relaxation breathing is a simple behavioral intervention to manage pain and anxiety. However, the information about the effects of relaxation breathing on pain and anxiety levels for burn patients during dressing changes is limited. This study followed a quasi-experimental, pretest-posttest comparison group design without random assignment to groups. A total of 64 burn patients from Daejeon, South Korea were recruited by a convenience sequential sampling approach. With institutional approval and written consent, the experimental group practiced relaxation breathing during dressing change procedures. Data were collected from June to September 2011 using a VAS for pain and a VAS-A for anxiety. The homogeneity test was used to detect any significant group differences in the demographic data and pretest measures. The pain scores significantly differed between the 2 groups after intervention (RB group vs. control group, P=.01) and over time (pretest vs. posttest, P=.001). The anxiety scores significantly differed between the 2 groups (P=.01) and over time (P=.02). Relaxation breathing is a simple and inexpensive technique nurses can use to help burn patients manage pain and anxiety during dressing changes. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Weaver, Susanna Widicus
2012-01-01
Over 150 molecular species have been confirmed in space, primarily by their rotational spectra at millimeter/submillimeter wavelengths, which yield an unambiguous identification. Many of the known interstellar organic molecules cannot be explained by gas-phase chemistry. It is now presumed that they are produced by surface reactions of the simple ices and/or grains observed and released into the gas phase by sublimation, sputtering, etc. Additionally, the chemical complexity found in meteorites and samples returned from comets far surpasses that of the remote detections for the interstellar medium (ISM), comets, and planetary atmospheres. Laboratory simulations of interstellar/cometary ices have found, from the analysis of the remnant residue of the warmed laboratory sample, that such molecules are readily formed; however, it has yet to be determined if they are formed during the warm phase or within the ice during processing. Most analysis of the ice during processing reveals molecular changes, though the exact quantities and species formed are highly uncertain with current techniques due to overwhelming features of simple ices. Remote sensing with high resolution spectroscopy is currently the only method to detect trace species in the ISM and the primary method for comets and icy bodies in the Solar System due to limitations of sample return. We have recently designed an experiment to simulate interstellar/cometary/planetary ices and detect trace species employing the same techniques used for remote observations. Preliminary results will be presented.
Free-piston driver performance characterisation using experimental shock speeds through helium
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; James, C. M.; Morgan, R. G.
2015-03-01
Tuned free-piston driver operation involves configuring the driver to produce a relatively steady blast of driver gas over the critical time scales of the experiment. For the purposes of flow condition development and parametric studies, it is useful to establish some average working values of the driver pressure and temperature for a given driver operating condition. However, in practise, these averaged values need to produce sufficiently accurate estimates of performance. In this study, two tuned driver conditions in the X2 expansion tube have been used to generate shock waves through a helium test gas. The measured shock speeds have then been used to calculate the effective driver gas pressure and temperature after diaphragm rupture. Since the driver gas is typically helium, or a mixture of helium and argon, and the test gas is also helium, ideal gas assumptions can be made without significant loss of accuracy. The technique is applicable to tuned free-piston drivers with a simple area change, as well as those using orifice plates. It is shown that this technique can be quickly used to establish average working driver gas properties which produce very good estimates of actual driven shock speed, across a wide range of operating conditions. The use of orifice plates to control piston dynamics at high driver gas sound speeds is also discussed in the paper, and a simple technique for calculating the restriction required to modify an established safe condition for use with lighter gases, such as pure helium, is presented.
A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts.
Ibrahim, Ahmed A; Tiwari, Preeti; Al-Assiri, M S; Al-Salami, A E; Umar, Ahmad; Kumar, Rajesh; Kim, S H; Ansari, Z A; Baskoutas, S
2017-07-13
Herein, we report a facile synthesis, characterization, and electrochemical sensing application of ZnO nanopeanuts synthesized by a simple aqueous solution process and characterized by various techniques in order to confirm the compositional, morphological, structural, crystalline phase, and optical properties of the synthesized material. The detailed characterizations revealed that the synthesized material possesses a peanut-shaped morphology, dense growth, and a wurtzite hexagonal phase along with good crystal and optical properties. Further, to ascertain the useful properties of the synthesized ZnO nanopeanut as an excellent electron mediator, electrochemical sensors were fabricated based on the form of a screen printed electrode (SPE). Electrochemical and current-voltage characteristics were studied for the determination of picric acid sensing characteristics. The electrochemical sensor fabricated based on the SPE technique exhibited a reproducible and reliable sensitivity of ~1.2 μA/mM (9.23 μA·mM -1 ·cm -2 ), a lower limit of detection at 7.8 µM, a regression coefficient ( R ²) of 0.94, and good linearity over the 0.0078 mM to 10.0 mM concentration range. In addition, the sensor response was also tested using simple I-V techniques, wherein a sensitivity of 493.64 μA·mM -1 ·cm -2 , an experimental Limit of detection (LOD) of 0.125 mM, and a linear dynamic range (LDR) of 1.0 mM-5.0 mM were observed for the fabricated picric acid sensor.
A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts
Ibrahim, Ahmed A.; Tiwari, Preeti; Al-Assiri, M. S.; Al-Salami, A. E.; Umar, Ahmad; Kumar, Rajesh; Kim, S. H.; Ansari, Z. A.; Baskoutas, S.
2017-01-01
Herein, we report a facile synthesis, characterization, and electrochemical sensing application of ZnO nanopeanuts synthesized by a simple aqueous solution process and characterized by various techniques in order to confirm the compositional, morphological, structural, crystalline phase, and optical properties of the synthesized material. The detailed characterizations revealed that the synthesized material possesses a peanut-shaped morphology, dense growth, and a wurtzite hexagonal phase along with good crystal and optical properties. Further, to ascertain the useful properties of the synthesized ZnO nanopeanut as an excellent electron mediator, electrochemical sensors were fabricated based on the form of a screen printed electrode (SPE). Electrochemical and current-voltage characteristics were studied for the determination of picric acid sensing characteristics. The electrochemical sensor fabricated based on the SPE technique exhibited a reproducible and reliable sensitivity of ~1.2 μA/mM (9.23 μA·mM−1·cm−2), a lower limit of detection at 7.8 µM, a regression coefficient (R2) of 0.94, and good linearity over the 0.0078 mM to 10.0 mM concentration range. In addition, the sensor response was also tested using simple I-V techniques, wherein a sensitivity of 493.64 μA·mM−1·cm−2, an experimental Limit of detection (LOD) of 0.125 mM, and a linear dynamic range (LDR) of 1.0 mM–5.0 mM were observed for the fabricated picric acid sensor. PMID:28773151
Adaptive wall technology for minimization of wall interferences in transonic wind tunnels
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.
Cotten, Cameron; Reed, Jennifer L
2013-05-01
In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Rendering the "Not-So-Simple" Pendulum Experimentally Accessible.
ERIC Educational Resources Information Center
Jackson, David P.
1996-01-01
Presents three methods for obtaining experimental data related to acceleration of a simple pendulum. Two of the methods involve angular position measurements and the subsequent calculation of the acceleration while the third method involves a direct measurement of the acceleration. Compares these results with theoretical calculations and…
State of the art on targeted memory reactivation: Sleep your way to enhanced cognition.
Schouten, Daphne I; Pereira, Sofia I R; Tops, Mattie; Louzada, Fernando M
2017-04-01
Targeted memory reactivation is a fairly simple technique that has the potential to influence the course of memory formation through application of cues during sleep. Studies have shown that cueing memory during sleep can lead to either an enhanced or decreased representation of the information encoded in the targeted networks, depending on experimental variations. The effects have been associated with sleep parameters and accompanied by activation of memory related brain areas. The findings suggest a causal role of neuronal replay in memory consolidation and provide evidence for the active system consolidation hypothesis. However, the observed inconsistencies across studies suggest that further research is warranted regarding the underlying neural mechanisms and optimal conditions for the application of targeted memory reactivation. The goal of the present review is to integrate the currently available experimental data and to provide an overview of this technique's limitations and pitfalls, as well as its potential applications in everyday use and clinical treatment. Exploring the open questions herein identified should lead to insight into safer and more effective ways of adjusting memory representations to better suit individual needs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kirby, Brian J; Hasselbrink, Ernest F
2004-01-01
This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.
Selectable light-sheet uniformity using tuned axial scanning
Duocastella, Martí; Arnold, Craig B.; Puchalla, Jason
2016-01-01
Light-sheet fluorescence microscopy (LSFM) is an optical sectioning technique capable of rapid three-dimensional (3D) imaging of a wide range of specimens with reduced phototoxicity and superior background rejection. However, traditional light-sheet generation approaches based on elliptical or circular Gaussian beams suffer an inherent trade-off between light-sheet thickness and area over which this thickness is preserved. Recently, an increase in light-sheet uniformity was demonstrated using rapid biaxial Gaussian beam scanning along the lateral and beam propagation directions. Here we apply a similar scanning concept to an elliptical beam generated by a cylindrical lens. In this case, only z-scanning of the elliptical beam is required and hence experimental implementation of the setup can be simplified. We introduce a simple dimensionless uniformity statistic to better characterize scanned light-sheets and experimentally demonstrate custom tailored uniformities up to a factor of 5 higher than those of un-scanned elliptical beams. This technique offers a straightforward way to generate and characterize a custom illumination profile that provides enhanced utilization of the detector dynamic range and field of view, opening the door to faster and more efficient 2D and 3D imaging. PMID:28132409
NASA Astrophysics Data System (ADS)
Ghoraishi, Maryam; Hawk, John; Thundat, Thomas
Aqueous mixture of alcohol is a typical prototype for biomolecules, micelle formation, and structural stability of proteins. Therefore, Short chain alcohols such as EtOH have been used as a simple model for understanding of more complex aqueous biomolecules. Here we study vibrational energy peaks of EtOH water binary mixtures using micromechanical calorimetric spectroscopy using bimaterial microfluidic cantilevers (BMC). The IR spectra of EtOH-water are experimentally collected employing a BMC as concentration of EtOH changes from 20-100 wt%. As concentration of EtOH varies in the mixture, considerable shifts in the wavenumber at IR absorption peak maxima are reported. The experimentally measured shifts in the wavenumber at IR absorption peak maxima are related to changes in dipole moment (μ) of EtOH at different concentration. The relationship between IR absorption wavenumber for both anti and gauche conformers of EtOH, and inverse dipole moment, 1/ μ, of EtOH at different concentrations follows a power law dependence. Our technique offers a platform to investigate dipole effect on molecular vibrations of mixtures in confined picoliter volumes, previously unexplored with other analytical techniques due to limitations of volume under study.
Fragmentation modeling of a resin bonded sand
NASA Astrophysics Data System (ADS)
Hilth, William; Ryckelynck, David
2017-06-01
Cemented sands exhibit a complex mechanical behavior that can lead to sophisticated models, with numerous parameters without real physical meaning. However, using a rather simple generalized critical state bonded soil model has proven to be a relevant compromise between an easy calibration and good results. The constitutive model formulation considers a non-associated elasto-plastic formulation within the critical state framework. The calibration procedure, using standard laboratory tests, is complemented by the study of an uniaxial compression test observed by tomography. Using finite elements simulations, this test is simulated considering a non-homogeneous 3D media. The tomography of compression sample gives access to 3D displacement fields by using image correlation techniques. Unfortunately these fields have missing experimental data because of the low resolution of correlations for low displacement magnitudes. We propose a recovery method that reconstructs 3D full displacement fields and 2D boundary displacement fields. These fields are mandatory for the calibration of the constitutive parameters by using 3D finite element simulations. The proposed recovery technique is based on a singular value decomposition of available experimental data. This calibration protocol enables an accurate prediction of the fragmentation of the specimen.
Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode
NASA Astrophysics Data System (ADS)
Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun
2011-12-01
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.
Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study
NASA Astrophysics Data System (ADS)
Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.
2010-04-01
Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.
Raman spectroscopy on simple molecular systems at very high density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, D.; LeSar, R.S.; Moore, D.S.
1988-01-01
We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoreticalmore » understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs.« less
NASA Astrophysics Data System (ADS)
Narwadi, Teguh; Subiyanto
2017-03-01
The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.
Verification and Validation of Residual Stresses in Bi-Material Composite Rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy Michelle; Hanson, Alexander Anthony; Briggs, Timothy
Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time andmore » cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh convergence study, sensitivity analysis, and uncertainty quantification. The simulations’ final results show adequate agreement with the experimental measurements, indicating the validity of a simple modeling approach, as well as a necessity for the inclusion of material parameter uncertainty in the final residual stress predictions.« less
Path-Following Solutions Of Nonlinear Equations
NASA Technical Reports Server (NTRS)
Barger, Raymond L.; Walters, Robert W.
1989-01-01
Report describes some path-following techniques for solution of nonlinear equations and compares with other methods. Use of multipurpose techniques applicable at more than one stage of path-following computation results in system relatively simple to understand, program, and use. Comparison of techniques with method of parametric differentiation (MPD) reveals definite advantages for path-following methods. Emphasis in investigation on multiuse techniques being applied at more than one stage of path-following computation. Incorporation of multipurpose techniques results in concise computer code relatively simple to use.
Zhang, Xiaoliang
2017-04-01
Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.
An Anatomic and Biomechanical Comparison of Bankart Repair Configurations.
Judson, Christopher H; Voss, Andreas; Obopilwe, Elifho; Dyrna, Felix; Arciero, Robert A; Shea, Kevin P
2017-11-01
Suture anchor repair for anterior shoulder instability can be performed using a number of different repair techniques, but none has been proven superior in terms of anatomic and biomechanical properties. Purpose/Hypothesis: The purpose was to compare the anatomic footprint coverage and biomechanical characteristics of 4 different Bankart repair techniques: (1) single row with simple sutures, (2) single row with horizontal mattress sutures, (3) double row with sutures, and (4) double row with labral tape. The hypotheses were as follows: (1) double-row techniques would improve the footprint coverage and biomechanical properties compared with single-row techniques, (2) horizontal mattress sutures would increase the footprint coverage compared with simple sutures, and (3) repair techniques with labral tape and sutures would not show different biomechanical properties. Controlled laboratory study. Twenty-four fresh-frozen cadaveric specimens were dissected. The native labrum was removed and the footprint marked and measured. Repair for each of the 4 groups was performed, and the uncovered footprint was measured using a 3-dimensional digitizer. The strength of the repair sites was assessed using a servohydraulic testing machine and a digital video system to record load to failure, cyclic displacement, and stiffness. The double-row repair techniques with sutures and labral tape covered 73.4% and 77.0% of the footprint, respectively. These percentages were significantly higher than the footprint coverage achieved by single-row repair techniques using simple sutures (38.1%) and horizontal mattress sutures (32.8%) ( P < .001). The footprint coverage of the simple suture and horizontal mattress suture groups was not significantly different ( P = .44). There were no significant differences in load to failure, cyclic displacement, or stiffness between the single-row and double-row groups or between the simple suture and horizontal mattress suture techniques. Likewise, there was no difference in the biomechanical properties of the double-row repair techniques with sutures versus labral tape. Double-row repair techniques provided better coverage of the native footprint of the labrum but did not provide superior biomechanical properties compared with single-row repair techniques. There was no difference in footprint coverage or biomechanical strength between the simple suture and horizontal mattress suture repair techniques. Although the double-row repair techniques had no difference in initial strength, they may improve healing in high-risk patients by improving the footprint coverage.
NASA Astrophysics Data System (ADS)
Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago
2018-01-01
We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.
ERIC Educational Resources Information Center
Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago
2018-01-01
We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.
Martins, Raquel R; McCracken, Andrew W; Simons, Mirre J P; Henriques, Catarina M; Rera, Michael
2018-02-05
The Smurf Assay (SA) was initially developed in the model organism Drosophila melanogaster where a dramatic increase of intestinal permeability has been shown to occur during aging (Rera et al. , 2011). We have since validated the protocol in multiple other model organisms (Dambroise et al. , 2016) and have utilized the assay to further our understanding of aging (Tricoire and Rera, 2015; Rera et al. , 2018). The SA has now also been used by other labs to assess intestinal barrier permeability (Clark et al. , 2015; Katzenberger et al. , 2015; Barekat et al. , 2016; Chakrabarti et al. , 2016; Gelino et al. , 2016). The SA in itself is simple; however, numerous small details can have a considerable impact on its experimental validity and subsequent interpretation. Here, we provide a detailed update on the SA technique and explain how to catch a Smurf while avoiding the most common experimental fallacies.
Temperature dependence of the NO + O3 reaction rate from 195 to 369 K
NASA Technical Reports Server (NTRS)
Michael, J. V.; Allen, J. E., Jr.; Brobst, W. D.
1981-01-01
The temperature dependence of the NO + O3 reaction rate was examined by means of the fast flow technique. Several different experimental conditions and detection schemes were employed. With excess NO or excess O3, NO2 chemiluminescence was monitored. In addition, with excess O3, NO was followed by fluorescence induced by an NO microwave discharge lamp. The results of the three independent sets of data are compared and found to agree within experimental error, indicating the absence of secondary chemistry which might complicate the kinetics. The data exhibit curvature on an Arrhenius plot; however, the simple Arrhenius expression k = (2.6 + or - 0.8) x 10 to the -12th exp(-1435 + or - 64/T) cu cm/molecule s is an adequate description for T between 195 and 369 K. This result is compared to earlier determinations.
Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S
2014-10-01
Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alesso, Magdalena; Escudero, Luis A; Talio, María Carolina; Fernández, Liliana P
2016-11-01
A new simple methodology is proposed for chlorsufuron (CS) traces quantification based upon enhancement of rhodamine B (RhB) fluorescent signal. Experimental variables that influence fluorimetric sensitivity have been studied and optimized. The zeroth order regression calibration was linear from 0.866 to 35.800µgL(-1) CS, with a correlation coefficient of 0.99. At optimal experimental conditions, a limit of detection of 0.259µgL(-1) and a limit of quantification of 0.866µgL(-1) were obtained. The method showed good sensitivity and adequate selectivity and was applied to the determination of trace amounts of CS in plasma, serum and water samples with satisfactory results analyzed by ANOVA test. The proposed methodology represents an alternative to traditional chromatographic techniques for CS monitoring in complex samples, using an accessible instrument in control laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.
Digital image compression for a 2f multiplexing optical setup
NASA Astrophysics Data System (ADS)
Vargas, J.; Amaya, D.; Rueda, E.
2016-07-01
In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.
Local determination of thin liquid film profiles using colour interferometry.
Butler, Calum S; Seeger, Zoe L E; Bell, Toby D M; Bishop, Alexis I; Tabor, Rico F
2016-02-01
We explore theoretically the interference of white light between two interfaces as a function of the optical conditions, using separately: a) idealised conditions where the light is composed of three discrete wavelengths; b) a more typically experimentally realisable case where light comprises a sum of three Gaussian wavelength distributions; and c) unfiltered white light from a broadband source comprising a broad distribution of wavelengths. It is demonstrated that the latter case is not only optically simple to arrange, but also provides unambiguous absolute separation information over the range 0-1μm --a useful range in studies of cell adhesion, thin liquid films and lubrication-- when coupled to detection using a typical colour camera. The utility of this technique is verified experimentally by exploring the air film between a cylinder and surface, as well as arbitrary liquid films beneath air bubbles that are interacting with solid surfaces.
Sample flow switching techniques on microfluidic chips.
Pan, Yu-Jen; Lin, Jin-Jie; Luo, Win-Jet; Yang, Ruey-Jen
2006-02-15
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.
Experimental Verification of Entanglement Generated in a Plasmonic System.
Dieleman, F; Tame, M S; Sonnefraud, Y; Kim, M S; Maier, S A
2017-12-13
A core process in many quantum tasks is the generation of entanglement. It is being actively studied in a variety of physical settings-from simple bipartite systems to complex multipartite systems. In this work we experimentally study the generation of bipartite entanglement in a nanophotonic system. Entanglement is generated via the quantum interference of two surface plasmon polaritons in a beamsplitter structure, i.e., utilizing the Hong-Ou-Mandel (HOM) effect, and its presence is verified using quantum state tomography. The amount of entanglement is quantified by the concurrence and we find values of up to 0.77 ± 0.04. Verifying entanglement in the output state from HOM interference is a nontrivial task and cannot be inferred from the visibility alone. The techniques we use to verify entanglement could be applied to other types of photonic system and therefore may be useful for the characterization of a range of different nanophotonic quantum devices.
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1992-01-01
Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.
Effect of consecutive cooling and immobilization on catecholamine metabolism in rat tissues
NASA Technical Reports Server (NTRS)
Matlina, E. S.; Waysman, S. M.; Zaydner, I. G.; Kogan, B. M.; Nozdracheva, L. V.
1979-01-01
The combined effect of two stressor stimuli--cooling and immobilization--acting successively on the sympathetic-adrenaline system was studied experimentally in rats that were cooled for 8 hours at 7 C on the first day and immobilized for 6 hours on the next day. The biochemical and histochemical methods used and the experimental technique involved are described in detail. The following conclusions were formulated: (1) the successive action of cooling and immobilization results in a stronger decrease in the adrenaline and noradrenaline content in the adrenal gland than that which could be due to a simple summation of the cooling and immobilization effects; (2) successive cooling and immobilization are followed by activation of catecholamine synthesis in the adrenal gland; and (3) 1-DOPA administration (45 mg/kg 3 times in 2 days) intraabdominally activated catecholamine synthesis in the adrenal glands in both the control and test animals.
NASA Astrophysics Data System (ADS)
Ohtaki, Yasuaki; Arif, Muhammad; Suzuki, Akihiro; Fujita, Kazuki; Inooka, Hikaru; Nagatomi, Ryoichi; Tsuji, Ichiro
This study presents an assessment of walking stability in elderly people, focusing on local dynamic stability of walking. Its main objectives were to propose a technique to quantify local dynamic stability using nonlinear time-series analyses and a portable instrument, and to investigate their reliability in revealing the efficacy of an exercise training intervention for elderly people for improvement of walking stability. The method measured three-dimensional acceleration of the upper body, and computation of Lyapunov exponents, thereby directly quantifying the local stability of the dynamic system. Straight level walking of young and elderly subjects was investigated in the experimental study. We compared Lyapunov exponents of young and the elderly subjects, and of groups before and after the exercise intervention. Experimental results demonstrated that the exercise intervention improved local dynamic stability of walking. The proposed method was useful in revealing effects and efficacies of the exercise intervention for elderly people.
Preparation of graphene by electrical explosion of graphite sticks.
Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan
2017-08-03
Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.
The mini-O, a digital superhet, or a truly low-cost Omega navigation receiver
NASA Technical Reports Server (NTRS)
Burhans, R. W.
1975-01-01
A quartz tuning fork filter circuit and some unique CMOS clock logic methods provide a very simple OMEGA-VLF receiver with true hyperbolic station pair phase difference outputs. An experimental system was implemented on a single battery-operated circuit board requiring only an external antenna preamplifier, and LOP output recorder. A bench evaluation and preliminary navigation tests indicate the technique is viable and can provide very low-cost OMEGA measurement systems. The method is promising for marine use with small boats in the present form, but might be implemented in conjunction with digital microprocessors for airborne navigation aids.
Metal explosion chambers: designing, manufacturing, application
NASA Astrophysics Data System (ADS)
Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.
2017-10-01
Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.
Momentum transfer in the reactions of 13. 6-GeV/nucleon sup 16 O with copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumming, J.B.; Chu, Y.Y.; Haustein, P.E.
1992-11-01
Mean ranges and forward-to-backward ratios have been determined by the thick-target, thick-catcher technique for fragments from the interaction of 13.6-GeV/nucleon {sup 16}O with copper. Experimental data are analyzed in terms of a two-step model and results are discussed in the context of limiting fragmentation and factorization and the predictions of a simple model for momentum transfer. Momenta imparted in the initial interactions of 13.6-GeV/nucleon {sup 16}O were inferred to be {similar to}12% lower than those for fragmentation of Cu by high-energy protons.
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
The applicability and adequacy of several computer techniques in predicting satisfactorily the nonlinear/inelastic response of angle ply laminates were evaluated. The analytical predictions were correlated with the results of a test program on the inelastic response under axial compression of a large variety of graphite-epoxy and boron-epoxy angle ply laminates. These comparison studies indicate that neither of the abovementioned analyses can satisfactorily predict either the mode of response or the ultimate stress value corresponding to a particular angle ply laminate configuration. Consequently, also the simple failure mechanisms assumed in the analytical models were not verified.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2015-01-01
This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.
Fatigue crack growth with single overload - Measurement and modeling
NASA Technical Reports Server (NTRS)
Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.
1987-01-01
This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.
Transform-limited-pulse representation of excitation with natural incoherent light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenu, Aurélia, E-mail: aurelia.chenu@utoronto.ca; Brumer, Paul, E-mail: pbrumer@chem.utoronto.ca
2016-01-28
The excitation of molecular systems by natural incoherent light relevant, for example, to photosynthetic light-harvesting is examined. We show that the result of linear excitation with natural incoherent light can be obtained using incident light described in terms of transform limited pulses, as opposed to conventional classical representations with explicit random character. The derived expressions allow for computations to be done directly for any thermal light spectrum using a simple wave function formalism and provide a route to the experimental determination of natural incoherent excitation using pulsed laser techniques. Pulses associated with solar and cosmic microwave background radiation are providedmore » as examples.« less
Resistive method for measuring the disintegration speed of Prince Rupert's drops
NASA Astrophysics Data System (ADS)
Bochkov, Mark; Gusenkova, Daria; Glushkov, Evgenii; Zotova, Julia; Zhabin, S. N.
2016-09-01
We have successfully applied the resistance grid technique to measure the disintegration speed in a special type of glass objects, widely known as Prince Rupert's drops. We use a fast digital oscilloscope and a simple electrical circuit, glued to the surface of the drops, to detect the voltage changes, corresponding to the breaks in the specific parts of the drops. The results obtained using this method are in good qualitative and quantitative agreement with theoretical predictions and previously published data. Moreover, the proposed experimental setup does not include any expensive equipment (such as a high-speed camera) and can therefore be widely used in high schools and universities.
Salient regions detection using convolutional neural networks and color volume
NASA Astrophysics Data System (ADS)
Liu, Guang-Hai; Hou, Yingkun
2018-03-01
Convolutional neural network is an important technique in machine learning, pattern recognition and image processing. In order to reduce the computational burden and extend the classical LeNet-5 model to the field of saliency detection, we propose a simple and novel computing model based on LeNet-5 network. In the proposed model, hue, saturation and intensity are utilized to extract depth cues, and then we integrate depth cues and color volume to saliency detection following the basic structure of the feature integration theory. Experimental results show that the proposed computing model outperforms some existing state-of-the-art methods on MSRA1000 and ECSSD datasets.
NASA Astrophysics Data System (ADS)
Longone, P.; Romá, F.
2018-06-01
Chemical techniques are an efficient method to synthesize one-dimensional perovskite manganite oxide nanostructures with a granular morphology, that is, formed by arrays of monodomain magnetic nanoparticles. Integrating the stochastic Landau-Lifshitz-Gilbert equation, we simulate the dynamics of a simple disordered model for such materials that only takes into account the morphological characteristics of their nanograins. We show that it is possible to describe reasonably well experimental hysteresis loops reported in the literature for single La0.67Ca0.33MnO3 nanotubes and powders of these nanostructures, simulating small systems consisting of only 100 nanoparticles.
Johnson, Paul V; Hodyss, Robert; Beauchamp, J L
2014-11-01
Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.
Mesoscopic Dynamical Differences from Quantum State Preparation in a Bose-Hubbard Trimer
NASA Astrophysics Data System (ADS)
Olsen, M. K.; Neely, T. W.; Bradley, A. S.
2018-06-01
Conventional wisdom is that quantum effects will tend to disappear as the number of quanta in a system increases, and the evolution of a system will become closer to that described by mean-field classical equations. In this Letter we combine newly developed theoretical and experimental techniques to propose and analyze an experiment using a Bose-Hubbard trimer where the opposite is the case. We find that differences in the preparation of a centrally evacuated trimer can lead to readily observable differences in the subsequent dynamics which increase with system size. Importantly, these differences can be detected by the simple measurements of atomic number.
Fundamental study on non-invasive blood glucose sensing.
Xu, K; Li, Q; Lu, Z; Jiang, J
2002-01-01
Diabetes is a disease which severely threatens the health of human beings. Unfortunately, current monitoring techniques with finger sticks discourage the regular use. Noninvasive spectroscopic measurement of blood glucose is a simple and painless technique, and reduces the long-term health care costs of diabetic patients due to no reagents. It is suitable for home use. Moreover, the establishment of the methodology not only applies to blood glucose noninvasive measurement, but also can be extended to noninvasive measurement of other analytes in body fluid, which will be of important significance for the development of the technique of clinical analysis. In this paper, some fundamental researches, which have been achieved in our laboratory in the field of non-invasive blood glucose measurement, were introduced. 1. Fundamental research was done for the glucose concentrations from simple to complex samples with near and middle infrared spectroscopy: (1) the relationship between the instrument precision and prediction accuracy of the glucose measurement; (2) the change of the result of the quantitative measurement with the change of the complexity of samples; (3) the attempt of increasing the prediction accuracy of the glucose measurement by improving the methods of modeling. The research results showed that it is feasible for non-invasive blood glucose measurement with near and middle infrared spectroscopy in theory, and the experimental results, from simple to complex samples, proved that it is effective for the methodology consisting of hardware and software. 2. According to the characteristics of human body measurement, the effects of measuring conditions on measurement results, such as: (1) the effect of measurement position; (2) the effect of measurement pressure; (3) the effect of measurement site; (4) the effect of measured individual, were investigated. With the fundamental researches, the special problems of human body measurement were solved. In addition, the practical and effective method of noninvasive human blood glucose measurement was proposed.
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
Mapping forces in a 3D elastic assembly of grains
NASA Astrophysics Data System (ADS)
Saadatfar, Mohammad; Sheppard, Adrian P.; Senden, Tim J.; Kabla, Alexandre J.
2012-01-01
Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterise their behaviour at the particle scale. While 2D observations are now routinely carried out in laboratories, 3D measurements remain a challenge. In this paper, we use a simple model system, a packing of soft elastic spheres, to illustrate the capability of X-ray microtomography to characterise the internal structure and local behaviour of granular systems. Image analysis techniques can resolve grain positions, shapes and contact areas; this is used to investigate the material's microstructure and its evolution upon strain. In addition to morphological measurements, we develop a technique to quantify contact forces and estimate the internal stress tensor. As will be illustrated in this paper, this opens the door to a broad array of static and dynamical measurements in 3D disordered systems.
Laser fabrication of perfect absorbers
NASA Astrophysics Data System (ADS)
Mizeikis, V.; Faniayeu, I.
2018-01-01
We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.
A computational visual saliency model based on statistics and machine learning.
Lin, Ru-Je; Lin, Wei-Song
2014-08-01
Identifying the type of stimuli that attracts human visual attention has been an appealing topic for scientists for many years. In particular, marking the salient regions in images is useful for both psychologists and many computer vision applications. In this paper, we propose a computational approach for producing saliency maps using statistics and machine learning methods. Based on four assumptions, three properties (Feature-Prior, Position-Prior, and Feature-Distribution) can be derived and combined by a simple intersection operation to obtain a saliency map. These properties are implemented by a similarity computation, support vector regression (SVR) technique, statistical analysis of training samples, and information theory using low-level features. This technique is able to learn the preferences of human visual behavior while simultaneously considering feature uniqueness. Experimental results show that our approach performs better in predicting human visual attention regions than 12 other models in two test databases. © 2014 ARVO.
Solution and reasoning reuse in space planning and scheduling applications
NASA Technical Reports Server (NTRS)
Verfaillie, Gerard; Schiex, Thomas
1994-01-01
In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.
Detection of hepatocarcinoma in rats by integration of the fluorescence spectrum: Experimental model
NASA Astrophysics Data System (ADS)
Marcassa, J. C.; Ferreira, J.; Zucoloto, S.; Castro E Silva, O., Jr.; Marcassa, L. G.; Bagnato, V. S.
2006-05-01
The incorporation of spectroscopic techniques into diagnostic procedures may greatly improve the chances for precise diagnostics. One promising technique is fluorescence spectroscopy, which has recently been used to detect many different types of diseases. In this work, we use laser-induced tissue fluorescence to detect hepatocarcinoma in rats using excitation light at wavelengths of 443 and 532 nm. Hepatocarcinoma was induced chemically in Wistar rats. The collected fluorescence spectrum ranges from the excitation wavelength up to 850 nm. A mathematical procedure carried out on the spectrum determines a figure of merit value, which allows the detection of hepatocarcinoma. The figure of merit involves a procedure which evaluates the ratio between the backscattered excitation wavelength and the broad emission fluorescence band. We demonstrate that a normalization allowed by integration of the fluorescence spectra is a simple operation that may allow the detection of hepatocarcinoma.
Iodine Absorption Cells Purity Testing.
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-06
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).
Iodine Absorption Cells Purity Testing
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-01
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834
Ribeiro, José A; Silva, F; Pereira, Carlos M
2013-02-05
In this work, the ion transfer mechanism of the anticancer drug daunorubicin (DNR) at a liquid/liquid interface has been studied for the first time. This study was carried out using electrochemical techniques, namely cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The lipophilicity of DNR was investigated at the water/1,6-dichlorohexane (DCH) interface, and the results obtained were presented in the form of an ionic partition diagram. The partition coefficients of both neutral and ionic forms of the drug were determined. The analytical parameter for the detection of DNR was also investigated in this work. An electrochemical DNR sensor is proposed by means of simple ion transfer at the water/DCH interface, using DPV as the quantification technique. Experimental conditions for the analytical determination of DNR were established, and a detection limit of 0.80 μM was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri
2015-01-15
Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less
Measurement of Flaw Size From Thermographic Data
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.
2015-01-01
Simple methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the delamination, since the heat diffuses in the plane parallel to the surface. The result is a temperature profile over the delamination which is larger than the delamination size. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that is much closer to the true size of the delamination. The method is based on an estimate for the thermal response that is a convolution of a Gaussian kernel with the shape of the flaw. The size is determined from both the temporal and spatial thermal response of the exterior surface above the delamination and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data are presented to investigate the limitations of the technique.
Kold, S; Soballe, K; Mouzin, O; Chen, Xiangmei; Toft, M; Bechtold, J
2002-01-01
We used an experimental model producing a tissue response with a sclerotic endosteal neo-cortical rim associated with implant loosening in humans: a 6 mm PMMA cylinder pistoned 500 m concentrically in a 7.5 mm hole, with polyethylene particles. At a second operation at eight weeks, the standard revision procedure removed the fibrous membrane in one knee, and the crack revision procedure was used to crack the sclerotic endosteal rim in the contralateral knee. Once stability was achieved following the revision procedures, loaded Ti plasma sprayed implants were inserted into the revision cavities of 8 dogs for an additional 4 weeks. Revision implant fixation (ultimate shear strength and energy absorption) was significantly enhanced by cracking the sclerotic endosteal rim. In conclusion, we demonstrated a simple technique of cracking the sclerotic endosteal rim as an additional method for improving revision fixation. (Hip International 2002; 2: 77-9).
NASA Astrophysics Data System (ADS)
Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae
2006-12-01
We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.
Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros
2014-01-01
When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601
Buckling and Damage Resistance of Transversely-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Wardle, Brian L.
1998-01-01
Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into asymmetric deformation modes but were undamaged during testing. Shells in this study which were damaged were not observed to bifurcate. Thus, a direct link between bifurcation and atypical damage could not be established although the mechanism (bifurcation) was identified. Recommendations for further work in these related areas are provided and include extensions of the AMT to other shell geometries and structural problems.
Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui
2016-06-01
Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.
From functional architecture to functional connectomics.
Reid, R Clay
2012-07-26
"Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M.; Al-Dayeh, L.; Patel, P.
It is well known that even small movements of the head can lead to artifacts in fMRI. Corrections for these movements are usually made by a registration algorithm which accounts for translational and rotational motion of the head under a rigid body assumption. The brain, however, is not entirely rigid and images are prone to local deformations due to CSF motion, susceptibility effects, local changes in blood flow and inhomogeneities in the magnetic and gradient fields. Since nonrigid body motion is not adequately corrected by approaches relying on simple rotational and translational corrections, we have investigated a general approach wheremore » an n{sup th} order polynomial is used to map all images onto a common reference image. The coefficients of the polynomial transformation were determined through minimization of the ratio of the variance to the mean of each pixel. Simulation studies were conducted to validate the technique. Results of experimental studies using polynomial transformation for 2D and 3D registration show lower variance to mean ratio compared to simple rotational and translational corrections.« less
Mak, D O; Webb, W W
1997-03-01
A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.
Grada, Ayman; Otero-Vinas, Marta; Prieto-Castrillo, Francisco; Obagi, Zaidal; Falanga, Vincent
2017-02-01
Collective cell migration is a hallmark of wound repair, cancer invasion and metastasis, immune responses, angiogenesis, and embryonic morphogenesis. Wound healing is a complex cellular and biochemical process necessary to restore structurally damaged tissue. It involves dynamic interactions and crosstalk between various cell types, interaction with extracellular matrix molecules, and regulated production of soluble mediators and cytokines. In cutaneous wound healing, skin cells migrate from the wound edges into the wound to restore skin integrity. Analysis of cell migration in vitro is a useful assay to quantify alterations in cell migratory capacity in response to experimental manipulations. Although several methods exist to study cell migration (such as Boyden chamber assay, barrier assays, and microfluidics-based assays), in this short report we will explain the wound healing assay, also known as the "in vitro scratch assay" as a simple, versatile, and cost-effective method to study collective cell migration and wound healing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tambunan, D. R. S.; Sibagariang, Y. P.; Ambarita, H.; Napitupulu, F. H.; Kawai, H.
2018-03-01
The characteristics of absorber plate of a flat plate solar collector play an important role in the improvement of the performance. In this work, a numerical analysis is carried out to explore the effect of absorptivity and emissivity of absorber plate to the performance of the solar collector of a solar water heater. For a results comparison, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. It is employed to heat water in a container by exposing to the solar radiation in Medan city of Indonesia. The transient governing equations are developed. The governing equations are discretized and solved using the forward time step marching technique. The results reveal that the experimental and numerical results show good agreement. The absorptivity of the plate absorber and emissivity of the glass cover strongly affect the performance of the solar collector.
The assembly dynamics of the cytolytic pore toxin ClyA
Benke, Stephan; Roderer, Daniel; Wunderlich, Bengt; Nettels, Daniel; Glockshuber, Rudi; Schuler, Benjamin
2015-01-01
Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition. PMID:25652783
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Arthroscopic Medial Meniscus Posterior Root Fixation Using a Modified Mason-Allen Stitch.
Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Kim, Jin Goo
2016-02-01
A complete radial tear of the meniscus posterior root, which can effectively cause a state of total meniscectomy via loss of hoop tension, requires that the torn root be repaired. Several methods have been used to repair medial meniscus posterior root tears, most of which are based on a simple stitch technique that is known to have stitch-holding strength. We applied a modified version of the Mason-Allen stitch technique, which is recognized as a method for rotator cuff repair surgery because its locking effect overcomes the potential weakness of simple stitches. This article introduces the medial meniscus posterior root tears repair procedure based on a modified Mason-Allen stitch technique in which 2 strands (i.e., 1 simple horizontal and 1 simple vertical stitch) are used.
Rotordynamic forces in labyrinth seals: Theory and experiment
NASA Technical Reports Server (NTRS)
Millsaps, Knox T.; Martinez-Sanchez, Manuel
1994-01-01
A theoretical and experimental investigation of the aerodynamic forces generated by a single gland labyrinth seal executing a simultaneous spinning/whirling motion has been conducted. A lumped parameter model for a single gland seal with coupling to an upstream cavity with leakage is developed along with an appropriate solution technique. From this theory, it is shown that the presence of the upstream cavity can, in some cases, augment the cross-stiffness and direct damping by a factor of four. The parameters that govern the coupling are presented along with predictions on their influence. A simple uncoupled model is used to identify the mechanisms responsible for cross force generation. This reduced system is nondimensionalized and the physical significance of the reduced parameters is discussed. Closed form algebraic formulas are given for some simple limiting cases. It is also shown that the total cross-force predicted by the uncoupled model can be represented as the sum of an ideal component due to an inviscid flow with entry swirl and a viscous part due to the change in swirl created by friction inside the gland. The frequency dependent ideal part is solely responsible for the rotordynamic direct damping. The facility designed and built to measure these frequency dependent forces is described. Experimental data confirm the validity and usefulness of this ideal/viscous decomposition. A method for calculating the damping coefficients based on the force decomposition using only the static measurements is presented. Experimental results supporting the predicted cross force augmentation due to the effect of upstream coupling are presented.
Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Kim, Sun Kwon; Gonzalez, Juan M.; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.
2010-01-01
Objective To describe a novel and simple technique (STAR: Simple Targeted Arterial Rendering) to visualize the fetal cardiac outflow tracts from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed a technique to image the outflow tracts by drawing three dissecting lines through the four-chamber view of the heart contained in a STIC volume dataset. Each line generated the following plane: 1) Line 1: ventricular septum “en face” with both great vessels (pulmonary artery anterior to the aorta); 2) Line 2: pulmonary artery with continuation into the longitudinal view of the ductal arch; and 3) Line 3: long axis view of the aorta arising from the left ventricle. The pattern formed by all 3 lines intersecting approximately through the crux of the heart resembles a “star”. The technique was then tested in 50 normal hearts (15.3 – 40.4 weeks of gestation). To determine if the technique could identify planes that departed from the normal images, we tested the technique in 4 cases with proven congenital heart defects (ventricular septal defect, transposition of great vessels, tetralogy of Fallot, and pulmonary atresia with intact ventricular septum). Results The STAR technique was able to generate the intended planes in all 50 normal cases. In the abnormal cases, the STAR technique allowed identification of the ventricular septal defect, demonstrated great vessel anomalies, and displayed views that deviated from what was expected from the examination of normal hearts. Conclusions This novel and simple technique can be used to visualize the outflow tracts and ventricular septum “en face” in normal fetal hearts. The inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease involving the great vessels and/or the ventricular septum. The STAR technique may simplify examination of the fetal heart and could reduce operator dependency. PMID:20878672
A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.
ERIC Educational Resources Information Center
Yunus, W. Mahmood Mat; Ahmad, Maulana
1996-01-01
Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)
How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.
ERIC Educational Resources Information Center
Guilfoile, Patrick
1989-01-01
Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)
Experimental and theoretical study of magnetohydrodynamic ship models.
Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe
2017-01-01
Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.
Xu, Yun; Muhamadali, Howbeer; Sayqal, Ali; Dixon, Neil; Goodacre, Royston
2016-10-28
Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a "pure" regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.
Research on Hartmann test for progressive addition lenses
NASA Astrophysics Data System (ADS)
Qin, Lin-ling; Yu, Jing-chi
2009-05-01
Recently, in the world some growing-up measurements for Progressive addition lenses and relevant equipments have been developed. They are single point measurement, moiré deflectometry, Ronchi test techniques. Hartmann test for Progressive addition lenses is proposed in the article. The measurement principle of Hartmann test for ophthalmic lenses and the power compensation of off-axis rays are introduced. The experimental setup used to test lenses is put forward. For experimental test, a spatial filter is used for selecting a clean Gaussian beam; a collimating lens with focal distance f =300 mm is used to produce collimated beam. The Hartmann plate with a square array of holes separated at 2 mm is selected. The selection of laser and CCD camera is critical to the accuracy of experiment and the image processing algorithm. The spot patterns from CCD are obtained from the experimental tests. The power distribution map for lenses can be obtained by image processing in theory. The results indicate that Hartmann test for Progressive addition lenses is convenient and feasible; also its structure is simple.
Experimental and theoretical study of magnetohydrodynamic ship models
Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe
2017-01-01
Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques. PMID:28665941
NASA Astrophysics Data System (ADS)
Vidal, Borja; Lafuente, Juan A.
2016-03-01
A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.
Comparison of modal identification techniques using a hybrid-data approach
NASA Technical Reports Server (NTRS)
Pappa, Richard S.
1986-01-01
Modal identification of seemingly simple structures, such as the generic truss is often surprisingly difficult in practice due to high modal density, nonlinearities, and other nonideal factors. Under these circumstances, different data analysis techniques can generate substantially different results. The initial application of a new hybrid-data method for studying the performance characteristics of various identification techniques with such data is summarized. This approach offers new pieces of information for the system identification researcher. First, it allows actual experimental data to be used in the studies, while maintaining the traditional advantage of using simulated data. That is, the identification technique under study is forced to cope with the complexities of real data, yet the performance can be measured unquestionably for the artificial modes because their true parameters are known. Secondly, the accuracy achieved for the true structural modes in the data can be estimated from the accuracy achieved for the artificial modes if the results show similar characteristics. This similarity occurred in the study, for example, for a weak structural mode near 56 Hz. It may even be possible--eventually--to use the error information from the artificial modes to improve the identification accuracy for the structural modes.
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
Li, Hongbin; Hou, Huagang; Sucheta, Artur; Williams, Benjamin B.; Lariviere, Jean P.; Khan, Nadeem; Lesniewski, Piotr N.; Swartz, Harold M.
2013-01-01
EPR oximetry using implantable resonators allow measurements at much deeper sites than are possible with surface resonators (> 80 mm vs. 10 mm) and have greater sensitivity at any depth. We report here the development of an improvement of the technique that now enables us to obtain the information from multiple sites and at a variety of depths. The measurements from the various sites are resolved using a simple magnetic field gradient. In the rat brain multi-probe implanted resonators measured pO2 at several sites simultaneously for over 6 months to record under normoxic, hypoxic and hyperoxic conditions. This technique also facilitates measurements in moving parts of the animal such as the heart, because the orientation of the paramagnetic material relative to the sensitive small loop is not altered by the motion. The measured response is very fast, enabling measurements in real time of physiological and pathological changes such as experimental cardiac ischemia in the mouse heart. The technique also is quite useful for following changes in tumor pO2, including applications with simultaneous measurements in tumors and adjacent normal tissues. PMID:20204802
A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo
Davidson, Steve; Truong, Hai; Nakagawa, Yasushi; Giesler, Glenn J
2009-01-01
A simple pressure injection technique was developed to deliver substances into specific regions of the embryonic and neonatal mouse brain in vivo. The retrograde tracers Fluorogold and cholera toxin B subunit were used to test the validity of the technique. Injected animals survived the duration of transport (24–48 hrs) and then were sacrificed and perfused with fixative. Small injections (≤ 50 nL) were contained within targeted structures of the perinatal brain and labeled distant cells of origin in several model neural pathways. Traced neural pathways in the perinatal mouse were further examined with immunohistochemical methods to test the feasibility of double labeling experiments during development. Several experimental situations in which this technique would be useful are discussed, for example, to label projection neurons in slice or culture preparations of mouse embryos and neonates. The administration of pharmacological or genetic vectors directly into specific neural targets during development should also be feasible. An examination of the form of neural pathways during early stages of life may lead to insights regarding the functional changes that occur during critical periods of development and provide an anatomic basis for some neurodevelopmental disorders. PMID:19840780
NASA Astrophysics Data System (ADS)
Reddemann, Manuel A.; Mathieu, Florian; Kneer, Reinhold
2013-11-01
Aiming at a maximum spatial resolution and a minimum motion blur, a new simple double-imaging transmitted light microscopy technique is developed in this work enabling a fundamental investigation of primary breakup of a microscale liquid jet. Contrary to conventional far-field visualization techniques, the working distance is minimized to increase the numerical aperture. The resulting images provide information about shapes, length scales and velocities of primary liquid structures. The method is applied to an optically dense spray leaving a 109-μm diesel nozzle at various injection pressures under atmospheric conditions. A phenomenological study on the temporal spray evolution is done with focus on droplet and ligament formation. Different breakup processes are identified and described. It is found that the jet is characterized by long ligaments parallel or angular to the inner jet region. These ligaments result from collapsing films developing at the spray edge. A significant influence of outlet velocity variation on shape and velocity of these ligaments is observed. The experimental results prove that a transmitted light microscopy technique with reduced working distance is an appropriate tool for a better understanding of primary breakup for small-scaled diesel nozzles and a valuable complement to highly complex measurement techniques.
Singh, Sheetal; Shih, Shyh-Jen; Vaughan, Andrew T M
2014-01-01
Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter- and gene-specific primers. The rate of appearance and loss of specific PCR products allows detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks and rearrangements introduced into any identifiable genomic location. We have also applied parallel sequencing for the high-throughput analysis of inverse PCR products to facilitate the unbiased recording of all rearrangements located at a specific genomic location.
Experimental rotator cuff repair. A preliminary study.
Gerber, C; Schneeberger, A G; Perren, S M; Nyffeler, R W
1999-09-01
The repair of chronic, massive rotator cuff tears is associated with a high rate of failure. Prospective studies comparing different repair techniques are difficult to design and carry out because of the many factors that influence structural and clinical outcomes. The objective of this study was to develop a suitable animal model for evaluation of the efficacy of different repair techniques for massive rotator cuff tears and to use this model to compare a new repair technique, tested in vitro, with the conventional technique. We compared two techniques of rotator cuff repair in vivo using the left shoulders of forty-seven sheep. With the conventional technique, simple stitches were used and both suture ends were passed transosseously and tied over the greater tuberosity of the humerus. With the other technique, the modified Mason-Allen stitch was used and both suture ends were passed transosseously and tied over a cortical-bone-augmentation device. This device consisted of a poly(L/D-lactide) plate that was fifteen millimeters long, ten millimeters wide, and two millimeters thick. Number-3 braided polyester suture material was used in all of the experiments. In pilot studies (without prevention of full weight-bearing), most repairs failed regardless of the technique that was used. The simple stitch always failed by the suture pulling through the tendon or the bone; the suture material did not break or tear. The modified Mason-Allen stitch failed in only two of seventeen shoulders. In ten shoulders, the suture material failed even though the stitches were intact. Thus, we concluded that the modified Mason-Allen stitch is a more secure method of achieving suture purchase in the tendon. In eight of sixteen shoulders, the nonaugmented double transosseous bone-fixation technique failed by the suture pulling through the bone. The cortical-bone-augmentation technique never failed. In definite studies, prevention of full weight-bearing was achieved by fixation of a ten-centimeter-diameter ball under the hoof of the sheep. This led to healing in eight of ten shoulders repaired with the modified Mason-Allen stitch and cortical-bone augmentation. On histological analysis, both the simple-stitch and the modified Mason-Allen technique caused similar degrees of transient localized tissue damage. Mechanical pullout tests of repairs with the new technique showed a failure strength that was approximately 30 percent of that of an intact infraspinatus tendon at six weeks, 52 percent of that of an intact tendon at three months, and 81 percent of that of an intact tendon at six months. The repair technique with a modified Mason-Allen stitch with number-3 braided polyester suture material and cortical-bone augmentation was superior to the conventional repair technique. Use of the modified Mason-Allen stitch and the cortical-bone-augmentation device transferred the weakest point of the repair to the suture material rather than to the bone or the tendon. Failure to protect the rotator cuff post-operatively was associated with an exceedingly high rate of failure, even if optimum repair technique was used. Different techniques for rotator cuff repair substantially influence the rate of failure. A modified Mason-Allen stitch does not cause tendon necrosis, and use of this stitch with cortical-bone augmentation yields a repair that is biologically well tolerated and stronger in vivo than a repair with the conventional technique. Unprotected repairs, however, have an exceedingly high rate of failure even if optimum repair technique is used. Postoperative protection from tension overload, such as with an abduction splint, may be necessary for successful healing of massive rotator cuff tears.
Radiation/Catalytic Augmented Combustion.
1984-05-01
interest to compare the experimental results for the solid bluff body with a thuoretical result. Using simple argtinieiiLs from fluid mechanics " one...responsibility through completion. Dr. A. E. Cerkanowlcz assisted in writing this final report. Experimental studies on catalytic augmented combustion...as well as with other combustion species, lead to ignition and sustained combustion via chain reactions. Simple combustion enhancement without
Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test
ERIC Educational Resources Information Center
Barrio-Perotti, R.; Blanco-Marigorta, E. Arguelles-Diaz, K.; Fernandez-Oro, J.
2009-01-01
The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag…
A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.
Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L
2006-04-19
Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.
A Simple ELISA Exercise for Undergraduate Biology.
ERIC Educational Resources Information Center
Baker, William P.; Moore, Cathy R.
Understanding of immunological techniques such as the Enzyme Linked Immuno Sorbent Assay (ELISA) is an important part of instructional units in human health, developmental biology, microbiology, and biotechnology. This paper describes a simple ELISA exercise for undergraduate biology that effectively simulates the technique using a paper model.…
Fourier Spectroscopy: A Simple Analysis Technique
ERIC Educational Resources Information Center
Oelfke, William C.
1975-01-01
Presents a simple method of analysis in which the student can integrate, point by point, any interferogram to obtain its Fourier transform. The manual technique requires no special equipment and is based on relationships that most undergraduate physics students can derive from the Fourier integral equations. (Author/MLH)
NASA Astrophysics Data System (ADS)
Lee, Youngme; Sah, Eric; Sah, Hongkee
2015-11-01
The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60-150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5-4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.
Martens, Andreas; Rojas, Sebastian V; Baraki, Hassina; Rathert, Christian; Schecker, Natalie; Hernandez, Sara Rojas; Schwanke, Kristin; Zweigerdt, Robert; Martin, Ulrich; Saito, Shunsuke; Haverich, Axel; Kutschka, Ingo
2014-01-01
The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections. A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5 × 10(5)) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78 × 10(5) ± 0.31 × 10(5) in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74 × 10(5) ± 0.18 × 10(5); p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90 × 10(5) ± 0.20 × 10(5)) and the right (1.07 × 10(5) ± 0.17 × 10(5)) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups. We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after intramyocardial delivery using macroscopic fluorescence imaging. This new technique showed massive early particle loss and venous drainage into the right atrium leading to substantial accumulation of graft particles in both lungs.
Novel techniques for optical performance monitoring in optical systems
NASA Astrophysics Data System (ADS)
Ku, Yuen Ching
The tremendous increase of data traffic in the worldwide Internet has driven the rapid development of optical networks to migrate from numerous point-to-point links towards meshed, transparent optical networks with dynamically routed light paths. This increases the need for appropriate network supervision methods. In view of this, optical performance monitoring (OPM) has emerged as an indispensable element for the quality assurance of an optical network. This thesis is devoted to the proposal of several new and accurate techniques to monitor different optical impairments so as to enhance proper network management. When the optical signal is carried on fiber links with optical amplifiers, the accumulated amplified spontaneous emission (ASE) noise will result in erroneous detection of the received signals. The first part of the thesis presents a novel, simple, and robust in-band optical signal to noise ratio (OSNR) monitoring technique using phase modulator embedded fiber loop mirror (PM-FLM). This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The robustness against polarization mode dispersion, chromatic dispersion, bit-rate, and partially polarized noise is experimentally demonstrated. Chromatic dispersion (CD) is due to the fact that light with different frequencies travel at different speeds inside fiber. It causes pulse spreading and intersymbol interference (ISI) which would severely degrade the transmission performance. By feeding a signal into a fiber loop which consists of a high-birefringence (Hi-Bi) fiber, we experimentally show that the amount of experienced dispersion can be deduced from the RF power at a specific selected frequency which is determined by the length of the Hi-Bi fiber. Experimental results show that this technique can provide high monitoring resolution and dynamic range. Polarization mode dispersion (PMD) splits an optical pulse into two orthogonally polarized pulses traveling along the fiber at different speeds, causing crosstalk and ISI. The third part of the thesis demonstrates two different PMD monitoring schemes. The first one is based on the analysis of frequency-resolved state-of-polarization (SOP) rotation, with signal spectrum broadened by self-phase modulation (SPM) effect. Experimental results show that the use of broadened signal spectrum induced by SPM not only relaxes the filter requirement and reduces the computational complexity, but also improves the estimation accuracy, and extends the monitoring range of the pulsewidth. The second one is based on the delay-tap asynchronous waveform sampling technique. By examining the statistical distribution of the measured scatter plot, unambiguous PMD measurement range up to 50% of signal bit-period is demonstrated. The final part of the thesis focuses on the monitoring of alignment status between the pulse carver and data modulator in an optical system. We again employ the two-tap asynchronous sampling technique to perform such kind of monitoring in RZ-OOK transmission system. Experimental results show that both the misalignment direction and magnitude can be successfully determined. Besides, we propose and experimentally demonstrate the use of off-center optical filtering technique to capture the amount of spectrum broadening induced by the misalignment between the pulse-carver and the data modulator in RZ-DPSK transmission system. The same technique was also applied to monitor the synchronization between the old and the new data in synchronized phase re-modulation (SPRM) system.
Gurien, Lori A; Wyrick, Deidre L; Smith, Samuel D; Maxson, R Todd
2016-05-01
Although this issue remains unexamined, pediatric surgeons commonly use simple interrupted suture for bowel anastomosis, as it is thought to improve intestinal growth postoperatively compared to continuous running suture. However, effects on intestinal growth are unclear. We compared intestinal growth using different anastomotic techniques during the postoperative period in young rats. Young, growing rats underwent small bowel transection and anastomosis using either simple interrupted or continuous running technique. At 7-weeks postoperatively after a four-fold growth, the anastomotic site was resected. Diameters and burst pressures were measured. Thirteen rats underwent anastomosis with simple interrupted technique and sixteen with continuous running method. No differences were found in body weight at first (102.46 vs 109.75g) or second operations (413.85 vs 430.63g). Neither the diameters (0.69 vs 0.79cm) nor burst pressures were statistically different, although the calculated circumference was smaller in the simple interrupted group (2.18 vs 2.59cm; p=0.03). No ruptures occurred at the anastomotic line. This pilot study is the first to compare continuous running to simple interrupted intestinal anastomosis in a pediatric model and showed no difference in growth. Adopting continuous running techniques for bowel anastomosis in young children may lead to faster operative time without affecting intestinal growth. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pedemonte, Stefano; Pierce, Larry; Van Leemput, Koen
2017-11-01
Measuring the depth-of-interaction (DOI) of gamma photons enables increasing the resolution of emission imaging systems. Several design variants of DOI-sensitive detectors have been recently introduced to improve the performance of scanners for positron emission tomography (PET). However, the accurate characterization of the response of DOI detectors, necessary to accurately measure the DOI, remains an unsolved problem. Numerical simulations are, at the state of the art, imprecise, while measuring directly the characteristics of DOI detectors experimentally is hindered by the impossibility to impose the depth-of-interaction in an experimental set-up. In this article we introduce a machine learning approach for extracting accurate forward models of gamma imaging devices from simple pencil-beam measurements, using a nonlinear dimensionality reduction technique in combination with a finite mixture model. The method is purely data-driven, not requiring simulations, and is applicable to a wide range of detector types. The proposed method was evaluated both in a simulation study and with data acquired using a monolithic gamma camera designed for PET (the cMiCE detector), demonstrating the accurate recovery of the DOI characteristics. The combination of the proposed calibration technique with maximum- a posteriori estimation of the coordinates of interaction provided a depth resolution of ≈1.14 mm for the simulated PET detector and ≈1.74 mm for the cMiCE detector. The software and experimental data are made available at http://occiput.mgh.harvard.edu/depthembedding/.
The Role of Neuromodulators in Cortical Plasticity. A Computational Perspective
Pedrosa, Victor; Clopath, Claudia
2017-01-01
Neuromodulators play a ubiquitous role across the brain in regulating plasticity. With recent advances in experimental techniques, it is possible to study the effects of diverse neuromodulatory states in specific brain regions. Neuromodulators are thought to impact plasticity predominantly through two mechanisms: the gating of plasticity and the upregulation of neuronal activity. However, the consequences of these mechanisms are poorly understood and there is a need for both experimental and theoretical exploration. Here we illustrate how neuromodulatory state affects cortical plasticity through these two mechanisms. First, we explore the ability of neuromodulators to gate plasticity by reshaping the learning window for spike-timing-dependent plasticity. Using a simple computational model, we implement four different learning rules and demonstrate their effects on receptive field plasticity. We then compare the neuromodulatory effects of upregulating learning rate versus the effects of upregulating neuronal activity. We find that these seemingly similar mechanisms do not yield the same outcome: upregulating neuronal activity can lead to either a broadening or a sharpening of receptive field tuning, whereas upregulating learning rate only intensifies the sharpening of receptive field tuning. This simple model demonstrates the need for further exploration of the rich landscape of neuromodulator-mediated plasticity. Future experiments, coupled with biologically detailed computational models, will elucidate the diversity of mechanisms by which neuromodulatory state regulates cortical plasticity. PMID:28119596
Sánchez, José; Guarnes, Miguel Ángel; Dormido, Sebastián
2009-01-01
This paper is an experimental study of the utilization of different event-based strategies for the automatic control of a simple but very representative industrial process: the level control of a tank. In an event-based control approach it is the triggering of a specific event, and not the time, that instructs the sensor to send the current state of the process to the controller, and the controller to compute a new control action and send it to the actuator. In the document, five control strategies based on different event-based sampling techniques are described, compared, and contrasted with a classical time-based control approach and a hybrid one. The common denominator in the time, the hybrid, and the event-based control approaches is the controller: a proportional-integral algorithm with adaptations depending on the selected control approach. To compare and contrast each one of the hybrid and the pure event-based control algorithms with the time-based counterpart, the two tasks that a control strategy must achieve (set-point following and disturbance rejection) are independently analyzed. The experimental study provides new proof concerning the ability of event-based control strategies to minimize the data exchange among the control agents (sensors, controllers, actuators) when an error-free control of the process is not a hard requirement. PMID:22399975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.
2014-04-14
In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilevermore » deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 10–61 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.« less
Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum
Tomoyasu, Yoshinori
2014-01-01
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485
Sunil, Kanoujia; Gupta, Archika; Chaubey, Digamber; Pandey, Anand; Kureel, Shiv Narain; Verma, Ajay Kumar
2018-01-01
To report the clinical application of the new surgical technique of antireflux procedure without creating submucosal tunnel for surgical correction of vesicoureteric reflux during bladder closure in exstrophy. Based on the report of published experimental technique, the procedure was clinically executed in seven patients of classic exstrophy bladder with small bladder plate with polyps, where the creation of submucosal tunnel was not possible, in last 18 months. Ureters were mobilized. A rectangular patch of bladder mucosa at trigone was removed exposing the detrusor. Mobilized urteres were advanced, crossed and anchored to exposed detrusor parallel to each other. Reconstruction included bladder and epispadias repair with abdominal wall closure. The outcome was measured with the assessment of complications, abolition of reflux on cystogram and upper tract status. At 3-month follow-up cystogram, reflux was absent in all. Follow-up ultrasound revealed mild dilatation of pelvis and ureter in one. The technique of extra-mucosal ureteric reimplantation without the creation of submucosal tunnel is simple to execute without risk and complications and effectively provides an antireflux mechanism for the preservation of upper tract in bladder exstrophy. With the use of this technique, reflux can be prevented since the very beginning of exstrophy reconstruction.
Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.
2016-01-01
Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679
Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques
NASA Astrophysics Data System (ADS)
Elliott, Louie C.
This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.
Holographic diagnostics of biological microparticles
NASA Astrophysics Data System (ADS)
Dyomin, Victor V.; Sokolov, Vladimir V.
1996-05-01
Problem of studies of biological microojects is actual one for ecology, medicine, biology. Holographic techniques are useful to solve the problem. The above microojects are transparent or semitransparent ones in a visible light rather often. The case of an optically soft particle, (that is of a particle whose substance has the refractive index close to that of the surrounding medium) is quite probable in biological water suspensions. Some peculiarities of holographing optically soft microparticles are analyzed in this paper. We propose a technique to calculate a light intensity distribution in the plane of a hologram and in the plane of a holographic image of a particle of an arbitrary shape at an arbitrary distance from the latter plane. The efficiency of the approach proposed is demonstrated by calculational results obtained analytically for some simple cases. In a more complicated cases the technique can make a basis for numerical computations. The method of determining of refractive index of transparent and semitransparent microparticles is proposed. We also present in this paper some experimental results on holographic detection of the water drops and such optically soft particles as ovums of helmints in human jaundice.
Experiments in cooperative manipulation: A system perspective
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1989-01-01
In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.
Fabrication of setup for high temperature thermal conductivity measurement.
Patel, Ashutosh; Pandey, Sudhir K
2017-01-01
In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Knight, R. J.; Moffat, P. H.; Gebbie, H. A.
1980-11-01
In the near millimeter-wavelength region, low values of dielectric loss in a material can be readily measured by inserting a sample into an untuned cavity resonator. The high-Q values of the cavities give the technique great sensitivity to low values of loss tangent and, in contrast to other techniques, place very few restrictions on the shape, size, and position of the sample. The technique is demonstrated by measurements at 156 GHz on several polymer materials whose low loss factors are of practical interest. It is shown that the loading of an untuned cavity by a solid sample of low loss is proportional to its absorption cross section, which is the product of its volume and its linear absorption coefficient in the trivial case of n = 1. In the usual case of n greater than 1, reflection at the boundaries will affect the measured cross section in a way that has been investigated experimentally for a number of shapes, both simple and complex, and theoretically for the specific cases of slabs and cubes.
NASA Astrophysics Data System (ADS)
Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien
2017-04-01
We demonstrate a simple technique to enhance the signal-to-noise ratio (SNR) in Brillouin optical time-domain analysis sensors by the addition of gain and loss processes. The technique is based on the shift of the pump pulse optical frequency in a double-sideband probe system, so that the gain and loss processes take place at different frequencies. In this manner, the loss and the gain do not cancel each other out, and it makes possible to take advantage of both informations at the same time, obtaining an improvement of 3 dB on the SNR. Furthermore, the technique does not need an optical filtering, so that larger improvement on SNR and a simplification of the setup are obtained. The method is experimentally demonstrated in a 101 km fiber spool, obtaining a measurement uncertainty of 2.6 MHz (2σ) at the worst-contrast position for 2 m spatial resolution. This leads, to the best of our knowledge, to the highest figure-of-merit in a BOTDA without using coding or raman amplification.
[Environmental Education Units.] Photography for Kids. Vacant Lot Studies. Contour Mapping.
ERIC Educational Resources Information Center
Minneapolis Independent School District 275, Minn.
Techniques suitable for use with elementary school students when studying field environment are described in these four booklets. Techniques for photography (construction of simple cameras, printing on blueprint and photographic paper, use of simple commercial cameras, development of exposed film); for measuring microclimatic factors (temperature,…
Simple & Rapid Generation of Complex DNA Profiles for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Kass, David H.
2007-01-01
Deoxyribonucleic acid (DNA) profiles can be generated by a variety of techniques incorporating different types of DNA markers. Simple methods are commonly utilized in the undergraduate laboratory, but with certain drawbacks. In this article, the author presents an advancement of the "Alu" dimorphism technique involving two tetraplex polymerase…
Simple technique to treat pupillary capture after transscleral fixation of intraocular lens.
Jürgens, Ignasi; Rey, Amanda
2015-01-01
We describe a simple surgical technique to manage pupillary capture after previous transscleral fixation of an intraocular lens. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay
2014-03-01
Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.
Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft
NASA Technical Reports Server (NTRS)
Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.
1985-01-01
A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.
Kunstler, Breanne E; Cook, Jill L; Freene, Nicole; Finch, Caroline F; Kemp, Joanne L; O'Halloran, Paul D; Gaida, James E
2018-06-01
Physiotherapists promote physical activity as part of their practice. This study reviewed the behaviour change techniques physiotherapists use when promoting physical activity in experimental and observational studies. Systematic review of experimental and observational studies. Twelve databases were searched using terms related to physiotherapy and physical activity. We included experimental studies evaluating the efficacy of physiotherapist-led physical activity interventions delivered to adults in clinic-based private practice and outpatient settings to individuals with, or at risk of, non-communicable diseases. Observational studies reporting the techniques physiotherapists use when promoting physical activity were also included. The behaviour change techniques used in all studies were identified using the Behaviour Change Technique Taxonomy. The behaviour change techniques appearing in efficacious and inefficacious experimental interventions were compared using a narrative approach. Twelve studies (nine experimental and three observational) were retained from the initial search yield of 4141. Risk of bias ranged from low to high. Physiotherapists used seven behaviour change techniques in the observational studies, compared to 30 behaviour change techniques in the experimental studies. Social support (unspecified) was the most frequently identified behaviour change technique across both settings. Efficacious experimental interventions used more behaviour change techniques (n=29) and functioned in more ways (n=6) than did inefficacious experimental interventions (behaviour change techniques=10 and functions=1). Physiotherapists use a small number of behaviour change techniques. Less behaviour change techniques were identified in observational studies compared to experimental studies, suggesting physiotherapists use less BCTs clinically than experimentally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Mapping the Transmission Functions of Single-Molecule Junctions
Capozzi, Brian; Low, Jonathan Z.; Xia, Jianlong; ...
2016-06-08
Charge transport characteristics of single-molecule junctions are often governed by a transmission function that dictates the probability of electrons or holes tunneling across the junction. Here, we present a new and simple technique for measuring the transmission function of molecular junctions in the coherent tunneling limit, over an energy range of 2 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different areas exposed, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junctionmore » Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction’s transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed ab initio. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.« less
Mapping the Transmission Functions of Single-Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozzi, Brian; Low, Jonathan Z.; Xia, Jianlong
Charge transport characteristics of single-molecule junctions are often governed by a transmission function that dictates the probability of electrons or holes tunneling across the junction. Here, we present a new and simple technique for measuring the transmission function of molecular junctions in the coherent tunneling limit, over an energy range of 2 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different areas exposed, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junctionmore » Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction’s transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed ab initio. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.« less
Mapping the Transmission Functions of Single-Molecule Junctions.
Capozzi, Brian; Low, Jonathan Z; Xia, Jianlong; Liu, Zhen-Fei; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha
2016-06-08
Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction's transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.
Automatic QRS complex detection using two-level convolutional neural network.
Xiang, Yande; Lin, Zhitao; Meng, Jianyi
2018-01-29
The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.
ERIC Educational Resources Information Center
Petscher, Yaacov; Schatschneider, Christopher
2011-01-01
Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the…
Control of the collapse distance in atmospheric propagation
NASA Astrophysics Data System (ADS)
Fibich, Gadi; Sivan, Yonatan; Ehrlich, Yosi; Louzon, Einat; Fraenkel, Moshe; Eisenmann, Shmuel; Katzir, Yiftach; Zigler, Arie
2006-06-01
We show experimentally for ultrashort laser pulses propagating in air, that the collapse/filamentation distance of intense laser pulses in the atmosphere can be extended and controlled with a simple double-lens setup. We derive a simple formula for the filamentation distance, and confirm its agreement with the experimental results. We also observe that delaying the onset of filamentation increases the filament length.
A simple method for processing data with least square method
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning
2017-08-01
The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.
Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian
2015-08-11
A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.
Hubert: Software for efficient analysis of in-situ nuclear forward scattering experiments
NASA Astrophysics Data System (ADS)
Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel
2016-10-01
Combination of short data acquisition time and local investigation of a solid state through hyperfine parameters makes nuclear forward scattering (NFS) a unique experimental technique for investigation of fast processes. However, the total number of acquired NFS time spectra may be very high. Therefore an efficient way of the data evaluation is needed. In this paper we report the development of Hubert software package as a response to the rapidly developing field of in-situ NFS experiments. Hubert offers several useful features for data files processing and could significantly shorten the evaluation time by using a simple connection between the neighboring time spectra through their input and output parameter values.
Mathematical methods for protein science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.; Istrail, S.; Atkins, J.
1997-12-31
Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focusedmore » on two aspects of protein science: mathematical structure prediction, and inverse protein folding.« less
NASA Astrophysics Data System (ADS)
Potemkin, A.; Malshakov, Anatoly; Makarov, Alexandr; Krotov, V. A.; Kulikov, Stanislav M.; Sukharev, Stanislav A.
1999-07-01
Technique testing of quality the transparent component of optical devices with application of self-focusing effect is offered. In measurement of small wavefront distortions a method of comparison of laser beam parameters before and after passage of a tested optical element is used. With the purpose of increase of sensitivity it is offered for overcoming negative diffraction action to use self-focusing effect of probe beam. Application of self-focusing effect allows to reach sensitivity no less than (lambda) /600 and in future up to (lambda) /3000. On simple samples experimental checks of a method are made.
Picosecond pulse measurements using the active laser medium
NASA Technical Reports Server (NTRS)
Bernardin, James P.; Lawandy, N. M.
1990-01-01
A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.
A Selective-Echo Method for Chemical-Shift Imaging of Two-Component Systems
NASA Astrophysics Data System (ADS)
Gerald, Rex E., II; Krasavin, Anatoly O.; Botto, Robert E.
A simple and effective method for selectively imaging either one of two chemical species in a two-component system is presented and demonstrated experimentally. The pulse sequence employed, selective- echo chemical- shift imaging (SECSI), is a hybrid (frequency-selective/ T1-contrast) technique that is executed in a short period of time, utilizes the full Boltzmann magnetization of each chemical species to form the corresponding image, and requires only hard pulses of quadrature phase. This approach provides a direct and unambiguous representation of the spatial distribution of the two chemical species. In addition, the performance characteristics and the advantages of the SECSI sequence are compared on a common basis to those of other pulse sequences.
Squids in the Study of Cerebral Magnetic Field
NASA Astrophysics Data System (ADS)
Romani, G. L.; Narici, L.
The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES
NASA Astrophysics Data System (ADS)
Crouzet, B.; Soulard, L.; Carion, N.; Manczur, P.
2007-12-01
Two copper cylinder expansion tests were carried out on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, a rapid framing camera, a glass block associated with a streak camera and velocity laser interferometers. The different experimental records have been examined in the light of previous classical cylinder test measurements, simple 2D theoretical shock polar analysis results and 2D numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stutman, D.; Tritz, K.; Finkenthal, M.
New diagnostic and sensor designs are needed for future burning plasma (BP) fusion experiments, having good space and time resolution and capable of prolonged operation in the harsh BP environment. We evaluate the potential of multi-energy x-ray imaging with filtered detector arrays for BP diagnostic and control. Experimental studies show that this simple and robust technique enables measuring with good accuracy, speed, and spatial resolution the T{sub e} profile, impurity content, and MHD activity in a tokamak. Applied to the BP this diagnostic could also serve for non-magnetic sensing of the plasma position, centroid, ELM, and RWM instability. BP compatiblemore » x-ray sensors are proposed using 'optical array' or 'bi-cell' detectors.« less
Identifying and quantifying interactions in a laboratory swarm
NASA Astrophysics Data System (ADS)
Puckett, James; Kelley, Douglas; Ouellette, Nicholas
2013-03-01
Emergent collective behavior, such as in flocks of birds or swarms of bees, is exhibited throughout the animal kingdom. Many models have been developed to describe swarming and flocking behavior using systems of self-propelled particles obeying simple rules or interacting via various potentials. However, due to experimental difficulties and constraints, little empirical data exists for characterizing the exact form of the biological interactions. We study laboratory swarms of flying Chironomus riparius midges, using stereoimaging and particle tracking techniques to record three-dimensional trajectories for all the individuals in the swarm. We describe methods to identify and quantify interactions by examining these trajectories, and report results on interaction magnitude, frequency, and mutuality.
Short sample training behavior of Nb-Ti fibers at 4. 2 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, L.S.; Judd, B.A.; Ocampo, G.
Experimental results are presented for the stress required to cause quenching during successive runs when bare fibers of Nb-Ti are carrying subcritical currents with no cross field. The data fall into two distinct regimes attributed to regions of magnetic flux stability and instability. Microplastic deformation is believed to supply the energy to initiate the flux jump process in the magnetic instability regime, and is the only source of heat available for triggering a quench when the fiber is magnetically stable. In both cases, quenching is observed at stresses well below the mechanically observed elastic limit. Simple techniques for one-step trainingmore » and detraining are also described.« less
Method to obtain carbon nano-onions by pyrolisys of propane
NASA Astrophysics Data System (ADS)
Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma
2013-11-01
We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.
Optimized random phase only holograms.
Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto
2018-02-15
We propose a simple and efficient technique capable of generating Fourier phase only holograms with a reconstruction quality similar to the results obtained with the Gerchberg-Saxton (G-S) algorithm. Our proposal is to use the traditional G-S algorithm to optimize a random phase pattern for the resolution, pixel size, and target size of the general optical system without any specific amplitude data. This produces an optimized random phase (ORAP), which is used for fast generation of phase only holograms of arbitrary amplitude targets. This ORAP needs to be generated only once for a given optical system, avoiding the need for costly iterative algorithms for each new target. We show numerical and experimental results confirming the validity of the proposal.
Controlling the net charge on a nanoparticle optically levitated in vacuum
NASA Astrophysics Data System (ADS)
Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas
2017-06-01
Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.
Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.
Noll, R; Haas, C R; Weikl, B; Herziger, G
1986-03-01
Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.
Infrared radiation of thin plastic films.
NASA Technical Reports Server (NTRS)
Tien, C. L.; Chan, C. K.; Cunnington, G. R.
1972-01-01
A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.
2011-01-01
Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373
Bubble colloidal AFM probes formed from ultrasonically generated bubbles.
Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz
2008-02-05
Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.
NUCLEON-mission: A New Approach to Cosmic Rays Investigation
NASA Technical Reports Server (NTRS)
Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Korotkova, N.; Mashkantcev, A.; Nanjo, H.;
2001-01-01
A new approach to Cosmic Rays Investigation is proposed. The main idea is to combine two experimental methods (KLEM and UHIS) for the NUCLEON Project. The KLEM (Kinematic Lightweight Energy Meter) method is used for the study of chemical composition and elemental energy spectra of galactic CRs in extremely wide energy range 10(exp 11)-10(exp 15) eV. The UHIS (Ultra Heavy Isotope Spectrometer) method is used for the ultra heavy CR nuclei fluxes registration nuclei beyond the iron peak. Combination of the two techniques will lead not to simple mechanical unification of two instruments in one block, but lead to the creation of a unique instrument, with a number of advantages.
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles
2014-01-01
We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection. PMID:24484636
Experiment and numerical simulation for laser ultrasonic measurement of residual stress.
Zhan, Yu; Liu, Changsheng; Kong, Xiangwei; Lin, Zhongya
2017-01-01
Laser ultrasonic is a most promising method for non-destructive evaluation of residual stress. The residual stress of thin steel plate is measured by laser ultrasonic technique. The pre-stress loading device is designed which can easily realize the condition of the specimen being laser ultrasonic tested at the same time in the known stress state. By the method of pre-stress loading, the acoustoelastic constants are obtained and the effect of different test directions on the results of surface wave velocity measurement is discussed. On the basis of known acoustoelastic constants, the longitudinal and transverse welding residual stresses are measured by the laser ultrasonic technique. The finite element method is used to simulate the process of surface wave detection of welding residual stress. The pulsed laser is equivalent to the surface load and the relationship between the physical parameters of the laser and the load is established by the correction coefficient. The welding residual stress of the specimen is realized by the ABAQUS function module of predefined field. The results of finite element analysis are in good agreement with the experimental method. The simple and effective numerical and experimental methods for laser ultrasonic measurement of residual stress are demonstrated. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bin Hassan, M. F.; Bonello, P.
2017-05-01
Recently-proposed techniques for the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems have been limited to a simple bump foil model in which the individual bumps were modelled as independent spring-damper (ISD) subsystems. The present paper addresses this limitation by introducing a modal model of the bump foil structure into the simultaneous solution scheme. The dynamics of the corrugated bump foil structure are first studied using the finite element (FE) technique. This study is experimentally validated using a purpose-made corrugated foil structure. Based on the findings of this study, it is proposed that the dynamics of the full foil structure, including bump interaction and foil inertia, can be represented by a modal model comprising a limited number of modes. This full foil structure modal model (FFSMM) is then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD model. Preliminary results using the FFSMM under static and unbalance excitation conditions are proven to be reliable by comparison against the corresponding ISD foil model results and by cross-correlating different methods for computing the deflection of the full foil structure. The rotor-bearing model is also validated against experimental and theoretical results in the literature.
A step-by-step solution for embedding user-controlled cines into educational Web pages.
Cornfeld, Daniel
2008-03-01
The objective of this article is to introduce a simple method for embedding user-controlled cines into a Web page using a simple JavaScript. Step-by-step instructions are included and the source code is made available. This technique allows the creation of portable Web pages that allow the user to scroll through cases as if seated at a PACS workstation. A simple JavaScript allows scrollable image stacks to be included on Web pages. With this technique, you can quickly and easily incorporate entire stacks of CT or MR images into online teaching files. This technique has the potential for use in case presentations, online didactics, teaching archives, and resident testing.
Ellairaja, Sundaram; Shenbagavalli, Kathiravan; Ponmariappan, Sarkaraisamy; Vasantha, Vairathevar Sivasamy
2017-05-15
Bilirubin, a key biomarker for the jaundice and its clinical diagnosis needs a better analytical tool. A novel and simple fluorescent platform based on (2,2'-((1E,1'E)-((6-bromopyridine-2,3-diyl) bis(azanylylidene)) bis(methanylylidene diphenol) (BAMD) was designed. BAMD showed a remarkable fluorescent intensity with a very good quantum yield of 0.85 and lifetime of 870ps. Hence, it was applied for the determination of bilirubin using both colorimetric and fluorimetric techniques in physiological and basic pH. Under optimized experimental conditions, the probe detects bilirubin selectively in the presence of other interfering biomolecules and metal ions. The linear range of detection is 1pM-500µM at pH=7.4 and LOD is 2.8 and 3.3 pM at pH=7.4 and 9.0, respectively, which were reported so far. The probe detects the bilirubin through FRET mechanism. The practical application of the probe was successfully tested in the human blood and urine samples. Based on all above advantages, this simple idea can be applied to design a simple clinical diagnostic tool for jaundice. Copyright © 2016. Published by Elsevier B.V.
Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J
2017-12-01
qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.
The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test
Lee, Young Hak; Oh, Taekeun
2016-01-01
In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW) for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave velocity (R-wave) for the condition assessment (e.g., the estimation of elastic properties). This is done by identifying the zero-order antisymmetric (A0) and first-order symmetric (S1) modes among multimodal Lamb waves. The MASW data were collected on eight concrete wide beams and compared to the actual depth and to the pressure (P-) wave velocities collected for the same specimen. Information is extracted from multimodal Lamb wave dispersion curves to obtain the elastic stiffness parameters and the thickness of the concrete structures. Due to the simple and cost-effective procedure associated with the MASW processing technique, the characteristics of several fundamental modes in the experimental Lamb wave dispersion curves could be measured. Available reference data are in good agreement with the parameters that were determined by our analysis scheme. PMID:28773562
Exploring Remote Rensing Through The Use Of Readily-Available Classroom Technologies
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2013-12-01
Frontier geoscience research using remotely-sensed satellite observation routinely requires sophisticated and novel remote sensing techniques to succeed. Describing these techniques in an educational format presents significant challenges to the science educator, especially with regards to the professional development setting where a small, but competent audience has limited instructor contact time to develop the necessary understanding. In this presentation, we describe the use of simple and cheaply available technologies, including ultrasonic transducers, FLIR detectors, and even simple web cameras to provide a tangible analogue to sophisticated remote sensing platforms. We also describe methods of curriculum development that leverages the use of these simple devices to teach the fundamentals of remote sensing, resulting in a deeper and more intuitive understanding of the techniques used in modern remote sensing research. Sample workshop itineraries using these techniques are provided as well.
Experimental Investigation of the Flow on a Simple Frigate Shape (SFS)
Mora, Rafael Bardera
2014-01-01
Helicopters operations on board ships require special procedures introducing additional limitations known as ship helicopter operational limitations (SHOLs) which are a priority for all navies. This paper presents the main results obtained from the experimental investigation of a simple frigate shape (SFS) which is a typical case of study in experimental and computational aerodynamics. The results obtained in this investigation are used to make an assessment of the flow predicted by the SFS geometry in comparison with experimental data obtained testing a ship model (reduced scale) in the wind tunnel and on board (full scale) measurements performed on a real frigate type ship geometry. PMID:24523646
A Simple Classroom Teaching Technique to Help Students Understand Michaelis-Menten Kinetics
ERIC Educational Resources Information Center
Runge, Steven W.; Hill, Brent J. F.; Moran, William M.
2006-01-01
A new, simple classroom technique helps cell biology students understand principles of Michaelis-Menten enzyme kinetics. A student mimics the enzyme and the student's hand represents the enzyme's active site. The catalytic event is the transfer of marbles (substrate molecules) by hand from one plastic container to another. As predicted, increases…
Medial Meniscus Posterior Root Tear Repair Using a 2-Simple-Suture Pullout Technique.
Samy, Tarek Mohamed; Nassar, Wael A M; Zakaria, Zeiad Mohamed; Farrag Abdelaziz, Ahmed Khaled
2017-06-01
Medial meniscus posterior root tear is one of the underestimated knee injuries in terms of incidence. Despite its grave sequelae, using simple but effective technique can maintain the native knee joint longevity. In the current note, a 2-simple-suture pullout technique was used to effectively reduce the meniscus posterior root to its anatomic position. The success of the technique depended on proper tool selection as well as tibial tunnel direction that allowed easier root suturing and better suture tensioning, without inducing any iatrogenic articular cartilage injury or meniscal tissue loss. Using anterior knee arthroscopy portals, anterolateral as a viewing portal and anteromedial as a working portal, a 7-mm tibial tunnel starting at Gerdy tubercle and ending at the medial meniscus posterior root bed was created. The 2 simple sutures were retrieved through the tunnel and tensioned and secured over a 12-mm-diameter washer at the tibial tunnel outer orifice. Anatomic reduction of the medial meniscus posterior root tear was confirmed arthroscopically intraoperatively and radiologically by postoperative magnetic resonance imaging.
Herbst, M; Lehmhus, H; Oldenburg, B; Orlowski, C; Ohgke, H
1983-04-01
A simple experimental set for the production and investigation of bacterially contaminated solid-state aerosols with constant concentration is described. The experimental set consists mainly of a fluidized bed-particle generator within a modified chamber for formaldehyde desinfection. The special conditions for the production of a defined concentration of particles and microorganisms are to be found out empirically. In a first application aerosol-sizing of an Andersen sampler is investigated. The findings of Andersen (1) are confirmed with respect to our experimental conditions.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2017-04-01
The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.
ERIC Educational Resources Information Center
Sobrero, Patricio; Valverde, Claudio
2013-01-01
A simple and cheap laboratory class is proposed to illustrate the lethal effect of UV radiation on bacteria and the operation of different DNA repair mechanisms. The class is divided into two sessions, an initial 3-hour experimental session and a second 2-hour analytical session. The experimental session involves two separate experiments: one…
"Push back" technique: A simple method to remove broken drill bit from the proximal femur.
Chouhan, Devendra K; Sharma, Siddhartha
2015-11-18
Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.
Camp, Christopher L; Heidenreich, Mark J; Dahm, Diane L; Bond, Jeffrey R; Collins, Mark S; Krych, Aaron J
2016-03-01
Tibial tubercle-trochlear groove (TT-TG) distance is a variable that helps guide surgical decision-making in patients with patellar instability. The purpose of this study was to compare the accuracy and reliability of an MRI TT-TG measuring technique using a simple external alignment method to a previously validated gold standard technique that requires advanced software read by radiologists. TT-TG was calculated by MRI on 59 knees with a clinical diagnosis of patellar instability in a blinded and randomized fashion by two musculoskeletal radiologists using advanced software and by two orthopaedists using the study technique which utilizes measurements taken on a simple electronic imaging platform. Interrater reliability between the two radiologists and the two orthopaedists and intermethods reliability between the two techniques were calculated using interclass correlation coefficients (ICC) and concordance correlation coefficients (CCC). ICC and CCC values greater than 0.75 were considered to represent excellent agreement. The mean TT-TG distance was 14.7 mm (Standard Deviation (SD) 4.87 mm) and 15.4 mm (SD 5.41) as measured by the radiologists and orthopaedists, respectively. Excellent interobserver agreement was noted between the radiologists (ICC 0.941; CCC 0.941), the orthopaedists (ICC 0.978; CCC 0.976), and the two techniques (ICC 0.941; CCC 0.933). The simple TT-TG distance measurement technique analysed in this study resulted in excellent agreement and reliability as compared to the gold standard technique. This method can predictably be performed by orthopaedic surgeons without advanced radiologic software. II.
Aortic valve replacement using continuous suture technique in patients with aortic valve disease.
Choi, Jong Bum; Kim, Jong Hun; Park, Hyun Kyu; Kim, Kyung Hwa; Kim, Min Ho; Kuh, Ja Hong; Jo, Jung Ku
2013-08-01
The continuous suture (CS) technique has several advantages as a method for simple, fast, and secure aortic valve replacement (AVR). We used a simple CS technique without the use of a pledget for AVR and evaluated the surgical outcomes. Between October 2007 and 2012, 123 patients with aortic valve disease underwent AVR alone (n=28) or with other concomitant cardiac procedures (n=95), such as mitral, tricuspid, or aortic surgery. The patients were divided into two groups: the interrupted suture (IS) group (n=47), in which the conventional IS technique was used, and the CS group (n=76), in which the simple CS technique was used. There were two hospital deaths (1.6%), which were not related to the suture technique. There were no significant differences in cardiopulmonary bypass time or aortic cross-clamp time between the two groups for AVR alone or AVR with concomitant cardiac procedures. In the IS group, two patients had prosthetic endocarditis and one patient experienced significant perivalvular leak. These patients underwent reoperations. In the CS group, there were no complications related to the surgery. Postoperatively, the two groups had similar aortic valve gradients. The simple CS method is useful and secure for AVR in patients with aortic valve disease, and it may minimize surgical complications, as neither pledgets nor braided sutures are used.
Simple to complex modeling of breathing volume using a motion sensor.
John, Dinesh; Staudenmayer, John; Freedson, Patty
2013-06-01
To compare simple and complex modeling techniques to estimate categories of low, medium, and high ventilation (VE) from ActiGraph™ activity counts. Vertical axis ActiGraph™ GT1M activity counts, oxygen consumption and VE were measured during treadmill walking and running, sports, household chores and labor-intensive employment activities. Categories of low (<19.3 l/min), medium (19.3 to 35.4 l/min) and high (>35.4 l/min) VEs were derived from activity intensity classifications (light <2.9 METs, moderate 3.0 to 5.9 METs and vigorous >6.0 METs). We examined the accuracy of two simple techniques (multiple regression and activity count cut-point analyses) and one complex (random forest technique) modeling technique in predicting VE from activity counts. Prediction accuracy of the complex random forest technique was marginally better than the simple multiple regression method. Both techniques accurately predicted VE categories almost 80% of the time. The multiple regression and random forest techniques were more accurate (85 to 88%) in predicting medium VE. Both techniques predicted the high VE (70 to 73%) with greater accuracy than low VE (57 to 60%). Actigraph™ cut-points for light, medium and high VEs were <1381, 1381 to 3660 and >3660 cpm. There were minor differences in prediction accuracy between the multiple regression and the random forest technique. This study provides methods to objectively estimate VE categories using activity monitors that can easily be deployed in the field. Objective estimates of VE should provide a better understanding of the dose-response relationship between internal exposure to pollutants and disease. Copyright © 2013 Elsevier B.V. All rights reserved.
Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.
2007-01-01
An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.
Relativistic Few-Body Hadronic Physics Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzou, Wayne
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state properties and scattering cross section, we also computed electron scattering cross sections in few-nucleon and few-quark systems, which are sensitive to the electric currents in these systems. We produced the definitive review on article on relativistic quantum mechanics, which and been used by many groups. In addition we developed and tested many computational techniques are used by other groups. Many of these techniques have applications in other areas of physics. The research benefited by collaborations with physicists from many different institutions and countries. It also involved working with seventeen undergraduate and graduate students.« less
Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes
NASA Technical Reports Server (NTRS)
Menon, Suresh
1983-01-01
A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.
Two-step infiltration of aluminum melts into Al-Ti-B4C-CuO powder mixture pellets
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun
2016-03-01
Aluminum matrix composites with a high volume fraction of B4C and TiB2 were fabricated by a novel processing technique - a quick spontaneous infiltration process. The process combines a pressureless infiltration with the combustion reaction of Al-Ti-B4C-CuO in molten aluminum. The process is realized in a simple and economical way in which the whole process is performed in air in a few minutes. To verify the rapidity of the process, the infiltration kinetics was calculated based on the Washburn equation in which melt flows into a porous skeleton. However, there was a noticeable deviation from the calculated results with the experimental results. Considering the cross-sections of the samples at different processing times, a new infiltration model (two step infiltration) consisting of macro-infiltration and micro-infiltration is suggested. The calculated kinetics results in light of the proposed model agree well with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, K. K.; Tsai, H. -E.; Barber, S. K.
Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less
Christian, W J R; DiazDelaO, F A; Atherton, K; Patterson, E A
2018-05-01
A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect.
Probing noncommutative theories with quantum optical experiments
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Bhat, Anha; Momeni, Davood; Faizal, Mir; Ali, Ahmed Farag; Dey, Tarun Kumar; Rehman, Atikur
2017-11-01
One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.
A simple method for characterizing and engineering thermal relaxation of an optical microcavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weijian; Zhu, Jiangang; Özdemir, Şahin Kaya
2016-08-08
Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmissionmore » spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms.« less
NASA Technical Reports Server (NTRS)
Wilkenfeld, J. M.; Judge, R. J. R.; Harlacher, B. L.
1982-01-01
A combined experimental and analytical program to develop system electrical test procedures for the qualification of spacecraft against damage produced by space-electron-induced discharges (EID) occurring on spacecraft dielectric outer surfaces is described. The data on the response of a simple satellite model, called CAN, to electron-induced discharges is presented. The experimental results were compared to predicted behavior and to the response of the CAN to electrical injection techniques simulating blowoff and arc discharges. Also included is a review of significant results from other ground tests and the P78-2 program to form a data base from which is specified those test procedures which optimally simulate the response of spacecraft to EID. The electrical and electron spraying test data were evaluated to provide a first-cut determination of the best methods for performance of electrical excitation qualification tests from the point of view of simulation fidelity.
A time-dependent model to determine the thermal conductivity of a nanofluid
NASA Astrophysics Data System (ADS)
Myers, T. G.; MacDevette, M. M.; Ribera, H.
2013-07-01
In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.
Numerical and Experimental Study of a Cooling for Vanes in a Small Turbine Engine
NASA Astrophysics Data System (ADS)
Šimák, Jan; Michálek, Jan
2016-03-01
This paper is concerned with a cooling system for inlet guide vanes of a small turbine engine which are exposed to a high temperature gas leaving a combustion chamber. Because of small dimensions of the vanes, only a simple internal cavity and cooling holes can be realized. The idea was to utilize a film cooling technique. The proposed solution was simulated by means of a numerical method based on a coupling of CFD and heat transfer solvers. The numerical results of various scenarios (different coolant temperature, heat transfer to surroundings) showed a desired decrease of the temperature, especially on the most critical part - the trailing edge. The numerical data are compared to results obtained by experimental measurements performed in a test facility in our institute. A quarter segment model of the inlet guide vanes wheel was equipped with thermocouples in order to verify an effect of cooling. Despite some uncertainty in the results, a verifiable decrease of the vane temperature was observed.
Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...
2017-05-30
Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less
Calculation of ground vibration spectra from heavy military vehicles
NASA Astrophysics Data System (ADS)
Krylov, V. V.; Pickup, S.; McNuff, J.
2010-07-01
The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.
Molecular parity violation via comets?
Meierhenrich, U; Thiemann, W H; Rosenbauer, H
1999-01-01
Recent theoretical and experimental investigations referring to the origin of homochirality are reviewed and integrated into the hitherto known state of the art. Attention is directed to an extraterrestrial scenario, which describes the interaction of circularly polarized synchrotron radiation with interstellar organic matter. Following this Bonner-Rubenstein hypothesis, optically active molecules could be transferred to Earth via comets. We plan to identify any enantiomeric enhancement in organic molecules of the cometary matter in situ. The present preliminary experimental study intends to optimize gas-chromatographic conditions for the separation of racemates into their enantiomer constituents on the surface of the comet 46P/Wirtanen. Underivatized racemic pairs of alcohols, diols, and phenyl-substituted amines have been separated with the help of a stationary trifluoroacetyl-cyclodextrin phase. We are still developing a technique that will enable us to detect any enantiomeric enhancement of specific simple organic molecules both in cometary or Martian matter in situ and in meteorites found on Earth. Copyright 1999 Wiley-Liss, Inc.
Simple method for the characterization of intense Laguerre-Gauss vector vortex beams
NASA Astrophysics Data System (ADS)
Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.
2018-05-01
We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.