Sample records for simple f-theory compactification

  1. Abelian gauge symmetries in F-theory and dual theories

    NASA Astrophysics Data System (ADS)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by constructing general F-theory compactifications with U(1) x U(1) x U(1) abelian gauge symmetry. In chapter 1 of this dissertation, I proved finiteness of a region of the string landscape in Type IIB compactifications. String compactifications give rise to a collection of effective low energy theories, known as the string landscape. In chapter 3 of this dissertation, I study abelian gauge symmetries in the duality between F-theory and E8 x E8 heterotic string theory. However, how abelian gauge symmetries can arise in the dual heterotic string theory has never been studied. The main goal of this chapter is to study exactly this. We start with F-theory compactifications with abelian gauge symmetry. With the help of a mathematical lemma as well as a computer code that I came up with, I was able to construct a rich list of specialized examples with specific abelian and nonabelian gauge groups on the F-theory side. (Abstract shortened by ProQuest.).

  2. Machine learning in the string landscape

    NASA Astrophysics Data System (ADS)

    Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.

    2017-09-01

    We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

  3. An infinite swampland of U(1) charge spectra in 6D supergravity theories

    NASA Astrophysics Data System (ADS)

    Taylor, Washington; Turner, Andrew P.

    2018-06-01

    We analyze the anomaly constraints on 6D supergravity theories with a single abelian U(1) gauge factor. For theories with charges restricted to q = ±1 , ±2 and no tensor multiplets, anomaly-free models match those models that can be realized from F-theory compactifications almost perfectly. For theories with tensor multiplets or with larger charges, the F-theory constraints are less well understood. We show, however, that there is an infinite class of distinct massless charge spectra in the "swampland" of theories that satisfy all known quantum consistency conditions but do not admit a realization through F-theory or any other known approach to string compactification. We also compare the spectra of charged matter in abelian theories with those that can be realized from breaking nonabelian SU(2) and higher rank gauge symmetries.

  4. F-theory models on K3 surfaces with various Mordell-Weil ranks — constructions that use quadratic base change of rational elliptic surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke

    2018-05-01

    We constructed several families of elliptic K3 surfaces with Mordell-Weil groups of ranks from 1 to 4. We studied F-theory compactifications on these elliptic K3 surfaces times a K3 surface. Gluing pairs of identical rational elliptic surfaces with nonzero Mordell-Weil ranks yields elliptic K3 surfaces, the Mordell-Weil groups of which have nonzero ranks. The sum of the ranks of the singularity type and the Mordell-Weil group of any rational elliptic surface with a global section is 8. By utilizing this property, families of rational elliptic surfaces with various nonzero Mordell-Weil ranks can be obtained by choosing appropriate singularity types. Gluing pairs of these rational elliptic surfaces yields families of elliptic K3 surfaces with various nonzero Mordell-Weil ranks. We also determined the global structures of the gauge groups that arise in F-theory compactifications on the resulting K3 surfaces times a K3 surface. U(1) gauge fields arise in these compactifications.

  5. From 6D superconformal field theories to dynamic gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  6. Algorithmic universality in F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Halverson, James; Long, Cody; Sung, Benjamin

    2017-12-01

    We study universality of geometric gauge sectors in the string landscape in the context of F-theory compactifications. A finite time construction algorithm is presented for 4/3 ×2.96 ×10755 F-theory geometries that are connected by a network of topological transitions in a connected moduli space. High probability geometric assumptions uncover universal structures in the ensemble without explicitly constructing it. For example, non-Higgsable clusters of seven-branes with intricate gauge sectors occur with a probability above 1 - 1.01 ×10-755 , and the geometric gauge group rank is above 160 with probability 0.999995. In the latter case there are at least 10 E8 factors, the structure of which fixes the gauge groups on certain nearby seven-branes. Visible sectors may arise from E6 or S U (3 ) seven-branes, which occur in certain random samples with probability ≃1 /200 .

  7. U-folds as K3 fibrations

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Fucito, Francesco; Morales, Jose Francisco

    2013-10-01

    We study four-dimensional flux vacua describing intrinsic non- perturbative systems of 3 and 7 branes in type IIB string theory. The solutions are described as compactifications of a G(ravity) theory on a Calabi Yau threefold which consists of a fibration of an auxiliary K3 surface over an S 2 base. In the spirit of F-theory, the complex structure of the K3 surface varying over the base codifies the details of the fluxes, the dilaton and the warp factors in type IIB string theory. We discuss in detail some simple examples of geometric and non-geometric solutions where the precise flux/geometry dictionary can be explicitly worked out. In particular, we describe non-geometric T-fold solutions exhibiting non-trivial T-duality monodromies exchanging 3- and 7-branes.

  8. Dual little strings from F-theory and flop transitions

    NASA Astrophysics Data System (ADS)

    Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2017-07-01

    A particular two-parameter class of little string theories can be described by M parallel M5-branes probing a transverse affine A N - 1 singularity. We previously discussed the duality between the theories labelled by ( N, M) and ( M, N). In this work, we propose that these two are in fact only part of a larger web of dual theories. We provide evidence that the theories labelled by ( N, M) and (NM/k,k) are dual to each other, where k = gcd( N, M). To argue for this duality, we use a geometric realization of these little string theories in terms of F-theory compactifications on toric, non-compact Calabi-Yau threefolds X N, M which have a double elliptic fibration structure. We show explicitly for a number of examples that X NM/ k, k is part of the extended moduli space of X N, M , i.e. the two are related through symmetry transformations and flop transitions. By working out the full duality map, we provide a simple check at the level of the free energy of little string theories.

  9. The F-theory geometry with most flux vacua

    DOE PAGES

    Taylor, Washington; Wang, Yi -Nan

    2015-12-28

    Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold M max gives rise to O(10 272,000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory geometries is suppressed by a relative factor of O(10 –3000). The fourfold M max arises from a generic elliptic fibration over a specific toric threefold base B max, and gives a geometrically non-Higgsable gauge group of E 8 9 × F 4 8 × (G 2 × SU(2)) 16, of which we expect some factors to be broken by G-fluxmore » to smaller groups. It is not possible to tune an SU(5) GUT group on any further divisors in M max, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a broken E 8 factor. Furthermore, the results of this paper can either be interpreted as providing a framework for predicting how the standard model arises most naturally in F-theory and the types of dark matter to be found in a typical F-theory compactification, or as a challenge to string theorists to explain why other choices of vacua are not exponentially unlikely compared to F-theory compactifications on M max.« less

  10. The F-theory geometry with most flux vacua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Washington; Wang, Yi -Nan

    Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold M max gives rise to O(10 272,000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory geometries is suppressed by a relative factor of O(10 –3000). The fourfold M max arises from a generic elliptic fibration over a specific toric threefold base B max, and gives a geometrically non-Higgsable gauge group of E 8 9 × F 4 8 × (G 2 × SU(2)) 16, of which we expect some factors to be broken by G-fluxmore » to smaller groups. It is not possible to tune an SU(5) GUT group on any further divisors in M max, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a broken E 8 factor. Furthermore, the results of this paper can either be interpreted as providing a framework for predicting how the standard model arises most naturally in F-theory and the types of dark matter to be found in a typical F-theory compactification, or as a challenge to string theorists to explain why other choices of vacua are not exponentially unlikely compared to F-theory compactifications on M max.« less

  11. Flavor structure in F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirotaka; Kawano, Teruhiko; Tsuchiya, Yoichi; Watari, Taizan

    2010-08-01

    F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of righthanded neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E 6 type point and one D 6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N gen × N gen CKM matrix is predicted to have only N gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. The hierarchy among the Yukawa eigenvalues of the down-type and charged lepton sector is predicted to be smaller than that of the up-type sector, and the Majorana masses of left-handed neutrinos generated through the see-saw mechanism have small hierarchy. All of these predictions agree with what we observe in the real world. We also obtained a precise description of zero mode wavefunctions near the E 6 type singularity points, where the up-type Yukawa couplings are generated.

  12. Enhanced gauge symmetry in type II and F-theory compactifications: Dynkin diagrams from polyhedra

    NASA Astrophysics Data System (ADS)

    Perevalov, Eugene; Skarke, Harald

    1997-02-01

    We explain the observation by Candelas and Font that the Dynkin diagrams of non-abelian gauge groups occurring in type IIA and F-theory can be read off from the polyhedron Δ ∗ that provides the toric description of the Calabi-Yau manifold used for compactification. We show how the intersection pattern of toric divisors corresponding to the degeneration of elliptic fibers follows the ADE classification of singularities and the Kodaira classification of degenerations. We treat in detail the cases of elliptic K3 surfaces and K3 fibered threefolds where the fiber is again elliptic. We also explain how even the occurrence of monodromy and non-simply laced groups in the latter case is visible in the toric picture. These methods also work in the fourfold case.

  13. Scanning the skeleton of the 4D F-theory landscape

    NASA Astrophysics Data System (ADS)

    Taylor, Washington; Wang, Yi-Nan

    2018-01-01

    Using a one-way Monte Carlo algorithm from several different starting points, we get an approximation to the distribution of toric threefold bases that can be used in four-dimensional F-theory compactification. We separate the threefold bases into "resolvable" ones where the Weierstrass polynomials ( f, g) can vanish to order (4 , 6) or higher on codimension-two loci and the "good" bases where these (4 , 6) loci are not allowed. A simple estimate suggests that the number of distinct resolvable base geometries exceeds 103000, with over 10250 "good" bases, though the actual numbers are likely much larger. We find that the good bases are concentrated at specific "end points" with special isolated values of h 1,1 that are bigger than 1,000. These end point bases give Calabi-Yau fourfolds with specific Hodge numbers mirror to elliptic fibrations over simple threefolds. The non-Higgsable gauge groups on the end point bases are almost entirely made of products of E 8, F 4, G 2 and SU(2). Nonetheless, we find a large class of good bases with a single non-Higgsable SU(3). Moreover, by randomly contracting the end point bases, we find many resolvable bases with h 1,1( B) ˜ 50-200 that cannot be contracted to another smooth threefold base.

  14. Introduction to sporadic groups for physicists

    NASA Astrophysics Data System (ADS)

    Boya, Luis J.

    2013-04-01

    We describe the collection of finite simple groups, with a view to physical applications. We recall first the prime cyclic groups Zp and the alternating groups Altn > 4. After a quick revision of finite fields {F}_q, q = pf, with p prime, we consider the 16 families of finite simple groups of Lie type. There are also 26 extra ‘sporadic’ groups, which gather in three interconnected ‘generations’ (with 5+7+8 groups) plus the pariah groups (6). We point out a couple of physical applications, including constructing the biggest sporadic group, the ‘Monster’ group, with close to 1054 elements from arguments of physics, and also the relation of some Mathieu groups with compactification in string and M-theory. This article is dedicated to the memory of Juan Sancho Guimerá.

  15. Higher derivative couplings in theories with sixteen supersymmetries

    DOE PAGES

    Lin, Ying -Hsuan; Shao, Shu -Heng; Yin, Xi; ...

    2015-12-15

    We give simple arguments for new non-renormalization theorems on higher derivative couplings of gauge theories to supergravity, with sixteen supersymmetries, by considerations of brane-bulk superamplitudes. This leads to some exact results on the effective coupling of D3-branes in type IIB string theory. As a result, we also derive exact results on higher dimensional operators in the torus compactification of the six dimensional (0, 2) superconformal theory.

  16. An uplifting discussion of T-duality

    NASA Astrophysics Data System (ADS)

    Harvey, Jeffrey A.; Moore, Gregory W.

    2018-05-01

    It is well known that string theory has a T-duality symmetry relating circle compactifications of large and small radius. This symmetry plays a foundational role in string theory. We note here that while T-duality is order two acting on the moduli space of compactifications, it is order four in its action on the conformal field theory state space. More generally, involutions in the Weyl group W ( G) which act at points of enhanced G symmetry have canonical lifts to order four elements of G, a phenomenon first investigated by J. Tits in the mathematical literature on Lie groups and generalized here to conformal field theory. This simple fact has a number of interesting consequences. One consequence is a reevaluation of a mod two condition appearing in asymmetric orbifold constructions. We also briefly discuss the implications for the idea that T-duality and its generalizations should be thought of as discrete gauge symmetries in spacetime.

  17. Comments on A, B, C chains of heterotic and Type II vacua

    NASA Astrophysics Data System (ADS)

    Candelas, Philip; Perevalov, Eugene; Rajesh, Govindan

    1997-02-01

    We construct, as hypersurfaces in toric varieties, Calabi-Yau manifolds corresponding to F-theory vacua dual to E8 × E8 heterotic strings compactified to six dimensions on K3 surfaces with non-semisimple gauge backgrounds. These vacua were studied in the recent work of Aldazabal, Font, Ibáñez and Uranga as well as by Klemm, Mayr and Vafa. We extend their results by constructing many more examples, corresponding to enhanced gauge symmetries, by noting that they can be obtained from previously known Calabi-Yau manifolds corresponding to K3 compactification of heterotic strings with simple gauge backgrounds by means of extremal transitions of the conifold type.

  18. Weak coupling limit of F-theory models with MSSM spectrum and massless U(1)'s

    NASA Astrophysics Data System (ADS)

    Mayorga Peña, Damián Kaloni; Valandro, Roberto

    2018-03-01

    We consider the Sen limit of several global F-theory compactifications, some of which exhibit an MSSM-like spectrum. We show that these indeed have a consistent limit where they can be viewed as resulting from an intersecting brane configuration in type IIB. We discuss the match of the fluxes and the chiral spectrum in detail. We find that some D5-tadpole canceling gauge fluxes do not lift to harmonic vertical four-form fluxes in the resolved F-theory manifold. We discuss the connection between splitting of curves at weak coupling and remnant discrete symmetries.

  19. Deconstruction of the Maldacena Núñez compactification

    NASA Astrophysics Data System (ADS)

    Andrews, R. P.; Dorey, N.

    2006-09-01

    We demonstrate a classical equivalence between the large- N limit of the higgsed N=1 SUSY U(N) Yang-Mills theory and the Maldacena-Núñez twisted compactification of a six-dimensional gauge theory on a two-sphere. A direct comparison of the actions and spectra of the two theories reveals them to be identical. We also propose a gauge theory limit which should describe the corresponding spherical compactification of little string theory.

  20. Physics from geometry: Non-Kahler compactifications, black rings anddS/CFT

    NASA Astrophysics Data System (ADS)

    Cyrier, Michelle

    The spectrum that arises in four dimensions from compactification of ten dimensional string theory onto six dimensional manifolds is determined entirely by the geometry of the compactification manifold. The massless spectrum for compactifications on Calabi-Yau threefolds, which are Kahler and have complex structure, is well understood. In chapter 2 of this thesis, We study the compactification of heterotic string theory on manifolds that are non-Kahler. Such manifolds arise as a solution for compactifications of heterotic string theory with nonzero H-flux. We begin the study of the massless spectrum arising from compactification using this construction by counting zero modes of the linearized equations of motion for the gaugino in the supergravity approximation. We rephrase the question in terms of a cohomology problem and show that for a trivial gauge bundle, this cohomology reduces to the Dolbeault cohomology of the 3-fold, which we then compute. Another check of string theory is to study the entropy of black holes made in string theory. In Chapter 3, We review the microstate counting of four dimensional black holes made from M theory. We then describe a new solution in five dimensions, the supersymmetric black ring, and describe its microscopic entropy using a similar counting. These agree with the semi-classical Bekenstein-Hawking entropy for these black holes. Finally, one powerful tool for quantum gravity is the holographic duality of string theory in an Anti de Sitter background and a theory living on its conformal boundary. Strominger conjectured a similar duality between quantum gravity in a de Sitter background and the corresponding theory on its boundary. In chapter 4 we examine issues with different representations of the conformal field theory on the boundary for a massive quantum field theory living in the bulk and try to write down a sensible CFT.

  1. Ubiquity of non-geometry in heterotic compactifications

    DOE PAGES

    García-Etxebarria, Iñaki; Lüst, Dieter; Massai, Stefano; ...

    2017-03-08

    Here, we study the effect of quantum corrections on heterotic compactifications on elliptic fibrations away from the stable degeneration limit, elaborating on a recent observation by Malmendier and Morrison. We show that already for the simplest nontrivial elliptic fibration the effect is quite dramatic: the I 1 degeneration with trivial gauge background dynamically splits into two T-fects with monodromy around each T-fect being (conjugate to) T-duality along one of the legs of the T 2. This implies that almost every elliptic heterotic compactification becomes a non-geometric T-fold away from the stable degeneration limit. We also point out a subtlety duemore » to this non-geometric splitting at finite fiber size. It arises when determining, via heterotic/F-theory duality, the SCFTs associated to a small number of pointlike instantons probing heterotic ADE singularities. Along the way we resolve various puzzles in the literature.« less

  2. Tinkertoys for the E 7 theory

    NASA Astrophysics Data System (ADS)

    Chacaltana, Oscar; Distler, Jacques; Trimm, Anderson; Zhu, Yinan

    2018-05-01

    We classify the class S theories of type E 7. These are four-dimensional N=2 superconformal field theories arising from the compactification of the E 7 (2, 0) theory on a punctured Riemann surface, C. The classification is given by listing all 3-punctured spheres ("fixtures"), and connecting cylinders, which can arise in a pants-decomposition of C. We find exactly 11,000 fixtures with three regular punctures, and an additional 48 with one "irregular puncture" (in the sense used in our previous works). To organize this large number of theories, we have created a web application at https://golem.ph.utexas.edu/class-S/E7/. Among these theories, we find 10 new ones with a simple exceptional global symmetry group, as well as a new rank-2 SCFT and several new rank-3 SCFTs. As an application, we study the strong-coupling limit of the E 7 gauge theory with 3 hypermultiplets in the 56. Using our results, we also verify recent conjectures that the T 2 compactification of certain 6 d (1, 0) theories can alternatively be realized in class S as fixtures in the E 7 or E 8 theories.

  3. Classical and quantum stability in putative landscapes

    DOE PAGES

    Dine, Michael

    2017-01-18

    Landscape analyses often assume the existence of large numbers of fields, N, with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N, eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N; scaling of couplings with N may also be necessary for perturbativity.more » We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. Finally, we consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.« less

  4. Classical and quantum stability in putative landscapes

    NASA Astrophysics Data System (ADS)

    Dine, Michael

    2017-01-01

    Landscape analyses often assume the existence of large numbers of fields, N , with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N , eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N ; scaling of couplings with N may also be necessary for perturbativity. We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. We consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.

  5. Flux compactification of M-theory on compact manifolds with spin(7) holonomy

    NASA Astrophysics Data System (ADS)

    Constantin, Dragos Eugeniu

    2005-11-01

    At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin (7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin (7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N = 1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin (7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin (7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost, which means that the supergravity vacua are deformed away from the exceptional holonomy. Using the superpotential form we identify the supersymmetric vacua out of this general set of solutions.

  6. General U(1)×U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure

    DOE PAGES

    Cvetic, Mirjam; Klevers, Denis; Piragua, Hernan; ...

    2015-11-30

    We construct the general form of an F-theory compactification with two U(1) factors based on a general elliptically fibered Calabi-Yau manifold with Mordell-Weil group of rank two. This construction produces broad classes of models with diverse matter spectra, including many that are not realized in earlier F-theory constructions with U(1)×U(1) gauge symmetry. Generic U(1)×U(1) models can be related to a Higgsed non-Abelian model with gauge group SU(2)×SU(2)×SU(3), SU(2) 3×SU(3), or a subgroup thereof. The nonlocal horizontal divisors of the Mordell-Weil group are replaced with local vertical divisors associated with the Cartan generators of non-Abelian gauge groups from Kodaira singularities. Wemore » give a global resolution of codimension two singularities of the Abelian model; we identify the full anomaly free matter content, and match it to the unHiggsed non-Abelian model. The non-Abelian Weierstrass model exhibits a new algebraic description of the singularities in the fibration that results in the first explicit construction of matter in the symmetric representation of SU(3). This matter is realized on double point singularities of the discriminant locus. In conclusion, the construction suggests a generalization to U(1) k factors with k > 2, which can be studied by Higgsing theories with larger non-Abelian gauge groups.« less

  7. Yukawa couplings in superstring compactification. [in quantum gravity theory

    NASA Technical Reports Server (NTRS)

    Strominger, A.

    1985-01-01

    A topological formula is given for the entire tree-level contribution to the low-energy effective action of a Calabi-Yau superstring compactification. The constraints on proton lifetime in the Calabi-Yau compactification are discussed in detail.

  8. The Green-Schwarz mechanism and geometric anomaly relations in 2d (0,2) F-theory vacua

    NASA Astrophysics Data System (ADS)

    Weigand, Timo; Xu, Fengjun

    2018-04-01

    We study the structure of gauge and gravitational anomalies in 2d N = (0 , 2) theories obtained by compactification of F-theory on elliptically fibered Calabi-Yau 5-folds. Abelian gauge anomalies, induced at 1-loop in perturbation theory, are cancelled by a generalized Green-Schwarz mechanism operating at the level of chiral scalar fields in the 2d supergravity theory. We derive closed expressions for the gravitational and the non-abelian and abelian gauge anomalies including the Green-Schwarz counterterms. These expressions involve topological invariants of the underlying elliptic fibration and the gauge background thereon. Cancellation of anomalies in the effective theory predicts intricate topological identities which must hold on every elliptically fibered Calabi-Yau 5-fold. We verify these relations in a non-trivial example, but their proof from a purely mathematical perspective remains as an interesting open problem. Some of the identities we find on elliptic 5-folds are related in an intriguing way to previously studied topological identities governing the structure of anomalies in 6d N = (1 , 0) and 4d N = 1 theories obtained from F-theory.

  9. Adventures in heterotic string phenomenology

    NASA Astrophysics Data System (ADS)

    Dundee, George Benjamin

    In this Dissertation, we consider three topics in the study of effective field theories derived from orbifold compactifications of the heterotic string. In Chapter 2 we provide a primer for those interested in building models based on orbifold compactifications of the heterotic string. In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, M S, a compactification scale, MC, and a mass scale for some of the vector-like exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models analyzed, we show that gauge coupling unification is not possible with MEX = M C and in fact we require MEX << MC ˜ 3 x 1016 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 1033 yr ≲ tau(p → pi0e+) ≲ 1036 yr, which is potentially observable by the next generation of proton decay experiments. 80% of the parameter space gives proton lifetimes below Super-K bounds. In Chapter 4, we examine the relationship between the string coupling constant, gSTRING, and the grand unified gauge coupling constant, alphaGUT, in the models of Chapter 3. We find that the requirement that the theory be perturbative provides a non-trivial constraint on these models. Interestingly, there is a correlation between the proton decay rate (due to dimension six operators) and the string coupling constant in this class of models. Finally, we make some comments concerning the extension of these models to the six (and higher) dimensional case. In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabilization within the context of E8 ⊗ E8 heterotic orbifold constructions and, in particular, we focus on the class of "mini-landscape" models. These theories contain a non-Abelian hidden gauge sector which generates a non-perturbative superpotential leading to supersymmetry breaking and moduli stabilization. We demonstrate this effect in a simple model which contains many of the features of the more general construction. In addition, we argue that once supersymmetry is broken in a restricted sector of the theory, then all moduli are stabilized by supergravity effects. Finally, we obtain the low energy superparticle spectrum resulting from this simple model.

  10. Strong coupling in F-theory and geometrically non-Higgsable seven-branes

    NASA Astrophysics Data System (ADS)

    Halverson, James

    2017-06-01

    Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O (1) in the vicinity of the brane; that it sources nilpotent SL (2 , Z) monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU (3) and SU (2) seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany-Witten moves on (p , q) string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres-Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.

  11. Superstring Compactification and Low Energy Phenomenology.

    NASA Astrophysics Data System (ADS)

    Mohapatra, Pramoda Kumar

    We have presented some aspects of Superstring compactification from 10 to 4 dimensions and the effect of different types of compactification of the extra 6 dimensions on the low energy physics. We have reviewed the consequences of demanding the extra 6 dimensions to form a manifold as well as an N = 1 Supersymmetry at low energies. While doing this we have also highlighted some of the fundamental phenomenological problems like proton decay and neutrino mass and their possible solutions. The dissertation includes a description of the method of calculation of discrete symmetries and Yukawa couplings between different fermions and mirror fermions in these kinds of manifold compactification. The explicit calculations for one particular case with three fermion generations is presented. The reasons for the necessity of an intermediate scale of symmetry breaking (between Plank scale and the electro-weak scale) are explained and one particular scenerio of such symmetry breaking which preserves Supersymmetry is given. We have studied the effect of E _6 singlets on F-flatness and on the phenomenology. We have also reviewed the idea of compactification in a completely different way, i.e. not on a regular manifold but on a manifold with singularities called an orbifold. We have shown that with the so-called standard embedding, meaning identifying the gauge connection with the spin connection, needed for anomaly cancellation and modular invariance, only one model has a chance of being phenomenologically realistic. We have provided explicit tables of all the relevant quantum numbers of the fermions in the fundamental representation of the gauge group E _6 and showed that there are three possible ways of embedding electric charge in the generators of E _6. We have given the explicit form of the renormalization group equation for sin^2theta_{ rm W} and alpha_ {s} for the most usual chain of breaking E _6 down to SU(3)_ {c}otimes SU(2)_{L}otimes(1) _{Y}. The importance of the evolution of the coupling constant on the compactification is also stressed. We have analysed the successes and the limitations of Superstring theories and have mentioned the new frontiers in compactification.

  12. Global embeddings for branes at toric singularities

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki

    2012-10-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  13. Algebraic cycles and local anomalies in F-theory

    NASA Astrophysics Data System (ADS)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    We introduce a set of identities in the cohomology ring of elliptic fibrations which are equivalent to the cancellation of gauge and mixed gauge-gravitational anomalies in F-theory compactifications to four and six dimensions. The identities consist in (co)homological relations between complex codimension-two cycles. The same set of relations, once evaluated on elliptic Calabi-Yau three-folds and four-folds, is shown to universally govern the structure of anomalies and their Green-Schwarz cancellation in six- and four-dimensional F-theory vacua, respectively. We furthermore conjecture that these relations hold not only within the cohomology ring, but even at the level of the Chow ring, i.e. as relations among codimension-two cycles modulo rational equivalence. We verify this conjecture in non-trivial examples with Abelian and non-Abelian gauge groups factors. Apart from governing the structure of local anomalies, the identities in the Chow ring relate different types of gauge backgrounds on elliptically fibred Calabi-Yau four-folds.

  14. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  15. Toda theory from six dimensions

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Jafferis, Daniel L.

    2017-12-01

    We describe a compactification of the six-dimensional (2,0) theory on a foursphere which gives rise to a two-dimensional Toda theory at long distances. This construction realizes chiral Toda fields as edge modes trapped near the poles of the sphere. We relate our setup to compactifications of the (2,0) theory on the five and six-sphere. In this way, we explain a connection between half-BPS operators of the (2,0) theory and twodimensional W-algebras, and derive an equality between their conformal anomalies. As we explain, all such relationships between the six-dimensional (2,0) theory and Toda field theory can be interpreted as statements about the edge modes of complex Chern-Simons on various three-manifolds with boundary.

  16. Probing the string winding sector

    NASA Astrophysics Data System (ADS)

    Aldazabal, Gerardo; Mayo, Martín; Nuñez, Carmen

    2017-03-01

    We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2 n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O( n, n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.

  17. Gauged supergravities from M-theory reductions

    NASA Astrophysics Data System (ADS)

    Katmadas, Stefanos; Tomasiello, Alessandro

    2018-04-01

    In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.

  18. The toric SO(10) F-theory landscape

    NASA Astrophysics Data System (ADS)

    Buchmüller, W.; Dierigl, M.; Oehlmann, P.-K.; Rühle, F.

    2017-12-01

    Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kähler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.

  19. Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Yonekura, Kazuya

    2015-07-01

    We consider general 5d SU( N ) quiver gauge theories whose nodes form an ADE Dynkin diagram of type G. Each node has SU( N i ) gauge group of general rank, Chern-Simons level κ i and additional w i fundamentals. When the total flavor number at each node is less than or equal to 2 N i - 2| κ i |, we give general rules under which the symmetries associated to instanton currents are enhanced to G × G or a subgroup of it in the UV 5d superconformal theory. When the total flavor number violates that condition at some of the nodes, further enhancement of flavor symmetries occurs. In particular we find a large class of gauge theories interpreted as S 1 compactification of 6d superconformal theories which are waiting for string/F-theory realization. We also consider hypermultiplets in (anti-)symmetric representation.

  20. d-Brane Instantons in Type II Orientifolds

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Cvetič, Mirjam; Kachru, Shamit; Weigand, Timo

    2009-11-01

    We review recent progress in determining the effects of d-brane instantons in [Formula: see text] supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract d-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function, and higher fermionic F-terms, and we briefly discuss the implications of background fluxes for the instanton sector. We then summarize the concrete consequences of stringy d-brane instantons for the construction of semirealistic models of particle physics or supersymmetry breaking in compact and noncompact geometries.

  1. Effects on the CMB from compactification before inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontou, Eleni-Alexandra; Blanco-Pillado, Jose J.; Hertzberg, Mark P.

    2017-04-01

    Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both themore » four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.« less

  2. AdS and dS Entropy from String Junctions or The Function of Junction Conjunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, Eva M

    Flux compactifications of string theory exhibiting the possibility of discretely tuning the cosmological constant to small values have been constructed. The highly tuned vacua in this discretuum have curvature radii which scale as large powers of the flux quantum numbers, exponential in the number of cycles in the compactification. By the arguments of Susskind/Witten (in the AdS case) and Gibbons/Hawking (in the dS case), we expect correspondingly large entropies associated with these vacua. If they are to provide a dual description of these vacua on their Coulomb branch, branes traded for the flux need to account for this entropy atmore » the appropriate energy scale. In this note, we argue that simple string junctions and webs ending on the branes can account for this large entropy, obtaining a rough estimate for junction entropy that agrees with the existing rough estimates for the spacing of the discretuum. In particular, the brane entropy can account for the (A)dS entropy far away from string scale correspondence limits.« less

  3. Wrapping rules (in) string theory

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Riccioni, Fabio

    2018-01-01

    In this paper we show that the number of all 1/2-BPS branes in string theory compactified on a torus can be derived by universal wrapping rules whose formulation we present. These rules even apply to branes in less than ten dimensions whose ten-dimensional origin is an exotic brane. In that case the wrapping rules contain an additional combinatorial factor that is related to the highest dimension in which the ten-dimensional exotic brane, after compactification, can be realized as a standard brane. We show that the wrapping rules also apply to cases with less supersymmetry. As a specific example, we discuss the compactification of IIA/IIB string theory on ( T 4/ ℤ 2) × T n .

  4. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; ...

    2016-04-07

    Here, we study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, and also derive both the Calabi-Yau geometry and the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in theirmore » low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. And while the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stuckelberg mechanism in the lower-dimensional effective theory. Finally, in geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.« less

  5. Axions, inflation and the anthropic principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, Katherine J., E-mail: mack@ast.cam.ac.uk

    2011-07-01

    The QCD axion is the leading solution to the strong-CP problem, a dark matter candidate, and a possible result of string theory compactifications. However, for axions produced before inflation, symmetry-breaking scales of f{sub a}∼>10{sup 12} GeV (which are favored in string-theoretic axion models) are ruled out by cosmological constraints unless both the axion misalignment angle θ{sub 0} and the inflationary Hubble scale H{sub I} are extremely fine-tuned. We show that attempting to accommodate a high-f{sub a} axion in inflationary cosmology leads to a fine-tuning problem that is worse than the strong-CP problem the axion was originally invented to solve. Wemore » also show that this problem remains unresolved by anthropic selection arguments commonly applied to the high-f{sub a} axion scenario.« less

  6. Spin(7) compactifications and 1/4-BPS vacua in heterotic supergravity

    NASA Astrophysics Data System (ADS)

    Angus, Stephen; Matti, Cyril; Svanes, Eirik E.

    2016-03-01

    We continue the investigation into non-maximally symmetric compactifications of the heterotic string. In particular, we consider compactifications where the internal space is allowed to depend on two or more external directions. For preservation of supersymmetry, this implies that the internal space must in general be that of a Spin(7) manifold, which leads to a 1/4-BPS four-dimensional supersymmetric perturbative vacuum breaking all but one supercharge. We find that these solutions allow for internal geometries previously excluded by the domain-wall-type solutions, and hence the resulting four-dimensional superpotential is more generic. In particular, we find an interesting resemblance to the superpotentials that appear in non-geometric flux compactifications of type II string theory. If the vacua are to be used for phenomenological applications, they must be lifted to maximal symmetry by some non-perturbative or higher-order effect.

  7. 1+1 dimensional compactifications of string theory.

    PubMed

    Goheer, Naureen; Kleban, Matthew; Susskind, Leonard

    2004-05-14

    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti-de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero, the conflict is resolved.

  8. F-theory on all toric hypersurface fibrations and its Higgs branches

    DOE PAGES

    Klevers, Denis; Mayorga Pena, Damian Kaloni; Oehlmann, Paul-Konstantin; ...

    2015-01-27

    We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces inmore » $$\\mathbb P^{2}$$, $$\\mathbb P^{1}$$ × $$\\mathbb P^{1}$$ and the recently studied $$\\mathbb P^{2}$$ (1,1, 2) , yield F-theory realizations of SUGRA theories with discrete gauge groups $$\\mathbb Z$$ 3, $$\\mathbb Z$$ 2 and $$\\mathbb Z$$ 4.This opens up a whole new arena for model building with discrete global symmetries in F-theory. In these three manifolds, we also find codimension two I 2-fibers supporting matter charged only under these discrete gauge groups. Their 6D matter multiplicities are computed employing ideal techniques and the associated Jacobian fibrations. Here, we also show that the Jacobian of the biquadric fibration has one rational section, yielding one U(1)-gauge field in F-theory. Furthermore, the elliptically fibered Calabi-Yau manifold based on dP 1 has a U(1)-gauge field induced by a non-toric rational section. In this model, we find the first F-theory realization of matter with U(1)-charge q = 3.« less

  9. Beauty and the beast: Superconformal symmetry in a monster module

    NASA Astrophysics Data System (ADS)

    Dixon, L.; Ginsparg, P.; Harvey, J.

    1988-06-01

    Frenkel, Lepowsky, and Meurman have constructed a representation of the largest sporadic simple finite group, the Fischer-Griess monster, as the automorphism group of the operator product algebra of a conformal field theory with central charge c=24. In string terminology, their construction corresponds to compactification on a Z 2 asymmetric orbifold constructed from the torus R 24/∧, where ∧ is the Leech lattice. In this note we point out that their construction naturally embodies as well a larger algebraic structure, namely a super-Virasoro algebra with central charge ĉ=16, with the supersymmetry generator constructed in terms of bosonic twist fields.

  10. 6D fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.; Tizzano, Luigi

    2018-05-01

    We present a 6D generalization of the fractional quantum Hall effect involving membranes coupled to a three-form potential in the presence of a large background four-form flux. The low energy physics is governed by a bulk 7D topological field theory of abelian three-form potentials with a single derivative Chern-Simons-like action coupled to a 6D anti-chiral theory of Euclidean effective strings. We derive the fractional conductivity, and explain how continued fractions which figure prominently in the classification of 6D superconformal field theories correspond to a hierarchy of excited states. Using methods from conformal field theory we also compute the analog of the Laughlin wavefunction. Compactification of the 7D theory provides a uniform perspective on various lower-dimensional gapped systems coupled to boundary degrees of freedom. We also show that a supersymmetric version of the 7D theory embeds in M-theory, and can be decoupled from gravity. Encouraged by this, we present a conjecture in which IIB string theory is an edge mode of a 10 + 2-dimensional bulk topological theory, thus placing all twelve dimensions of F-theory on a physical footing.

  11. Topological string, supersymmetric gauge theory and bps counting

    NASA Astrophysics Data System (ADS)

    Pan, Guang

    In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.

  12. The vertical, the horizontal and the rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications

    NASA Astrophysics Data System (ADS)

    Braun, A. P.; Watari, T.

    2015-01-01

    The four-form field strength in F-theory compactifications on Calabi-Yau four-folds takes its value in the middle cohomology group H 4. The middle cohomology is decomposed into a vertical, a horizontal and a remaining component, all three of which are present in general. We argue that a flux along the remaining or vertical component may break some symmetry, while a purely horizontal flux does not influence the unbroken part of the gauge group or the net chirality of charged matter fields. This makes the decomposition crucial to the counting of flux vacua in the context of F-theory GUTs. We use mirror symmetry to derive a combinatorial formula for the dimensions of these components applicable to any toric Calabi-Yau hypersurface, and also make a partial attempt at providing a geometric characterization of the four-cycles Poincaré dual to the remaining component of H 4. It is also found in general elliptic Calabi-Yau fourfolds supporting SU(5) gauge symmetry that a remaining component can be present, for example, in a form crucial to the symmetry breaking SU(5) - → SU(3) C × SU(2) L × U(1) Y . The dimension of the horizontal component is used to derive an estimate of the statistical distribution of the number of generations and the rank of 7-brane gauge groups in the landscape of F-theory flux vacua.

  13. Construction of fuzzy spaces and their applications to matrix models

    NASA Astrophysics Data System (ADS)

    Abe, Yasuhiro

    Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.

  14. 6d $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories on S 1/T 2 and class S theories: part II

    DOE PAGES

    Ohmori, Kantaro; Shimizu, Hiroyuki; Tachikawa, Yuji; ...

    2015-12-21

    Here, we study the T 2 compactification of a class of 6dmore » $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories that is Higgsable to $$ \\mathcal{N}=\\left(2,\\;0\\right) $$ theories. We show that the resulting 4d N=2 theory at the origin of the Coulomb branch and the parameter space is generically given by two superconformal matter sectors coupled by an infrared-free gauge multiplet and another conformal gauge multiplet. Our analysis utilizes the 5d theories obtained by putting the same class of 6d theories on S 1. Our class includes, among others, the 6d theories describing multiple M 5 branes on an ALE singularity, and we analyze them in detail. The resulting 4d theory has manifestly both the SL(2,Z) and the full flavor symmetry. We also discuss in detail the special cases of 6d theories where the infrared-free gauge multiplet is absent. In an appendix, we give a field-theoretical argument for an F-theoretic constraint that forbids a particular 6d anomaly-free matter content, as an application of our analysis.« less

  15. 6d $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories on S 1/T 2 and class S theories: part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmori, Kantaro; Shimizu, Hiroyuki; Tachikawa, Yuji

    Here, we study the T 2 compactification of a class of 6dmore » $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories that is Higgsable to $$ \\mathcal{N}=\\left(2,\\;0\\right) $$ theories. We show that the resulting 4d N=2 theory at the origin of the Coulomb branch and the parameter space is generically given by two superconformal matter sectors coupled by an infrared-free gauge multiplet and another conformal gauge multiplet. Our analysis utilizes the 5d theories obtained by putting the same class of 6d theories on S 1. Our class includes, among others, the 6d theories describing multiple M 5 branes on an ALE singularity, and we analyze them in detail. The resulting 4d theory has manifestly both the SL(2,Z) and the full flavor symmetry. We also discuss in detail the special cases of 6d theories where the infrared-free gauge multiplet is absent. In an appendix, we give a field-theoretical argument for an F-theoretic constraint that forbids a particular 6d anomaly-free matter content, as an application of our analysis.« less

  16. Numerical exploration of the string theory landscape

    NASA Astrophysics Data System (ADS)

    Metallinos, Konstantinos

    String theory is the best candidate to provide a consistent quantum theory of gravity. Its ten dimensional formulation forces us to perform a compactification of the six unobserved dimensions in a very special compact manifold known as Calabi-Yau. The standard way to address this issue is through the flux compactification scenarios. One of the major implications of these scenarios is that the string theory cannot provide a single and unique vacuum as a solution. Rather one can find an extremely large set of solutions, each with its own physical properties. This is the string theory Landscape. In the first part we present the formal description of the flux compactification theory. From the four dimensional point of view this is a supersymmetric theory, fully described only by two functions, the superpotential and the Kahler potential. Their expressions are crucially depend on the geometrical properties of the compact manifold. By writing these functions for the specific Calabi-Yau manifold P41,1,1,6,9 we are looking firstly for supersymmetric and then after breaking the supersymmetry, for non-supersymmetric numerical solutions. These solutions describe the possible vacua and our goal is using statistical analysis to categorize them based on their cosmological properties and to check their stability. Finally we present the existence of stable dS vacua with and without adding an uplifting term on the potential. In the case where there is not an uplifting term the breaking of supersymmetry is done by incorporating alpha' corrections to the Kahler potential. In the second part we construct a KKLT like inflation model, within string theory flux compactifications and, in particular a model of accidental inflation. We investigate the possibility that the apparent fine-tuning of the low energy parameters of the theory needed to have inflation can be generically obtained by scanning the values of the fluxes over the landscape. Furthermore, we find that the existence of a landscape of eternal inflation in this model provides us with a natural theory of initial conditions for the inflationary period in our vacuum. We demonstrate how these two effects work in a small corner of the landscape associated with the complex structure of the Calabi-Yau manifold P41,1,1,6,9 by numerically investigating the flux vacua of a reduced moduli space. This allows us to obtain the distribution of observable parameters for inflation in this mini-landscape directly from the fluxes.

  17. Tuned and non-Higgsable U(1)s in F-theory

    DOE PAGES

    Wang, Yi-Nan

    2017-03-01

    We study the tuning of U(1) gauge fields in F-theory models on a base of general dimension. We construct a formula that computes the change in Weierstrass moduli when such a U(1) is tuned, based on the Morrison-Park form of a Weierstrass model with an additional rational section. Using this formula, we propose the form of “minimal tuning” on any base, which corresponds to the case where the decrease in the number of Weierstrass moduli is minimal. Applying this result, we discover some universal features of bases with non-Higgsable U(1)s. Mathematically, a generic elliptic fibration over such a base hasmore » additional rational sections. Physically, this condition implies the existence of U(1) gauge group in the low-energy supergravity theory after compactification that cannot be Higgsed away. In particular, we show that the elliptic Calabi-Yau manifold over such a base has a small number of complex structure moduli. We also suggest that non-Higgsable U(1)s can never appear on any toric bases. Finally, we construct the first example of a threefold base with non-Higgsable U(1)s.« less

  18. Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.

    PubMed

    Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G

    2005-12-31

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  19. Small instanton transitions for M5 fractions

    NASA Astrophysics Data System (ADS)

    Mekareeya, Noppadol; Ohmori, Kantaro; Shimizu, Hiroyuki; Tomasiello, Alessandro

    2017-10-01

    M5-branes on an ADE singularity are described by certain six-dimensional "conformal matter" superconformal field theories. Their Higgs moduli spaces contain information about various dynamical processes for the M5s; however, they are not directly accessible due to the lack of a Lagrangian formulation. Using anomaly matching, we compute their dimensions. The result implies that M5 fractions can recombine in several different ways, where the M5s are leaving behind frozen versions of the singularity. The anomaly polynomial gives hints about the nature of the freezing. We also check the Higgs dimension formula by comparing it with various existing conjectures for the CFTs one obtains by torus compactifications down to four and three dimensions. Aided by our results, we also extend those conjectures to compactifications of theories not previously considered. These involve class S theories with twisted punctures in four dimensions, and affine-Dynkin-shaped quivers in three dimensions.

  20. D-brane instantons and the effective field theory of flux compactifications

    NASA Astrophysics Data System (ADS)

    Uranga, Angel M.

    2009-01-01

    We provide a description of the effects of fluxes on euclidean D-brane instantons purely in terms of the 4d effective action. The effect corresponds to the dressing of the effective non-perturbative 4d effective vertex with 4d flux superpotential interactions, generated when the moduli fields made massive by the flux are integrated out. The description in terms of effective field theory allows a unified description of non-perturbative effects in all flux compactifications of a given underlying fluxless model, globally in the moduli space of the latter. It also allows us to describe explicitly the effects on D-brane instantons of fluxes with no microscopic description, like non-geometric fluxes. At the more formal level, the description has interesting connections with the bulk-boundary map of open-closed two-dimensional topological string theory, and with the Script N = 1 special geometry.

  1. Hierarchies in Quantum Gravity: Large Numbers, Small Numbers, and Axions

    NASA Astrophysics Data System (ADS)

    Stout, John Eldon

    Our knowledge of the physical world is mediated by relatively simple, effective descriptions of complex processes. By their very nature, these effective theories obscure any phenomena outside their finite range of validity, discarding information crucial to understanding the full, quantum gravitational theory. However, we may gain enormous insight into the full theory by understanding how effective theories with extreme characteristics--for example, those which realize large-field inflation or have disparate hierarchies of scales--can be naturally realized in consistent theories of quantum gravity. The work in this dissertation focuses on understanding the quantum gravitational constraints on these "extreme" theories in well-controlled corners of string theory. Axion monodromy provides one mechanism for realizing large-field inflation in quantum gravity. These models spontaneously break an axion's discrete shift symmetry and, assuming that the corrections induced by this breaking remain small throughout the excursion, create a long, quasi-flat direction in field space. This weakly-broken shift symmetry has been used to construct a dynamical solution to the Higgs hierarchy problem, dubbed the "relaxion." We study this relaxion mechanism and show that--without major modifications--it can not be naturally embedded within string theory. In particular, we find corrections to the relaxion potential--due to the ten-dimensional backreaction of monodromy charge--that conflict with naive notions of technical naturalness and render the mechanism ineffective. The super-Planckian field displacements necessary for large-field inflation may also be realized via the collective motion of many aligned axions. However, it is not clear that string theory provides the structures necessary for this to occur. We search for these structures by explicitly constructing the leading order potential for C4 axions and computing the maximum possible field displacement in all compactifications of type IIB string theory on toric Calabi-Yau hypersurfaces with h1,1 ≤ 4 in the Kreuzer-Skarke database. While none of these examples can sustain a super-Planckian displacement--the largest possible is 0.3 Mpl--we find an alignment mechanism responsible for large displacements in random matrix models at large h 1,1 >> 1, indicating that large-field inflation may be feasible in compactifications with tens or hundreds of axions. These results represent a modest step toward a complete understanding of large hierarchies and naturalness in quantum gravity.

  2. On geometric classification of 5d SCFTs

    NASA Astrophysics Data System (ADS)

    Jefferson, Patrick; Katz, Sheldon; Kim, Hee-Cheol; Vafa, Cumrun

    2018-04-01

    We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle. These results support our conjecture that every 5d SCFT can be obtained from the circle compactification of some parent 6d (1,0) SCFT.

  3. New class of de Sitter vacua in string theory compactifications

    NASA Astrophysics Data System (ADS)

    Achúcarro, Ana; Ortiz, Pablo; Sousa, Kepa

    2016-10-01

    String theory contains few known working examples of de Sitter vacua, four-dimensional universes with a positive cosmological constant. A notorious obstacle is the stabilization of a large number—sometimes hundreds—of moduli fields that characterize the compact dimensions. We study the stability of a class of supersymmetric moduli (the complex structure moduli and dilaton in type-IIB flux compactifications) in the regime where the volume of the compact space is large but not exponentially large. We show that, if the number of moduli is very large, random matrix theory provides a new stability condition, a lower bound on the volume. We find a new class of stable vacua where the mass spectrum of these supersymmetric moduli is gapped, without requiring a large mass hierarchy between moduli sectors or any fine-tuning of the superpotential. We provide the first explicit example of this class of vacua in the P[1,1 ,1 ,6 ,9 ] 4 model. A distinguishing feature is that all fermions in the supersymmetric sector are lighter than the gravitino.

  4. Chern-Simons theory and S-duality

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gukov, Sergei

    2013-05-01

    We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2 , {C} ) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry [InlineMediaObject not available: see fulltext.] of SL(2) Chern-Simons theory can be identified as the S-duality transformation of {N}=4 super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d {N}=2 super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, John Austen; /Stanford U., Phys. Dept.

    This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry,more » both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe world-volume theories of point-like D-probes of various Calabi-Yau threefolds.« less

  6. A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua

    NASA Astrophysics Data System (ADS)

    Taylor, Washington; Wang, Yi-Nan

    2016-01-01

    We use Monte Carlo methods to explore the set of toric threefold bases that support elliptic Calabi-Yau fourfolds for F-theory compactifications to four dimensions, and study the distribution of geometrically non-Higgsable gauge groups, matter, and quiver structure. We estimate the number of distinct threefold bases in the connected set studied to be ˜ 1048. The distribution of bases peaks around h 1,1 ˜ 82. All bases encountered after "thermalization" have some geometric non-Higgsable structure. We find that the number of non-Higgsable gauge group factors grows roughly linearly in h 1,1 of the threefold base. Typical bases have ˜ 6 isolated gauge factors as well as several larger connected clusters of gauge factors with jointly charged matter. Approximately 76% of the bases sampled contain connected two-factor gauge group products of the form SU(3) × SU(2), which may act as the non-Abelian part of the standard model gauge group. SU(3) × SU(2) is the third most common connected two-factor product group, following SU(2) × SU(2) and G 2 × SU(2), which arise more frequently.

  7. A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua

    DOE PAGES

    Taylor, Washington; Wang, Yi-Nan

    2016-01-22

    Here, we use Monte Carlo methods to explore the set of toric threefold bases that support elliptic Calabi-Yau fourfolds for F-theory compactifications to four dimensions, and study the distribution of geometrically non-Higgsable gauge groups, matter, and quiver structure. We estimate the number of distinct threefold bases in the connected set studied to be ~ 10 48. Moreover, the distribution of bases peaks around h 1,1 ~ 82. All bases encountered after "thermalization" have some geometric non-Higgsable structure. We also find that the number of non-Higgsable gauge group factors grows roughly linearly in h 1,1 of the threefold base. Typical basesmore » have ~ 6 isolated gauge factors as well as several larger connected clusters of gauge factors with jointly charged matter. Approximately 76% of the bases sampled contain connected two-factor gauge group products of the form SU(3) x SU(2), which may act as the non-Abelian part of the standard model gauge group. SU(3) x SU(2) is the third most common connected two-factor product group, following SU(2) x SU(2) and G2 x SU(2), which arise more frequently.« less

  8. On the elliptic genera of manifolds of Spin(7) holonomy

    DOE PAGES

    Benjamin, Nathan; Harrison, Sarah M.; Kachru, Shamit; ...

    2015-12-16

    Superstring compactification on a manifold of Spin(7) holonomy gives rise to a 2d worldsheet conformal field theory with an extended supersymmetry algebra. The N=1 superconformal algebra is extended by additional generators of spins 2 and 5/2, and instead of just superconformal symmetry one has a c = 12 realization of the symmetry group SW(3/2,2). In this paper, we compute the characters of this supergroup and decompose the elliptic genus of a general Spin(7) compactification in terms of these characters. Here, we find suggestive relations to various sporadic groups, which are made more precise in a companion paper.

  9. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex

    2009-08-15

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effectmore » opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.« less

  10. Compactification and inflation in the superstring theory from the condensation of gravitino pairs

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    1987-12-01

    We discuss the possibility that inflation can occur in the E8×E8' heterotic superstring theory, if there is a pair condensation of the gravitino field ψA and also of the Majorana-Weyl spinor λ, as suggested by the Helayël-Neto and Smith. In the absence of a condensation of the anti-symmetric tensor field HMNP, then the associated potential V(θ,φ) is bounded from below and independent of the dilaton field φ. It can be made to vanish at the minimum, where the compactification scale θ is fixed. Alternatively, a small cosmological constant may remain (ultimately to be cancelled by radiative corrections at the lower energy scale of the gaugino condensation), which could in principle lead to inflation. Present address: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India.

  11. Numerical Polynomial Homotopy Continuation Method and String Vacua

    DOE PAGES

    Mehta, Dhagash

    2011-01-01

    Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less

  12. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  13. Foliated eight-manifolds for M-theory compactification

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Lazaroiu, Calin Iuliu

    2015-01-01

    We characterize compact eight-manifolds M which arise as internal spaces in flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part ξ of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation of M which carries a leafwise G 2 structure, such that the O'Neill-Gray tensors, non-adapted part of the normal connection and the torsion classes of the G 2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C * algebra is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from G, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of is dense in M.

  14. Cosmic acceleration from M theory on twisted spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ishwaree P.; Wiltshire, David L.

    2005-10-15

    In a recent paper [I. P. Neupane and D. L. Wiltshire, Phys. Lett. B 619, 201 (2005).] we have found a new class of accelerating cosmologies arising from a time-dependent compactification of classical supergravity on product spaces that include one or more geometric twists along with nontrivial curved internal spaces. With such effects, a scalar potential can have a local minimum with positive vacuum energy. The existence of such a minimum generically predicts a period of accelerated expansion in the four-dimensional Einstein conformal frame. Here we extend our knowledge of these cosmological solutions by presenting new examples and discuss themore » properties of the solutions in a more general setting. We also relate the known (asymptotic) solutions for multiscalar fields with exponential potentials to the accelerating solutions arising from simple (or twisted) product spaces for internal manifolds.« less

  15. G-theory: The generator of M-theory and supersymmetry

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Pincak, Richard

    2018-04-01

    In string theory with ten dimensions, all Dp-branes are constructed from D0-branes whose action has two-dimensional brackets of Lie 2-algebra. Also, in M-theory, with 11 dimensions, all Mp-branes are built from M0-branes whose action contains three-dimensional brackets of Lie 3-algebra. In these theories, the reason for difference between bosons and fermions is unclear and especially in M-theory there is not any stable object like stable M3-branes on which our universe would be formed on it and for this reason it cannot help us to explain cosmological events. For this reason, we construct G-theory with M dimensions whose branes are formed from G0-branes with N-dimensional brackets. In this theory, we assume that at the beginning there is nothing. Then, two energies, which differ in their signs only, emerge and produce 2M degrees of freedom. Each two degrees of freedom create a new dimension and then M dimensions emerge. M-N of these degrees of freedom are removed by symmetrically compacting half of M-N dimensions to produce Lie-N-algebra. In fact, each dimension produces a degree of freedom. Consequently, by compacting M-N dimensions from M dimensions, N dimensions and N degrees of freedom is emerged. These N degrees of freedoms produce Lie-N-algebra. During this compactification, some dimensions take extra i and are different from other dimensions, which are known as time coordinates. By this compactification, two types of branes, Gp and anti-Gp-branes, are produced and rank of tensor fields which live on them changes from zero to dimension of brane. The number of time coordinates, which are produced by negative energy in anti-Gp-branes, is more sensible to number of times in Gp-branes. These branes are compactified anti-symmetrically and then fermionic superpartners of bosonic fields emerge and supersymmetry is born. Some of gauge fields play the role of graviton and gravitino and produce the supergravity. The question may arise that what is the physical reason which shows that this theory is true. We shown that G-theory can be reduced to other theories like nonlinear gravity theories in four dimensions. Also, this theory, can explain the physical properties of fermions and bosons. On the other hand, this theory explains the origin of supersymmetry. For this reason, we can prove that this theory is true. By reducing the dimension of algebra to three and dimension of world to 11 and dimension of brane to four, G-theory is reduced to F(R)-gravity.

  16. Supersymmetry: Compactification, flavor, and dualities

    NASA Astrophysics Data System (ADS)

    Heidenreich, Benjamin Jones

    We describe several new research directions in the area of supersymmetry. In the context of low-energy supersymmetry, we show that the assumption of R-parity can be replaced with the minimal flavor violation hypothesis, solving the issue of nucleon decay and the new physics flavor problem in one stroke. The assumption of minimal flavor violation uniquely fixes the form of the baryon number violating vertex, leading to testable predictions. The NLSP is unstable, and decays promptly to jets, evading stringent bounds on vanilla supersymmetry from LHC searches, whereas the gravitino is long-lived, and can be a dark matter component. In the case of a sbottom LSP, neutral mesinos can form and undergo oscillations before decaying, leading to same sign tops, and allowing us to place constraints on the model in this case. We show that this well-motivated phenomenology can be naturally explained by spontaneously breaking a gauged flavor symmetry at a high scale in the presence of additional vector-like quarks, leading to mass mixings which simultaneously generate the flavor structure of the baryon-number violating vertex and the Standard Model Yukawa couplings, explaining their minimal flavor violating structure. We construct a model which is robust against Planck suppressed corrections and which also solves the mu problem. In the context of flux compactifications, we begin a study of the local geometry near a stack of D7 branes supporting a gaugino condensate, an integral component of the KKLT scenario for Kahler moduli stabilization. We obtain an exact solution for the geometry in a certain limit using reasonable assumptions about symmetries, and argue that this solution exhibits BPS domain walls, as expected from field theory arguments. We also begin a larger program of understanding general supersymmetric compactifications of type IIB string theory, reformulating previous results in an SL(2, R ) covariant fashion. Finally, we present extensive evidence for a new class of N = 1 gauge theory dualities relating different world-volume gauge theories of D3 branes probing an orientifold singularity. We argue that these dualities originate from the S-duality of type IIB string theory, much like electromagnetic dualities of N = 4 gauge theories.

  17. Fluxes, holography and twistors: String theory paths to four dimensions

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2007-12-01

    There are presently three popular paths to obtain four dimensional physics from string theory: compactification, holography and twistor space. We present results in this thesis on each of them, discussing the geometric structure of flux compactifications, the interplay between holography and S -duality in M-theory and the perturbative amplitudes of the marginally deformed super-Yang-Mills theory obtained from topological string theory on a supertwistor space. First we analyze supersymmetric flux compactifications of ten dimensional string theories to four dimensions. Back reaction of the fluxes on the six dimensional internal geometry is characterized by G-structures. In type IIB compactification on SU(3)-structure manifold with N = 1 supersymmetry, we solve the equations dictating the five components of intrinsic torsion. We find that the six dimensional manifold always retains an integrable almost complex structure compatible with supersymmetry. In terms of the various vacuum fields, the axion/dilaton is found to be generically non-holomorphic, and the four dimensional cosmological constant is nonvanishing only if the SU(3) structure group is reduced to SU(2). The equations are solved by one holomorphic function. Around the poles and zeros of the holomorphic function, the geometry locally looks like the well known type-A and type-B solutions. When this function is a constant, the geometry can be viewed as a holographic RG flow. After classifying the type IIB SU(3)-structure flux vacua, we analyze the effect of non-perturbative corrections on the moduli space of N = 2 flux compactifications. At energy below the Kaluza-Klein scale, the four dimensional effective theory is a gauged supergravity theory with vanishing cosmological constant. The gauging of isometries on the hyper-multiplet moduli space is induced by the fluxes. We show that instanton corrections which could potentially lift the gauged isometries are in fact prohibited both in the type IIA and heterotic string theories by the inclusion of flux. Hence gauged supergravity is a robust framework for studying flux vacua even when these stringy effects are taken into account. The mechanisms which protect the gauged isometries are different in the two theories. Then we switch to the understanding of SL(2, Z ) duality transformations in asymptotically AdS4 x S7 spacetime with an Abelian gauge theory. The bulk duality acts non-trivially on the three-dimensional SCFT of coincident M2-branes on the conformal boundary. We develop a systematic method to holographically obtain the deformations of the boundary CFT manifested by generalized boundary conditions and show how SL(2, Z ) duality relates different deformations of the conformal vacuum. We analyze in detail marginal deformations and deformations by dimension 4 operators. In the case of massive deformations, the RG flow induces a Legendre transform as well as S-duality. Correlation functions in the CFT are computed by differentiating with respect to magnetic bulk sources, whereas correlation functions in the Legendre dual CFT are computed using electric bulk sources. Under massive deformations, the boundary effective action is generically minimized by massive self-dual configurations of the U(1) gauge field. We show that a massive and self-dual boundary condition corresponds to the unique self-dual topologically massive gauge theory in three dimensions. Thus, self-duality in three dimensions can be understood as a consequence of SL(2, Z ) invariance in the bulk of AdS4. We discuss various implications for understanding the strongly interacting worldvolume theory of M2-branes and more general dualities of the maximally supersymmetric AdS4 supergravity theory. Finally we study the twistor string theory whose D-instanton expansion gives the perturbative expansion of marginally deformed N = 4 super-Yang-Mills theories. More precisely this string theory is a topological B-model with both open and closed string sectors with target space CP3|4 , a super-Calabi-Yau manifold. The tree-level amplitudes in the N = 1 beta-deformed field theory are exactly reproduced by introducing non-anticommutative star-products among the D1 and D5 open strings. A related star-product gives the tree-level amplitudes of the non-supersymmetric gamma-deformed conformal field theory. The non-anticommutativity arises essentially from the deformation of the supertwistor space which reduces the amount of superconformal symmetries realized by the supertwistor space. The tree-level gluonic amplitudes in more general marginally deformed field theories are also discussed using twistor string theory.

  18. Quantum supergravity, supergravity anomalies and string phenomenology

    DOE PAGES

    Gaillard, Mary K.

    2016-03-15

    I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.

  19. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  1. Is inflation from unwinding fluxes IIB?

    NASA Astrophysics Data System (ADS)

    Gautason, Fridrik Freyr; Schillo, Marjorie; Van Riet, Thomas

    2017-03-01

    In this paper we argue that the mechanism of unwinding inflation is naturally present in warped compactifications of type IIB string theory with local throats. The unwinding of flux is caused by its annihilation against branes. The resulting inflaton potential is linear with periodic modulations. We initiate an analysis of the inflationary dynamics and cosmological observables, which are highly constrained by moduli stabilization. For the simplified model of single-Kähler Calabi-Yau spaces we find that many, though not all of the consistency constraints can be satisfied. Particularly, in this simple model geometric constraints are in tension with obtaining the observed amplitude of the scalar power spectrum. However, we do find 60 efolds of inflation with a trans-Planckian field excursion which offers the hope that slightly more complicated models can lead to a fully consistent explicit construction of large field inflation of this kind.

  2. Strings on complex multiplication tori and rational conformal field theory with matrix level

    NASA Astrophysics Data System (ADS)

    Nassar, Ali

    Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.

  3. Fermionic minimal dark matter in 5D gauge-Higgs unification

    NASA Astrophysics Data System (ADS)

    Maru, Nobuhito; Okada, Nobuchika; Okada, Satomi

    2017-12-01

    We propose a minimal dark matter (MDM) scenario in the context of a simple gauge-Higgs unification (GHU) model based on the gauge group S U (3 )×U (1 )' in five-dimensional Minkowski space with a compactification of the fifth dimension on the 1S/Z2 orbifold. A pair of vectorlike S U (3 ) multiplet fermions in a higher-dimensional representation is introduced in the bulk, and the DM particle is identified with the lightest mass eigenstate among the components in the multiplets. In the original model description, the DM particle communicates with the Standard Model (SM) particles only through the bulk gauge interaction, and hence our model is the GHU version of the MDM scenario. There are two typical realizations of the DM particle in four-dimensional effective theory: (i) the DM particle is mostly composed of the SM S U (2 )L multiplets, or (ii) the DM is mostly composed of the SM S U (2 )L singlets. Since the case (i) is very similar to the original MDM scenario, we focus on the case (ii), which is a realization of the Higgs-portal DM scenario in the context of the GHU model. We identify an allowed parameter region to be consistent with the current experimental constraints, which will be fully covered by the direct dark matter detection experiments in the near future. In the presence of the bulk multiplet fermions in higher-dimensional S U (3 ) representations, we reproduce the 125 GeV Higgs boson mass through the renormalization group evolution of Higgs quartic coupling with the compactification scale of 10-100 TeV.

  4. Matrix theory interpretation of discrete light cone quantization string worldsheets

    PubMed

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  5. Spectral sum rules for confining large-N theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherman, Aleksey; McGady, David A.; Yamazaki, Masahito

    2016-06-17

    We consider asymptotically-free four-dimensional large-$N$ gauge theories with massive fermionic and bosonic adjoint matter fields, compactified on squashed three-spheres, and examine their regularized large-$N$ confined-phase spectral sums. The analysis is done in the limit of vanishing ’t Hooft coupling, which is justified by taking the size of the compactification manifold to be small compared to the inverse strong scale Λ ₋1. We find our results motivate us to conjecture some universal spectral sum rules for these large $N$ gauge theories.

  6. Matter field Kähler metric in heterotic string theory from localisation

    NASA Astrophysics Data System (ADS)

    Blesneag, Ştefan; Buchbinder, Evgeny I.; Constantin, Andrei; Lukas, Andre; Palti, Eran

    2018-04-01

    We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in P^1× P^3 and we obtain an explicit result for the matter field Kähler metric in this case.

  7. The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds

    NASA Astrophysics Data System (ADS)

    Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.

    2012-06-01

    The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.

  8. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    DOE PAGES

    Argyres, Philip C.; Uensal, Mithat

    2012-08-10

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less

  9. Nonperturbative corrections to 4D string theory effective actions from SL(2,Z) duality and supersymmetry.

    PubMed

    Robles-Llana, Daniel; Rocek, Martin; Saueressig, Frank; Theis, Ulrich; Vandoren, Stefan

    2007-05-25

    We find the D(-1)- and D1-brane instanton contributions to the hypermultiplet moduli space of type IIB string compactifications on Calabi-Yau threefolds. These combine with known perturbative and world sheet instanton corrections into a single modular invariant function that determines the hypermultiplet low-energy effective action.

  10. Kaluza-Klein cosmology from five-dimensional Lovelock-Cartan theory

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Corral, Cristóbal; del Pino, Simón; Ramírez, Francisca

    2016-12-01

    We study the Kaluza-Klein dimensional reduction of the Lovelock-Cartan theory in five-dimensional spacetime, with a compact dimension of S1 topology. We find cosmological solutions of the Friedmann-Robertson-Walker class in the reduced spacetime. The torsion and the fields arising from the dimensional reduction induce a nonvanishing energy-momentum tensor in four dimensions. We find solutions describing expanding, contracting, and bouncing universes. The model shows a dynamical compactification of the extra dimension in some regions of the parameter space.

  11. The edge of supersymmetry: Stability walls in heterotic theory

    DOE PAGES

    Anderson, Lara B.; Gray, James; Lukas, Andre; ...

    2009-05-15

    We explicitly describe, in the language of four-dimensional N = 1 supersymmetric field theory, what happens when the moduli of a heterotic Calabi-Yau compactification change so as to make the internal non-Abelian gauge fields non-supersymmetric. At the edge of the region in Kähler moduli space where supersymmetry can be preserved, an additional anomalous U(1) gauge symmetry appears in the four-dimensional theory. The D-term contribution to the scalar potential associated to this U(1) attempts to force the system back into a supersymmetric configuration and provides a consistent low-energy description of gauge bundle stability.

  12. Background Independence and Duality Invariance in String Theory.

    PubMed

    Hohm, Olaf

    2017-03-31

    Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.

  13. Gravity waves and the LHC: towards high-scale inflation with low-energy SUSY

    NASA Astrophysics Data System (ADS)

    He, Temple; Kachru, Shamit; Westphal, Alexander

    2010-06-01

    It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m 3/2, where m 3/2 is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m 3/2 and the Hubble scale of inflation. This is possible because the expectation value of the superpotential < W> relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m 3/2 ≤ TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.

  14. p-brane actions and higher Roytenberg brackets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2013-02-01

    Motivated by the quest to understand the analog of non-geometric flux compactification in the context of M-theory, we study higher dimensional analogs of generalized Poisson sigma models and corresponding dual string and p-brane models. We find that higher generalizations of the algebraic structures due to Dorfman, Roytenberg and Courant play an important role and establish their relation to Nambu-Poisson structures.

  15. Simple Emergent Power Spectra from Complex Inflationary Physics.

    PubMed

    Dias, Mafalda; Frazer, Jonathan; Marsh, M C David

    2016-09-30

    We construct ensembles of random scalar potentials for N_{f}-interacting scalar fields using nonequilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For N_{f}=O(few), these heavily featured scalar potentials give rise to power spectra that are highly nonlinear, at odds with observations. For N_{f}≫1, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realizations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large N_{f} universality of random matrix theory.

  16. Some blackhole and compactification solutions of noncanonical global monopole in 4-dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Prasetyo, I.; Ramadhan, H. S.

    2017-07-01

    Here we present some solutions with noncanonical global monopole in nonlinear sigma model in 4-dimensional spacetime. We discuss some blackhole solutions and its horizons. We also obtain some compactification solutions. We list some possible compactification channels from 4-space to 2 × 2-spaces of constant curvatures.

  17. Millicharged dark matter in quantum gravity and string theory.

    PubMed

    Shiu, Gary; Soler, Pablo; Ye, Fang

    2013-06-14

    We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.

  18. Tensor modes on the string theory landscape

    NASA Astrophysics Data System (ADS)

    Westphal, Alexander

    2013-04-01

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  19. Confusing the heterotic string

    NASA Astrophysics Data System (ADS)

    Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.

    1986-10-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.

  20. The anomalous U(1)_{anom} symmetry and flavors from an SU(5) × SU(5)' GUT in Z_{12-I} orbifold compactification

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.; Kyae, Bumseok; Nam, Soonkeon

    2017-12-01

    In string compactifications, frequently the anomalous U(1) gauge symmetry appears which belongs to E_8 × E_8' of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale (≈ 10^{18 } {GeV}) by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank antisymmetric tensor field B_{MN}. Below the compactification scale a global symmetry U(1)_{anom} results whose charge Q_anom is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)_{anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, all the low energy parameters are calculated in terms of the vacuum expectation values of the standard model singlets.

  1. AdS-phobia, the WGC, the Standard Model and Supersymmetry

    NASA Astrophysics Data System (ADS)

    Gonzalo, Eduardo; Herráez, Alvaro; Ibáñez, Luis E.

    2018-06-01

    It has been recently argued that an embedding of the SM into a consistent theory of quantum gravity may imply important constraints on the mass of the lightest neutrino and the cosmological constant Λ4. The constraints come from imposing the absence of any non-SUSY AdS stable vacua obtained from any consistent compactification of the SM to 3 or 2 dimensions. This condition comes as a corollary of a recent extension of the Weak Gravity Conjecture (WGC) by Ooguri and Vafa. In this paper we study T 2 /Z N compactifications of the SM to two dimensions in which SM Wilson lines are projected out, leading to a considerable simplification. We analyze in detail a T 2 /Z 4 compactification of the SM in which both complex structure and Wilson line scalars are fixed and the potential is only a function of the area of the torus a 2. We find that the SM is not robust against the appearance of AdS vacua in 2D and hence would be by itself inconsistent with quantum gravity. On the contrary, if the SM is embedded at some scale M SS into a SUSY version like the MSSM, the AdS vacua present in the non-SUSY case disappear or become unstable. This means that WGC arguments favor a SUSY version of the SM, independently of the usual hierarchy problem arguments. In a T 2 /Z 4 compactification in which the orbifold action is embedded into the B - L symmetry the bounds on neutrino masses and the cosmological constant are recovered. This suggests that the MSSM should be extended with a U(1) B- L gauge group. In other families of vacua the spectrum of SUSY particles is further constrained in order to avoid the appearance of new AdS vacua or instabilities. We discuss a possible understanding of the little hierarchy problem in this context.

  2. The moduli space of vacua of $$ \\mathcal{N}=2 $$ class $$ \\mathcal{S} $$ theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Dan; Yonekura, Kazuya

    We develop a systematic method to describe the moduli space of vacua of four dimensional N=2 class S theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin’s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examplesmore » including N=2 SQCD, T N theory and Argyres-Douglas theories.« less

  3. Five-dimensional gauge theory and compactification on a torus

    NASA Astrophysics Data System (ADS)

    Haghighat, Babak; Vandoren, Stefan

    2011-09-01

    We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.

  4. Dualities in CHL-models

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Volpato, Roberto

    2018-04-01

    We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\

  5. The refined Swampland Distance Conjecture in Calabi-Yau moduli spaces

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Klaewer, Daniel; Schlechter, Lorenz; Wolf, Florian

    2018-06-01

    The Swampland Distance Conjecture claims that effective theories derived from a consistent theory of quantum gravity only have a finite range of validity. This will imply drastic consequences for string theory model building. The refined version of this conjecture says that this range is of the order of the naturally built in scale, namely the Planck scale. It is investigated whether the Refined Swampland Distance Conjecture is consistent with proper field distances arising in the well understood moduli spaces of Calabi-Yau compactification. Investigating in particular the non-geometric phases of Kähler moduli spaces of dimension h 11 ∈ {1 , 2 , 101}, we always find proper field distances that are smaller than the Planck-length.

  6. Periodic arrays of M2-branes

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Lambert, Neil; Richmond, Paul

    2012-11-01

    We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon'. Upon further T-duality on a transverse torus we obtain a non-manifest- Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on {{{T}}^3}.

  7. Implementing odd-axions in dimensional oxidation of 4D non-geometric type IIB scalar potential

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2016-01-01

    In a setup of type IIB superstring compactification on an orientifold of a T6 /Z4 sixfold, the presence of geometric flux (ω) and non-geometric fluxes (Q, R) is implemented along with the standard NS-NS and RR three-form fluxes (H, F). After computing the F/D-term contributions to the N = 1 four dimensional effective scalar potential, we rearrange the same into 'suitable' pieces by using a set of new generalized flux orbits. Subsequently, we dimensionally oxidize the various pieces of the total four dimensional scalar potential to guess their ten-dimensional origin.

  8. Revisiting arithmetic solutions to the W =0 condition

    NASA Astrophysics Data System (ADS)

    Kanno, Keita; Watari, Taizan

    2017-11-01

    The gravitino mass is expected not to be much smaller than the Planck scale for a large fraction of vacua in flux compactifications. There is no continuous parameter to tune even by hand, and it seems that the gravitino mass can be small only as a result of accidental cancellation among period integrals weighted by integer-valued flux quanta. DeWolfe et al. [J. High Energy Phys. 02 (2005) 037, 10.1088/1126-6708/2005/02/037] proposed paying close attention to vacua where the Hodge decomposition is possible within a number field, so that the precise cancellation takes place as a result of algebra. We focus on a subclass of those vacua—those with complex multiplication—and explore more on the idea in this article. It turns out, in Type IIB compactifications, that those vacua admit nontrivial supersymmetric flux configurations if and only if the reflex field of the Weil intermediate Jacobian is isomorphic to the quadratic imaginary field generated by the axidilaton vacuum expectation value. We also found that flux statistics are highly enriched on such vacua, as F-term conditions become linearly dependent.

  9. Yang-Mills theory and the ABC conjecture

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Hu, Zhi; Probst, Malte; Read, James

    2018-05-01

    We establish a precise correspondence between the ABC Conjecture and 𝒩 = 4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies’ method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d’enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of 𝒩 = 4 SYM.

  10. Extra-dimensional models on the lattice

    DOE PAGES

    Knechtli, Francesco; Rinaldi, Enrico

    2016-08-05

    In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime formore » various extra-dimensional models.« less

  11. Topics in Multivariate Approximation Theory.

    DTIC Science & Technology

    1982-05-01

    once that a continuous function f can be approximated from Sa :o span (N3 )B63 to within *(f, 131 ), with 13 t- sup3 e3 dian PS The simple approximation...N(C) 3- U P s P3AC 0 0 ) . Then, as in Lebesgue’s inequality, we could conclude that f - Qf - f-p - Q(f-p) , for all p e k k therefore I(f-0f) JCI 4 I

  12. Can compactifications solve the cosmological constant problem?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzberg, Mark P.; Center for Theoretical Physics, Department of Physics,Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139; Masoumi, Ali

    2016-06-30

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain whymore » Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.« less

  13. Steenrod homotopy

    NASA Astrophysics Data System (ADS)

    Melikhov, Sergey A.

    2009-06-01

    Steenrod homotopy theory is a natural framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; or from a different viewpoint, it studies the topology of the \\lim^1 functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. An attempt is made to simplify the foundations of the theory and to clarify and improve some of its major results. With geometric tools such as Milnor's telescope compactification, comanifolds (=mock bundles), and the Pontryagin-Thom construction, new simple proofs are obtained for results by Barratt-Milnor, Geoghegan-Krasinkiewicz, Dydak, Dydak-Segal, Krasinkiewicz-Minc, Cathey, Mittag-Leffler-Bourbaki, Fox, Eda-Kawamura, Edwards-Geoghegan, Jussila, and for three unpublished results by Shchepin. An error in Lisitsa's proof of the `Hurewicz theorem in Steenrod homotopy' is corrected. It is shown that over compacta, R.H. Fox's overlayings are equivalent to I.M. James' uniform covering maps. Other results include: \\bullet A morphism between inverse sequences of countable (possibly non-Abelian) groups that induces isomorphisms on \\lim and \\lim^1 is invertible in the pro-category. This implies the `Whitehead theorem in Steenrod homotopy', thereby answering two questions of Koyama. \\bullet If X is an LC_{n-1}-compactum, n\\ge 1, then its n-dimensional Steenrod homotopy classes are representable by maps S^n\\to\

  14. BPS Jumping Loci are Automorphic

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  15. f(Lovelock) theories of gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.

    2016-04-01

    f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.

  16. An exact elliptic superpotential for N=1 ∗ deformations of finite N=2 gauge theories

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Hollowood, Timothy J.; Kumar, S. Prem

    2002-03-01

    We study relevant deformations of the N=2 superconformal theory on the world-volume of N D3-branes at an Ak-1 singularity. In particular, we determine the vacuum structure of the mass-deformed theory with N=1 supersymmetry and show how the different vacua are permuted by an extended duality symmetry. We then obtain exact, modular covariant formulae (for all k, N and arbitrary gauge couplings) for the holomorphic observables in the massive vacua in two different ways: by lifting to M-theory, and by compactification to three dimensions and subsequent use of mirror symmetry. In the latter case, we find an exact superpotential for the model which coincides with a certain combination of the quadratic Hamiltonians of the spin generalization of the elliptic Calogero-Moser integrable system.

  17. Infinitesimal moduli of G2 holonomy manifolds with instanton bundles

    NASA Astrophysics Data System (ADS)

    de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.

    2016-11-01

    We describe the infinitesimal moduli space of pairs ( Y, V) where Y is a manifold with G 2 holonomy, and V is a vector bundle on Y with an instanton connection. These structures arise in connection to the moduli space of heterotic string compactifications on compact and non-compact seven dimensional spaces, e.g. domain walls. Employing the canonical G 2 cohomology developed by Reyes-Carrión and Fernández and Ugarte, we show that the moduli space decomposes into the sum of the bundle moduli {H}_{{overset{ěe }{d}}_A}^1(Y,End(V)) plus the moduli of the G 2 structure preserving the instanton condition. The latter piece is contained in {H}_{overset{ěe }{d}θ}^1(Y,TY) , and is given by the kernel of a map overset{ěe }{F} which generalises the concept of the Atiyah map for holomorphic bundles on complex manifolds to the case at hand. In fact, the map overset{ěe }{F} is given in terms of the curvature of the bundle and maps {H}_{overset{ěe }{d}θ}^1(Y,TY) into {H}_{{overset{ěe }{d}}_A}^2(Y,End(V)) , and moreover can be used to define a cohomology on an extension bundle of TY by End( V). We comment further on the resemblance with the holomorphic Atiyah algebroid and connect the story to physics, in particular to heterotic compactifications on ( Y, V) when α' = 0.

  18. Five-dimensional Yang-Mills-Einstein supergravity on orbifold spacetimes: From phenomenology to M -theory

    NASA Astrophysics Data System (ADS)

    McReynolds, Sean

    Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and tensor multiplets are considered on an orbifold spacetime of the form M4 x S1/Gamma, where Gamma is a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are broken by boundary conditions for the fields, which are equivalent to some set of Gamma-parity assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wilson lines looping from one boundary to the other can break bulk gauge groups, or give rise to vacuum expectation values for scalars on the boundaries, which can result in spontaneous breaking of boundary gauge groups. The broken gauge symmetries do not survive as global symmetries of the low energy theories below the compactification scale due to 4 D minimal couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification of M-theory (or string theory for that matter), and we exhibit the form of this field and its role as the QCD axion, capable of resolving the strong CP problem. The main motivation for the orbifold theories here is taken to be orbifold-GUTS, wherein a unified gauge group is sought in higher dimensions while allowing the orbifold reduction to handle problems such as rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allowable minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions. It is argued that, within the class of homogeneous quaternionic scalar manifolds characterizing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories that yield minimal phenomenological field content. In addition, non-compact gaugings are a novel feature of supergravity theories, and in particular we consider the example of an SU(5,1) YMESGT in which all of the fields of the theory are connected by local (susy and gauge) transformations that are symmetries of the Lagrangian. Such non-compact gaugings allow a novel type of gauge-Higgs unification in higher dimensions. The possibility of boundary-localized fields is considered only via anomaly arguments. (Abstract shortened by UMI.)

  19. Strong anti-gravity Life in the shock wave

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Roland, Kaj

    1992-12-01

    Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Compean, H.; Loaiza-Brito, O.; Departamento de Fisica, Universidad de Guanajuato, C.P. 37150, Leon, Guanajuato

    The first steps towards a proposal for a description of the quantum hair in 4D supersymmetric black holes in string Calabi-Yau (CY) compactifications are given. The quantum hair consisting of electric and magnetic fractional charges in black holes are derived from periods of the CY's torsion cycles. In the process a K-theory interpretation of the quantum hair in terms of the Atiyah-Hirzebruch spectral sequence is carried out. Finally, the same procedure is considered for torsion cycles of certain generalized CY's threefolds such as half-flat manifolds.

  1. A swamp of non-SUSY vacua

    NASA Astrophysics Data System (ADS)

    Danielsson, U. H.; Dibitetto, G.; Vargas, S. C.

    2017-11-01

    We consider known examples of non-supersymmetric AdS7 and AdS4 solutions arising from compactifications of massive type IIA supergravity and study their stability, taking into account the coupling between closed- and open-string sector excitations. Generically, open strings are found to develop modes with masses below the Breitenlohner-Freedman (BF) bound. We comment on the relation with the Weak Gravity Conjecture, and how this analysis may play an important role in examining the validity of non-supersymmetric constructions in string theory.

  2. G-structures and domain walls in heterotic theories

    NASA Astrophysics Data System (ADS)

    Lukas, Andre; Matti, Cyril

    2011-01-01

    We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger's complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.

  3. Negative branes, supergroups and the signature of spacetime

    NASA Astrophysics Data System (ADS)

    Dijkgraaf, Robbert; Heidenreich, Ben; Jefferson, Patrick; Vafa, Cumrun

    2018-02-01

    We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3-branes, we show that SU(0| N) supergroup theories are holographically dual to an exotic variant of type IIB string theory on {dS}_{3,2}× {\\overline{S}}^5 , for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov's instanton calculus, all of which agree, we derive the Seiberg-Witten curve for N=2 SU( N | M ) gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, though several puzzles remain.

  4. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  5. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electricmore » and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.« less

  6. Black hole attractors and gauge theories

    NASA Astrophysics Data System (ADS)

    Huang, Lisa Li Fang

    2007-12-01

    This thesis is devoted to the study of supersymmetric black holes that arise from string compactifications. We begin by studying the R 2 corrections to the entropy of two solutions of five dimensional supergravity, the supersymmetric black ring and the spinning black hole. Using Wald's formula we compute the R2 corrections to the entropy of the black ring and BMPV black hole. We study N D4-branes wrapping a 4 cycle and M DO-branes on the quintic. For N D4-branes, we resolve the naive mismatch between the moduli space of the Higgs branch of the gauge theory and the moduli of a degree N hypersurface which the D4-brane wraps. The degree N surface must admit a holomorphic divisor and is a determinantal variety. Adding a single DO brane to probe the deformed geometry, we recover the determinant equation from F and D flatness condition which was previously discovered from a classical geometry approach. We next generalize the qunitic story for Calabi-Yau manifolds arising from complete intersections in toric varieties. We recover the moduli space of N D4-branes in terms of the moduli space of a U( N) x U(N) gauge theory with bi-fundamentals com ing from a D6 - D6 system. We also recast the tachyon condensation of the D6 - D6 system in the language of open string gauged linear sigma model. We obtain the determinant equation from F-term constraints arising from a boundary coupling. We set out to understand the Ooguri-Strominger-Vafa conjecture directly in the D4-DO black hole attractor geometry. We show that the lift to the euclidean IIA attractor geometry gives a complexified M-theory geometry whose asymptotic boundary is a torus. Employing AdS3/CFT 2 duality, we argue that the string partition function computes the elliptic genus of the Maldacena-Strominger-Witten conformal field theory. We evaluate the IIA partition function using the Green-Schwarz formalism and show that it gives ZtopZ top, coming from instantons and anti-instantons respectively. Finally, we determine the spectrum of free, large N, SU( N) Yang Mills theory on S3 by decomposing its thermal partition function into characters of the irreducible representations of the conformal group SO(4, 2).

  7. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones.

    PubMed

    Yu, Jianfei; Duan, Meng; Wu, Weilong; Qi, Xiaotian; Xue, Peng; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu

    2017-01-18

    We have successfully developed a series of novel and modular ferrorence-based amino-phosphine-alcohol (f-Amphol) ligands, and applied them to iridium-catalyzed asymmetric hydrogenation of various simple ketones to afford the corresponding chiral alcohols with excellent enantioselectivities and conversions (98-99.9 % ee, >99 % conversion, turnover number up to 200 000). Control experiments and density functional theory (DFT) calculations have shown that the hydroxyl group of our f-Amphol ligands played a key role in this asymmetric hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. T-duality of singular spacetime compactifications in an H-flux

    NASA Astrophysics Data System (ADS)

    Linshaw, Andrew; Mathai, Varghese

    2018-07-01

    We begin by presenting a symmetric version of the circle equivariant T-duality result in a joint work of the second author with Siye Wu, thereby generalizing the results there. We then initiate the study of twisted equivariant Courant algebroids and equivariant generalized geometry and apply it to our context. As before, T-duality exchanges type IIA and type IIB string theories. In our theory, both spacetime and the T-dual spacetime can be singular spaces when the fixed point set is non-empty; the singularities correspond to Kaluza-Klein monopoles. We propose that the Ramond-Ramond charges of type II string theories on the singular spaces are classified by twisted equivariant cohomology groups, consistent with the previous work of Mathai and Wu, and prove that they are naturally isomorphic. We also establish the corresponding isomorphism of twisted equivariant Courant algebroids.

  9. Modular amplitudes and flux-superpotentials on elliptic Calabi-Yau fourfolds

    NASA Astrophysics Data System (ADS)

    Cota, Cesar Fierro; Klemm, Albrecht; Schimannek, Thorsten

    2018-01-01

    We discuss the period geometry and the topological string amplitudes on elliptically fibered Calabi-Yau fourfolds in toric ambient spaces. In particular, we describe a general procedure to fix integral periods. Using some elementary facts from homological mirror symmetry we then obtain Bridgelands involution and its monodromy action on the integral basis for non-singular elliptically fibered fourfolds. The full monodromy group contains a subgroup that acts as PSL(2,Z) on the Kähler modulus of the fiber and we analyze the consequences of this modularity for the genus zero and genus one amplitudes as well as the associated geometric invariants. We find holomorphic anomaly equations for the amplitudes, reflecting precisely the failure of exact PSL(2,Z) invariance that relates them to quasi-modular forms. Finally we use the integral basis of periods to study the horizontal flux superpotential and the leading order Kähler potential for the moduli fields in F-theory compactifications globally on the complex structure moduli space. For a particular example we verify attractor behaviour at the generic conifold given an aligned choice of flux which we expect to be universal. Furthermore we analyze the superpotential at the orbifold points but find no stable vacua.

  10. Particles and strings in six-dimensional (2, 0) theory

    NASA Astrophysics Data System (ADS)

    Henningson, Måns

    2004-11-01

    In 1995, we learned of the rather surprising existence of a completely new class of quantum theories in six space-time dimensions with(2,0)superconformal symmetry. Some important reasons to study these theories are: (i) Finding the right conceptual framework to define them is a very challenging problem, that will probably take a long time to solve. It is likely to involve new interesting mathematical structures with connections in particular to algebra and geometry. (ii) They give rise to certain Yang-Mills theories with maximally extended supersymmetry upon compactification on a two-torus. This may be a way to find an S-dual formulation of these lower dimensional theories. (iii) They arise within string/ M-theory as decoupled subsectors localized on certain space-time impurities such as branes or singularities. (This is in fact how these theories were first discovered (see Witten, hep-th/9507121).) This may provide an opportunity to study aspects of these higher dimensional theories without having to deal with the conceptual subtleties of quantum gravity. To cite this article: M. Henningson, C. R. Physique 5 (2004).

  11. Tops as building blocks for G 2 manifolds

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  12. Twistor approach to string compactifications: A review

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei

    2013-01-01

    We review a progress in obtaining the complete non-perturbative effective action of type II string theory compactified on a Calabi-Yau manifold. This problem is equivalent to understanding quantum corrections to the metric on the hypermultiplet moduli space. We show how all these corrections, which include D-brane and NS5-brane instantons, are incorporated in the framework of the twistor approach, which provides a powerful mathematical description of hyperkähler and quaternion-Kähler manifolds. We also present new insights on S-duality, quantum mirror symmetry, connections to integrable models and topological strings.

  13. Convergence of quantum electrodynamics in a curved modification of Minkowski space.

    PubMed Central

    Segal, I E; Zhou, Z

    1994-01-01

    The interaction and total hamiltonians for quantum electrodynamics, in the interaction representation, are entirely regular self-adjoint operators in Hilbert space, in the universal covering manifold M of the conformal compactification of Minkowski space Mo. (M is conformally equivalent to the Einstein universe E, in which Mo may be canonically imbedded.) In a fixed Lorentz frame this may be expressed as convergence in a spherical space with suitable periodic boundary conditions in time. The traditional relativistic theory is the formal limit of the present variant as the space curvature vanishes. PMID:11607455

  14. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  15. A simple-source model of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.

    2010-10-01

    The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.

  16. On Quadratic Divergences in Supergravity, Vacuum Energy and theSupersymmetric Flavor Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, Mary K.; Nelson, Brent D.

    2005-11-18

    We examine the phenomenological consequences ofquadratically divergent contributions to the scalar potential insupergravity effective Lagrangians. We focus specifically on the effectof these corrections on the vacuum configurationof scalar fields insoftly-broken supersymmetric theory is and the role these correctionsplay in generating non-diagonal soft scalar masses. Both effects can onlybe properly studied when the divergences are regulated in a manifestlysupersymmetric manner -- something which has ths far been neglected inpast treatments. We show how a supersymmetric regularization can impactpast conclusions about both types of phenomena and discuss what types ofhigh-energy theories are likely to be safe from unwanted flavor-changingneutral current interactions inmore » the context of supergravity theoriesderived from heterotic string compactifications.« less

  17. A Preliminary Study of Classroom Motivators and De-Motivators from a Motivation-Hygiene Perspective

    ERIC Educational Resources Information Center

    Katt, James A.; Condly, Steven J.

    2009-01-01

    This study seeks to begin answering two simple questions: "What motivates our students?" and its corollary, "What prevents our students from being motivated?" The motivation-hygiene theory (F. Herzberg, "Work and the nature of man," World Publishing, Cleveland, OH, 1966), a well-tested theory from organizational…

  18. 125 GeV Higgs boson mass from 5D gauge-Higgs unification

    NASA Astrophysics Data System (ADS)

    Carson, Jason; Okada, Nobuchika

    2018-03-01

    In the context of a simple gauge-Higgs unification (GHU) scenario based on the gauge group SU(3)×U(1)^' in a 5D flat space-time, we investigate the possibility of reproducing the observed Higgs boson mass of around 125 GeV. We introduce bulk fermion multiplets with a bulk mass and a (half-)periodic boundary condition. In our analysis, we adopt a low-energy effective theoretical approach of the GHU scenario, where the running Higgs quartic coupling is required to vanish at the compactification scale. Under this "gauge-Higgs condition," we investigate the renormalization group evolution of the Higgs quartic coupling and find a relation between the bulk mass and the compactification scale so as to reproduce the 125 GeV Higgs boson mass. Through quantum corrections at the one-loop level, the bulk fermions contribute to the Higgs boson production and decay processes and deviate the Higgs boson signal strengths at the Large Hadron Collider experiments from the Standard Model (SM) predictions. Employing the current experimental data that show that the Higgs boson signal strengths for a variety of Higgs decay modes are consistent with the SM predictions, we obtain lower mass bounds on the lightest mode of the bulk fermions to be around 1 TeV.

  19. Stability analysis of compactifications of D = 11 supergravity with SU(3) × SU(2) × U(1) symmetry

    NASA Astrophysics Data System (ADS)

    Page, Don N.; Pope, C. N.

    1984-09-01

    We show that the Mpqr Freund-Rubin compactification of eleven-dimensional supergravity is classically stable if and only if 7/2761/2 < -p/q- < 17/117(66)1/2. Permanent address: Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom.

  20. The large N limit of superconformal field theories and supergravity

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan

    1999-07-01

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.

  1. A Natural Extension of Standard Warped Higher-Dimensional Compactifications: Theory and Phenomenology

    NASA Astrophysics Data System (ADS)

    Hong, Sungwoo

    Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.

  2. On the dynamics of superstring compactification

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2018-05-01

    Compactification of the ten-dimensional heterotic superstring theory to four dimensions gives rise to two moduli potentials VA, VB, the positive semi-definiteness of which places constraints on the Euler characteristic \\bar{χ} of the internal space \\bar{g}_{μν}(y^{ξ}) and the adiabatic index γ of the effective matter source of energy-density ρ and pressure p = (γ -1)ρ that generates the physical four-space g_{ij}(xk), namely \\bar{χ} < 0, 4/3 ≤ γ ≤ 2, or \\bar{χ} > 0, 1 ≤ γ ≤ 4/3. Here, we show how fermion-bilinear condensation in the internal space, first put forward by Helayël-Neto and Smith, determines the field \\tilde{β} ≡ A_r B_r3, thus reducing the moduli space to a single canonical field \\tilde{σ}=2σB with a potential ˜ , which is positive semi-definite under the same conditions that ensure positive semi-definiteness of VA, VB, and has a minimum at a value of \\tilde{β} that is approximately constant far from the Planck era at t ≫ t_P. The fields σA, σB, which are canonically normalized in the zero-slope limit, are modified by contributions originating from the higher-derivative gravitational terms α^' \\hatR_E2 and α^' 3} \\hatR4, but the associated kinetic energy remains positive for times t ≳ t_P/2, guaranteeing classical stability of the solution, since the generalized indeterminacy principle implies a minimum physically measurable time t0 ≈ 50 t_P for the superstring theory.

  3. One-loop Pfaffians and large-field inflation in string theory

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian; Wieck, Clemens

    2017-06-01

    We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.

  4. M-theory superstrata and the MSW string

    DOE PAGES

    Bena, Iosif; Martinec, Emil; Turton, David; ...

    2017-06-26

    The low-energy description of wrapped M5 branes in compactifications of M-theory on a Calabi-Yau threefold times a circle is given by a conformal field theory studied by Maldacena, Strominger and Witten and known as the MSW CFT. Taking the threefold to be T 6 or K3×T 2, we construct a map between a sub-sector of this CFT and a sub-sector of the D1-D5 CFT. We demonstrate this map by considering a set of D1-D5 CFT states that have smooth horizonless bulk duals, and explicitly constructing the supergravity solutions dual to the corresponding states of the MSW CFT. We thus obtainmore » the largest known class of solutions dual to MSW CFT microstates, and demonstrate that five-dimensional ungauged supergravity admits much larger families of smooth horizonless solutions than previously known.« less

  5. Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory

    DOE PAGES

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...

    2016-10-20

    We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less

  6. Algorithms and theory for the design and programming of industrial control systems materialized with PLC's

    NASA Astrophysics Data System (ADS)

    Montoya Villena, Rafael

    According to its title, the general objective of the Thesis consists in developing a clear, simple and systematic methodology for programming type PLC devices. With this aim in mind, we will use the following elements: Codification of all variables types. This section is very important since it allows us working with little information. The necessary rules are given to codify all type of phrases produced in industrial processes. An algorithm that describes process evolution and that has been called process D.F. This is one of the most important contributions, since it will allow us, together with information codification, representing the process evolution in a graphic way and with any design theory used. Theory selection. Evidently, the use of some kind of design method is necessary to obtain logic equations. For this particular case, we will use binodal theory, an ideal theory for wired technologies, since it can obtain highly reduced schemas for relatively simple automatisms, which means a minimum number of components used. User program outline algorithm (D.F.P.). This is another necessary contribution and perhaps the most important one, since logic equations resulting from binodal theory are compatible with process evolution if wired technology is used, whether it is electric, electronic, pneumatic, etc. On the other hand, PLC devices performance characteristics force the program instructions order to validate or not the automatism, as we have proven in different articles and lectures at congresses both national and international. Therefore, we will codify any information concerning the automating process, graphically represent its temporal evolution and, applying binodal theory and D.F.P (previously adapted), succeed in making logic equations compatible with the process to be automated and the device in which they will be implemented (PLC in our case)

  7. Inflation from higher dimensions

    NASA Astrophysics Data System (ADS)

    Nakada, Hiroshi; Ketov, Sergei V.

    2017-12-01

    We derive the scalar potential in four spacetime dimensions from an eight-dimensional (R +γ R4-2 Λ -F42) gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ and the cosmological constant Λ , by using the flux compactification of four extra dimensions on a 4-sphere with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost) stabilized at its minimum. We also speculate about a possibility of embedding our model in eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified eleven-dimensional supergravity.

  8. The hypermultiplet with Heisenberg isometry in N = 2 global and local supersymmetry

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Nicola; Antoniadis, Ignatios; Derendinger, Jean-Pierre; Tziveloglou, Pantelis

    2011-06-01

    The string coupling of N = 2 supersymmetric compactifications of type II string theory on a Calabi-Yau manifold belongs to the so-called universal dilaton hyper-multiplet, that has four real scalars living on a quaternion-Kähler manifold. Requiring Heisenberg symmetry, which is a maximal subgroup of perturbative isometries, reduces the possible manifolds to a one-parameter family that describes the tree-level effective action deformed by the only possible perturbative correction arising at one-loop level. A similar argument can be made at the level of global supersymmetry where the scalar manifold is hyper-Kähler. In this work, the connection between global and local supersymmetry is explicitly constructed, providing a non-trivial gravity decoupled limit of type II strings already in perturbation theory.

  9. Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems

    NASA Astrophysics Data System (ADS)

    Katzourakis, Nikos

    2017-07-01

    We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.

  10. Generating the curvature perturbation at the end of inflation in string theory.

    PubMed

    Lyth, David H; Riotto, Antonio

    2006-09-22

    In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane.

  11. Marginal deformations of heterotic G 2 sigma models

    NASA Astrophysics Data System (ADS)

    Fiset, Marc-Antoine; Quigley, Callum; Svanes, Eirik Eik

    2018-02-01

    Recently, the infinitesimal moduli space of heterotic G 2 compactifications was described in supergravity and related to the cohomology of a target space differential. In this paper we identify the marginal deformations of the corresponding heterotic nonlinear sigma model with cohomology classes of a worldsheet BRST operator. This BRST operator is nilpotent if and only if the target space geometry satisfies the heterotic supersymmetry conditions. We relate this to the supergravity approach by showing that the corresponding cohomologies are indeed isomorphic. We work at tree-level in α' perturbation theory and study general geometries, in particular with non-vanishing torsion.

  12. D-type conformal matter and SU/USp quivers

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Cheol; Razamat, Shlomo S.; Vafa, Cumrun; Zafrir, Gabi

    2018-06-01

    We discuss the four dimensional models obtained by compactifying a single M5 brane probing D N singularity (minimal D-type (1 , 0) conformal matter in six dimensions) on a torus with flux for abelian subgroups of the SO(4 N) flavor symmetry. We derive the resulting quiver field theories in four dimensions by first compactifying on a circle and relating the flux to duality domain walls in five dimensions. This leads to novel N=1 dualities in 4 dimensions which arise from distinct five dimensional realizations of the circle compactifications of the D-type conformal matter.

  13. Matter-antimatter asymmetry in the universe via string-inspired CPT violation at early eras

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2018-01-01

    In four-space-time dimensional string/brane theory, obtained either through compactification of the extra spatial dimensions, or by appropriate restriction to brane worlds with three large spatial dimensions, the rich physics potential associated with the presence of non-trivial Kalb-Ramond (KR) axion-like fields has not been fully exploited so far. In this talk, I discuss a scenario whereby such fields produce spontaneous Lorentz- and CPT-violating cosmological backgrounds over which strings propagate, which in the early Universe can lead to Baryogenesis through Leptogenesis in models with heavy right-handed neutrinos.

  14. Hitchin functionals are related to measures of entanglement

    NASA Astrophysics Data System (ADS)

    Lévay, Péter; Sárosi, Gábor

    2012-11-01

    According to the black hole/qubit correspondence (BHQC) certain black hole entropy formulas in supergravity can be related to multipartite entanglement measures of quantum information. Here we show that the origin of this correspondence is a connection between Hitchin functionals used as action functionals for form theories of gravity related to topological strings and entanglement measures for systems with a small number of constituents. The basic idea acting as a unifying agent in these seemingly unrelated fields is stability connected to the mathematical notion of special prehomogeneous vector spaces associated to Freudenthal systems coming from simple Jordan algebras. It is shown that the nonlinear function featuring these functionals and defining Calabi-Yau and generalized Calabi-Yau structures is the Freudenthal dual, a concept introduced recently in connection with the BHQC. We propose to use the Hitchin invariant for three-forms in seven dimensions as an entanglement measure playing a basic role in classifying three-fermion systems with seven modes. The representative of the class of maximal tripartite entanglement is the three-form used as a calibration for compactification on manifolds with G2 holonomy. The idea that entanglement measures are related to action functionals from which the usual correspondence of the BHQC follows at the tree level suggests that one can use the BHQC in a more general context.

  15. Compactifications of deformed conifolds, branes and the geometry of qubits

    NASA Astrophysics Data System (ADS)

    Cvetič, M.; Gibbons, G. W.; Pope, C. N.

    2016-01-01

    We present three families of exact, cohomogeneity-one Einstein metrics in (2 n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces C{P}^{n+1} , written in a Stenzel form, whose principal orbits are the Stiefel manifolds {V}_2(R}^{n+2})=SO(n+2)/SO(n) divided by {Z}_2 . The second family are also Einstein-Kähler metrics, now on the Grassmannian manifolds {G}_2({{R}}^{n+3})=SO(n+3)/((SO(n+1)× SO(2)), whose principal orbits are the Stiefel manifolds {V}_2({{R}}^{n+2}) (with no {{Z}}_2 factoring in this case). The third family are Einstein metrics on the product manifolds S n+1 × S n+1, and are Kähler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the Kähler geometry of Fubini-Study metrics on {C}{{P}}^{n+1} , and we apply the formalism to study the quantum entanglement of qubits.

  16. Compactifications of deformed conifolds, branes and the geometry of qubits $\\mathfrak S

    DOE PAGES

    Cvetič, M.; Gibbons, G. W.; Pope, C. N.

    2016-01-22

    We present three families of exact, cohomogeneity-one Einstein metrics in (2n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces CP n+1, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V 2(more » $$\\mathbb R^{2+3}$$) = SO(n+2)/SO(n) divided by Z 2. The second family are also Einstein-Kahler metrics, now on the Grassmannian manifolds G 2(R n+3) = SO(n+3)/((SO(n+1)×SO(2)), whose principal orbits are the Stiefel manifolds V 2($$\\mathbb R^{2+3}$$) (with no Z 2 factoring in this case). Furthermore, the third family are Einstein metrics on the product manifolds S n+1 × S n+1, and are Kahler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. Also, we elaborate on the geometric approach to quantum mechanics based on the Kahler geometry of Fubini-Study metrics on $$\\mathbb CP^{n+1}$$, and we apply the formalism to study the quantum entanglement of qubits.« less

  17. Efficient High-Order Accurate Methods using Unstructured Grids for Hydrodynamics and Acoustics

    DTIC Science & Technology

    2007-08-31

    Leer. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35-61, 1983. [46] F . Eleuterio Toro ...early stage [4-61. The basic idea can be surmised from simple approximation theory. If a continuous function f is to be approximated over a set of...a2f 4h4 a4ff(x+eh) = f (x)+-- + _ •-+• e +0 +... (1) where 0 < e < 1 for approximations inside the interval of width h. For a second-order approximation

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita; ITEP, Moscow; Shatashvili, Samson

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence ismore » the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.« less

  19. Birth of the Universe from the Multiverse

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2015-01-01

    Compactification of extra dimensions in string theory leads to a vast number of (3+1) dimensional worlds, (about 10500 so far), coined the landscape. At the time of the discovery of the landscape, the question which one of these worlds is our universe seemed hopeless. Many argued that the vastness of the landscape undermines the very foundations of string theory for two reasons: (i) the theory seemed unfalsifiable since for every observation we could find a matching world on the landscape; (ii) the method advocated at the time for making sense of this landscape was the anthropic principle. The former objection implied string theory can not be scientific. The latter concern is that anthropics do not help scientific inquiry and rigor but rather it may seem to push some version of creationism to the next level. For these reasons the whole field of string theory and also, of cosmology that relied on it for answers about fundamental questions such as the origins of the universe, seemed to be in deep crisis at the beginning of the millenia...

  20. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    NASA Technical Reports Server (NTRS)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  1. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure.

    PubMed

    Zou, J; Saven, J G

    2000-02-11

    A self-consistent theory is presented that can be used to estimate the number and composition of sequences satisfying a predetermined set of constraints. The theory is formulated so as to examine the features of sequences having a particular value of Delta=E(f)-(u), where E(f) is the energy of sequences when in a target structure and (u) is an average energy of non-target structures. The theory yields the probabilities w(i)(alpha) that each position i in the sequence is occupied by a particular monomer type alpha. The theory is applied to a simple lattice model of proteins. Excellent agreement is observed between the theory and the results of exact enumerations. The theory provides a quantitative framework for the design and interpretation of combinatorial experiments involving proteins, where a library of amino acid sequences is searched for sequences that fold to a desired structure. Copyright 2000 Academic Press.

  2. Fivebranes and 3-manifold homology

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  3. Counting spinning dyons in maximal supergravity: the Hodge-elliptic genus for tori

    NASA Astrophysics Data System (ADS)

    Benjamin, Nathan; Kachru, Shamit; Tripathy, Arnav

    2017-11-01

    We consider M-theory compactified on T^4 × T^2 and describe the count of spinning 1/8-BPS states. This builds on the work of Maldacena-Moore-Strominger in the physics literature. It simultaneously provides a refinement of the recent mathematical work of Bryan-Oberdieck-Pandharipande-Yin and Oberdieck-Shen, which studied (non-motivic) reduced Donaldson-Thomas invariants of abelian surfaces and threefolds. As in previous work on K3 × T^2 compactification, we track angular momenta under both the SU(2)_L and SU(2)_R factors in the 5d little group, providing predictions for the relevant motivic curve counts.

  4. COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime.

    NASA Astrophysics Data System (ADS)

    El Naschie, M. S.

    1998-08-01

    The first part of the paper attempts to establish connections between hypersphere backing in infinite dimensions, the expectation value of dimE(∞) spacetime and the COBE measurement of the microwave background radiation. One of the main results reported here is that the mean sphere in S(∞) spans a four dimensional manifold and is thus equal to the expectation value of the topological dimension of E(∞). In the second part the author introduces within a general theory, a probabilistic justification for a compactification which reduces an infinite dimensional spacetime E(∞) (n = ∞) to a four dimensional one (DT = n = 4).

  5. Parametrizing growth in dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Resco, Miguel Aparicio; Maroto, Antonio L.

    2018-02-01

    It is well known that an extremely accurate parametrization of the growth function of matter density perturbations in Λ CDM cosmology, with errors below 0.25%, is given by f (a )=Ωmγ(a ) with γ ≃0.55 . In this work, we show that a simple modification of this expression also provides a good description of growth in modified gravity theories. We consider the model-independent approach to modified gravity in terms of an effective Newton constant written as μ (a ,k )=Geff/G and show that f (a )=β (a )Ωmγ(a ) provides fits to the numerical solutions with similar accuracy to that of Λ CDM . In the time-independent case with μ =μ (k ), simple analytic expressions for β (μ ) and γ (μ ) are presented. In the time-dependent (but scale-independent) case μ =μ (a ), we show that β (a ) has the same time dependence as μ (a ). As an example, explicit formulas are provided in the Dvali-Gabadadze-Porrati (DGP) model. In the general case, for theories with μ (a ,k ), we obtain a perturbative expansion for β (μ ) around the general relativity case μ =1 which, for f (R ) theories, reaches an accuracy below 1%. Finally, as an example we apply the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the μ parameter.

  6. AGT relations for abelian quiver gauge theories on ALE spaces

    NASA Astrophysics Data System (ADS)

    Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.

    2016-05-01

    We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.

  7. Mean-field theory for multipole ordering in f-electron systems on the basis of a j-j coupling scheme

    NASA Astrophysics Data System (ADS)

    Yamamura, Ryosuke; Hotta, Takashi

    2018-05-01

    We develop a microscopic theory for multipole ordering, applicable to the system with plural numbers of f electrons per ion, from an itinerant picture on the basis of a j-j coupling scheme. For the purpose, by introducing the Γ8 Hubbard Hamiltonian as the minimum model to discuss the multipole ordering in f-electron systems, we describe the mean-field approximation in terms of the multipole operators. For the case of n = 2 , where n denotes the average f-electron number per ion, we analyze the model on a simple cubic lattice to obtain the multipole phase diagram. In particular, we find the order of non-Kramers Γ3 quadrupoles, O20 and O22 , with different ordering vectors. We attempt to explain the phase diagram from the discussion on the interaction energy.

  8. Four-qubit systems and dyonic black Hole-Black branes in superstring theory

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using dyonic solutions in the type IIA superstring theory on Calabi-Yau (CY) manifolds, we reconsider the study of black objects and quantum information theory using string/string duality in six dimensions. Concretely, we relate four-qubits with a stringy quaternionic moduli space of type IIA compactification associated with a dyonic black solution formed by black holes (BHs) and black 2-branes (B2B) carrying eight electric charges and eight magnetic charges. This connection is made by associating the cohomology classes of the heterotic superstring on T4 to four-qubit states. These states are interpreted in terms of such dyonic charges resulting from the quaternionic symmetric space SO(4,4) SO(4)×SO(4) corresponding to a N = 4 sigma model superpotential in two dimensions. The superpotential is considered as a functional depending on four quaternionic fields mapped to a class of Clifford algebras denoted as Cl0,4. A link between such an algebra and the cohomology classes of T4 in heterotic superstring theory is also given.

  9. A limit for large R-charge correlators in N = 2 theories

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2018-05-01

    Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.

  10. Statistical distribution of the vacuum energy density in racetrack Kähler uplift models in string theory

    NASA Astrophysics Data System (ADS)

    Sumitomo, Yoske; Tye, S.-H. Henry; Wong, Sam S. C.

    2013-07-01

    We study a racetrack model in the presence of the leading α'-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the Kähler Uplift model studied previously, the α'-correction is more controllable for the meta-stable de-Sitter vacua in the racetrack case since the constraint on the compactified volume size is very much relaxed. We find that the vacuum energy density Λ for de-Sitter vacua approaches zero exponentially as the volume grows. We also analyze properties of the probability distribution of Λ in this class of models. As in other cases studied earlier, the probability distribution again peaks sharply at Λ = 0. We also study the Racetrack Kähler Uplift model in the Swiss-Cheese type model.

  11. Transdimensional tunneling in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco-Pillado, Jose J.; Schwartz-Perlov, Delia; Vilenkin, Alexander, E-mail: jose@cosmos.phy.tufts.edu, E-mail: dperlov@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2010-05-01

    Topology-changing transitions between vacua of different effective dimensionality are studied in the context of a 6-dimensional Einstein-Maxwell theory. The landscape of this theory includes a 6d de Sitter vacuum (dS{sub 6}), a number of dS{sub 4} × S{sub 2} and AdS{sub 4} × S{sub 2} vacua, and a number of AdS{sub 2} × S{sub 4} vacua. We find that compactification transitions dS{sub 6} → AdS{sub 2} × S{sub 4} occur through the nucleation of electrically charged black hole pairs, and transitions from dS{sub 6} to dS{sub 4} × S{sub 2} and AdS{sub 4} × S{sub 2} occur through the nucleationmore » of magnetically charged spherical black branes. We identify the appropriate instantons and describe the spacetime structure resulting from brane nucleation.« less

  12. Cosmological moduli and the post-inflationary universe: A critical review

    NASA Astrophysics Data System (ADS)

    Kane, Gordon; Sinha, Kuver; Watson, Scott

    2015-06-01

    We critically review the role of cosmological moduli in determining the post-inflationary history of the universe. Moduli are ubiquitous in string and M-theory constructions of beyond the Standard Model physics, where they parametrize the geometry of the compactification manifold. For those with masses determined by supersymmetry (SUSY) breaking this leads to their eventual decay slightly before Big Bang nucleosynthesis (BBN) (without spoiling its predictions). This results in a matter dominated phase shortly after inflation ends, which can influence baryon and dark matter genesis, as well as observations of the cosmic microwave background (CMB) and the growth of large-scale structure. Given progress within fundamental theory, and guidance from dark matter and collider experiments, nonthermal histories have emerged as a robust and theoretically well-motivated alternative to a strictly thermal one. We review this approach to the early universe and discuss both the theoretical challenges and the observational implications.

  13. Was the Universe actually radiation dominated prior to nucleosynthesis?

    NASA Astrophysics Data System (ADS)

    Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue

    2017-08-01

    Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.

  14. Flavours and infra-red instability in holography

    NASA Astrophysics Data System (ADS)

    Kundu, Arnab

    2017-11-01

    With a simple gravitational model in five dimensions, defined by Einstein-gravity with a negative cosmological constant, coupled to a Dirac-Born-Infeld and a Chern-Simons term, we explore the fate of BF-bound violation for a probe scalar field and a fluctuation mode of the corresponding geometry. We assume this simple model to capture the dynamics of a strongly coupled SU(N c ) gauge theory with N f fundamental matter, which in the limit O({N}_c)˜ O({N}_f) and with a non-vanishing matter density, is holographically described by an AdS2-geometry in the IR. We demonstrate that, superconductor/superfluid instabilities are facilitated and spontaneous breaking of translational invariance is inhibited with increasing values of ( N f /N c ). This is similar, in spirit, with known results in large N c Quantum Chromodynamics with N f quarks and a non-vanishing density, in which the chiral density wave phase becomes suppressed and superconducting instabilities become favoured as the number of quarks is increased.

  15. Moduli stabilising in heterotic nearly Kähler compactifications

    NASA Astrophysics Data System (ADS)

    Klaput, Michael; Lukas, Andre; Matti, Cyril; Svanes, Eirik E.

    2013-01-01

    We study heterotic string compactifications on nearly Kähler homogeneous spaces, including the gauge field effects which arise at order α'. Using Abelian gauge fields, we are able to solve the Bianchi identity and supersymmetry conditions to this order. The four-dimensional external space-time consists of a domain wall solution with moduli fields varying along the transverse direction. We find that the inclusion of α' corrections improves the moduli stabilization features of this solution. In this case, one of the dilaton and the volume modulus asymptotes to a constant value away from the domain wall. It is further shown that the inclusion of non-perturbative effects can stabilize the remaining modulus and "lift" the domain wall to an AdS vacuum. The coset SU(3)/U(1)2 is used as an explicit example to demonstrate the validity of this AdS vacuum. Our results show that heterotic nearly Kähler compactifications can lead to maximally symmetric four-dimensional space-times at the non-perturbative level.

  16. A black hole quartet: New solutions and applications to string theory

    NASA Astrophysics Data System (ADS)

    Padi, Megha

    In this thesis, we study a zoo of black hole solutions which help us connect string theory to the universe we live in. The intuition for how to attack fundamental problems can often be found in a toy model. In Chapter 2, we show that three-dimensional topologically massive gravity with a negative cosmological constant -ℓ -2 and coupling constant has "warped AdS3" solutions with SL(2, R ) x U(1) isometry. For muℓ > 3, we show that certain discrete quotients of warped AdS3 lead to black holes. Their thermodynamics is consistent with the existence of a holographic dual CFT with central charges cR = 15mℓ 2+81Gmm ℓ2+27 and cL = 12mℓ 2Gmm ℓ2+27 . The entropy of many supersymmetric black holes have been accounted for, but more realistic non-supersymmetric black holes have been largely overlooked. In Chapter 3, we derive new single-centered and multi-centered non-BPS black hole solutions for several four dimensional models which, after Kaluza-Klein reduction, admit a description in terms of a sigma model with symmetric target space. In particular, we provide the exact solution with generic charges and asymptotic moduli in N=2 supergravity coupled to one vector multiplet. As it stands, the current formulation of string theory allows for an extremely large number of possible solutions (or vacua). We first analyze this landscape by looking for universal characteristics. In Chapter 4, we provide evidence for the conjecture that gravity is always the weakest force in any string compactification. We show that, in several examples arising in string theory, higher-derivative corrections always make extremal non-supersymmetric black holes lighter than the classical bound M/Q = 1. In Chapter 5, we construct novel black hole bound states, called orientiholes, that are T-dual to IIB orientifold compactifications. The gravitational entropy of such orientiholes provides an "experimental" estimate of the number of vacua in various sectors of the IIB landscape. Furthermore, basic physical properties of orientiholes map to (sometimes subtle) microscopic features, thus providing a useful alternative viewpoint on a number of issues arising in D-brane model building. We also suggest a relation to the topological string analogous to the OSV conjecture.

  17. Unifying Type-II Strings by Exceptional Groups

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2018-05-01

    We construct the exceptional sigma model: a two-dimensional sigma model coupled to a supergravity background in a manifestly (formally) ED (D )-covariant manner. This formulation of the background is provided by exceptional field theory (EFT), which unites the metric and form fields of supergravity in ED (D ) multiplets before compactification. The realization of the symmetries of EFT on the world sheet uniquely fixes the Weyl-invariant Lagrangian and allows us to relate our action to the usual type-IIA fundamental string action and a form of the type-IIB (m , n ) action. This uniqueness "predicts" the correct form of the couplings to gauge fields in both Neveu-Schwarz and Ramond sectors, without invoking supersymmetry.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baguet, A.; Pope, Christopher N.; Samtleben, H.

    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less

  19. Aspects of defects in 3d-3d correspondence

    DOE PAGES

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; ...

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N-1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU(N )], 5d N=2 SYM, and alsomore » supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper, which summarizes our main results.« less

  20. Supernatural supersymmetry and its classic example: M-theory inspired NMSSM

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan

    2016-06-01

    We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.

  1. A Floating Potential Method for Determining Ion Density

    NASA Astrophysics Data System (ADS)

    Evans, John D.; Chen, Francis F.

    2001-10-01

    The density n in partially ionized discharges is often found from the saturation ion current Ii of a cylindrical Langmuir probe. Collisionless probe theories, however, disagree with measured I - V curves probably because of collisions^1. We use a heuristic method that yields n from probe data agreeing with microwave interferometry. Probe current I is raised to the 4/3 power and fitted to a straight line on an I^4/3-V plot. The line is extrapolated to the floating potential V_f, thus approximating I_i(V_f). The sheath thickness d_sh for V = Vf is calculated from the Child-Langmuir (CL) law, and applying the Bohm sheath criterion to the surface at r_sh = Rp + d_sh yields n when Ii = I_i(V_f). This method works, but it cannot be justified by theory. Neglected are (a) cylindrical convergence of the ion charge, (b) finite ion energy at r = r_sh, (c) ions orbiting the probe, and (d) escape of ions axially. The Allen-Boyd-Reynolds theory, which treats (a) and (b) and neglects (c) and (d), gives too low n's. Apparently the errors self-cancel, and the simple Vf method gives the right result. ^1 F.F. Chen, Phys. Plasmas 8, 3029 (2001).

  2. Simple, explicitly time-dependent, and regular solutions of the linearized vacuum Einstein equations in Bondi-Sachs coordinates

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas

    2013-05-01

    Perturbations of the linearized vacuum Einstein equations in the Bondi-Sachs formulation of general relativity can be derived from a single master function with spin weight two, which is related to the Weyl scalar Ψ0, and which is determined by a simple wave equation. By utilizing a standard spin representation of tensors on a sphere and two different approaches to solve the master equation, we are able to determine two simple and explicitly time-dependent solutions. Both solutions, of which one is asymptotically flat, comply with the regularity conditions at the vertex of the null cone. For the asymptotically flat solution we calculate the corresponding linearized perturbations, describing all multipoles of spin-2 waves that propagate on a Minkowskian background spacetime. We also analyze the asymptotic behavior of this solution at null infinity using a Penrose compactification and calculate the Weyl scalar Ψ4. Because of its simplicity, the asymptotically flat solution presented here is ideally suited for test bed calculations in the Bondi-Sachs formulation of numerical relativity. It may be considered as a sibling of the Bergmann-Sachs or Teukolsky-Rinne solutions, on spacelike hypersurfaces, for a metric adapted to null hypersurfaces.

  3. Admixture, Population Structure, and F-Statistics.

    PubMed

    Peter, Benjamin M

    2016-04-01

    Many questions about human genetic history can be addressed by examining the patterns of shared genetic variation between sets of populations. A useful methodological framework for this purpose isF-statistics that measure shared genetic drift between sets of two, three, and four populations and can be used to test simple and complex hypotheses about admixture between populations. This article provides context from phylogenetic and population genetic theory. I review how F-statistics can be interpreted as branch lengths or paths and derive new interpretations, using coalescent theory. I further show that the admixture tests can be interpreted as testing general properties of phylogenies, allowing extension of some ideas applications to arbitrary phylogenetic trees. The new results are used to investigate the behavior of the statistics under different models of population structure and show how population substructure complicates inference. The results lead to simplified estimators in many cases, and I recommend to replace F3 with the average number of pairwise differences for estimating population divergence. Copyright © 2016 by the Genetics Society of America.

  4. A Solution to the Fundamental Linear Fractional Order Differential Equation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  5. Emergence of running dark energy from polynomial f( R) theory in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej

    2017-09-01

    We consider FRW cosmology in f(R)= R+ γ R^2+δ R^3 modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.

  6. High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bansal, Narottam P.

    2000-01-01

    High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.

  7. Theory of Force Regulation by Nascent Adhesion Sites

    PubMed Central

    Bruinsma, Robijn

    2005-01-01

    The mechanical coupling of a cell with the extracellular matrix relies on adhesion sites, clusters of membrane-associated proteins that communicate forces generated along the F-Actin filaments of the cytoskeleton to connecting tissue. Nascent adhesion sites have been shown to regulate these forces in response to tissue rigidity. Force-regulation by substrate rigidity of adhesion sites with fixed area is not possible for stationary adhesion sites, according to elasticity theory. A simple model is presented to describe force regulation by dynamical adhesion sites. PMID:15849245

  8. Do the Details Matter? Comparing Performance Forecasts from Two Computational Theories of Fatigue

    DTIC Science & Technology

    2009-12-01

    Bulletin & Review , 9(1), 3-25. Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during...Force Office of Scientific Research (AFOSR). References Estes, W. K. (2002). Traps in the route to models of memory and decision. Psychonomic

  9. Distinct Orbitofrontal Regions Encode Stimulus and Choice Valuation

    ERIC Educational Resources Information Center

    Cunningham, William A.; Kesek, Amanda; Mowrer, Samantha M.

    2009-01-01

    The weak axiom of revealed preferences suggests that the value of an object can be understood through the simple examination of choices. Although this axiom has driven economic theory, the assumption of equation between value and choice is often violated. fMRI was used to decouple the processes associated with evaluating stimuli from evaluating…

  10. Bulk renormalization and particle spectrum in codimension-two brane worlds

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2013-04-01

    We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).

  11. M-theoretic derivations of 4d-2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems

    NASA Astrophysics Data System (ADS)

    Tan, Meng-Chwan

    2013-07-01

    In part I, we extend our analysis in [arXiv:0807.1107], and show that a mathematically conjectured geometric Langlands duality for complex surfaces in [1], and its generalizations — which relate some cohomology of the moduli space of certain ("ramified") G-instantons to the integrable representations of the Langlands dual of certain affine (sub) G-algebras, where G is any compact Lie group — can be derived, purely physically, from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent. In part II, to the setup in part I, we introduce Omega-deformation via fluxbranes and add half-BPS boundary defects via M9-branes, and show that the celebrated AGT correspondence in [2, 3], and its generalizations — which essentially relate, among other things, some equivariant cohomology of the moduli space of certain ("ramified") G-instantons to the integrable representations of the Langlands dual of certain affine -algebras — can likewise be derived from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent. In part III, we consider various limits of our setup in part II, and connect our story to chiral fermions and integrable systems. Among other things, we derive the NekrasovOkounkov conjecture in [4] — which relates the topological string limit of the dual Nekrasov partition function for pure G to the integrable representations of the Langlands dual of an affine G-algebra — and also demonstrate that the Nekrasov-Shatashvili limit of the "fullyramified" Nekrasov instanton partition function for pure G is a simultaneous eigenfunction of the quantum Toda Hamiltonians associated with the Langlands dual of an affine G-algebra. Via the case with matter, we also make contact with Hitchin systems and the "ramified" geometric Langlands correspondence for curves.

  12. Supersymmetric solutions of the cosmological, gauged, ℂ magic model

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro

    2018-05-01

    We construct supersymmetric solutions of theories of gauged N = 1 , d = 5 supergravity coupled to vector multiplets with a U(1)R Abelian (Fayet-Iliopoulos) gauging and an independent SU(2) gauging associated to an SU(2) isometry group of the Real Special scalar manifold. These theories provide minimal supersymmetrizations of 5-dimensional SU(2) Einstein-Yang-Mills theories with negative cosmological constant. We consider a minimal model with these gauge groups and the "magic model" based on the Jordan algebra J 3 ℂ with gauge group SU(3) × U(1)R, which is a consistent truncation of maximal SO(6)-gauged supergravity in d = 5 and whose solutions can be embedded in Type IIB Superstring Theory. We find several solutions containing selfdual SU(2) instantons, some of which asymptote to AdS5 and some of which are very small, supersymmetric, deformations of AdS5. We also show how some of those solutions can be embedded in Romans' SU(2) × U(1)-gauged half-maximal supergravity, which was obtained by Lu, Pope and Tran by compactification of the Type IIB Superstring effective action. This provides another way of uplifting those solutions to 10 dimensions.

  13. Higher derivatives in Type II and M-theory on Calabi-Yau threefolds

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Mayer, Kilian; Weissenbacher, Matthias

    2018-02-01

    The four- and five-dimensional effective actions of Calabi-Yau threefold compactifications are derived with a focus on terms involving up to four space-time derivatives. The starting points for these reductions are the ten- and eleven-dimensional supergravity actions supplemented with the known eight-derivative corrections that have been inferred from Type II string amplitudes. The corrected background solutions are determined and the fluctuations of the Kähler structure of the compact space and the form-field back-ground are discussed. It is concluded that the two-derivative effective actions for these fluctuations only takes the expected supergravity form if certain additional ten- and eleven-dimensional higher-derivative terms for the form-fields are included. The main results on the four-derivative terms include a detailed treatment of higher-derivative gravity coupled to Kähler structure deformations. This is supplemented by a derivation of the vector sector in reductions to five dimensions. While the general result is only given as an expansion in the fluctuations, a complete treatment of the one-Kähler modulus case is presented for both Type II theories and M-theory.

  14. Qubit and fermionic Fock spaces from type II superstring black holes

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using Hodge diagram combinatorial data, we study qubit and fermionic Fock spaces from the point of view of type II superstring black holes based on complex compactifications. Concretely, we establish a one-to-one correspondence between qubits, fermionic spaces and extremal black holes in maximally supersymmetric supergravity obtained from type II superstring on complex toroidal and Calabi-Yau compactifications. We interpret the differential forms of the n-dimensional complex toroidal compactification as states of n-qubits encoding information on extremal black hole charges. We show that there are 2n copies of n qubit systems which can be split as 2n = 2n-1 + 2n-1. More precisely, 2n-1 copies are associated with even D-brane charges in type IIA superstring and the other 2n-1 ones correspond to odd D-brane charges in IIB superstring. This correspondence is generalized to a class of Calabi-Yau manifolds. In connection with black hole charges in type IIA superstring, an n-qubit system has been obtained from a canonical line bundle of n factors of one-dimensional projective space ℂℙ1.

  15. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  16. Axions, inflation and the anthropic principle

    NASA Astrophysics Data System (ADS)

    Mack, Katherine J.

    2011-07-01

    The QCD axion is the leading solution to the strong-CP problem, a dark matter candidate, and a possible result of string theory compactifications. However, for axions produced before inflation, symmetry-breaking scales of fagtrsim1012 GeV (which are favored in string-theoretic axion models) are ruled out by cosmological constraints unless both the axion misalignment angle θ0 and the inflationary Hubble scale HI are extremely fine-tuned. We show that attempting to accommodate a high-fa axion in inflationary cosmology leads to a fine-tuning problem that is worse than the strong-CP problem the axion was originally invented to solve. We also show that this problem remains unresolved by anthropic selection arguments commonly applied to the high-fa axion scenario.

  17. No-scale inflation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-05-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  18. Aspects of string phenomenology in particle physics and cosmology

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2017-12-01

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  19. Evidence for a bound on the lifetime of de Sitter space

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben; Lippert, Matthew

    2008-12-01

    Recent work has suggested a surprising new upper bound on the lifetime of de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time but parametrically shorter than the recurrence time. We investigate whether the bound is satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom to make the supersymmetry breaking scale exponentially small, which naively would lead to extremely stable vacua, we find that the lifetime is always less than about exp(1022) Hubble times, in agreement with the proposed bound. This result, however, is contingent on several estimates and assumptions; in particular, we rely on a conjectural upper bound on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.

  20. Consistent Pauli reduction on group manifolds

    DOE PAGES

    Baguet, A.; Pope, Christopher N.; Samtleben, H.

    2016-01-01

    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less

  1. Path integral formulation of the Hodge duality on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.

  2. Physics Proofs of Four Millennium-Problems(MP) via CATEGORY-SEMANTICS(C-S)/F=C Aristotle SQUARE-of-OPPOSITION(SoO) DEduction-LOGIC DichotomY

    NASA Astrophysics Data System (ADS)

    Clay, L.; Siegel, E.

    2010-03-01

    Siegel-Baez C-S/F=C tabular list-format matrix truth-table analytics SoO jargonial-obfuscation elimination query WHAT? yields four ``pure''-maths MP ``Feet of Clay!!!'' proofs:(1)Siegel [AMS Natl.Mtg.(2002)-Abs.#:973-03-126:(@CCNY;1964!!!)<<<(1994; Wiles)]Fermat's: Last-Theorem = Least-Action Principle; (2) P=/=NP TRIVIAL simple Euclid geometry/dimensions: NO computer anything;``Feet of Clay!!!''; (3)Birch-Swinnerton-Dyer conjecture; (4)Riemann-hypotheses via combination of: Siegel [AMS Natl.Mtg. (2002)-Abs.#:973-60-124 digits logarithmic-law simple algebraic- inversion to ONLY BEQS with ONLY zero-digit BEC, AND Rayleigh [(1870);graph-theory ``short-CUT method''[Doyle- Snell,Random- Walks & Electric-Networks,MAA(1981)]-``Anderson'' [PRL(1958)] critical-strip 1/2 complex-plane localization!!! SoO DichotomY (``v'') IdentitY: numbers(Euler v Bernoulli) = (Sets v Multisets) = Quantum-Statistics(F.-D. v B.-E.) = Power- Spectra(1/f^(0) v 1/f^(1.000...) = Conic-Sections(Ellipse v (Parabola) v Hyperbola) = Extent(Locality v Globality); Siegel [MRS Fractals Symp.(1989)](so MIScalled)``complexity'' as UTTER- SIMPLICITY (!!!) v COMPLICATEDNESS MEASURE(S) definition.

  3. On gauged maximal d  =  8 supergravities

    NASA Astrophysics Data System (ADS)

    Lasso Andino, Óscar; Ortín, Tomás

    2018-04-01

    We study the gauging of maximal d  =  8 supergravity using the embedding tensor formalism. We focus on SO(3) gaugings, study all the possible choices of gauge fields and construct explicitly the bosonic actions (including the complicated Chern–Simons terms) for all these choices, which are parametrized by a parameter associated to the 8-dimensional SL(2, {R}) duality group that relates all the possible choices which are, ultimately, equivalent from the purely 8-dimensional point of view. Our result proves that the theory constructed by Salam and Sezgin by Scherk–Schwarz compactification of d  =  11 supergravity and the theory constructed in Alonso-Alberca (2001 Nucl. Phys. B 602 329) by dimensional reduction of the so called ‘massive 11-dimensional supergravity’ proposed by Meessen and Ortín in (1999 Nucl. Phys. B 541 195) are indeed related by an SL(2, {R}) duality even though they have two completely different 11-dimensional origins.

  4. BPS algebras, genus zero and the heterotic Monster

    NASA Astrophysics Data System (ADS)

    Paquette, Natalie M.; Persson, Daniel; Volpato, Roberto

    2017-10-01

    In this note, we expand on some technical issues raised in (Paquette et al 2016 Commun. Number Theory Phys. 10 433-526) by the authors, as well as providing a friendly introduction to and summary of our previous work. We construct a set of heterotic string compactifications to 0  +  1 dimensions intimately related to the Monstrous moonshine module of Frenkel, Lepowsky, and Meurman (and orbifolds thereof). Using this model, we review our physical interpretation of the genus zero property of Monstrous moonshine. Furthermore, we show that the space of (second-quantized) BPS-states forms a module over the Monstrous Lie algebras mg —some of the first and most prominent examples of Generalized Kac-Moody algebras—constructed by Borcherds and Carnahan. In particular, we clarify the structure of the module present in the second-quantized string theory. We also sketch a proof of our methods in the language of vertex operator algebras, for the interested mathematician.

  5. Upper limits to submillimetre-range forces from extra space-time dimensions.

    PubMed

    Long, Joshua C; Chan, Hilton W; Churnside, Allison B; Gulbis, Eric A; Varney, Michael C M; Price, John C

    2003-02-27

    String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This 'compactification' induces 'moduli' fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions might be detected on length scales of about 100 microm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 micro m. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton and radion forces.

  6. Universal consistent truncation for 6d/7d gauge/gravity duals

    NASA Astrophysics Data System (ADS)

    Passias, Achilleas; Rota, Andrea; Tomasiello, Alessandro

    2015-10-01

    Recently, AdS7 solutions of IIA supergravity have been classified; there are infinitely many of them, whose expression is known analytically, and with internal space of S 3 topology. Their field theory duals are six-dimensional (1,0) SCFT's. In this paper we show that for each of these AdS7 solutions there exists a consistent truncation from massive IIA supergravity to minimal gauged supergravity in seven dimensions. This theory has an SU(2) gauge group, and a single scalar, whose value is related to a certain distortion of the internal S 3. This explains the universality observed in recent work on AdS5 and AdS4 solutions dual to compactifications of the (1, 0) SCFT6's. Thanks to previous work on the minimal gauged supergravity, the truncation also implies the existence of holographic RG-flows connecting those solutions to the AdS7 vacuum, as well as new classes of IIA AdS3 solutions.

  7. Janus configurations with SL(2, ℤ)-duality twists, strings on mapping tori and a tridiagonal determinant formula

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.; Moore, Nathan P.; Sun, Hao-Yu; Torres-Chicon, Nesty R.

    2014-07-01

    We develop an equivalence between two Hilbert spaces: (i) the space of states of U(1) n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T 2; and (ii) the space of ground states of strings on an associated mapping torus with T 2 fiber. The equivalence is deduced by studying the space of ground states of SL(2, ℤ)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T 2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group.

  8. Eisenstein Series and String Thresholds

    NASA Astrophysics Data System (ADS)

    Obers, N. A.; Pioline, B.

    We investigate the relevance of Eisenstein series for representing certain G()-invariant string theory amplitudes which receive corrections from BPS states only. G() may stand for any of the mapping class, T-duality and U-duality groups Sl(d,(), SO(d,d,() or Ed+1(d+1)(() respectively. Using G()-invariant mass formulae, we construct invariant modular functions on the symmetric space K\\G() of non-compact type, with K the maximal compact subgroup of G(), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4 and R4H4g-4 couplings in toroidal compactifications of M-theory to any dimension D>= 4 and D>= 6 respectively.

  9. S-duality in twistor space

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2012-08-01

    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space {{M}_H} must carry an isometric action of the modular group SL(2 , {Z} ), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of {{M}_H} , and construct a general class of SL(2 , {Z} )-invariant quaternion-Kähler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include {{M}_H} corrected by D3-D1-D(-1)-instantons (with five-brane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional {N} = {2} gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.

  10. From 3 d duality to 2 d duality

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  11. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Scargle, J. D.; Troja, E.

    2012-01-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  12. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Baldini, L.

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to {gamma}{gamma} should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  13. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Bechtol, K.; Berenji, B.

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  14. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    DOE PAGES

    Ajello, M.

    2012-02-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  15. A note on 4D heterotic string vacua, FI-terms and the swampland

    NASA Astrophysics Data System (ADS)

    Aldazabal, Gerardo; Ibáñez, Luis E.

    2018-07-01

    We present a conjecture for the massless sector of perturbative 4D N = 1 heterotic (0 , 2) string vacua, including U(1) n gauge symmetries, one of them possibly anomalous (like in standard heterotic compactifications). Mathematically it states that the positive hull generated by the charges of the massless chiral multiplets spans a sublattice of the full charge lattice. We have tested this conjecture in many heterotic N = 1 compactifications in 4D. Our motivation for this conjecture is that it allows to understand a very old puzzle in (0 , 2) N = 1 heterotic compactification with an anomalous U (1). The conjecture guarantees that there is always a D-flat direction cancelling the FI-term and restoring N = 1 SUSY in a nearby vacuum. This is something that has being verified in the past in a large number of cases, but whose origin has remained obscure for decades. We argue that the existence of a lattice generated by massless states guarantees the instability of heterotic non-BPS extremal blackholes, as required by Weak Gravity Conjecture arguments. Thus the pervasive existence of these nearby FI-cancelling vacua would be connected with WGC arguments.

  16. BPS equations and non-trivial compactifications

    NASA Astrophysics Data System (ADS)

    Tyukov, Alexander; Warner, Nicholas P.

    2018-05-01

    We consider the problem of finding exact, eleven-dimensional, BPS supergravity solutions in which the compactification involves a non-trivial Calabi-Yau manifold, Y , as opposed to simply a T 6. Since there are no explicitly-known metrics on non-trivial, compact Calabi-Yau manifolds, we use a non-compact "local model" and take the compactification manifold to be Y={M}_{GH}× {T}^2 , where ℳGH is a hyper-Kähler, Gibbons-Hawking ALE space. We focus on backgrounds with three electric charges in five dimensions and find exact families of solutions to the BPS equations that have the same four supersymmetries as the three-charge black hole. Our exact solution to the BPS system requires that the Calabi-Yau manifold be fibered over the space-time using compensators on Y . The role of the compensators is to ensure smoothness of the eleven-dimensional metric when the moduli of Y depend on the space-time. The Maxwell field Ansatz also implicitly involves the compensators through the frames of the fibration. We examine the equations of motion and discuss the brane distributions on generic internal manifolds that do not have enough symmetry to allow smearing.

  17. Adiabatic perturbation theory of electronic stopping in insulators

    DOE PAGES

    Horsfield, Andrew P.; Lim, Anthony; Foulkes, W. M. C.; ...

    2016-06-02

    A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f=v/λ, where λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer multiples l of f. This enablesmore » electronic excitations at low atom velocity, but their contributions diminish rapidly with increasing values of l. The expressions for stopping power are derived using adiabatic perturbation theory for many-electron systems, and they are then specialized to the case of independent electrons. Lastly, a simple model for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.« less

  18. Teleparallel dark energy in a system of D0-branes

    NASA Astrophysics Data System (ADS)

    Sharma, Umesh Kumar; Sepehri, Alireza; Pradhan, Anirudh

    A new model which allows a non-minimal coupling between gravity and quintessence in the configuration of teleparallel gravity was recently proposed by Geng et al. [“Teleparallel” dark energy, Phys. Lett. B 704 (2011) 384-387] and they named it teleparallel dark energy. Now the main problem which arises is to know what is the source of this dark energy? The answer of this question is given by us in M-theory. This type of dark energy may be produced at three stages in our model. First, one six-dimensional universe is formed by combining and expanding D0-branes. We know that this universe-brane is polarized on two circles and our four-dimensional cosmos and two D1-branes are yielded. At third stage, two D1-branes glued to each other and one D2-brane is formed. This D2 connects our universe with another universe, gives its energy to them and causes the production of dark energy. Thus, the D2-brane is unstable and dissolves in our four-dimensional universes and supplies the needed teleparallel dark energy for expansion. These calculations are extended to M-theory and shown that the amount of teleparallel dark energy which is produced by compactification of universe-branes in M-theory is more than string theory.

  19. New Methods in Non-Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsal, Mithat

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less

  20. Topics in string theory

    NASA Astrophysics Data System (ADS)

    Gorbatov, Elie

    In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.

  1. 'Black universe' epoch in string cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchel, Alex; Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9; Kofman, Lev

    2008-10-15

    String theory compactification involves manifolds with multiple warp factors. For cosmological applications, we often introduce a short, high-energy inflationary throat, and a long, low-energy standard model (SM) throat. It is assumed that at the end of inflation, the excited Kaluza-Klein modes from the inflationary throat tunnel to the SM throat and reheat standard model degrees of freedom, which are attached to probe brane(s). However, the huge hierarchy of energy scales can result in a highly dynamic transition of the throat geometry. We point out that in such a cosmological scenario the standard model throat (together with SM brane) will bemore » cloaked by a Schwarzschild horizon, produced by the Kaluza-Klein modes tunneling from the short throat. The black brane formation is dual to the first order chiral phase transition of the cascading gauge theory. We calculate the critical energy density corresponding the formation of the black hole (BH) horizon in the long throat. We discuss the duality between 'black universe' cosmology and an expanding universe driven by the hot gauge theory radiation. We address the new problem of the hierarchical multiple-throat scenarios: SM brane disappearance after the decay of the BH horizon.« less

  2. Massive quiver matrix models for massive charged particles in AdS

    DOE PAGES

    Asplund, Curtis T.; Denef, Frederik; Dzienkowski, Eric

    2016-01-11

    Here, we present a new class of N = 4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can bemore » obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.« less

  3. Interaction of moving branes with background massless and tachyon fields in superstring theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocitiesmore » of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.« less

  4. R-charge conservation and more in factorizable and non-factorizable orbifolds

    NASA Astrophysics Data System (ADS)

    Bizet, Nana G. Cabo; Kobayashi, Tatsuo; Peña, Damián K. Mayorga; Parameswaran, Susha L.; Schmitz, Matthias; Zavala, Ivonne

    2013-05-01

    We consider the string theory origin of R-charge conservation laws in heterotic orbifold compactifications, deriving the corresponding string coupling selection rule for factorizable and non-factorizable orbifolds, with prime ordered and non-prime ordered point groups. R-charge conservation arises due to symmetries among the worldsheet instantons that can mediate the couplings. Among our results is a previously missed non-trivial contribution to the conserved R-charges from the γ-phases in non-prime orbifolds, which weakens the R-charge selection rule. Symmetries among the worldsheet instantons can also lead to additional selection rules for some couplings. We make a similar analysis for Rule 4 or the "torus lattice selection rule". Moreover, we identify a new string selection rule, that we call Rule 6 or the "coset vector selection rule".

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon andmore » the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.« less

  6. Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.

    2008-07-15

    The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less

  7. Finite Element Based Structural Damage Detection Using Artificial Boundary Conditions

    DTIC Science & Technology

    2007-09-01

    C. (2005). Elementary Linear Algebra . New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple Non...variables under consideration. 3 Frequency sensitivities are the basis for a linear approximation to compute the change in the natural frequencies of a...THEORY The general problem statement for a non- linear constrained optimization problem is: To minimize ( )f x Objective Function Subject to

  8. Asymptotic Bounds for Solutions to a System of Damped Integrodifferential Equations of Electromagnetic Theory.

    DTIC Science & Technology

    1979-05-28

    of integrodiffereiTaT~- equations governs the evolution of the components of the electric displacement field in a simple class of rigid holohedral...vacuum so that j — C and J~ — c E , H = B. In0 [3] and [4] this author has treated the evolution equations associated with the Maxwell—Hopkinsofl...F .~~~~~~‘ r - — ~~~~~ ’~~~ “~ I I be viewed as a linearized version of a more general theory introduced by Volterra in 1912 [5] to treat the case

  9. A Neurosemantic Theory of Concrete Noun Representation Based on the Underlying Brain Codes

    PubMed Central

    Just, Marcel Adam; Cherkassky, Vladimir L.; Aryal, Sandesh; Mitchell, Tom M.

    2010-01-01

    This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple thoughts through their fMRI patterns. We use factor analysis of fMRI brain imaging data to reveal the biological representation of individual concrete nouns like apple, in the absence of any pictorial stimuli. From this analysis emerge three main semantic factors underpinning the neural representation of nouns naming physical objects, which we label manipulation, shelter, and eating. Each factor is neurally represented in 3–4 different brain locations that correspond to a cortical network that co-activates in non-linguistic tasks, such as tool use pantomime for the manipulation factor. Several converging methods, such as the use of behavioral ratings of word meaning and text corpus characteristics, provide independent evidence of the centrality of these factors to the representations. The factors are then used with machine learning classifier techniques to show that the fMRI-measured brain representation of an individual concrete noun like apple can be identified with good accuracy from among 60 candidate words, using only the fMRI activity in the 16 locations associated with these factors. To further demonstrate the generativity of the proposed account, a theory-based model is developed to predict the brain activation patterns for words to which the algorithm has not been previously exposed. The methods, findings, and theory constitute a new approach of using brain activity for understanding how object concepts are represented in the mind. PMID:20084104

  10. A neurosemantic theory of concrete noun representation based on the underlying brain codes.

    PubMed

    Just, Marcel Adam; Cherkassky, Vladimir L; Aryal, Sandesh; Mitchell, Tom M

    2010-01-13

    This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple thoughts through their fMRI patterns. We use factor analysis of fMRI brain imaging data to reveal the biological representation of individual concrete nouns like apple, in the absence of any pictorial stimuli. From this analysis emerge three main semantic factors underpinning the neural representation of nouns naming physical objects, which we label manipulation, shelter, and eating. Each factor is neurally represented in 3-4 different brain locations that correspond to a cortical network that co-activates in non-linguistic tasks, such as tool use pantomime for the manipulation factor. Several converging methods, such as the use of behavioral ratings of word meaning and text corpus characteristics, provide independent evidence of the centrality of these factors to the representations. The factors are then used with machine learning classifier techniques to show that the fMRI-measured brain representation of an individual concrete noun like apple can be identified with good accuracy from among 60 candidate words, using only the fMRI activity in the 16 locations associated with these factors. To further demonstrate the generativity of the proposed account, a theory-based model is developed to predict the brain activation patterns for words to which the algorithm has not been previously exposed. The methods, findings, and theory constitute a new approach of using brain activity for understanding how object concepts are represented in the mind.

  11. Self-Assembly through Noncovalent Preorganization of Reactants: Explaining the Formation of a Polyfluoroxometalate.

    PubMed

    Schreiber, Roy E; Avram, Liat; Neumann, Ronny

    2018-01-09

    High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H 2 F 6 NaW 18 O 56 ] 7- from simple tungstate Na 2 WO 2 F 4 was demonstrated by using 2D 19 F- 19 F NOESY, 2D 19 F- 19 F COSY NMR spectroscopy, a new 2D 19 F{ 183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Density functional theory and conductivity studies of boron-based anion receptors

    DOE PAGES

    Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; ...

    2015-07-10

    Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F – for boron-site binding, and specific solvent effects must be considered when predicting its F – affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F – and organic solvent molecules. After accounting for specific solvent effects, however, its net F – affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F – ions.« less

  13. $$ \\mathcal{N} $$ = 2 supersymmetric Janus solutions and flows: From gauged supergravity to M theory

    DOE PAGES

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    2016-05-02

    In this study, we investigate a family of SU(3)×U(1)×U(1)-invariant holographic flows and Janus solutions obtained from gaugedmore » $$ \\mathcal{N} $$ = 8 supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corresponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.« less

  14. SU(6) GUT breaking on a projective plane

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Raby, Stuart

    2013-03-01

    We consider a 6-dimensional supersymmetric SU(6) gauge theory and compactify two extra-dimensions on a multiply-connected manifold with non-trivial topology. The SU(6) is broken down to the Standard Model gauge groups in two steps by an orbifold projection, followed by a Wilson line. The Higgs doublets of the low energy electroweak theory come from a chiral adjoint of SU(6). We thus have gauge-Higgs unification. The three families of the Standard Model can either be located in the 6D bulk or at 4D N=1 supersymmetric fixed points. We calculate the Kaluza-Klein spectrum of states arising as a result of the orbifolding. We also calculate the threshold corrections to the coupling constants due to this tower of states at the lowest compactification scale. We study the regions of parameter space of this model where the threshold corrections are consistent with low energy physics. We find that the couplings receive only logarithmic corrections at all scales. This feature can be attributed to the large N=2 6D SUSY of the underlying model.

  15. Signals of two universal extra dimensions at the LHC

    NASA Astrophysics Data System (ADS)

    Burdman, G.; Éboli, O. J. P.; Spehler, D.

    2016-11-01

    Extensions of the standard model with universal extra dimensions are interesting both as phenomenological templates as well as model-building fertile ground. For instance, they are one of the prototypes for theories exhibiting compressed spectra, leading to difficult searches at the LHC since the decay products of new states are soft and immersed in a large standard model background. Here we study the phenomenology at the LHC of theories with two universal extra dimensions. We obtain the current bound by using the production of second level excitations of electroweak gauge bosons decaying to a pair of leptons and study the reach of the LHC Run II in this channel. We also introduce a new channel originating in higher dimensional operators and resulting in the single production of a second level quark excitation. Its subsequent decay into a hard jet and lepton pair resonance would allow the identification of a more model-specific process, unlike the more generic vector resonance signal. We show that the sensitivity of this channel to the compactification scale is very similar to the one obtained using the vector resonance.

  16. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian—Formulation and applications

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2005-01-01

    A simple modification of the zeroth-order regular approximation (ZORA) in relativistic theory is suggested to suppress its erroneous gauge dependence to a high level of approximation. The method, coined gauge-independent ZORA (ZORA-GI), can be easily installed in any existing nonrelativistic quantum chemical package by programming simple one-electron matrix elements for the quasirelativistic Hamiltonian. Results of benchmark calculations obtained with ZORA-GI at the Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) level for dihalogens X2 (X=F,Cl,Br,I,At) are in good agreement with the results of four-component relativistic calculations (HF level) and experimental data (MP2 level). ZORA-GI calculations based on MP2 or coupled-cluster theory with single and double perturbations and a perturbative inclusion of triple excitations [CCSD(T)] lead to accurate atomization energies and molecular geometries for the tetroxides of group VIII elements. With ZORA-GI/CCSD(T), an improved estimate for the atomization energy of hassium (Z=108) tetroxide is obtained.

  17. K-decompositions and 3d gauge theories

    DOE PAGES

    Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B.

    2016-11-24

    This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K, C)-connections on a large class of 3-manifolds M with boundary. We introduce a moduli spacemore » $$\\mathcal{L}$$ K(M) of framed flat connections on the boundary ∂M that extend to M. Our goal is to understand an open part of $$\\mathcal{L}$$ K(M) as a Lagrangian subvariety in the symplectic moduli space X un K(∂M) of framed flat connections on the boundary — and more so, as a “K 2-Lagrangian,” meaning that the K 2-avatar of the symplectic form restricts to zero. We construct an open part of $$\\mathcal{L}$$ K(M) from elementary data associated with the hypersimplicial K-decomposition of an ideal triangulation of M, in a way that generalizes (and combines) both Thurston’s gluing equations in 3d hyperbolic geometry and the cluster coordinates for framed flat PGL(K, C)-connections on surfaces. By using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of $$\\mathcal{L}$$ K(M) is K 2-isotropic as long as ∂M satisfies certain topological constraints (theorem 4.2). In some cases this easily implies that $$\\mathcal{L}$$ K(M) is K 2-Lagrangian. For general M, we extend a classic result of Neumann and Zagier on symplectic properties of PGL(2) gluing equations to reduce the K 2-Lagrangian property to a combinatorial statement. Physically, we translate the K-decomposition of an ideal triangulation of M and its symplectic properties to produce an explicit construction of 3d N = 2 superconformal field theories T K [M] resulting (conjecturally) from the compactification of K M5-branes on M. This extends known constructions for K = 2. Just as for K = 2, the theories T K [M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N f = 1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T K [M] grow cubically in K.« less

  18. K-decompositions and 3d gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B.

    This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K, C)-connections on a large class of 3-manifolds M with boundary. We introduce a moduli spacemore » $$\\mathcal{L}$$ K(M) of framed flat connections on the boundary ∂M that extend to M. Our goal is to understand an open part of $$\\mathcal{L}$$ K(M) as a Lagrangian subvariety in the symplectic moduli space X un K(∂M) of framed flat connections on the boundary — and more so, as a “K 2-Lagrangian,” meaning that the K 2-avatar of the symplectic form restricts to zero. We construct an open part of $$\\mathcal{L}$$ K(M) from elementary data associated with the hypersimplicial K-decomposition of an ideal triangulation of M, in a way that generalizes (and combines) both Thurston’s gluing equations in 3d hyperbolic geometry and the cluster coordinates for framed flat PGL(K, C)-connections on surfaces. By using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of $$\\mathcal{L}$$ K(M) is K 2-isotropic as long as ∂M satisfies certain topological constraints (theorem 4.2). In some cases this easily implies that $$\\mathcal{L}$$ K(M) is K 2-Lagrangian. For general M, we extend a classic result of Neumann and Zagier on symplectic properties of PGL(2) gluing equations to reduce the K 2-Lagrangian property to a combinatorial statement. Physically, we translate the K-decomposition of an ideal triangulation of M and its symplectic properties to produce an explicit construction of 3d N = 2 superconformal field theories T K [M] resulting (conjecturally) from the compactification of K M5-branes on M. This extends known constructions for K = 2. Just as for K = 2, the theories T K [M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N f = 1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T K [M] grow cubically in K.« less

  19. The clockwork supergravity

    NASA Astrophysics Data System (ADS)

    Kehagias, Alex; Riotto, Antonio

    2018-02-01

    We show that the minimal D = 5, N = 2 gauged supergravity set-up may encode naturally the recently proposed clockwork mechanism. The minimal embedding requires one vector multiplet in addition to the supergravity multiplet and the clockwork scalar is identified with the scalar in the vector multiplet. The scalar has a two-parameter potential and it can accommodate the clockwork, the Randall-Sundrum and a no-scale model with a flat potential, depending on the values of the parameters. The continuous clockwork background breaks half of the original supersymmetries, leaving a D = 4, N = 1 theory on the boundaries. We also show that the generated hierarchy by the clockwork is not exponential but rather power law. The reason is that four-dimensional Planck scale has a power-law dependence on the compactification radius, whereas the corresponding KK spectrum depends on the logarithm of the latter.

  20. ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.

    2003-01-01

    In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.

  1. Inflation from periodic extra dimensions

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Tatsuta, Yoshiyuki

    2017-07-01

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.

  2. The Hodge-Elliptic Genus, Spinning BPS States, and Black Holes

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2017-10-01

    We perform a refined count of BPS states in the compactification of M-theory on {K3 × T^2}, keeping track of the information provided by both the {SU(2)_L} and {SU(2)_R} angular momenta in the SO(4) little group. Mathematically, this four variable counting function may be expressed via the motivic Donaldson-Thomas counts of {K3 × T^2}, simultaneously refining Katz, Klemm, and Pandharipande's motivic stable pairs counts on K3 and Oberdieck-Pandharipande's Gromov-Witten counts on {K3 × T^2}. This provides the first full answer for motivic curve counts of a compact Calabi-Yau threefold. Along the way, we develop a Hodge-elliptic genus for Calabi-Yau manifolds—a new counting function for BPS states that interpolates between the Hodge polynomial and the elliptic genus of a Calabi-Yau.

  3. Inflation from periodic extra dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, Tetsutaro; Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, andmore » then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.« less

  4. Gamma Rays from the Galactic Bulge and Large Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Cassé, Michel; Paul, Jacques; Bertone, Gianfranco; Sigl, Günter

    2004-03-01

    An intriguing feature of extra dimensions is the possible production of Kaluza Klein gravitons by nucleon-nucleon bremsstrahlung, in the course of core collapse of massive stars, with gravitons then being trapped around the newly born neutron stars and decaying into two gamma rays, making neu­tron stars gamma-ray sources. We strengthen the limits on the radius of compactification of extra dimensions for a small number n of them, or alternatively the fundamental scale of quantum gravity, considering the gamma-ray emission of the whole population of neutron stars sitting in the Galactic bulge, instead of the closest member of this category. For n=1 the constraint on the compactification radius is R<400 μm.

  5. Gravity Waves and Linear Inflation From Axion Monodromy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam; /Cornell U., LEPP /Cornell U., Phys. Dept.; Silverstein, Eva

    2010-08-26

    Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensormore » to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.« less

  6. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Aaron T.

    The String theory workshop was held from March 4-7, 2015 on the University of Michigan campus. Local organizers were Gordon Kane and Aaron Pierce. Piyush Kumar (Yale), Jim Halverson (KITP), Bobby Acharya (ICTP) and Sven Krippendorf (Oxford) served as external organizers.The meeting focused on the status of work to project 10 or 11 dimensional string/M theories onto our 4 spacetime dimensions (compactification). The workshop had 31 participants, half from outside the U.S. Participants were encouraged to focus on predictions for recent and forthcoming data, particularly for Higgs physics and LHC and dark matter, rather than on the traditional approach ofmore » embedding the Standard Model particles and forces. The Higgs boson sympoosium was locally organized by James Wells (chair), Aaron Pierce and Jianming Qian. Additional input in the early stages by Stefan Pokorski (Warsaw) who was unable to attend in the end. The workshop consistent of 22 talks from experts around the world, both theoretical and experimental. Experimentalists summarized the current state of knowledge of the Higgs boson and its varients. The theory talks ranged from technical calculations of Standard Model processes to speculative novel ideas. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 24 participants came under the program, with 17 of them receiving at least partial support for their visits.« less

  7. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. Y.; Graduate University of the Chinese Academy of Sciences, Beijing, 100049; Luo, E. C.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermalmore » regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.« less

  8. Capriccio For Strings: Collision-Mediated Parallel Transport in Curved Landscapes and Conifold-Enhanced Hierarchies among Mirror Quintic Flux Vacua

    NASA Astrophysics Data System (ADS)

    Eckerle, Kate

    This dissertation begins with a review of Calabi-Yau manifolds and their moduli spaces, flux compactification largely tailored to the case of type IIb supergravity, and Coleman-De Luccia vacuum decay. The three chapters that follow present the results of novel research conducted as a graduate student. Our first project is concerned with bubble collisions in single scalar field theories with multiple vacua. Lorentz boosted solitons traveling in one spatial dimension are used as a proxy to the colliding 3-dimensional spherical bubble walls. Recent work found that at sufficiently high impact velocities collisions between such bubble vacua are governed by "free passage" dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free passage bubble profile, thwarting the production of a new patch with different field value. However, for simple polynomial potentials a fine-tuning of vacuum locations is required to reverse the free passage kick enough that the field in the collision region returns to the original bubble vacuum. Hence we deem classical transitions mediated by free passage robust. Our second project continues with soliton collisions in the limit of relativistic impact velocity, but with the new feature of nontrivial field space curvature. We establish a simple geometrical interpretation of such collisions in terms of a double family of field profiles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known limit in flat field space (free passage). We investigate the limits of this approximation and illustrate our analytical results with numerical simulations. In our third and final project we investigate the distribution of field theories that arise from the low energy limit of flux vacua built on type IIb string theory compactified on the mirror quintic. For a large collection of these models, we numerically determine the distribution of Taylor coefficients in a polynomial expansion of each model's scalar potential to fourth order. We provide an analytic explanation of the proncounced hierarchies exhibited by the random sample of masses and couplings generated numerically. The analytic argument is based on the structure of masses in no scale supergravity and the divergence of the Yukawa coupling at the conifold point in the moduli space of the mirror quintic. Our results cast the superpotential vev as a random element whose capacity to cloud structure vanishes as the conifold is approached.

  9. Loop Quantization and Symmetry: Configuration Spaces

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2018-06-01

    Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map {σ : {S}_1 \\longrightarrow {S}_2} can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where {σ} denotes the embedding between the classical configuration spaces. Finally, we explicitly determine {C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R, appropriately glued together.

  10. Loop Quantization and Symmetry: Configuration Spaces

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2018-04-01

    Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map σ : S_1 \\longrightarrow S_2 can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff {σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where σ denotes the embedding between the classical configuration spaces. Finally, we explicitly determine C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R , appropriately glued together.

  11. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF

    NASA Astrophysics Data System (ADS)

    Li, Chen; Requist, Ryan; Gross, E. K. U.

    2018-02-01

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honorio, J.; Goldstein, R.; Honorio, J.

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statisticalmore » theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.« less

  13. Theory of mind in schizophrenia: exploring neural mechanisms of belief attribution.

    PubMed

    Lee, Junghee; Quintana, Javier; Nori, Poorang; Green, Michael F

    2011-01-01

    Although previous behavioral studies have shown that schizophrenia patients have impaired theory of mind (ToM), the neural mechanisms associated with this impairment are poorly understood. This study aimed to identify the neural mechanisms of ToM in schizophrenia, using functional magnetic resonance imaging (fMRI) with a belief attribution task. In the scanner, 12 schizophrenia patients and 13 healthy control subjects performed the belief attribution task with three conditions: a false belief condition, a false photograph condition, and a simple reading condition. For the false belief versus simple reading conditions, schizophrenia patients showed reduced neural activation in areas including the temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) compared with controls. Further, during the false belief versus false photograph conditions, we observed increased activations in the TPJ and the MPFC in healthy controls, but not in schizophrenia patients. For the false photograph versus simple reading condition, both groups showed comparable neural activations. Schizophrenia patients showed reduced task-related activation in the TPJ and the MPFC during the false belief condition compared with controls, but not for the false photograph condition. This pattern suggests that reduced activation in these regions is associated with, and specific to, impaired ToM in schizophrenia.

  14. Cascading gauge theory on dS4 and String Theory landscape

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Galante, Damián A.

    2014-06-01

    Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0 μ, and the D3 brane charge at the tip of the conifold in broken phase is zero, the charge in the ground state is in fact zero whenever μ3⩽μ. Furthermore, chirally symmetric states of cascading gauge theory on S3 develop symmetry breaking tachyonic instabilities at μ (below the first order chiral symmetry breaking scale μ) ln μ3,tachyon2Λ2/P2g0=0.3297(3) which is again above μ.Our results represented here, together with those reported in [10], point that the singularity of smeared anti-D3 branes at the tip of the conifold is unphysical: had it been otherwise, we should have been able to implement an infrared cutoff in the geometry with a D3 brane charge measured at the cutoff being negative. The role of the cutoff is played by the temperature (as discussed in [10]), by the compactification scale (when M4=R×S3), or by the Hubble scale (when M4=dS4). Interesting, we find that the D3 brane charge can become negative when the KT throat geometry is S3 deformed; however this occurs in the regime where this phase is unstable both via the first order phase transition and the tachyon condensation to S3 deformed KS throat geometry - the latter geometry has zero D3 brane charge at the tip. All this raises questions about construction of generic de Sitter vacua in String Theory [2].We stress, however, that our analysis does not definitely exclude local non-singular supergravity description of de Sitter vacua in String Theory. The issue stems from the anti-D3 brane “smearing approximation” used. Early discussion of the relevant smearing approximation appeared in [6,9]. There, the authors carefully analyzed non-supersymmetric deformations of KS geometry, invariant under the SU(2)×SU(2) global symmetry of the latter. They further identified a class of perturbations that is being sources by anti-D3 branes, placed at the tip of the conifold, and then computed the leading-order backreaction of those perturbations on KS geometry. Insistence on preserving the SU(2)×SU(2) global symmetry is a smearing approximation - from the brane perspective it implies that anti-D3 branes are uniformly distributed (uniformly smeared) over the transverse compact five-dimensional manifold. Our discussion here shares the same smearing approximation as in [6,9], but extends the analysis to the full (rather than leading-order) backreaction. Smearing approximation is a practical tool enabling the analysis of the complicated cascading geometries involved. However, it must be questioned: it is not clear that non-supersymmetric uniform distribution along T directions of anti-D3 branes is stable against ‘clumping’. While it is highly desirable to lift this approximation, it is very difficult to do this in practice: one is forced to analyze a coupled nonlinear system of partial differential equations, rather than ordinary differential equations. We feel that until fully localized anti-D3 brane analysis in cascading geometries are performed, the singularity question of local supergravity description of de Sitter vacua in String Theory will remain open.

  15. Search for diphoton events with large missing transverse energy in 6.3  fb(-1) of pp collisions at √s=1.96  TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Calvet, S; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M S; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Devaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otero Y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhou, N; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2010-11-26

    We report a search for diphoton events with large missing transverse energy produced in pp collisions at √s=1.96  TeV. The data were collected with the D0 detector at the Fermilab Tevatron Collider and correspond to 6.3  fb(-1) of integrated luminosity. The observed missing transverse energy distribution is well described by the standard model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the standard model. In a gauge-mediated supersymmetry breaking scenario, the breaking scale Λ is excluded for Λ<124  TeV. In a universal extra dimension model including gravitational decays, the compactification radius R(c) is excluded for R(c)(-1)<477  GeV.

  16. Universal moduli spaces of Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Ji, Lizhen; Jost, Jürgen

    2017-04-01

    We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, John; Evans, Jason L.; Nagata, Natsumi

    We reconsider the minimal SU( 5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M in above the GUT scale M GUT. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. Furthermore, we do not find consistent solutions if none of the matter and Higgs fields aremore » assigned to twisted chiral supermultiplets, even in the presence of Giudice–Masiero terms. But, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions.« less

  18. Constraints on axion inflation from the weak gravity conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudelius, Tom, E-mail: rudelius@physics.harvard.edu

    2015-09-01

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and 'anti-alignment' of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the 'generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIBmore » compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.« less

  19. Constraints on axion inflation from the weak gravity conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudelius, Tom

    2015-09-08

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and ‘anti-alignment’ of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the ‘generalized’ weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIBmore » compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.« less

  20. Non-empirical Prediction of the Photophysical and Magnetic Properties of Systems with Open d- and f-Shells Based on Combined Ligand Field and Density Functional Theory (LFDFT).

    PubMed

    Daul, Claude

    2014-09-01

    Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the performance of LFDFT for the design of phosphors that produces light similar to our sun and predict the magnetic anisotropy energy of single ion magnets.

  1. Lagrangian formulation for penny-shaped and Perkins-Kern geometry models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.S.

    1989-09-01

    This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less

  2. How Fast Can Networks Synchronize? A Random Matrix Theory Approach

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2004-03-01

    Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).

  3. Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.

    2009-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.

  4. Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models

    NASA Astrophysics Data System (ADS)

    Yin, Wen

    2018-01-01

    Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.

  5. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  6. Light flavor-singlet scalars and walking signals in N f = 8 QCD on the lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed

    Based on the highly improved staggered quark action, we perform in this paper lattice simulations of N f = 8 QCD and confirm our previous observations, both of a flavor-singlet scalar meson (denoted as σ) as light as the pion and of various “walking signals” through the low-lying spectra, with higher statistics, smaller fermion masses m f, and larger volumes. We measure M π, F π, M ρ, M a0, M a1, M b1, M N, M σ, F σ, (φφ) (both directly and through the Gell-Mann-Oakes-Renner relation), and the string tension. The data are consistent with the spontaneously brokenmore » phase of the chiral symmetry, in agreement with the previous results: Ratios of the quantities to M π monotonically increase in the smaller m f region towards the chiral limit similarly to N f = 4 QCD, in sharp contrast to N f = 12 QCD where the ratios become flattened. We perform fits to chiral perturbation theory, with the value of F π found in the chiral limit extrapolation reduced dramatically to roughly 2/3 of the previous result, suggesting the theory is much closer to the conformal window. In fact, each quantity obeys the respective hyperscaling relation throughout a more extensive m f region compared with earlier works. The hyperscaling relation holds with roughly a universal value of the anomalous dimension, γ m ≃ 1, with the notable exception of M π with γ m ≃ 0.6 as in the previous results, which reflects the above growing up of the ratios towards the chiral limit. This is a salient feature (walking signal) of N f = 8, unlike either N f = 4, which has no hyperscaling relation at all, or N f = 12 QCD, which exhibits universal hyperscaling. The effective γ m Ξ γ m(m f) of M π defined for each m f region has a tendency to grow towards unity near the chiral limit, in conformity with the Nambu-Goldstone boson nature, as opposed to the case of N f = 12 QCD where it is almost constant. We further confirm the previous observation of the light σ with mass comparable to the pion in the studied m f region. In a chiral limit extrapolation of the σ mass using the dilaton chiral perturbation theory and also using the simple linear fit, we find the value consistent with the 125 GeV Higgs boson within errors. Finally, our results suggest that the theory could be a good candidate for walking technicolor model, having anomalous dimension γ m ≃ 1 and a light flavor-singlet scalar meson as a technidilaton, which can be identified with the 125 GeV composite Higgs in the N f = 8 one-family model.« less

  7. Light flavor-singlet scalars and walking signals in N f = 8 QCD on the lattice

    DOE PAGES

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; ...

    2017-07-18

    Based on the highly improved staggered quark action, we perform in this paper lattice simulations of N f = 8 QCD and confirm our previous observations, both of a flavor-singlet scalar meson (denoted as σ) as light as the pion and of various “walking signals” through the low-lying spectra, with higher statistics, smaller fermion masses m f, and larger volumes. We measure M π, F π, M ρ, M a0, M a1, M b1, M N, M σ, F σ, (φφ) (both directly and through the Gell-Mann-Oakes-Renner relation), and the string tension. The data are consistent with the spontaneously brokenmore » phase of the chiral symmetry, in agreement with the previous results: Ratios of the quantities to M π monotonically increase in the smaller m f region towards the chiral limit similarly to N f = 4 QCD, in sharp contrast to N f = 12 QCD where the ratios become flattened. We perform fits to chiral perturbation theory, with the value of F π found in the chiral limit extrapolation reduced dramatically to roughly 2/3 of the previous result, suggesting the theory is much closer to the conformal window. In fact, each quantity obeys the respective hyperscaling relation throughout a more extensive m f region compared with earlier works. The hyperscaling relation holds with roughly a universal value of the anomalous dimension, γ m ≃ 1, with the notable exception of M π with γ m ≃ 0.6 as in the previous results, which reflects the above growing up of the ratios towards the chiral limit. This is a salient feature (walking signal) of N f = 8, unlike either N f = 4, which has no hyperscaling relation at all, or N f = 12 QCD, which exhibits universal hyperscaling. The effective γ m Ξ γ m(m f) of M π defined for each m f region has a tendency to grow towards unity near the chiral limit, in conformity with the Nambu-Goldstone boson nature, as opposed to the case of N f = 12 QCD where it is almost constant. We further confirm the previous observation of the light σ with mass comparable to the pion in the studied m f region. In a chiral limit extrapolation of the σ mass using the dilaton chiral perturbation theory and also using the simple linear fit, we find the value consistent with the 125 GeV Higgs boson within errors. Finally, our results suggest that the theory could be a good candidate for walking technicolor model, having anomalous dimension γ m ≃ 1 and a light flavor-singlet scalar meson as a technidilaton, which can be identified with the 125 GeV composite Higgs in the N f = 8 one-family model.« less

  8. Stability of simple/complex classification with contrast and extraclassical receptive field modulation in macaque V1

    PubMed Central

    Henry, Christopher A.

    2013-01-01

    A key property of neurons in primary visual cortex (V1) is the distinction between simple and complex cells. Recent reports in cat visual cortex indicate the categorization of simple and complex can change depending on stimulus conditions. We investigated the stability of the simple/complex classification with changes in drive produced by either contrast or modulation by the extraclassical receptive field (eCRF). These two conditions were reported to increase the proportion of simple cells in cat cortex. The ratio of the modulation depth of the response (F1) to the elevation of response (F0) to a drifting grating (F1/F0 ratio) was used as the measure of simple/complex. The majority of V1 complex cells remained classified as complex with decreasing contrast. Near contrast threshold, an equal proportion of simple and complex cells changed their classification. The F1/F0 ratio was stable between optimal and large stimulus areas even for those neurons that showed strong eCRF suppression. There was no discernible overall effect of surrounding spatial context on the F1/F0 ratio. Simple/complex cell classification is relatively stable across a range of stimulus drives, produced by either contrast or eCRF suppression. PMID:23303859

  9. 3D string theory and Umbral moonshine

    DOE PAGES

    Kachru, Shamit; Paquette, Natalie M.; Volpato, Roberto

    2017-09-05

    Here, the simplest string theory compactifications to 3D with 16 supercharges—the heterotic string on T 7, and type II strings onmore » $$K3 \\times T^3$$ —are related by U-duality, and share a moduli space of vacua parametrized by $$O(8, 24;{{\\mathbb Z}}) ~\\backslash ~O(8, 24)~ /~ (O(8) \\times O(24))$$ . One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as $$\\Gamma^{8, 0} \\oplus \\Gamma^{0, 24}$$ . $$\\Gamma^{0, 24}$$ can be the Leech lattice or any of 23 Niemeier lattices, while $$\\Gamma^{8, 0}$$ is the E 8 root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on K3. This may provide a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while preserving the largest possible subgroup of the Umbral group. To illustrate the action of these symmetries on BPS states, we discuss the computation of certain protected four-derivative terms in the effective field theory, and recover facts about the spectrum and symmetry representations of 1/2-BPS states.« less

  10. Arithmetic and Hyperbolic Structures in String Theory

    NASA Astrophysics Data System (ADS)

    Persson, Daniel

    2010-01-01

    This monograph is an updated and extended version of the author's PhD thesis. It consists of an introductory text followed by two separate parts which are loosely related but may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of a spacelike singularity (the "BKL-limit"). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be described in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of the theory. Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are described by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by automorphic forms on the double quotient G(Z)G/K. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on non-holomorphic Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also show how these techniques can be applied to hypermultiplet moduli spaces in type II Calabi-Yau compactifications, and we provide a detailed analysis for the universal hypermultiplet.

  11. Quantum gravity and the holographic principle

    NASA Astrophysics Data System (ADS)

    de Haro Ollé, S.

    2001-06-01

    In this thesis we study two different approaches to holography, and comment on the possible relation between them. The first approach is an analysis of the high-energy regime of quantum gravity in the eikonal approximation, where the theory reduces to a topological field theory. This is the regime where particles interact at high energies but with small momentum transfer. We do this for the cases of asymptotically dS and AdS geometries and find that in both cases the theory is topological. We discuss the relation of our solutions in AdS to those of Horowitz and Itzhaki. We also consider quantum gravity away from the extreme eikonal limit and explain the sense in which the covariance of the theory is equivalent to taking into account transfer of momentum. The second approach we pursue is the AdS/CFT correspondence. We provide a holographic reconstruction of the bulk space-time metric and of bulk fields on this space-time, out of conformal field theory data. Knowing which sources are turned on is sufficient in order to obtain an asymptotic expansion of the bulk metric and of bulk fields near the boundary to high enough order so that all infrared divergences of the on-shell action are obtained. We provide explicit formulae for the holographic stress-energy tensors associated with an arbitrary asymptotically AdS geometry. We also study warped compactifications, where our d-dimensional world is regarded as a slice of a (d+1)-dimensional space-time, and analyse in detail the question as to where the d-dimensional observer can find the information about the extra dimension.

  12. A model to study finite-size and magnetic effects on the phase transition of a fermion interacting system

    NASA Astrophysics Data System (ADS)

    Corrêa, Emerson B. S.; Linhares, César A.; Malbouisson, Adolfo P. C.

    2018-03-01

    We present a model to study the effects from external magnetic field, chemical potential and finite size on the phase structures of a massive four- and six-fermion interacting systems. These effects are introduced by a method of compactification of coordinates, a generalization of the standard Matsubara prescription. Through the compactification of the z-coordinate and of imaginary time, we describe a heated system with the shape of a film of thickness L, at temperature β-1 undergoing first- or second-order phase transition. We have found a strong dependence of the temperature transition on the coupling constants λ and η. Besides inverse magnetic catalysis and symmetry breaking for both kinds of transition, we have found an inverse symmetry breaking phenomenon with respect to first-order phase transition.

  13. Novel germanetellones: XYGe=Te (X, Y = H, F, Cl, Br, I and CN) - structures and energetics. Comparison with the first synthetic successes.

    PubMed

    Jaufeerally, Naziah B; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2014-03-14

    No stable germanetellone was described until Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl, Dis = bis(trimethylsilyl)methyl and Tip = 2,4,6-triisopropylphenyl) were reported in 1997. Following these initial experiments, there has arisen considerable interest in Ge[double bond, length as m-dash]Te systems. An obvious question is: why have the simple XYGe=Te (X, Y = H, F, Cl, Br, I and CN) molecules not yet been isolated? In view of the present situation, theoretical information may be of great help for further advances in germanetellone chemistry. A systematic investigation of the XYGe=Te molecules is carried out using the second order Møller-Plesset perturbation theory (MP2) and density functional theory (DFT). The structures and energetics, including ionization potentials (IPad and IPad(ZPVE)), four different forms of neutral-anion separations (EAad, EAad(ZPVE), VEA and VDE) and the singlet-triplet gaps, are reported. The electronegativity (χ) reactivity descriptor for the halogens (F, Cl, Br and I) and the natural charge separations of the Ge=Te moiety are used to assess the interrelated properties of germanetellone and its derivatives. The results are analyzed, discussed and compared with analogous studies of telluroformaldehyde, silanetellone and their derivatives. The thermodynamic viabilities of some of the novel germanetellones have also been evaluated in terms of the bond dissociation enthalpies of Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te. The simple mono-substituted germanetellones appear to be slightly more thermodynamically favored than Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te, since the bond dissociation enthalpies of these kinetically stabilized germanetellones are about 28 and 51 kcal mol(-1) lower, respectively.

  14. Black holes, anti de Sitter space, and topological strings

    NASA Astrophysics Data System (ADS)

    Yin, Xi

    This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.

  15. Complex magnetism of lanthanide intermetallics and the role of their valence electrons: Ab Initio theory and experiment

    DOE PAGES

    Petit, L.; Paudyal, D.; Mudryk, Y.; ...

    2015-11-09

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar –1 for GdCd confirmed by our experimental measurements of +1.6 K kbar –1. Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. As a result, replacing 35% of the Mg atoms withmore » Zn removes this transition, in excellent agreement with long-standing experimental data.« less

  16. Foam structure, rheology and coarsening : the shape, feel and aging of random soap froth.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinelt, Douglas A.; van Swol, Frank B.; Hilgenfeldt, Sascha

    2010-05-01

    Simulations are in excellent agreement with experiments: structure - Matzke, shear modulus - Princen and Kiss E = 3.30 {sigma}/R{sub 32} = 5.32/(1 + p) {sigma}/(V){sup 1/2}, G {approx} 0.155 E = 0.512 {sigma}/R{sub 32}. IPP theory captures dependence of cell geometry on V and F. Future challenges are: simulating simple shearing flow is very expensive because of frequent topological transitions. Random wet foams require very large simulations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachru, Shamit; Paquette, Natalie M.; Volpato, Roberto

    Here, the simplest string theory compactifications to 3D with 16 supercharges—the heterotic string on T 7, and type II strings onmore » $$K3 \\times T^3$$ —are related by U-duality, and share a moduli space of vacua parametrized by $$O(8, 24;{{\\mathbb Z}}) ~\\backslash ~O(8, 24)~ /~ (O(8) \\times O(24))$$ . One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as $$\\Gamma^{8, 0} \\oplus \\Gamma^{0, 24}$$ . $$\\Gamma^{0, 24}$$ can be the Leech lattice or any of 23 Niemeier lattices, while $$\\Gamma^{8, 0}$$ is the E 8 root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on K3. This may provide a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while preserving the largest possible subgroup of the Umbral group. To illustrate the action of these symmetries on BPS states, we discuss the computation of certain protected four-derivative terms in the effective field theory, and recover facts about the spectrum and symmetry representations of 1/2-BPS states.« less

  18. Consistent compactification of double field theory on non-geometric flux backgrounds

    NASA Astrophysics Data System (ADS)

    Hassler, Falk; Lüst, Dieter

    2014-05-01

    In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.

  19. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF.

    PubMed

    Li, Chen; Requist, Ryan; Gross, E K U

    2018-02-28

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = R c , where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical R c by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M -1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇ R χ(R) and ∇ R n(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  20. Volume growth and puncture repair in conformal geometry

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael G.; Gover, A. Rod

    2018-04-01

    Suppose M is a compact Riemannian manifold and p ∈ M an arbitrary point. We employ estimates on the volume growth around p to prove that the only conformal compactification of M ∖ { p } is M itself.

  1. Standard 4D gravity on a brane in six-dimensional flux compactifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo

    We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane.more » To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account.« less

  2. The Infinitesimal Moduli Space of Heterotic G 2 Systems

    NASA Astrophysics Data System (ADS)

    de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.

    2018-06-01

    Heterotic string compactifications on integrable G 2 structure manifolds Y with instanton bundles {(V,A), (TY,\\tilde{θ})} yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative D and show that it is equivalent to a heterotic G 2 system encoding the geometry of the heterotic string compactifications. This operator D acts on a bundle Q}=T^*Y \\oplus End(V) \\oplus End(TY)} and satisfies a nilpotency condition \\check{{D^2=0} , for an appropriate projection of D. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group H^1_{D}(Q). We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the {α'} expansion.

  3. Theory of mind in schizophrenia: Exploring neural mechanisms of belief attribution

    PubMed Central

    Lee, Junghee; Quintana, Javier; Nori, Poorang; Green, Michael F.

    2014-01-01

    Background Although previous behavioral studies have shown that schizophrenia patients have impaired theory of mind (ToM), the neural mechanisms associated with this impairment are poorly understood. This study aimed to identify the neural mechanisms of ToM in schizophrenia using functional magnetic resonance imaging (fMRI) with a Belief Attribution Task. Methods In the scanner, 12 schizophrenia patients and 13 healthy control subjects performed the Belief Attribution Task with 3 conditions: a false belief condition, a false photograph condition, and a simple reading condition. Results For the false belief vs. simple reading conditions, schizophrenia patients showed reduced neural activation in areas including the temporo-parietal junction (TPJ) and medial prefrontal cortex (MPFC) compared with controls. Further, during the false belief vs. false photograph conditions we observed increased activations in the TPJ and the MPFC in healthy controls, but not in schizophrenia patients. For the false photograph vs. simple reading condition, both groups showed comparable neural activations. Conclusions Schizophrenia patients showed reduced task-related activation in the TPJ and the MPFC during the false belief condition compared with controls, but not for the false photograph condition. This pattern suggests that reduced activation in these regions is associated with, and specific to, impaired ToM in schizophrenia. PMID:22050432

  4. Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu

    2011-05-01

    The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.

  5. General theory of the plasmoid instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisso, L.; Lingam, M.; Huang, Y. -M.

    2016-10-05

    In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude (more » $$\\hat{w}$$ 0), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to S ατ β[ln f(S,τ,$$\\hat{w}$$ 0)] σ. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.« less

  6. Can a model of overlapping gestures account for scanning speech patterns?

    PubMed

    Tjaden, K

    1999-06-01

    A simple acoustic model of overlapping, sliding gestures was used to evaluate whether coproduction was reduced for neurologic speakers with scanning speech patterns. F2 onset frequency was used as an acoustic measure of coproduction or gesture overlap. The effects of speaking rate (habitual versus fast) and utterance position (initial versus medial) on F2 frequency, and presumably gesture overlap, were examined. Regression analyses also were used to evaluate the extent to which across-repetition temporal variability in F2 trajectories could be explained as variation in coproduction for consonants and vowels. The lower F2 onset frequencies for disordered speakers suggested that gesture overlap was reduced for neurologic individuals with scanning speech. Speaking rate change did not influence F2 onset frequencies, and presumably gesture overlap, for healthy or disordered speakers. F2 onset frequency differences for utterance-initial and -medial repetitions were interpreted to suggest reduced coproduction for the utterance-initial position. The utterance-position effects on F2 onset frequency, however, likely were complicated by position-related differences in articulatory scaling. The results of the regression analysis indicated that gesture sliding accounts, in part, for temporal variability in F2 trajectories. Taken together, the results of this study provide support for the idea that speech production theory for healthy talkers helps to account for disordered speech production.

  7. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    NASA Astrophysics Data System (ADS)

    Troisi, Antonio

    2017-03-01

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.

  8. Quantum gravity inde Sitter space and anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Lippert, Matthew S.

    In this thesis, we consider two aspects of quantum gravity---the nature of holography in anti-de Sitter space and string theory models of de Sitter space. Searching for a holographic resolution of the black hole information paradox, we pursue the identity of precursors in the context of AdS/CFT. We consider precursors that encode bulk information causally disconnected from the boundary and whose measurement involves nonlocal bulk processes. Previous arguments that these precursors are large, undecorated Wilson loops are found to be flawed. We construct a toy model of holography which encapsulates the expected properties of precursors and compare it with previous such discussions. The information contained in precursors is argued to be encoded in the high-energy sector of the theory and not observable by low-energy measurements. These considerations lead us to propose a locality bound, which indicates where locality breaks down due to black hole or stringy effects. We apply the locality bound to Hawking's argument for information loss in black hole evaporation. We argue that independence of internal and external Hilbert spaces cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. We then turn to the investigation of the landscape of string theory vacua, and investigate a recently constructed de Sitter compactification of IIB string theory, which was shown to be metastable in agreement with general arguments about de Sitter spacetimes in quantum gravity. We describe how discrete flux choices lead to a closely-spaced set of vacua and explore various decay channels. We find that in many situations NS5-brane meditated decays which exchange NSNS 3-form flux for D3-branes are comparatively extremely fast.

  9. GEMS (Gravity Electro-Magnetism Strong) SU(5) Theory and The Prediction of Exchange Boson Masses

    NASA Astrophysics Data System (ADS)

    Brandenburg, John

    2012-10-01

    The GEMS SU(5) [1] theory includes short range Nuclear Forces in the GEM unification theory [2], where the importance of the square root of the proton-electron mass ratio: σ = 42.8503 was found. The creation of mass by a Higgs field coupling must, by the Equivalence Principle, be viewed in the context of General Relativity. This is done here using Kaluza-Klein theory in a Feynman-Hawkings path integral formalism. GEM theory, quantum concepts of virtual particles, and ZPF (Zero Point Fluctuation) allow understanding of the Strong Force and Weak forces as the extension of electrodynamics in the quantum limit. The Strong and Weak forces are found to be associated with EM models of the electron and proton as finite sized structures respectively. Higher order Mie resonances off the EM ``mass at a distance'' structures associated with the electron, proton and fifth dimension generate the quanta with masses of the pion mπ = 2 me /α 140.0 MeV and Z boson: mZ = 2σ mp = 80.4 GeV. The ηc meson mη = 2980 GeV is identified with the 5^th dimension compactification force mediated by the Radion field. Another particle associated with this mass inducing field is the ``Radion'' or Higgs scattering quanta off the fifth dimension with a mass σmη 128.6 GeV which is the Higgs Boson. A GEMS SU(5) Georgi-Glashow model, is proposed, where the unification energy is now the Planck energy.[0pt] [1] Brandenburg, J.E. (2012)., STAIF II Conference Albuquerque NM[0pt] [2] Brandenburg, J.E. (2007). IEEE Transactions On Plasma Science, Vol. 35, No. 4., p845.

  10. Photoemission spectra and band structures of simple metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shung, K.W.; Mahan, G.D.

    1988-08-15

    We present a detailed calculation of the angle-resolved photoemission spectra of Na. The calculation follows a theory by Mahan, which allows for the inclusion of various bulk and surface effects. We find it important to take into account various broadening effects in order to explain the anomalous structure at E/sub F/, which was found by Jensen and Plummer in the spectra of Na. The broadening effects also help to resolve the discrepancy of the conduction-band width. Efforts are made to compare our results with new measurements of Plummer and Lyo. We discuss the ambiguity concerning the sign of the crystalmore » potential and comment on charge-density waves in the systems. We have also generalized our discussions to other simple metals like K.« less

  11. Neural representations of the concepts in simple sentences: Concept activation prediction and context effects.

    PubMed

    Just, Marcel Adam; Wang, Jing; Cherkassky, Vladimir L

    2017-08-15

    Although it has been possible to identify individual concepts from a concept's brain activation pattern, there have been significant obstacles to identifying a proposition from its fMRI signature. Here we demonstrate the ability to decode individual prototype sentences from readers' brain activation patterns, by using theory-driven regions of interest and semantic properties. It is possible to predict the fMRI brain activation patterns evoked by propositions and words which are entirely new to the model with reliably above-chance rank accuracy. The two core components implemented in the model that reflect the theory were the choice of intermediate semantic features and the brain regions associated with the neurosemantic dimensions. This approach also predicts the neural representation of object nouns across participants, studies, and sentence contexts. Moreover, we find that the neural representation of an agent-verb-object proto-sentence is more accurately characterized by the neural signatures of its components as they occur in a similar context than by the neural signatures of these components as they occur in isolation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Detection of low tension cosmic superstrings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2018-05-01

    Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).

  13. Antigravity in F( R) and Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Karagiannakis, N.

    2014-12-01

    We study antigravity in F( R)-theory originating scalar-tensor theories and also in Brans-Dicke models without cosmological constant. For the F( R) theory case, we obtain the Jordan frame antigravity scalar-tensor theory by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate in detail by using some viable F( R) models, although the initial F( R) models have no antigravity, their scalar-tensor counterpart theories might or not have antigravity, a fact mainly depending on the parameter that characterizes antigravity. Similar results hold true in the Brans-Dicke model, which we also studied numerically. In addition, regarding the Brans-Dicke model we also found some analytic cosmological solutions. Since antigravity is an unwanted feature in gravitational theories, our findings suggest that in the case of F( R) theories, antigravity does not occur in the real world described by the F( R) theory, but might occur in the Jordan frame scalar-tensor counterpart of the F( R) theory, and this happens under certain circumstances. The central goal of our study is to present all different cases in which antigravity might occur in modified gravity models.

  14. All possible electroweak models from Z orbifold

    NASA Astrophysics Data System (ADS)

    Sato, Hikaru; Kataoka, H.; Munakata, H.; Tanaka, S.

    1992-02-01

    Considering all possible combinations of two Wilson lines, it is shown that only three independent electroweak models with three generations are obtained from Z orbifold compactification. We obtain this result by analyzing particle spectra of both untwisted and twisted sectors explicitly.

  15. All possible electroweak models from Z orbifold

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kataoka, H.; Munakata, H.; Tanaka, S.

    Considering all possible combinations of two Wilson lines it is shown that only three independent electroweak models with three generations are obtained from Z orbifold compactification. We obtain this result by analyzing particle spectra of both untwisted and twisted sectors explicitly.

  16. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011 American Chemical Society

  17. Holographic DC conductivity and Onsager relations

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Griffin, Tom; Lohitsiri, Nakarin; Melgar, Luis

    2017-07-01

    Within holography the DC conductivity can be obtained by solving a system of Stokes equations for an auxiliary fluid living on the black hole horizon. We show that these equations can be derived from a novel variational principle involving a functional that depends on the fluid variables of interest as well as the time reversed quantities. This leads to simple derivation of the Onsager relations for the conductivity. We also obtain the relevant Stokes equations for bulk theories of gravity in four dimensions including a ϑF ∧ F term in the Lagrangian, where ϑ is a function of dynamical scalar fields. We discuss various realisations of the anomalous Hall conductivity that this term induces and also solve the Stokes equations for holographic lattices which break translations in one spatial dimension.

  18. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Fields, CERN, 15 19 January 2007

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.

    2007-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is possible that such an understanding proves crucial in the realization of supersymmetry breaking in string theory. A second long-standing obstacle, which is being tackled with recent techniques, is moduli stabilization, namely the removal of unwanted massless scalar fields from string models. The present status of this problem, and its prospects of solution via the introduction of general sets of fluxes in the compactification space, were covered in the lectures by Brian Wecht. Application of these ideas to connect string theory to particle physics will require a good understanding of the experimental situation at the forthcoming collider LHC at CERN, and the detection tools for signals of new physics, as reviewed in the lectures by Joe Lykken (not covered in the present issue). Along a different line, the role of moduli fields in string theory is expected to provide a natural explanation of models of inflation, and thus of the origin of the cosmological evolution of our universe. The lecture notes by Cliff Burgess provide a review of big bang cosmology, inflation, and its possible explanation in terms of string theory constructions, including some of the most recent results in the field (these notes also appear in the proceedings of two other schools held in the same period). A surprising recent application of string theory is the description, via the ideas of holography and duality between string theories and gauge theories, of physical properties of quantum chromodynamics at high temperature. Indeed experimental data on the physical properties of the quark gluon plasma, produced in heavy ion collision at the RHIC experiment in Brookhaven (and soon at the LHC at CERN) can be recovered, at a semi-quantitative level, from computations in a string theory dual of the system. These applications are reviewed in the lectures by David Mateos. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. A special acknowledgement also goes to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo

  19. No-scale SU( 5) super-GUTs

    DOE PAGES

    Ellis, John; Evans, Jason L.; Nagata, Natsumi; ...

    2017-04-12

    We reconsider the minimal SU( 5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M in above the GUT scale M GUT. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. Furthermore, we do not find consistent solutions if none of the matter and Higgs fields aremore » assigned to twisted chiral supermultiplets, even in the presence of Giudice–Masiero terms. But, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions.« less

  20. Non-topological cycloops

    NASA Astrophysics Data System (ADS)

    Lake, Matthew; Thomas, Steven; Ward, John

    2010-01-01

    We propose a mechanism for the creation of cosmic string loops with dynamically stabilised windings in the internal space. Assuming a velocity correlations regime in the post-inflationary epoch, such windings are seen to arise naturally in string networks prior to loop formation. The angular momentum of the string in the compact space may then be sufficient to ensure that the windings remain stable after the loop chops off from the network, even if the internal manifold is simply connected. For concreteness we embed our model in the Klebanov-Strassler geometry, which provides a natural mechanism for brane inflation, as well a being one of the best understood compactification schemes in type IIB string theory. We see that the interaction of angular momentum with the string tension causes the loop to oscillate between phases of expansion and contraction. This, in principle, should give rise to a distinct gravitational wave signature, the future detection of which could provide indirect evidence for the existence of extra dimensions.

  1. Forbidden territories in the string landscape

    NASA Astrophysics Data System (ADS)

    Kumar, Alok; Mukhopadhyay, Subir; Ray, Koushik

    2007-12-01

    Problems of stabilizing moduli of the type-IIB string theory on toroidal orientifolds T6/Z2, in presence of worldvolume fluxes on various D-branes, are considered. For Z2 actions, introducing either O9 or O3 planes, we rule out the possibility of moduli stabilization in a wide class of models with Script N = 1 supersymmetry, characterized by the type of fluxes turned on along D-brane worldvolume. Our results, in particular, imply that Abelian worldvolume fluxes can not by themselves stabilize closed string moduli, in a consistent supersymmtric model, for above orientifold compactifications. We also discuss other Z2 orientifolds of T6 and show that certain other brane wrappings are also ruled out by similar consistency requirements. In specific setups we consider examples with D9-branes wrapping on a complex three-torus with its world-volume fluxes taken to be semi-homogeneous bundles and D7-branes wrapping holomorphic four-cycles of the complex three-torus carrying world-volume fluxes.

  2. Theory and phenomenology of Planckian interacting massive particles as dark matter

    NASA Astrophysics Data System (ADS)

    Garny, Mathias; Palessandro, Andrea; Sandora, McCullen; Sloth, Martin S.

    2018-02-01

    Planckian Interacting Dark Matter (PIDM) is a minimal scenario of dark matter assuming only gravitational interactions with the standard model and with only one free parameter, the PIDM mass. PIDM can be successfully produced by gravitational scattering in the thermal plasma of the Standard Model sector after inflation in the PIDM mass range from TeV up to the GUT scale, if the reheating temperature is sufficiently high. The minimal assumption of a GUT scale PIDM mass can be tested in the future by measurements of the primordial tensor-to-scalar ratio. While large primordial tensor modes would be in tension with the QCD axion as dark matter in a large mass range, it would favour the PIDM as a minimal alternative to WIMPs. Here we generalise the previously studied scalar PIDM scenario to the case of fermion, vector and tensor PIDM scenarios, and show that the phenomenology is nearly identical, independent of the spin of the PIDM. We also consider the specific realisation of the PIDM as the Kaluza-Klein excitation of the graviton in orbifold compactifications of string theory, as well as in models of monodromy inflation and in Higgs inflation. Finally we discuss the possibility of indirect detection of PIDM through non-perturbative decay.

  3. N = 1 supersymmetric indices and the four-dimensional A-model

    NASA Astrophysics Data System (ADS)

    Closset, Cyril; Kim, Heeyeon; Willett, Brian

    2017-08-01

    We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.

  4. Automorphic Forms and Mock Modular Forms in String Theory

    NASA Astrophysics Data System (ADS)

    Nazaroglu, Caner

    We study a variety of modular invariant objects in relation to string theory. First, we focus on Jacobi forms over generic rank lattices and Siegel forms that appear in N = 2, D = 4 compactifications of heterotic string with Wilson lines. Constraints from low energy spectrum and modularity are employed to deduce the relevant supersymmetric partition functions entirely. This procedure is applied on models that lead to Jacobi forms of index 3, 4, 5 as well as Jacobi forms over root lattices A2 and A3. These computations are then checked against an explicit orbifold model which can be Higgsed to the models under question. Models with a single Wilson line are then studied in detail with their relation to paramodular group Gammam as T-duality group made explicit. These results on the heterotic string side are then turned into predictions for geometric invariants using TypeII - Heterotic duality. Secondly, we study theta functions for indenite signature lattices of generic signature. Building on results in literature for signature (n-1,1) and (n-2,2) lattices, we work out the properties of generalized error functions which we call r-tuple error functions. We then use these functions to build such indenite theta functions and describe their modular completions.

  5. Exact partition functions for deformed N=2 theories with N_f=4 flavours

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi

    2016-12-01

    We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.

  6. Measuring cognitive load: performance, mental effort and simulation task complexity.

    PubMed

    Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-08-01

    Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95)  = 41.1, p < 0.001 for movements; F(1.04,25.90)  = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5)  = 57.7, p < 0.001 for SRME; F(1.8,47.3)  = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24)  = 5.2, p = 0.031 for movements; F(1,24)  = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26)  = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.

  7. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    NASA Astrophysics Data System (ADS)

    Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H.

    2014-08-01

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where "quantum" coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the "inverted regime" in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.

  8. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H., E-mail: millerwh@berkeley.edu

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where “quantum” coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation functionmore » framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the “inverted regime” in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.« less

  9. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  10. Matter-coupled de Sitter supergravity

    NASA Astrophysics Data System (ADS)

    Kallosh, R. E.

    2016-05-01

    The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.

  11. Electronic Noise and Fluctuations in Solids

    NASA Astrophysics Data System (ADS)

    Kogan, Sh.

    2008-07-01

    Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.

  12. Variations on holography from modifications of gravity in anti-de sitter

    NASA Astrophysics Data System (ADS)

    Apolo Velez, Luis Alberto

    In this thesis we study aspects of the AdS/CFT correspondence that result from modifications of gravity in the bulk and lead to novel features in the dual theories at the boundary. The variations on the holographic theme studied in this thesis are model-independent since we have not assumed a particular UV-completion of gravity. Our results can be applied to a wide class of models that include higher-spin theories and compactifications of string theory on AdS backgrounds. The modifications of the bulk physics studied in this thesis include massive gravitons, higher-derivative terms in the Einstein-Hilbert action, and new boundary conditions for gravity. We begin by showing that it is possible to construct duals with a massive graviton in the bulk by deforming the dual theory at the boundary. This procedure does not break the translation invariance of the dual theory and might be useful in the study of certain condensed matter systems. We then construct the most general class of parity-even tricritical gravities in three and four dimensions. These higher-derivative theories are not unitary and characterized by the logarithmic fall-off of their linearized perturbations. They are conjectured to be dual to rank-3 logarithmic conformal field theories. We will show that, at linear order in the equations of motion, it is possible to truncate the theory to a unitary subsector. We also show that tricritical gravities in three and four dimensions suffer from a linearization instability that forbids unitary truncations beyond linear order. Finally we consider the role of boundary conditions in the AdS3/CFT2 correspondence. We show that free boundary conditions that lead to enhanced asymptotic symmetry groups are dual to 2D theories of quantum gravity in either the conformal or lightcone gauges. In particular we match the generators of symmetries in the bulk and boundary theories and show that a proper identification of the generator of Virasoro transformations in the bulk leads to a vanishing total central charge. We also show that this identification is consistent with the constraint equations of 2D gravity.

  13. N-flation with hierarchically light axions in string compactifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicoli, Michele; Dutta, Koushik; Maharana, Anshuman, E-mail: mcicoli@ictp.it, E-mail: koushik.dutta@saha.ac.in, E-mail: anshumanmaharana@hri.res.in

    2014-08-01

    We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringymore » embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation.« less

  14. On classifying the divisor involutions in Calabi-Yau threefolds

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Shukla, Pramod

    2013-11-01

    In order to support the odd moduli in models of (type IIB) string compactification, we classify the Calabi-Yau threefolds with h 1,1 ≤ 4 which exhibit pairs of identical divisors, with different line-bundle charges, mapping to each other under possible divisor exchange involutions. For this purpose, the divisors of interest are identified as completely rigid surface, Wilson surface, K3 surface and some other deformation surfaces. Subsequently, various possible exchange involutions are examined under the symmetry of Stanley-Reisner Ideal. In addition, we search for the Calabi-Yau theefolds which contain a divisor with several disjoint components. Under certain reflection involution, such spaces also have nontrivial odd components in (1,1)-cohomology class. String compactifications on such Calabi-Yau orientifolds with non-zero could be promising for concrete model building in both particle physics and cosmology. In the spirit of using such Calabi-Yau orientifolds in the context of LARGE volume scenario, we also present some concrete examples of (strong/weak) swiss-cheese type volume form.

  15. Compactification de la Supergravite 10-D Sur les Varietes de Calabi-Yau

    NASA Astrophysics Data System (ADS)

    Gagnon, Michel

    Les varietes de Calabi-Yau permettent une description relativement simple et assez juste de la realite. Recemment, de nombreuses equipes de recherche s'y sont interessees, en particulier P. Candelas, A. M. Dale, C. A. Lutken et R. Schimmrigk (13) qui ont propose une liste de 7868 configurations distinctes. Toutefois, nous croyons que certaines des techniques qui sont exploitees pour construire cette liste ne sont pas suffisamment justifiees et ont pour effet de soustraire a nos investigations bon nombre de configurations potentiellement interessantes. Ainsi, nous produisons, sans utiliser ces techniques simplificatrices, une liste de 97360 configurations. Ensuite, dans le cadre des modeles a 4 generations, nous appliquons un ensemble de criteres, fondes sur les symetries discretes, pour delimiter le domaine des configurations phenomenologiquement viables. Finalement, apres avoir fixe notre choix sur une configuration particuliere, nous essayons de montrer tout l'interet physique des varietes de Calabi-Yau en exposant certains aspects de la phenomenologie a basse energie, notamment les nombres quantiques, les spectres fermioniques, la brisure intermediaire du groupe de jauge et la duree de vie du proton.

  16. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    NASA Astrophysics Data System (ADS)

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2015-12-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network's users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400 % with low error (<3 % ).

  17. Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.

    2018-05-01

    In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.

  18. Resurgence and dynamics of O(N) and Grassmannian sigma models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunne, Gerald V.; Unsal, Mithat

    Here, we study the non-perturbative dynamics of the two dimensional O( N) and Grassmannian sigma models by using compactification with twisted boundary conditions on R× S 1, semi-classical techniques and resurgence. While the O(N) model has no instantons for N > 3, it has (non-instanton) saddles on R 2, which we call 2d-saddles. On R× S 1, the resurgent relation between perturbation theory and non-perturbative physics is encoded in new saddles, which are associated with the affine root system of the o( N) algebra. These events may be viewed as fractionalizations of the 2d-saddles. The first beta function coefficient, givenmore » by the dual Coxeter number, can then be intepreted as the sum of the multiplicities (dual Kac labels) of these fractionalized objects. Surprisingly, the new saddles in O( N) models in compactified space are in one-to-one correspondence with monopole-instanton saddles in SO( N) gauge theory on R 3×S 1. The Grassmannian sigma models Gr( N, M) have 2d instantons, which fractionalize into N kink-instantons. The small circle dynamics of both sigma models can be described as a dilute gas of the one-events and two-events, bions. One-events are the leading source of a variety of non-perturbative effects, and produce the strong scale of the 2d theory in the compactified theory. We show that in both types of sigma models the neutral bion emulates the role of IR-renormalons. We also study the topological theta angle dependence in both the O(3) model and Gr( N, M), and describe the multi-branched structure of the observables in terms of the theta-angle dependence of the saddle amplitudes, providing a microscopic argument for Haldane’s conjecture.« less

  19. Resurgence and dynamics of O(N) and Grassmannian sigma models

    DOE PAGES

    Dunne, Gerald V.; Unsal, Mithat

    2015-09-29

    Here, we study the non-perturbative dynamics of the two dimensional O( N) and Grassmannian sigma models by using compactification with twisted boundary conditions on R× S 1, semi-classical techniques and resurgence. While the O(N) model has no instantons for N > 3, it has (non-instanton) saddles on R 2, which we call 2d-saddles. On R× S 1, the resurgent relation between perturbation theory and non-perturbative physics is encoded in new saddles, which are associated with the affine root system of the o( N) algebra. These events may be viewed as fractionalizations of the 2d-saddles. The first beta function coefficient, givenmore » by the dual Coxeter number, can then be intepreted as the sum of the multiplicities (dual Kac labels) of these fractionalized objects. Surprisingly, the new saddles in O( N) models in compactified space are in one-to-one correspondence with monopole-instanton saddles in SO( N) gauge theory on R 3×S 1. The Grassmannian sigma models Gr( N, M) have 2d instantons, which fractionalize into N kink-instantons. The small circle dynamics of both sigma models can be described as a dilute gas of the one-events and two-events, bions. One-events are the leading source of a variety of non-perturbative effects, and produce the strong scale of the 2d theory in the compactified theory. We show that in both types of sigma models the neutral bion emulates the role of IR-renormalons. We also study the topological theta angle dependence in both the O(3) model and Gr( N, M), and describe the multi-branched structure of the observables in terms of the theta-angle dependence of the saddle amplitudes, providing a microscopic argument for Haldane’s conjecture.« less

  20. Landau theory and giant room-temperature barocaloric effect in M F 3 metal trifluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corrales-Salazar, A.; Brierley, R. T.; Littlewood, P. B.

    The structural phase transitions of MF 3 (M = Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF 6 octahedra associated with soft antiferrodistortive optic modes that are coupled to long-wavelength strain generating acoustic phonons. We calculate the temperature and pressure dependence of several quantities such as the spontaneous distortions, volume expansion, and shear strains as well as T - P phase diagrams. By contrasting our model to experiments we quantify the deviations from mean-field behavior and find that the tilt fluctuations of the MF 6 octahedra increasemore » with metal cation size. We apply our model to predict giant barocaloric effects in Sc-substituted TiF 3 of up to about 15 JK -1 kg -1 for modest hydrostatic compressions of 0.2GPa. The effect extends over a wide temperature range of over 140K (including room temperature) due to a large predicted rate, dT c/dP = 723K GPa -1, which exceeds those of typical barocaloric materials. Our results suggest that open lattice frameworks such as the trifluorides are an attractive platform to search for giant barocaloric effects.« less

  1. On relation between analytic and univalent functions defined by close-to P class with the function belonging to S class

    NASA Astrophysics Data System (ADS)

    Yildiz, Ismet; Uyanik, Neslihan; Albayrak, Hilal; Ay, Hilal

    2017-09-01

    The Weierstrass's associated function is not elliptic but it is of great use in developing the theory of elliptic function. The Zeta function is defined by the double series ∑'m∑″n{1/z-Wmn +1/Wm n +z/Wmn 2 } , where Wmn = 2mω1 + 2nω2 and m, n are integers, not simultaneously zero; the summation ∑'m∑″n{ 1/z -Wm n +1/Wm n +z/Wmn 2 } extends overall integers, not simultaneously. Which Wmn Lattice points. Evidently Wmn are simple poles of ζ (z) and hence the function is meromorphic in W = m ω1+n ω2:(m ,n )≠(0 ,0 ),m ,n ∈ℤ ,Im τ >0, D *=z :|z |>1 ,|Re z |<1/2 andImτ >0, z ∈ℂ. ζ (z) is uniformly convergent series of analytic functions, so the series can be differentiated term-by-term. ζ (z) is an odd function, hence the coefficients of the terms z2k is evidently zero when k is positive integers. Let A be the class of functions f (z) which are analytic and normalized with f (0) = 0 and f' (0) = 1. Let S be the subclass of A consisting of functions f (z) which are univalent in D. Let P class be univalent functions largely concerned with the family S of functions f analytic and univalent in the unit disk D, and satisfying the conditions f (0) = 0 and f' (0) = 1. One of the basic results of the theory is growth theorem, which asserts in part that for each f ∈ S. In particular, the functions f ∈ S are uniformly bounded on each compact subset of D. Thus the family S is locally bounded, and so by Montel's theorem it is a normal family. A relation was established between S class with function of Weierstrass which is analytic and monomorphic Closes-to-P class in unit disk.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  3. Strings on plane-waves and spin chains on orbifolds

    NASA Astrophysics Data System (ADS)

    Sadri, Darius

    This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane-wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the "Penrose limit". In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T-duality are also studied, as are BPS Dp-branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of the three-sphere giant graviton, and place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, giving a two dimensional (worldsheet) description of giant gravitons. Chapter four presents some new ideas regarding the relation between super-conformal gauge theories and string theories with three-dimensional target spaces, possible relations of these systems to Hamiltonian lattice gauge theories, and integrable spin chains. We consider N = 1, D = 4 superconformal SU( N)px q Yang-Mills theories dual to AdS5 x S5/Zp x Zq orbifolds. We show that a specific sector of this dilatation operator can be thought of as the transfer matrix for a three-dimensional statistical mechanical system, which in turn is equivalent to a 2 + 1-dimensional string theory where the spatial slices are discretized on a triangular lattice, and comment on the integrability of this N = 1 gauge theory, its connection to three-dimensional lattice gauge theories, extensions to six-dimensional string theories, AdS/CFT type dualities and finally their construction via orbifolds and brane-box models. In the process we discover a new class of almost-BPS BMN type operators with large engineering dimensions but controllably small anomalous corrections.

  4. Supersymmetric attractors, topological strings, and the M5-brane CFT

    NASA Astrophysics Data System (ADS)

    Guica, Monica M.

    One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand corrections to the entropy of supersymmetric black holes and rings in five dimensions.

  5. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  6. A peptide co-solvent under scrutiny: self-aggregation of 2,2,2-trifluoroethanol.

    PubMed

    Scharge, Tina; Cézard, Christine; Zielke, Philipp; Schütz, Anne; Emmeluth, Corinna; Suhm, Martin A

    2007-08-28

    Trifluoroethanol (TFE) and its aggregates are studied via supersonic jet FTIR and Raman spectroscopy as well as by quantum chemistry and simple force field approaches. A multi-slit nozzle is introduced to study collisionally excited clusters. Efforts are made to extract harmonic frequencies from experiment for better comparison to theory. Based on deuteration, the OH stretching anharmonicity changes weakly upon dimerization, but increases for trimers. Among the possible dimer conformations, only an all-gauche, homoconfigurational, compact, OH-F connected structure is observed in an extreme case of chiral discrimination. Quantum tunneling assisted pathways for this surprising helicity synchronization are postulated. The oscillator coupling in hydrogen-bonded trimers is analyzed. Trans conformations of TFE start to become important for trimers and probably persist in the liquid state. Simple force fields can be refined to capture some molecular recognition features of TFE dimer, but their limitations are emphasized.

  7. Image restoration by the method of convex projections: part 1 theory.

    PubMed

    Youla, D C; Webb, H

    1982-01-01

    A projection operator onto a closed convex set in Hilbert space is one of the few examples of a nonlinear map that can be defined in simple abstract terms. Moreover, it minimizes distance and is nonexpansive, and therefore shares two of the more important properties of ordinary linear orthogonal projections onto closed linear manifolds. In this paper, we exploit the properties of these operators to develop several iterative algorithms for image restoration from partial data which permit any number of nonlinear constraints of a certain type to be subsumed automatically. Their common conceptual basis is as follows. Every known property of an original image f is envisaged as restricting it to lie in a well-defined closed convex set. Thus, m such properties place f in the intersection E(0) = E(i) of the corresponding closed convex sets E(1),E(2),...EE(m). Given only the projection operators PE(i) onto the individual E(i)'s, i = 1 --> m, we restore f by recursive means. Clearly, in this approach, the realization of the P(i)'s in a Hilbert space setting is one of the major synthesis problems. Section I describes the geometrical significance of the three main theorems in considerable detail, and most of the underlying ideas are illustrated with the aid of simple diagrams. Section II presents rules for the numerical implementation of 11 specific projection operators which are found to occur frequently in many signal-processing applications, and the Appendix contains proofs of all the major results.

  8. On the physical origin of blue-shifted hydrogen bonds.

    PubMed

    Li, Xiaosong; Liu, Lei; Schlegel, H Bernhard

    2002-08-14

    For blue-shifted hydrogen-bonded systems, the hydrogen stretching frequency increases rather than decreases on complexation. In computations at various levels of theory, the blue-shift in the archetypical system, F(3)C-H.FH, is reproduced at the Hartree-Fock level, indicating that electron correlation is not the primary cause. Calculations also demonstrate that a blue-shift does not require either a carbon center or the absence of a lone pair on the proton donor, because F(3)Si-H.OH(2), F(2)NH.FH, F(2)PH.NH(3), and F(2)PH.OH(2) have substantial blue-shifts. Orbital interactions are shown to lengthen the X-H bond and lower its vibrational frequency, and thus cannot be the source of the blue-shift. In the F(3)CH.FH system, the charge redistribution in F(3)CH can be reproduced very well by replacing the FH with a simple dipole, which suggests that the interactions are predominantly electrostatic. When modeled with a point charge for the proton acceptor, attractive electrostatic interactions elongate the F(3)C-H, while repulsive interactions shorten it. At the equilibrium geometry of a hydrogen-bonded complex, the electrostatic attraction between the dipole moments of the proton donor and proton acceptor must be balanced by the Pauli repulsion between the two fragments. In the absence of orbital interactions that cause bond elongation, this repulsive interaction leads to compression of the X-H bond and a blue-shift in its vibrational frequency.

  9. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  10. The mass spectra, hierarchy and cosmology of B-L MSSM heterotic compactifications

    DOE PAGES

    Ambroso, Michael; Ovrut, Burt A.

    2011-04-10

    The matter spectrum of the MSSM, including three right-handed neutrino supermultiplets and one pair of Higgs-Higgs conjugate superfields, can be obtained by compactifying the E₈ x E₈ heterotic string and M-theory on Calabi-Yau manifolds with specific SU(4) vector bundles. These theories have the standard model gauge group augmented by an additional gauged U(1) B-L. Their minimal content requires that the B-L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed neutrino. In previous papers, we presented the results of a quasi-analytic renormalization group analysis showing that B-L gauge symmetry is indeed radiatively broken withmore » an appropriate B-L/electroweak hierarchy. In this paper, we extend these results by 1) enlarging the initial parameter space and 2) explicitly calculating all renormalization group equations numerically. The regions of the initial parameter space leading to realistic vacua are presented and the B-L/electroweak hierarchy computed over these regimes. At representative points, the mass spectrum for all particles and Higgs fields is calculated and shown to be consistent with present experimental bounds. Some fundamental phenomenological signatures of a non-zero right-handed neutrino expectation value are discussed, particularly the cosmology and proton lifetime arising from induced lepton and baryon number violating interactions.« less

  11. Stabilizing all geometric moduli in heterotic Calabi-Yau vacua

    DOE PAGES

    Anderson, Lara B.; Gray, James; Lukas, Andre; ...

    2011-05-27

    We propose a scenario to stabilize all geometric moduli - that is, the complex structure, Kähler moduli and the dilaton - in smooth heterotic Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any heterotic compactification, whose perturbative effects on the moduli are combined with non-perturbative corrections. We argue that, for appropriate gauge bundles, all complex structure and a large number of other moduli can be perturbatively stabilized - in the most restrictive case, leaving only one combination of Kähler moduli and the dilaton as a flat direction. At this stage, the remaining modulimore » space consists of Minkowski vacua. That is, the perturbative superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we incorporate non-perturbative effects such as gaugino condensation and/or instantons. These are strongly constrained by the anomalous U(1) symmetries which arise from the required bundle constructions. We present a specific example, with a consistent choice of non-perturbative effects, where all remaining flat directions are stabilized in an AdS vacuum.« less

  12. Fermion dark matter in gauge-Higgs unification

    DOE PAGES

    Maru, Nobuhito; Miyaji, Takashi; Okada, Nobuchika; ...

    2017-07-11

    Here, we propose a Majorana fermion dark matter in the context of a s imple gauge-Higgs Unification (GHU) scenario based on the gauge group SU(3)×U(1)' in 5-dimensional Minkowski space with a compactification of the 5th dimension on S 1/Z 2 orbifold. The dark matter particle is identified with the lightest mode in SU(3) triplet fermions additionally introduced in the 5-dimensional bulk. We find an allowed parameter region for the dark matter mass around a half of the Standard Model Higgs boson mass, which is consistent with the observed dark matter density and the constraint from the LUX 2016 result formore » the direct dark matter search. The entire allowed region will be covered by, for example, the LUX-ZEPLIN dark matter experiment in the near future. We also show that in the presence of the bulk SU(3) triplet fermions the 125 GeV Higgs boson mas s is reproduced through the renormalization group evolution of Higgs quartic coupling with the compactification scale of around 10 8 GeV.« less

  13. Non-perturbative effects and wall-crossing from topological strings

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Soler, Pablo; Uranga, Angel M.

    2009-11-01

    We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d Script N = 2 IIB models. We also discuss the reduction to 4d Script N = 1 by fluxes and/or orientifolds and/or D-branes, and the prospects to resum brane instanton contributions to non-perturbative superpotentials. We argue that the connection between non-perturbative effects and the topological string underlies the continuity of non-perturbative effects across lines of BPS stability. We also confirm this statement in mirror B-model matrix model examples, relating matrix model instantons to non-perturbative D-brane instantons. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, reminiscent of that involved in the physical derivation of the Kontsevich-Soibelmann wall-crossing formula.

  14. Nailfold capillaroscopy for day-to-day clinical use: construction of a simple scoring modality as a clinical prognostic index for digital trophic lesions.

    PubMed

    Smith, Vanessa; De Keyser, Filip; Pizzorni, Carmen; Van Praet, Jens T; Decuman, Saskia; Sulli, Alberto; Deschepper, Ellen; Cutolo, Maurizio

    2011-01-01

    Construction of a simple nailfold videocapillaroscopic (NVC) scoring modality as a prognostic index for digital trophic lesions for day-to-day clinical use. An association with a single simple (semi)-quantitatively scored NVC parameter, mean score of capillary loss, was explored in 71 consecutive patients with systemic sclerosis (SSc), and reliable reduction in the number of investigated fields (F32-F16-F8-F4). The cut-off value of the prognostic index (mean score of capillary loss calculated over a reduced number of fields) for present/future digital trophic lesions was selected by receiver operating curve (ROC) analysis. Reduction in the number of fields for mean score of capillary loss was reliable from F32 to F8 (intraclass correlation coefficient of F16/F32: 0.97; F8/F32: 0.90). Based on ROC analysis, a prognostic index (mean score of capillary loss as calculated over F8) with a cut-off value of 1.67 is proposed. This value has a sensitivity of 72.22/70.00, specificity of 70.59/69.77, positive likelihood ratio of 2.46/2.32 and a negative likelihood ratio of 0.39/0.43 for present/future digital trophic lesions. A simple prognostic index for digital trophic lesions for daily use in SSc clinics is proposed, limited to the mean score of capillary loss as calculated over eight fields (8 fingers, 1 field per finger).

  15. Chern-Simons-matter dualities with SO and USp gauge groups

    DOE PAGES

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen; ...

    2017-02-14

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  16. Observational physics of mirror world

    NASA Technical Reports Server (NTRS)

    Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.

    1989-01-01

    The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.

  17. Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua

    NASA Astrophysics Data System (ADS)

    Rizos, J.

    2014-06-01

    The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.

  18. The B - L/electroweak Hierarchy in Smooth Heterotic Compactifications

    NASA Astrophysics Data System (ADS)

    Ambroso, Michael; Ovrut, Burt A.

    E8 × E8 heterotic string and M-theory, when appropriately compactified, can give rise to realistic, N = 1 supersymmetric particle physics. In particular, the exact matter spectrum of the MSSM, including three right-handed neutrino supermultiplets, one per family, and one pair of Higgs-Higgs conjugate superfields is obtained by compactifying on Calabi-Yau manifolds admitting specific SU(4) vector bundles. These "heterotic standard models" have the SU(3)C × SU(2)L × U(1)Y gauge group of the standard model augmented by an additional gauged U(1)B - L. Their minimal content requires that the B - L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. In a previous paper, we presented the results of a renormalization group analysis showing that B - L gauge symmetry is indeed radiatively broken with a B - L/electroweak hierarchy of { O}(10) to { O}(102). In this paper, we present the details of that analysis, extending the results to include higher order terms in tan β-1 and the explicit spectrum of all squarks and sleptons.

  19. A study on gaseous extinguishing agent sensing with a simple measurement method

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Lu, Song; Yuan, Wei; Qian, Hanjie

    2018-03-01

    As research on the concentration distribution for evaluating the effectiveness of a gas fire extinguisher system is quite important, the proper sensing technology is necessary. Here, a simple method used for measuring the concentration of agent is introduced, and the manufacture of the sensing part is described clearly. The sensing unit is composed of a pressure reducing structure and pressure sensor element. The detection was achieved by sensing the change of pressure difference caused by gas flow. In order to verify the theory and characterize the sensing performance, two types of fire extinguishing agents, bromotrifluoromethane (CBrF3) and heptafluoropropane (C3HF7), were used in the experiments. The results showed a high sensitivity from 0 to 100%, good repeatability and fast response/recovery time. Furthermore, the effect of operating temperature, humidity and geometric structure on the response were investigated. Measurements showed, for CBrF3, that the temperature had a linear impact on the response and the influence of humidity in the sensor was negligible. Through the analysis of the geometry parameter, it was found that the sensing performance could be greatly improved through adjusting the geometry structure. This technique provides a low-cost and highly reliable sensor for the detection of gaseous extinguishing agent that can be easily fabricated.

  20. An Integrated Higgs Force Theory

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2016-03-01

    An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).

  1. Relationships between impulsivity, anxiety, and risk-taking and neural correlates of attention in adolescents

    PubMed Central

    Elsey, James W. B.; Crowley, Michael J.; Mencl, W. Einar; Lacadie, Cheryl M.; Mayes, Linda C.; Potenza, Marc N.

    2016-01-01

    Although impulsivity, anxiety, and risk-taking may relate to attentional processes, little research has directly investigated how each may be associated with specific facets of attentional processes and their underlying neural correlates. Nineteen adolescents performed an fMRI task involving simple, selective and divided attention. Out-of-scanner-assessed impulsivity, anxiety and risk-taking scores were not correlated with each other and showed task-phase-specific patterns of association. Results are discussed in light of research and theory suggesting a relationship between these domains and attention and may serve to focus future research aiming to understand these relationships. PMID:27135550

  2. Materials Processing in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Schneider-Muntau, Hans J.; Wada, Hitoshi

    The latest in lattice QCD -- Quark-gluon plasma physics -- String theory and exact results in quantum field theory -- The status of local supersymmetry.Supersymmetry in nuclei -- Inflation, dark matter, dark energy -- How many dimensions are really compactified? -- Horizons -- Neutrino oscillations physics -- Fundamental constants and their possible time dependence.Highlights from BNL. new phenomena at RHIC -- Highlights from BABAR -- Diffraction studied with a hard scale at HERA -- The large hadron collider: a status report -- Status of non-LHC experiments at CERN -- Highlights from Gran Sass.Fast automatic systems for nuclear emulsion scanning: technique and experiments -- Probing the QGP with charm at ALICE-LHC -- magnetic screening length in hot QCD -- Non-supersymmetric deformation of the Klebanov-Strassler model and the related plane wave theory -- Holographic renormalization made simple: an example -- The kamLAND impact on neutrino oscillations -- Particle identification with the ALIC TOF detector at very high multiplicity -- Superpotentials of N = 1 SUSY gauge theories -- Measurement of the proton structure function F2 in QED compton scattering at HERA -- Yang-Mills effective action at high temperature -- The time of flight (TOF) system of the ALICE experiment -- Almost product manifolds as the low energy geometry of Dirichlet Brane.

  3. Neural correlates of the essence of conscious conflict: fMRI of sustaining incompatible intentions.

    PubMed

    Gray, Jeremy R; Bargh, John A; Morsella, Ezequiel

    2013-09-01

    The study of intrapsychic conflict has long been central to many key theories about the control of behavior. More recently, by focusing on the nature of conflicting processes in the brain, investigators have revealed great insights about controlled versus automatic processes and the nature of self-control. Despite these advances, many theories of cognitive control or self-control remain agnostic about the function of subjective awareness (i.e., basic consciousness). Why people consciously experience some conflicts in the nervous system but not others remains a mystery. One hypothesis is that people become conscious only of conflicts involving competition for the control of skeletal muscle. To test one aspect of this larger hypothesis, in the present study, 14 participants were trained to introspect the feeling of conflict (the urge to make an error during a Stroop color-word interference task) and then were asked to introspect in the same way while sustaining simple compatible and incompatible intentions during fMRI scanning (to move a finger left or right). As predicted, merely sustaining incompatible skeletomotor intentions prior to their execution produced stronger systematic changes in subjective experience than sustaining compatible intentions, as indicated by self-report ratings obtained in the scanner. Similar ratings held for a modified Stroop-like task when contrasting incompatible versus compatible trials also during fMRI scanning. We use subjective ratings as the basis of parametric analyses of fMRI data, focusing a priori on the brain regions involved in action-related urges (e.g., parietal cortex) and cognitive control (e.g., dorsal anterior cingulate cortex, lateral PFC). The results showed that subjective conflict from sustaining incompatible intentions was consistently related to activity in the left post-central gyrus.

  4. Non-linear stochastic growth rates and redshift space distortions

    DOE PAGES

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean , together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc -1 to 25 per cent atmore » k ~ 0.45 h Mpc -1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 10 12 M ⊙ h -1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean away from the linear theory prediction -f LTδ, where f LT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc -1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of f LT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of f LT extracted using models which assume a linear, deterministic expression.« less

  5. Possible antigravity regions in F(R) theory?

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D.; Sáez-Gómez, Diego

    2014-03-01

    We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.

  6. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.

    PubMed

    Yu, Zhihao; Tian, Zhipeng; Wang, Anbo

    2017-02-15

    In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.

  7. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories.

    PubMed

    Dong, Xi

    2016-06-24

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy S_{n} is described by two coefficients: f_{b}(n) for traceless extrinsic curvature deformations and f_{c}(n) for Weyl tensor deformations. We provide the first calculation of the coefficient f_{b}(n) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture f_{b}(n)=f_{c}(n), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  8. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  9. Extension of loop quantum gravity to f(R) theories.

    PubMed

    Zhang, Xiangdong; Ma, Yongge

    2011-04-29

    The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.

  10. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    PubMed

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV <1.0%. These results suggest that the simple method presented here is valid and reliable for computing CMJ force, velocity, power, and F-v profiles in athletes and could be used in practice under field conditions when body mass, push-off distance, and jump height are known.

  11. Wormhole solutions in f(R) gravity satisfying energy conditions

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-10-01

    Without reference to exotic sources construction of viable wormholes in Einstein’s general relativity remained ever a myth. With the advent of modified theories, however, specifically the f(R) theory, new hopes arose for the possibility of such objects. From this token, we construct traversable wormholes in f(R) theory supported by a fluid source which respects at least the weak energy conditions. We provide an example (Example 1) of asymptotically flat wormhole in f(R) gravity without ghosts.

  12. R2 dark energy in the laboratory

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick; Vanhove, Pierre

    2018-05-01

    We analyze the role, on large cosmological scales and laboratory experiments, of the leading curvature squared contributions to the low-energy effective action of gravity. We argue for a natural relationship c0λ2≃1 at low energy between the R2 coefficients c0 of the Ricci scalar squared term in this expansion and the dark energy scale Λ =(λ MPl)4 in four-dimensional Planck mass units. We show how the compatibility between the acceleration of the expansion rate of the Universe, local tests of gravity and the quantum stability of the model all converge to select such a relationship up to a coefficient which should be determined experimentally. When embedding this low-energy theory of gravity into candidates for its ultraviolet completion, we find that the proposed relationship is guaranteed in string-inspired supergravity models with modulus stabilization and supersymmetry breaking leading to de Sitter compactifications. In this case, the scalar degree of freedom of R2 gravity is associated to a volume modulus. Once written in terms of a scalar-tensor theory, the effective theory corresponds to a massive scalar field coupled with the universal strength β =1 /√{6 } to the matter stress-energy tensor. When the relationship c0λ2≃1 is realized, we find that on astrophysical scales and in cosmology the scalar field is ultralocal and therefore no effect arises on such large scales. On the other hand, the scalar field mass is tightly constrained by the nonobservation of fifth forces in torsion pendulum experiments such as Eöt-Wash. It turns out that the observation of the dark energy scale in cosmology implies that the scalar field could be detectable by fifth-force experiments in the near future.

  13. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. BRST Exactness of Stress-Energy Tensors

    NASA Astrophysics Data System (ADS)

    Miyata, Hideo; Sugimoto, Hiroshi

    BRST commutators in the topological conformal field theories obtained by twisting N=2 theories are evaluated explicitly. By our systematic calculations of the multiple integrals which contain screening operators, the BRST exactness of the twisted stress-energy tensors is deduced for classical simple Lie algebras and general level k. We can see that the paths of integrations do not affect the result, and further, the N=2 coset theories are obtained by deleting two simple roots with Kac-label 1 from the extended Dynkin diagram; in other words, by not performing the integrations over the variables corresponding to the two simple roots of Kac-Moody algebras. It is also shown that a series of N=1 theories are generated in the same way by deleting one simple root with Kac-label 2.

  15. Advancing the literature on designing audit and feedback interventions: identifying theory-informed hypotheses.

    PubMed

    Colquhoun, Heather L; Carroll, Kelly; Eva, Kevin W; Grimshaw, Jeremy M; Ivers, Noah; Michie, Susan; Sales, Anne; Brehaut, Jamie C

    2017-09-29

    Audit and feedback (A&F) is a common strategy for helping health providers to implement evidence into practice. Despite being extensively studied, health care A&F interventions remain variably effective, with overall effect sizes that have not improved since 2003. Contributing to this stagnation is the fact that most health care A&F interventions have largely been designed without being informed by theoretical understanding from the behavioral and social sciences. To determine if the trend can be improved, the objective of this study was to develop a list of testable, theory-informed hypotheses about how to design more effective A&F interventions. Using purposive sampling, semi-structured 60-90-min telephone interviews were conducted with experts in theories related to A&F from a range of fields (e.g., cognitive, health and organizational psychology, medical decision-making, economics). Guided by detailed descriptions of A&F interventions from the health care literature, interviewees described how they would approach the problem of designing improved A&F interventions. Specific, theory-informed hypotheses about the conditions for effective design and delivery of A&F interventions were elicited from the interviews. The resulting hypotheses were assigned by three coders working independently into themes, and categories of themes, in an iterative process. We conducted 28 interviews and identified 313 theory-informed hypotheses, which were placed into 30 themes. The 30 themes included hypotheses related to the following five categories: A&F recipient (seven themes), content of the A&F (ten themes), process of delivery of the A&F (six themes), behavior that was the focus of the A&F (three themes), and other (four themes). We have identified a set of testable, theory-informed hypotheses from a broad range of behavioral and social science that suggest conditions for more effective A&F interventions. This work demonstrates the breadth of perspectives about A&F from non-healthcare-specific disciplines in a way that yields testable hypotheses for healthcare A&F interventions. These results will serve as the foundation for further work seeking to set research priorities among the A&F research community.

  16. The Simple Theory of Public Library Services.

    ERIC Educational Resources Information Center

    Newhouse, Joseph P.

    A simple normative theory applicable to public library services was developed as a tool to aid libraries in answering the question: which books should be bought by the library? Although developed for normative purposes, the theory generates testable predictions. It is relevant to measuring benefits from services which are provided publicly because…

  17. Intricacies of cosmological bounce in polynomial metric f(R) gravity for flat FLRW spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Kaushik; Chakrabarty, Saikat, E-mail: kaushikb@iitk.ac.in, E-mail: snilch@iitk.ac.in

    2016-02-01

    In this paper we present the techniques for computing cosmological bounces in polynomial f(R) theories, whose order is more than two, for spatially flat FLRW spacetime. In these cases the conformally connected Einstein frame shows up multiple scalar potentials predicting various possibilities of cosmological evolution in the Jordan frame where the f(R) theory lives. We present a reasonable way in which one can associate the various possible potentials in the Einstein frame, for cubic f(R) gravity, to the cosmological development in the Jordan frame. The issue concerning the energy conditions in f(R) theories is presented. We also point out themore » very important relationships between the conformal transformations connecting the Jordan frame and the Einstein frame and the various instabilities of f(R) theory. All the calculations are done for cubic f(R) gravity but we hope the results are sufficiently general for higher order polynomial gravity.« less

  18. Generalized second law of thermodynamics in f(R,T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Momeni, D.; Moraes, P. H. R. S.; Myrzakulov, R.

    2016-07-01

    We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T)=R+f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and also on the form of f(T).

  19. New classes of modified teleparallel gravity models

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Böhmer, Christian G.; Krššák, Martin

    2017-12-01

    New classes of modified teleparallel theories of gravity are introduced. The action of this theory is constructed to be a function of the irreducible parts of torsion f (Tax ,Tten ,Tvec), where Tax ,Tten and Tvec are squares of the axial, tensor and vector components of torsion, respectively. This is the most general (well-motivated) second order teleparallel theory of gravity that can be constructed from the torsion tensor. Different particular second order theories can be recovered from this theory such as new general relativity, conformal teleparallel gravity or f (T) gravity. Additionally, the boundary term B which connects the Ricci scalar with the torsion scalar via R = - T + B can also be incorporated into the action. By performing a conformal transformation, it is shown that the two unique theories which have an Einstein frame are either the teleparallel equivalent of general relativity or f (- T + B) = f (R) gravity, as expected.

  20. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex.

    PubMed

    Littlefield, Melissa M; Dietz, Martin J; Fitzgerald, Des; Knudsen, Kasper J; Tonks, James

    2015-01-01

    "Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

  1. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex

    PubMed Central

    Littlefield, Melissa M.; Dietz, Martin J.; Fitzgerald, Des; Knudsen, Kasper J.; Tonks, James

    2015-01-01

    “Truth” has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning. PMID:26539094

  2. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.

    PubMed

    Olejniczak, Małgorzata; Bast, Radovan; Saue, Trond; Pecul, Magdalena

    2012-01-07

    We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.

  3. The hidden flat like universe. Starobinsky-like inflation induced by f (T) gravity

    NASA Astrophysics Data System (ADS)

    El Hanafy, W.; Nashed, G. G. L.

    2015-06-01

    We study a single-fluid component in a flat like universe (FLU) governed by f( T) gravity theories, where T is the teleparallel torsion scalar. The FLU model, regardless of the value of the spatial curvature k, identifies a special class of f( T) gravity theories. Remarkably, FLU f( T) gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state evolves similarly in all models . We study the case when the torsion tensor consists of a scalar field, which enables to derive a quintessence potential from the obtained f( T) gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions, so that for a single value of the scalar tilt (spectral index) the theory can predict double tensor-to-scalar ratios r of E-mode and B-mode polarizations.

  4. On the analytic lunar and solar perturbations of a near earth satellite

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1972-01-01

    The disturbing function of the moon (sun) is expanded as a sum of products of two harmonic functions, one depending on the position of the satellite and the other on the position of the moon (sun). The harmonic functions depending on the position of the perturbing body are developed into trigonometric series with the ecliptic elements l, l', F, D, and Gamma of the lunar theory which are nearly linear with respect to time. Perturbation of elements are in the form of trigonometric series with the ecliptic lunar elements and the equatorial elements omega and Omega of the satellite so that analytic integration is simple and the results accurate over a long period of time.

  5. Time-reversal breaking in QCD4, walls, and dualities in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide; Komargodski, Zohar; Seiberg, Nathan

    2018-01-01

    We study SU( N ) Quantum Chromodynamics (QCD) in 3+1 dimensions with N f degenerate fundamental quarks with mass m and a θ-parameter. For generic m and θ the theory has a single gapped vacuum. However, as θ is varied through θ = π for large m there is a first order transition. For N f = 1 the first order transition line ends at a point with a massless η' particle (for all N ) and for N f > 1 the first order transition ends at m = 0, where, depending on the value of N f , the IR theory has free Nambu-Goldstone bosons, an interacting conformal field theory, or a free gauge theory. Even when the 4 d bulk is smooth, domain walls and interfaces can have interesting phase transitions separating different 3 d phases. These turn out to be the phases of the recently studied 3 d Chern-Simons matter theories, thus relating the dynamics of QCD4 and QCD3, and, in particular, making contact with the recently discussed dualities in 2+1 dimensions. For example, when the massless 4 d theory has an SU( N f ) sigma model, the domain wall theory at low (nonzero) mass supports a 3 d massless CP^{N_f-1} nonlinear σ-model with a Wess-Zumino term, in agreement with the conjectured dynamics in 2+1 dimensions.

  6. 4D superfield reduction of 5D orbifold SUGRA and heterotic M-theory

    NASA Astrophysics Data System (ADS)

    Paccetti Correia, Filipe; Schmidt, Michael G.; Tavartkiladze, Zurab

    2006-09-01

    We present a detailed study of the reduction to 4D of 5D supergravity compactified on the S/Z orbifold. For this purpose we develop and employ a recently proposed N=1 conformal superfield description of the 5D supergravity couplings to Abelian vector and hypermultiplets. In particular, we obtain a unique relation of the "radion" to chiral superfields as in global 5D SUSY and we can embed the universal hypermultiplet into this formalism. In our approach, it is transparent how the superconformal structure of the effective 4D actions is inherited from the one of the original 5D supergravity. We consider both ungauged and gauged 5D supergravities. This includes compactifications in unwarped geometries, generalizations of the supersymmetric Randall-Sundrum (RS) model as well as 5D heterotic M-theory. In the unwarped case, after obtaining the effective Kähler potentials and superpotentials, we demonstrate that the tree-level 4D potentials have flat and/or tachyonic directions. One-loop corrections to the Kähler potential and gaugino condensation are presented as suitable tools for moduli stabilization to be discussed in subsequent work. Turning to the RS-like models, we obtain a master formula for the Kähler potential for an arbitrary number of vector and hyper moduli, which we evaluate exactly for special cases. Finally, we formulate the superfield description of 5D heterotic M-theory and obtain its effective 4D description for the universal ( h=1) case, in the presence of an arbitrary number of bulk 5-branes. We present, as a check of our expressions, time-dependent solutions of 4D heterotic M-theory, which uplift to 5D solutions generalizing the ones recently found in [W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lü, C.N. Pope, Hořava-Witten stability: Eppur si muove, Nucl. Phys. B 732 (2006) 118, hep-th/0502077].

  7. An experimental test of control theory-based interventions for physical activity.

    PubMed

    Prestwich, Andrew; Conner, Mark; Hurling, Robert; Ayres, Karen; Morris, Ben

    2016-11-01

    To provide an experimental test of control theory to promote physical activity. Parallel groups, simple randomized design with an equal chance of allocation to any group. Participants not meeting recommended levels of physical activity but physically safe to do so (N = 124) were recruited on a UK university campus and randomized to goal-setting + self-monitoring + feedback (GS + SM + F, n = 40), goal-setting + self-monitoring (GS + SM, n = 40), or goal-setting only (GS, n = 44) conditions that differentially tapped the key features of control theory. Accelerometers assessed physical activity (primary outcome) as well as self-report over a 7-day period directly before/after the start of the intervention. The participants in the GS + SM + F condition significantly outperformed those in the GS condition, d = 0.62, 95% CI d = 0.15-1.08, and marginally outperformed those in the GS + SM condition in terms of total physical activity at follow-up on the accelerometer measure, d = 0.33, 95% CI d = -0.13 to 0.78. The feedback manipulation (GS + SM + F vs. GS + SM and GS) was most effective when baseline intentions were weak. These patterns did not emerge on the self-report measure but, on the basis of this measure, the feedback manipulation increased the risk that participants coasted in relation to their goal in the first few days of the intervention period. Using behaviour change techniques consistent with control theory can lead to significant short-term improvements on objectively assessed physical activity. Further research is needed to examine the underlying theoretical principles of the model. Statement of contribution What is already known on this subject? Interventions incorporating more techniques that are consistent with control theory are associated with larger positive changes in health behaviours and related outcomes (see reviews by Dombrowski et al., ; Michie et al., ). However, none of the studies included in these reviews were explicitly based on control theory (see Prestwich et al., ). What does this study add? This study is the first experimental test of the cumulative effects of behaviour change techniques as proposed by control theory. Intervening on all aspects of the feedback loop noted by control theory leads to more change; however, the risk that some participants coast in relation to their set goal is significant. This approach increased physical activity more in those with weaker intentions pre-intervention. © 2016 The British Psychological Society.

  8. Equilibrium Contact Angle and Adsorption Layer Properties with Surfactants.

    PubMed

    Thiele, Uwe; Snoeijer, Jacco H; Trinschek, Sarah; John, Karin

    2018-06-19

    The three-phase contact line of a droplet on a smooth surface can be characterized by the Young equation. It relates the interfacial energies to the macroscopic contact angle θ e . On the mesoscale, wettability is modeled by a film-height-dependent wetting energy f( h). Macro- and mesoscale descriptions are consistent if γ cos θ e = γ + f( h a ), where γ and h a are the liquid-gas interface energy and the thickness of the equilibrium liquid adsorption layer, respectively. Here, we derive a similar consistency condition for the case of a liquid covered by an insoluble surfactant. At equilibrium, the surfactant is spatially inhomogeneously distributed, implying a nontrivial dependence of θ e on surfactant concentration. We derive macroscopic and mesoscopic descriptions of a contact line at equilibrium and show that they are consistent only if a particular dependence of the wetting energy on the surfactant concentration is imposed. This is illustrated by a simple example of dilute surfactants, for which we show excellent agreement between theory and time-dependent numerical simulations.

  9. The response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric resonance

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.

    1983-09-01

    An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.

  10. Fundamental Quantum 1/F Noise in Ultrasmall Semiconductor Devices and Their Optimal Design Principles

    DTIC Science & Technology

    1988-05-31

    Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum i/ f ...theory. There are two forms of quantum 11f noise . In the first place C~ and Cn4 p n to quantum 1 / f noise theory. This would yield Hooge parameters S...Fundamental Quantum 1 / f Noise in Ultrasmall S~ iodcrD’vesadOtm.Dsgn P in. 12. PERSONAL AUTHOR(S) Handel, Peter H. (Princioal investiaat r) 13a. TYPE

  11. Quantum Electrodynamics in d=3 from the ε Expansion.

    PubMed

    Di Pietro, Lorenzo; Komargodski, Zohar; Shamir, Itamar; Stamou, Emmanuel

    2016-04-01

    We study quantum electrodynamics in d=3 coupled to N_{f} flavors of fermions. The theory flows to an IR fixed point for N_{f} larger than some critical number N_{f}^{c}. For N_{f}≤N_{f}^{c}, chiral-symmetry breaking is believed to take place. In analogy with the Wilson-Fisher description of the critical O(N) models in d=3, we make use of the existence of a fixed point in d=4-2ε to study the three-dimensional conformal theory. We compute, in perturbation theory, the IR dimensions of fermion bilinear and quadrilinear operators. For small N_{f}, a quadrilinear operator can become relevant in the IR and destabilize the fixed point. Therefore, the epsilon expansion can be used to estimate N_{f}^{c}. An interesting novelty compared to the O(N) models is that the theory in d=3 has an enhanced symmetry due to the structure of 3D spinors. We identify the operators in d=4-2ε that correspond to the additional conserved currents at d=3 and compute their infrared dimensions.

  12. A quantum perturbative pair distribution for determining interatomic potentials from extended x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piazza, F.

    2002-11-01

    In this paper we develop a technique for determining interatomic potentials in materials in the quantum regime from single-shell extended x-ray absorption spectroscopy (EXAFS) spectra. We introduce a pair distribution function, based on ordinary quantum time-independent perturbation theory. In the proposed scheme, the model potential parameters enter the distribution through a fourth-order Taylor expansion of the potential, and are directly refined in the fit of the model signal to the experimental spectrum. We discuss in general the validity of our theoretical framework, namely the quantum regime and perturbative treatment, and work out a simple tool for monitoring the sensitivity of our theory in determining lattice anharmonicities based on the statistical F-test. As an example, we apply our formalism to an EXAFS spectrum at the Ag K edge of AgI at T = 77 K. We determine the Ag-I potential parameters and find good agreement with previous studies.

  13. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  14. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a major advance exploited by these techniques.

  15. Nonlocal electron energy transport and flux inhibition in laser produced plasmas in one and two dimensions

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2011-10-01

    As the mean free path of the heat conducting electrons in laser produced plasmas can, at certain points, be greater than the temperature gradient scale length, the classical, local model can be invalid. More energetic electrons can advance ahead of the main heat front and preheat the fusion target. Also, experiments show that the main heat front does not propagate as rapidly as classical theory would predict, so there is heat flux inhibition. This latter effect is usually treated by limiting the flux to some arbitrary fraction f of the free streaming flux; f's have ranged from 0.03 to 0.3. However the choice of flux limit is arbitrary and the choice affects plasma temperature, which in turn affects thresholds for laser plasma instabilities; too low a limit has given too high a temperature and false optimism regarding instability threshold. We have developed a velocity dependent Krook model for nonlocal electron energy transport. It shows preheat and flux limitation are not separate effects, but are two sides of the same coin. The model gives an analytic solution for the nonlocal electron energy flux, and it is relatively simple and inexpensive to incorporate in a fluid simulation run at the ion time scale. It shows that in some sense, preheat is subtracted from the main electron energy flux, thereby giving rise to flux limitation. We have developed the theory and compared it with Fokker Planck simulations of simple configurations. We have incorporated the model into our code FAST2D and used it to model foil acceleration and evaluate and compare a number of competing physical effects in one and two dimensions, and compared with experiments. We have investigated the effect on spherical implosions, especially the effect on corona temperature, pressure, fuel adiabat and preheat, and ultimately gain. Supported by ONR and NNSA/DoE.

  16. Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch-Davies vacuum

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Panda, Sudhakar

    2018-01-01

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY^3) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S^2, which divides the spatial slice of de Sitter (dS_4) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Rényi entropy in 3+1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion.

  17. Dynamical behavior and Jacobi stability analysis of wound strings

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  18. Involution Requirement on a Boundary Makes Massless Fermions Compactified on a Finite Flat Disk Mass Protected

    NASA Astrophysics Data System (ADS)

    Mankoč Borštnik, N. S.; Nielsen, H. B.

    2006-12-01

    The genuine Kaluza-Klein-like theories--with no fields in addition to gravity--have difficulties with the existence of massless spinors after the compactification of some space dimensions \\cite{witten}. We proposed (Phys. Lett. B 633 (2006)771) such a boundary condition for spinors in 1+5 compactified on a flat disk that ensures masslessness of spinors in d=1+3 as well as their chiral coupling to the corresponding background gauge field (which solves equations of motion for a free field linear in the Riemann curvature). In this paper we study the same toy model: M^{(1+3)} x M^{(2)}, looking this time for an involution which transforms a space of solutions of Weyl equations in d=1+5 from the outside of the flat disk in x^5 and x^6 into its inside, allowing massless spinor of only one handedness--and accordingly assures mass protection--and of one charge--1/2--and infinitely many massive spinors of the same charge, chirally coupled to the corresponding background gauge field. We reformulate the operator of momentum so that it is Hermitean on the vector space of spinor states obeying the involution boundary condition.

  19. Shallow Water Quasi-Geostrophic Theory on the Sphere

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne H.; Taft, Richard K.; Silvers, Levi G.

    2009-02-01

    Quasi-geostrophic theory forms the basis for much of our understanding of mid-latitude atmospheric dynamics. The theory is typically presented in either its f-plane form or its β-plane form. However, for many applications, including diagnostic use in global climate modeling, a fully spherical version would be most useful. Such a global theory does in fact exist and has for many years, but few in the scientific community seem to have ever been aware of it. In the context of shallow water dynamics, it is shown that the spherical version of quasigeostrophic theory is easily derived (re-derived) based on a partitioning of the flow between nondivergent and irrotational components, as opposed to a partitioning between geostrophic and ageostrophic components. In this way, the invertibility principle is expressed as a relation between the streamfunction and the potential vorticity, rather than between the geopotential and the potential vorticity. This global theory is then extended by showing that the invertibility principle can be solved analytically using spheroidal harmonic transforms, an advancement that greatly improves the usefulness of this "forgotten" theory. When the governing equation for the time evolution of the potential vorticity is linearized about a state of rest, a simple Rossby-Haurwitz wave dispersion relation is derived and examined. These waves have a horizontal structure described by spheroidal harmonics, and the Rossby-Haurwitz wave frequencies are given in terms of the eigenvalues of the spheroidal harmonic operator. Except for sectoral harmonics with low zonal wavenumber, the quasi-geostrophic Rossby-Haurwitz frequencies agree very well with those calculated from the primitive equations. One of the many possible applications of spherical quasi-geostrophic theory is to the study of quasi-geostrophic turbulence on the sphere. In this context, the theory is used to derive an anisotropic Rhines barrier in three-dimensional wavenumber space.

  20. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  1. A NOTE ON THE UNIFIED FIRST LAW IN f(R) GRAVITY THEORY

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gong, Yungui; Zhu, Zong-Hong

    2012-04-01

    Because of the dynamical equivalence between the f(R) gravity and the Brans-Dicke theory, the dynamical equation in the f(R) gravity is suggested to be derived from a view point of thermodynamics here. By a conformal transformation, the Brans-Dicke theory in the Jordan frame could be expressed as a minimal coupling scalar field theory in Einstein frame. Using the entropy-area relation d˜ {S} = d˜ {A}/4 G, the correct Friedmann equations could be gotten in both frames. Furthermore, we also discuss the corresponding generalized Misner-Sharp energies for theoretical consistence.

  2. Modified first-order Hořava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F(R) model

    NASA Astrophysics Data System (ADS)

    Carloni, Sante; Chaichian, Masud; Nojiri, Shin'Ichi; Odintsov, Sergei D.; Oksanen, Markku; Tureanu, Anca

    2010-09-01

    We propose the most general modified first-order Hořava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Hořava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Hořava-Lifshitz proposal. The Hamiltonian analysis of the modified Hořava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Hořava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Hořava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Hořava-Lifshitz spirit is presented.

  3. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less

  4. f(R) gravity and chameleon theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2008-11-15

    We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrainedmore » to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a {lambda}CDM model at the background level.« less

  5. Gauge/Gravity correspondence and black hole attractors in various dimensions

    NASA Astrophysics Data System (ADS)

    Li, Wei

    This thesis investigates several topics on Gauge/Gravity correspondence and black hole attractors in various dimensions. The first chapter contains a brief review and summary of main results. Chapters 2 and 3 aim at a microscopic description of black objects in five dimensions. Chapter 2 studies higher-derivative corrections for 5D black rings and spinning black holes. It shows that certain R 2 terms found in Calabi-Yau compactifications of M-theory yield macroscopic corrections to the entropies that match the microscopic corrections. Chapter 3 constructs probe brane configurations that preserve half of the enhanced near-horizon supersymmetry of 5D spinning black holes, whose near-horizon geometry is squashed AdS2 x S 3. There are supersymmetric zero-brane probes stabilized by orbital angular momentum on S3 and one-brane probes with momentum and winding around a U(1)L x U(1)R torus in S3. Chapter 4 constructs and analyzes generic single-centered and multi-centered black hole attractor solutions in various four-dimensional models which, after Kaluza-Klein reduction, admit a description in terms of 3D gravity coupled to a sigma model whose target space is symmetric coset space. The solutions correspond to certain nilpotent generators of the coset algebra. The non-BPS black hole attractors are found to be drastically different from their BPS counterparts. Chapter 5 examines three-dimensional topologically massive gravity with negative cosmological constant in asymptotically AdS 3 spacetimes. It proves that the theory is unitary and stable only at a special value of Chern-Simons coupling, where the theory becomes chiral. This suggests the existence of a stable, consistent quantum gravity theory at the chiral point which is dual to a holomorphic boundary CFT 2. Finally, Chapter 6 studies the two-dimensional N = 1 critical string theory with a linear dilaton background. It constructs time-dependent boundary state solutions that correspond to D0-branes falling toward the Liouville wall. It also shows that there exist four types of stable, falling D0-branes (two branes and two anti-branes) in Type 0A projection and two unstable ones in Type 0B projection.

  6. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fundamental theories for noise generated by flow over surfaces exist for only a few simple configurations. The role of turbulence in noise generation by complex surfaces should be essentially the same as for simple configurations. Examination of simple-surface theories indicates that the spatial distributions of the mean velocity and turbulence properties are sufficient to define the noise emission. Measurements of these flow properties were made for a number of simple and complex surfaces. The configurations were selected because of their acoustic characteristics are quite different. The spatial distribution of the turbulent flow properties around the complex surfaces and approximate theory are used to locate and describe the noise sources, and to qualitatively explain the varied acoustic characteristics.

  7. Predicting rates of inbreeding in populations undergoing selection.

    PubMed Central

    Woolliams, J A; Bijma, P

    2000-01-01

    Tractable forms of predicting rates of inbreeding (DeltaF) in selected populations with general indices, nonrandom mating, and overlapping generations were developed, with the principal results assuming a period of equilibrium in the selection process. An existing theorem concerning the relationship between squared long-term genetic contributions and rates of inbreeding was extended to nonrandom mating and to overlapping generations. DeltaF was shown to be approximately (1)/(4)(1 - omega) times the expected sum of squared lifetime contributions, where omega is the deviation from Hardy-Weinberg proportions. This relationship cannot be used for prediction since it is based upon observed quantities. Therefore, the relationship was further developed to express DeltaF in terms of expected long-term contributions that are conditional on a set of selective advantages that relate the selection processes in two consecutive generations and are predictable quantities. With random mating, if selected family sizes are assumed to be independent Poisson variables then the expected long-term contribution could be substituted for the observed, providing (1)/(4) (since omega = 0) was increased to (1)/(2). Established theory was used to provide a correction term to account for deviations from the Poisson assumptions. The equations were successfully applied, using simple linear models, to the problem of predicting DeltaF with sib indices in discrete generations since previously published solutions had proved complex. PMID:10747074

  8. Generalized uncertainty principles and quantum field theory

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Kothawala, Dawood; Seahra, Sanjeev S.

    2013-01-01

    Quantum mechanics with a generalized uncertainty principle arises through a representation of the commutator [x^,p^]=if(p^). We apply this deformed quantization to free scalar field theory for f±=1±βp2. The resulting quantum field theories have a rich fine scale structure. For small wavelength modes, the Green’s function for f+ exhibits a remarkable transition from Lorentz to Galilean invariance, whereas for f- such modes effectively do not propagate. For both cases Lorentz invariance is recovered at long wavelengths.

  9. Potential pitfalls when denoising resting state fMRI data using nuisance regression.

    PubMed

    Bright, Molly G; Tench, Christopher R; Murphy, Kevin

    2017-07-01

    In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned fMRI time-series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion and physiological processes to the fMRI data in a General Linear Model, and the "cleaned" residuals of this fit are used in further analysis. We examine the statistical assumptions and requirements of the General Linear Model, and whether these are met during nuisance regression of resting state fMRI data. Using toy examples and real data we show how pre-whitening, temporal filtering and temporal shifting of regressors impact model fit. Based on our own observations, existing literature, and statistical theory, we make the following recommendations when employing nuisance regression: pre-whitening should be applied to achieve valid statistical inference of the noise model fit parameters; temporal filtering should be incorporated into the noise model to best account for changes in degrees of freedom; temporal shifting of regressors, although merited, should be achieved via optimisation and validation of a single temporal shift. We encourage all readers to make simple, practical changes to their fMRI denoising pipeline, and to regularly assess the appropriateness of the noise model used. By negotiating the potential pitfalls described in this paper, and by clearly reporting the details of nuisance regression in future manuscripts, we hope that the field will achieve more accurate and precise noise models for cleaning the resting state fMRI time-series. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade

    2007-03-01

    As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ'(0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling.

  11. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  12. Anisotropy effects on baryogenesis in f(R) theories of gravity

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Hossienkhani, H.; Saaidi, Kh.

    2018-04-01

    We study the f(R) theory of gravity in an anisotropic metric and its effect on the baryon number-to-entropy ratio. The mechanism of gravitational baryogenesis based on the CPT-violating gravitational interaction between derivative of the Ricci scalar curvature and the baryon-number current is investigated in the context of the f(R) gravity. The gravitational baryogenesis in the Bianchi type I (BI) Universe is examined. We survey the effect of anisotropy of the Universe on the baryon asymmetry from the point of view of the f(R) theories of gravity and its effect on nb/s for radiation dominant regime.

  13. f(T,R) theory of gravity

    NASA Astrophysics Data System (ADS)

    Salti, Mustafa; Korunur, Murat; Acikgoz, Irfan; Pirinccioglu, Nurettin; Binbay, Figen

    We mainly focus on the idea that the dynamics of the whole universe may be understood by making use of torsion T and curvature R at the same time. The f(T,R)-gravity can be considered as a fundamental gravitational theory describing the evolution of the universe. The model can produce the unification of the general relativity (GR), teleparallel gravity (TPG), f(R)-gravity and f(T)-gravity theories. For this purpose, the corresponding Lagrangian density is written in terms of an arbitrary function of the torsion and curvature scalars. Furthermore, we use the absence/existence puzzle of relativistic neutron stars and thermodynamical laws as constraining tools for the new proposal.

  14. Digit Reversal in Children's Writing: A Simple Theory and Its Empirical Validation

    ERIC Educational Resources Information Center

    Fischer, Jean-Paul

    2013-01-01

    This article presents a simple theory according to which the left-right reversal of single digits by 5- and 6-year-old children is mainly due to the application of an implicit right-writing or -orienting rule. A number of nontrivial predictions can be drawn from this theory. First, left-oriented digits (1, 2, 3, 7, and 9) will be reversed more…

  15. The g - 2 muon anomaly in di-muon production with the torsion in LHC

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.

    2016-06-01

    It was considered within the framework of the conformal gauge gravitational theory CGTG coupling of the standard model fermions to the axial torsion and preliminary discusses the impact of extra dimensions, in particular, in a five-dimensional space-time with Randall-Sundrum metric, where the fifth dimension is compactified on an S1/Z 2 orbifold, which as it turns out is conformally to the fifth dimension flat Euclidean space with permanent trace of torsion, with a compactification radius R in terms of the radius of a CGTG gravitational screening, through torsion in a process Z → μ+μ- and LHC data. In general, have come to the correct set of the conformal calibration curvature the Faddeev-Popov diagram technique type, that follows directly from dynamics. This leads to the effect of restrictions on neutral spin currents of gauge fields by helicity and the Regge’s form theory. The diagrams reveals the fact of opening of the fine spacetime structure in a process pp → γ/Z/T → μ+μ- with a center-of-mass energy of 14TeV, indicated by dotted lines and texture columns, as a result of p-p collision on 1.3 ṡ 10-18cm scales from geometric shell gauge bosons of the SM continued by the heavy axial torsion resonance, and even by emerging from the inside into the outside of the ultra-light (freely-frozen in muon’s spin) axial torsion. We then evaluate the contribution of the torsion to the muon anomaly to derive new constraints on the torsion parameters. It was obtained that on the πN scattering through the exchange of axial torsion accounting, the nucleon anomalous magnetic moment in the eikonal phase leads to additive additives which is responsible for the spin-flip in the scattering process, the scattering amplitude is classical and characterized by a strong the torsion coupling ηT≅1. So the scattering of particles, occurs as on the Coulomb center with the charge fT This is the base model which is the g-2 muon anomaly. The muon anomaly contribution due to the heavy axial vector torsion arises from coupling the muon with torsion as external field. This leads to negative energy additive to mass of muons which makes the missing part of the g-2 muon anomaly. It takes place at reasonable values of the transverse front size of the exact solution CGTG equations types of torsion waves with the spin-flip close to the size of the Compton length muon.

  16. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian

    2017-06-30

    We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less

  17. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian

    We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less

  18. Dynamical aspects of generalized Palatini theories of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo, Gonzalo J.; Sanchis-Alepuz, Helios; Tripathi, Swapnil

    2009-07-15

    We study the field equations of modified theories of gravity in which the Lagrangian is a general function of the Ricci scalar and Ricci-squared terms in Palatini formalism. We show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary metric which, in particular cases of interest, is related with the physical metric by means of a disformal transformation. This relation between physical and auxiliary metric boils down to a conformal transformation in the case of f(R) theories. We also show with explicit models that the inclusion of Ricci-squared terms in the action can impose uppermore » bounds on the accessible values of pressure and density, which might have important consequences for the early time cosmology and black hole formation scenarios. Our results indicate that the phenomenology of f(R,R{sub {mu}}{sub {nu}}R{sup {mu}}{sup {nu}}) theories is much richer than that of f(R) and f(R{sub {mu}}{sub {nu}}R{sup {mu}}{sup {nu}}) theories and that they also share some similarities with Bekenstein's relativistic theory of MOND.« less

  19. Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toru; Kato, Toshinori

    2002-04-01

    Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.

  20. Thermally driven up-slope flows: state of the art and open questions

    NASA Astrophysics Data System (ADS)

    Zardi, D.

    2015-12-01

    Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382 pp. Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116, 637-670.

  1. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    PubMed

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  2. Simple Astronomical Theory of Climate.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1979-01-01

    The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)

  3. Parity in knot theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manturov, Vassily O

    2010-06-29

    In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtualmore » knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity. Bibliography: 27 items.« less

  4. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  5. Lattice study of the conformal window in QCD-like theories.

    PubMed

    Appelquist, Thomas; Fleming, George T; Neil, Ethan T

    2008-05-02

    We study the extent of the conformal window for an SU(3) gauge theory with N{f} Dirac fermions in the fundamental representation. We present lattice evidence for 12

  6. Game Theory in the Social Studies Classroom

    ERIC Educational Resources Information Center

    Vesperman, Dean Patrick; Clark, Chris H.

    2016-01-01

    This article explores using game theory in social studies classrooms as a heuristic to aid students in understanding strategic decision making. The authors provide examples of several simple games teachers can use. Next, we address how to help students design their own simple (2 × 2) games.

  7. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-03-01

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f (ϕ ) . We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f (ϕ ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f (ϕ ).

  8. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories.

    PubMed

    Antoniou, G; Bakopoulos, A; Kanti, P

    2018-03-30

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f(ϕ). We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f(ϕ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f(ϕ).

  9. A Simple Formula to Calculate Shallow-Water Transmission Loss by Means of a Least-Squares Surface Fit Technique.

    DTIC Science & Technology

    1980-09-01

    HASTRUP , T REAL UNCLASSIFIED SACLAATCEN- SM-139 N SACLANTCEN Memorandum SM -139 -LEFW SACLANT ASW RESEARCH CENTRE ~ MEMORANDUM A SIMPLE FORMULA TO...CALCULATE SHALLOW-WATER TRANSMISSION LOSS BY MEANS OF A LEAST- SQUARES SURFACE FIT TECHNIQUE 7-sallby OLE F. HASTRUP and TUNCAY AKAL I SEPTEMBER 1980 NORTH...JRANSi4ISSION LOSS/ BY MEANS OF A LEAST-SQUARES SURFACE fIT TECHNIQUE, C T ~e F./ Hastrup .0TnaAa ()1 Sep 8 This memorandum has been prepared within the

  10. Quantum field theory on toroidal topology: Algebraic structure and applications

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2014-05-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus ΓDd=(S1)d×RD-d is developed from a Lie-group representation and c*c*-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ41. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space-time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy-momentum tensor. Self interacting four-fermion systems, described by the Gross-Neveu and Nambu-Jona-Lasinio models, are considered. Then finite size effects on the hadronic phase structure are investigated, taking into account density and temperature. As a final application, effects of extra spatial dimensions are addressed, by developing a quantum electrodynamics in a five-dimensional space-time, where the fifth-dimension is compactified on a torus. The formalism, initially developed for particle physics, provides results compatible with other trials of probing the existence of extra-dimensions.

  11. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review.

    PubMed

    Criaud, Marion; Boulinguez, Philippe

    2013-01-01

    The popular go/no-go paradigm is supposed to ensure a reliable probing of response inhibition mechanisms. Functional magnetic resonance imaging (fMRI) studies have repeatedly found a large number of structures, usually including a right lateralized parieto-frontal network and the pre-supplementary motor area (pre-SMA). However, it is unlikely that all these regions are directly related to the mechanism that actively suppresses the motor command. Since most go/no-go designs involve complex stimulus identification/detection processes, these activations may rather reflect the engagement of different cognitive processes that are intrinsically related and quite difficult to disentangle. The current critical review is based on repeated meta-analyses of 30 go/no-go fMRI experiments using the Activation Likelihood Estimate method to contrast studies using simple vs. complex stimuli. The results show that most of the activity typically elicited by no-go signals, including pre-SMA hemodynamic response, is actually driven by the engagement of high attentional or working memory resources, not by inhibitory processes per se. Implications for current methods and theories of inhibitory control are discussed, and new lines of inquiry are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Is 1/f sound more effective than simple resting in reducing stress response?

    PubMed

    Oh, Eun-Joo; Cho, Il-Young; Park, Soon-Kwon

    2014-01-01

    It has been previously demonstrated that listening to 1/f sound effectively reduces stress. However, these findings have been inconsistent and further study on the relationship between 1/f sound and the stress response is consequently necessary. The present study examined whether sound with 1/f properties (1/f sound) affects stress-induced electroencephalogram (EEG) changes. Twenty-six subjects who voluntarily participated in the study were randomly assigned to the experimental or control group. Data from four participants were excluded because of EEG artifacts. A mental arithmetic task was used as a stressor. Participants in the experiment group listened to 1/f sound for 5 minutes and 33 seconds, while participants in the control group sat quietly for the same duration. EEG recordings were obtained at various points throughout the experiment. After the experiment, participants completed a questionnaire on the affective impact of the 1/f sound. The results indicated that the mental arithmetic task effectively induced a stress response measurable by EEG. Relative theta power at all electrode sites was significantly lower than baseline in both the control and experimental group. Relative alpha power was significantly lower, and relative beta power was significantly higher in the T3 and T4 areas. Secondly, 1/f sound and simple resting affected task-associated EEG changes in a similar manner. Finally, participants reported in the questionnaire that they experienced a positive feeling in response to the 1/f sound. Our results suggest that a commercialized 1/f sound product is not more effective than simple resting in alleviating the physiological stress response.

  13. The Holographic F Theorem

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2017-12-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.

  14. Nearside-farside, local angular momentum and resummation theories: Useful tools for understanding the dynamics of complex-mode reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankel, Marlies, E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk; Connor, J. N. L., E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk

    2015-07-15

    A valuable tool for understanding the dynamics of direct reactions is Nearside-Farside (NF) scattering theory. It makes a decomposition of the (resummed) partial wave series for the scattering amplitude, both for the differential cross section (DCS) and the Local Angular Momentum (LAM). This paper makes the first combined application of these techniques to complex-mode reactions. We ask if NF theory is a useful tool for their identification, in particular, can it distinguish complex-mode from direct-mode reactions? We also ask whether NF theory can identify NF interference oscillations in the full DCSs of complex-mode reactions. Our investigation exploits the fact thatmore » accurate quantum scattering matrix elements have recently become available for complex-mode reactions. We first apply NF theory to two simple models for the scattering amplitude of a complex-mode reaction: One involves a single Legendre polynomial; the other involves a single Legendre function of the first kind, whose form is suggested by complex angular momentum theory. We then study, at fixed translational energies, four state-to-state complex-mode reactions. They are: S({sup 1}D) + HD → SH + D, S({sup 1}D) + DH → SD + H, N({sup 2}D) +H{sub 2} → NH + H, and H{sup +} + D{sub 2} → HD + D{sup +}. We compare the NF results for the DCSs and LAMs with those for a state-to-state direct reaction, namely, F + H{sub 2} → FH + H. We demonstrate that NF theory is a valuable tool for identifying and analyzing the dynamics of complex-mode reactions.« less

  15. Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2018-04-01

    We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.

  16. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal and inelastic properties of the individual phases can vary with temperature. The inelastic phases are presently modeled by the power-law creep model generalized to multi-directional loading (within fgmc3dq.cylindrical.f and fgmc3dq.cylindrical.transient.f for steady-state and transient thermal loading, respectively), and incremental plasticity and GVIPS unified viscoplasticity theories (within the steady-state loading versions fgmp3dq.cylindrical.f and fgmgvips3dq.cylindrical.f).

  17. Understanding space weather with new physical, mathematical and philosophical approaches

    NASA Astrophysics Data System (ADS)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the physical one, in our case. The corresponding mathematical relations are needed for the application of this analogy in the solar-terrestrial physics and space weather. For this purpose in the contemporary categories theory in the algebra a whole field for it exists - the theory of monads (M. Barr, Ch. Wells, 1985, Toposes, Triples and Theories, Springer-Verlag, 278, p. 82). This theory is generated by analogous elements as in the Leibniz's Monadology. As it is known the categories theory and in particular the monad theory (also named triple or triad theory) tends to make axioms in mathematics. This approach would be very useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Here some methods for algebraic data structures could be introduced. Or some imperative programs can be embedded in a purely functional program for modeling, respectively. All these problems are principally considered in the proposed report.

  18. On the role of electric field direction in the formation of sporadic E-layers in the southern polar cap ionosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Dyson, P. L.; Monselesan, D. P.; Morris, R. J.

    1998-03-01

    Measurements of the occurrence of sporadic E (Es)-layers and F-region electric fields were obtained with a modern, HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E, 81°S CGM latitude) during the late austral summer of 1995/96. The occurrence of Es-layers was inferred from the presence of appropriate traces in normal swept-frequency ionograms, and the electric fields were inferred from F-region ``drift-mode'' velocities assuming that the plasma convection velocities given by E × B/B2 were measured, on average, by the interferometer. The theory of formation of high-latitude Es-layers predicts that electric fields directed toward the south west (SW) should be particularly effective at producing thin layers in the southern hemisphere. Our measurements made at a true polar cap station are consistent with this expectation, and are contrasted with observations made by incoherent scatter radars in the northern hemisphere, which also show the importance of SW electric fields, whereas the same theory predicts that NW electric fields should be important at northern latitudes. We reconcile the interhemispheric differences with simple calculations of ion convergence driven by the electric fields specified by the IZMIRAN electrodynamic model (IZMEM) in both hemispheres. The importance of the interplanetary magnetic field in the control of high-latitude Es formation is emphasised as an important adjunct to space weather modelling and forecasting.

  19. The dynamics of the Local Group as a probe of dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Mota, David F.; Winther, Hans A.

    2017-04-01

    In this work, we study the dynamics of the Local Group (LG) within the context of cosmological models beyond General Relativity (GR). Using observable kinematic quantities to identify candidate pairs, we build up samples of simulated LG-like objects drawing from f(R), symmetron, Dvali, Gabadadze & Porrati and quintessence N-body simulations together with their Λ cold dark matter (ΛCDM) counterparts featuring the same initial random phase realizations. The variables and intervals used to define LG-like objects are referred to as LG model; different models are used throughout this work and adapted to study their dynamical and kinematic properties. The aim is to determine how well the observed LG dynamics can be reproduced within cosmological theories beyond GR, We compute kinematic properties of samples drawn from alternative theories and ΛCDM and compare them to actual observations of the LG mass, velocity and position. As a consequence of the additional pull, pairwise tangential and radial velocities are enhanced in modified gravity and coupled dark energy with respect to ΛCDM inducing significant changes to the total angular momentum and energy of the LG. For example, in models such as f(R) and the symmetron this increase can be as large as 60 per cent, peaking well outside of the 95 per cent confidence region allowed by the data. This shows how simple considerations about the LG dynamics can lead to clear small-scale observational signatures for alternative scenarios, without the need of expensive high-resolution simulations.

  20. Highly enantioselective reductive amination of simple aryl ketones catalyzed by Ir-f-Binaphane in the presence of titanium(IV) isopropoxide and iodine.

    PubMed

    Chi, Yongxiang; Zhou, Yong-Gui; Zhang, Xumu

    2003-05-16

    Using an Ir-f-Binaphane complex as the catalyst, complete conversions and high enantioselectivies (up to 96% ee) were achieved in the asymmetric reductive amination of aryl ketones in the presence of Ti(O(i)()Pr)(4) and I(2). A simple and efficient method of synthesizing chiral primary amines has been realized.

  1. Effect of Observation of Simple Hand Movement on Brain Activations in Patients with Unilateral Cerebral Palsy: An fMRI Study

    ERIC Educational Resources Information Center

    Dinomais, Mickael; Lignon, Gregoire; Chinier, Eva; Richard, Isabelle; Minassian, Aram Ter; The Tich, Sylvie N'Guyen

    2013-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7-21 years) participated…

  2. String duality transformations in f(R) gravity from Noether symmetry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less

  3. Automating Access Control Logics in Simple Type Theory with LEO-II

    NASA Astrophysics Data System (ADS)

    Benzmüller, Christoph

    Garg and Abadi recently proved that prominent access control logics can be translated in a sound and complete way into modal logic S4. We have previously outlined how normal multimodal logics, including monomodal logics K and S4, can be embedded in simple type theory and we have demonstrated that the higher-order theorem prover LEO-II can automate reasoning in and about them. In this paper we combine these results and describe a sound (and complete) embedding of different access control logics in simple type theory. Employing this framework we show that the off the shelf theorem prover LEO-II can be applied to automate reasoning in and about prominent access control logics.

  4. A Single Session of rTMS Enhances Small-Worldness in Writer's Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph.

    PubMed

    Bharath, Rose D; Panda, Rajanikant; Reddam, Venkateswara Reddy; Bhaskar, M V; Gohel, Suril; Bhardwaj, Sujas; Prajapati, Arvind; Pal, Pramod Kumar

    2017-01-01

    Background and Purpose : Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method : Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer's Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result : A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI ( p < 0.05). Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion : Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo . Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not "noise".

  5. Semi-exact concentric atomic density fitting: Reduced cost and increased accuracy compared to standard density fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollman, David S.; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061; Schaefer, Henry F.

    2014-02-14

    A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical “attractive electron” state that can affect such density fitting [P. Merlot, T. Kjærgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for Hartree–Fock theory while still producing results with errors 2–5 timesmore » smaller than standard, nonlocal density fitting. Our method allows for large Hartree–Fock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.« less

  6. Quasi-linear theory via the cumulant expansion approach

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1974-01-01

    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.

  7. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  8. Theory of resonant x-ray emission spectra in compounds with localized f electrons

    NASA Astrophysics Data System (ADS)

    Kolorenč, Jindřich

    2018-05-01

    I discuss a theoretical description of the resonant x-ray emission spectroscopy (RXES) that is based on the Anderson impurity model. The parameters entering the model are determined from material-specific LDA+DMFT calculations. The theory is applicable across the whole f series, not only in the limits of nearly empty (La, Ce) or nearly full (Yb) valence f shell. Its performance is illustrated on the pressure-enhanced intermediate valency of elemental praseodymium. The obtained results are compared to the usual interpretation of RXES, which assumes that the spectrum is a superposition of several signals, each corresponding to one configuration of the 4f shell. The present theory simplifies to such superposition only if nearly all effects of hybridization of the 4f shell with the surrounding states are neglected. Although the assumption of negligible hybridization sounds reasonable for lanthanides, the explicit calculations show that it substantially distorts the analysis of the RXES data.

  9. Entropy of N=2 black holes and their M-brane description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrndt, K.; Mohaupt, T.

    1997-08-01

    In this paper we discuss the M-brane description for an N=2 black hole. This solution is a result of the compactification of M-5-brane configurations over a Calabi-Yau threefold with arbitrary intersection numbers C{sub ABC}. In analogy with the D-brane description where one counts open string states we count here open M-2-branes which end on the M-5-brane. {copyright} {ital 1997} {ital The American Physical Society}

  10. Global D-brane models with stabilised moduli and light axions

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele

    2014-03-01

    We review recent attempts to try to combine global issues of string compactifications, like moduli stabilisation, with local issues, like semi-realistic D-brane constructions. We list the main problems encountered, and outline a possible solution which allows globally consistent embeddings of chiral models. We also argue that this stabilisation mechanism leads to an axiverse. We finally illustrate our general claims in a concrete example where the Calabi-Yau manifold is explicitly described by toric geometry.

  11. How well can we really determine the scale of inflation?

    NASA Astrophysics Data System (ADS)

    Özsoy, Ogan; Sinha, Kuver; Watson, Scott

    2015-05-01

    A detection of primordial B modes has been heralded not only as a smoking gun for the existence of inflation, but also as a way to establish the scale at which inflation took place. In this paper we critically reinvestigate the connection between a detection of primordial gravity waves and the scale of inflation. We consider whether the presence of additional fields and nonadiabaticity during inflation may have provided an additional source of primordial B modes competitive with those of the quasi-de Sitter vacuum. In particular, we examine whether the additional sources could provide the dominant signal, which could lead to a misinterpretation of the scale of inflation. In light of constraints on the level of non-Gaussianity coming from Planck we find that only hidden sectors with strictly gravitationally strong couplings provide a feasible mechanism. The required model building is somewhat elaborate, and so we discuss possible UV completions in the context of type IIB orientifold compactifications with Ramond-Ramond axions. We find that an embedding is possible and that dangerous sinusoidal corrections can be suppressed through the compactification geometry. Our main result is that even when additional sources of primordial gravity waves are competitive with the inflaton, a positive B-mode detection would still be a relatively good indicator of the scale of inflation. This conclusion will be strengthened by future constraints on both non-Gaussianity and cosmic microwave background polarization.

  12. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures.

    PubMed

    Schellman, J A

    1990-08-31

    The properties of a simple model for solvation in mixed solvents are explored in this paper. The model is based on the supposition that solvent replacement is a simple one-for-one substitution reaction at macromolecular sites which are independent of one another. This leads to a new form for the binding polynomial in which all terms are associated with ligand interchange rather than ligand addition. The principal solvent acts as one of the ligands. Thermodynamic analysis then shows that thermodynamic binding (i.e., selective interaction) depends on the properties of K'-1, whereas stoichiometric binding (site occupation) depends on K'. K' is a 'practical' interchange equilibrium constant given by (f3/f1)K, where K is the true equilibrium constant for the interchange of components 3 and 1 on the site and f3 and f4 denote their respective activity coefficients on the mole fraction scale. Values of K' less than unity lead to negative selective interaction. It is selective interaction and not occupation number which determines the thermodynamic effects of solvation. When K' greater than 100 on the mole fraction scale or K' greater than 2 on the molality scale (in water), the differences between stoichiometric binding and selective interaction become less than 1%. The theory of this paper is therefore necessary only for very weak binding constants. When K'-1 is small, large concentrations of the added solvent component are required to produce a thermodynamic effect. Under these circumstances the isotherms for the selective interaction and for the excess (or transfer) free energy are strongly dependent on the behavior of the activity coefficients of both solvent components. Two classes of behavior are described depending on whether the components display positive or negative deviations from Raoult's law. Examples which are discussed are aqueous solutions of urea and guanidinium chloride for positive deviations and of sucrose and glucose for negative deviations. Examination of the few studies which have been reported in the literature shows that most of the qualitative features of the stabilization of proteins by sugars and their destabilization by urea and guanidinium chloride are faithfully represented with the model. This includes maxima in the free energy of stabilization and destabilization, decreased and zero selective interaction at high concentrations, etc. These phenomena had no prior explanation. Deficiencies in the model as a representation of solvation in aqueous solution are discussed in the appendix.

  13. Theoretical study on the charge transport in single crystals of TCNQ, F2-TCNQ and F4-TCNQ.

    PubMed

    Ji, Li-Fei; Fan, Jian-Xun; Zhang, Shou-Feng; Ren, Ai-Min

    2018-01-31

    2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F 2 -TCNQ) was recently reported to display excellent electron transport properties in single crystal field-effect transistors (FETs). Its carrier mobility can reach 25 cm 2 V -1 s -1 in devices. However, its counterparts TCNQ and F 4 -TCNQ (tetrafluoro-7,7,8,8-tetracyanoquinodimethane) do not exhibit the same highly efficient behavior. To better understand this significant difference in charge carrier mobility, a multiscale approach combining semiclassical Marcus hopping theory, a quantum nuclear enabled hopping model and molecular dynamics simulations was performed to assess the electron mobilities of the F n -TCNQ (n = 0, 2, 4) systems in this work. The results indicated that the outstanding electron transport behavior of F 2 -TCNQ arises from its effective 3D charge carrier percolation network due to its special packing motif and the nuclear tunneling effect. Moreover, the poor transport properties of TCNQ and F 4 -TCNQ stem from their invalid packing and strong thermal disorder. It was found that Marcus theory underestimated the mobilities for all the systems, while the quantum model with the nuclear tunneling effect provided reasonable results compared to experiments. Moreover, the band-like transport behavior of F 2 -TCNQ was well described by the quantum nuclear enabled hopping model. In addition, quantum theory of atoms in molecules (QTAIM) analysis and symmetry-adapted perturbation theory (SAPT) were used to characterize the intermolecular interactions in TCNQ, F 2 -TCNQ and F 4 -TCNQ crystals. A primary understanding of various noncovalent interaction responses for crystal formation is crucial to understand the structure-property relationships in organic molecular materials.

  14. Gauge backgrounds and zero-mode counting in F-theory

    NASA Astrophysics Data System (ADS)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    Computing the exact spectrum of charged massless matter is a crucial step towards understanding the effective field theory describing F-theory vacua in four dimensions. In this work we further develop a coherent framework to determine the charged massless matter in F-theory compactified on elliptic fourfolds, and demonstrate its application in a concrete example. The gauge background is represented, via duality with M-theory, by algebraic cycles modulo rational equivalence. Intersection theory within the Chow ring allows us to extract coherent sheaves on the base of the elliptic fibration whose cohomology groups encode the charged zero-mode spectrum. The dimensions of these cohomology groups are computed with the help of modern techniques from algebraic geometry, which we implement in the software gap. We exemplify this approach in models with an Abelian and non-Abelian gauge group and observe jumps in the exact massless spectrum as the complex structure moduli are varied. An extended mathematical appendix gives a self-contained introduction to the algebro-geometric concepts underlying our framework.

  15. Early universe cosmology, effective supergravity, and invariants of algebraic forms

    NASA Astrophysics Data System (ADS)

    Sinha, Kuver

    2015-09-01

    The presence of light scalars can have profound effects on early universe cosmology, influencing its thermal history as well as paradigms like inflation and baryogenesis. Effective supergravity provides a framework to make quantifiable, model-independent studies of these effects. The Riemannian curvature of the Kähler manifold spanned by scalars belonging to chiral superfields, evaluated along supersymmetry breaking directions, provides an order parameter (in the sense that it must necessarily take certain values) for phenomena as diverse as slow roll modular inflation, nonthermal cosmological histories, and the viability of Affleck-Dine baryogenesis. Within certain classes of UV completions, the order parameter for theories with n scalar moduli is conjectured to be related to invariants of n -ary cubic forms (for example, for models with three moduli, the order parameter is given by a function on the ring of invariants spanned by the Aronhold invariants). Within these completions, and under the caveats spelled out, this may provide an avenue to obtain necessary conditions for the above phenomena that are in principle calculable given nothing but the intersection numbers of a Calabi-Yau compactification geometry. As an additional result, abstract relations between holomorphic sectional and bisectional curvatures are utilized to constrain Affleck-Dine baryogenesis on a wide class of Kähler geometries.

  16. One-loop supergravity on AdS 4 × S 7/Z k and comparison with ABJM theory

    DOE PAGES

    Liu, James T.; Zhao, Wenli

    2016-11-18

    The large-N limit of ABJM theory is holographically dual to M-theory on AdS 4 × S 7/Z k. The 3-sphere partition function has been obtained via localization, and its leading behavior F ABJM (0) ~ k 1/2N 3/2 is exactly reproduced in the dual theory by tree-level supergravity. In this paper, we extend this comparison to the sub-leading O(N 0) order by computing the one-loop supergravity free energy as a function of k and comparing it with the ABJM result. Curiously, we find that the expressions do not match, with F SUGRA (1)~k 6, while F ABJM (1)~ k 2.more » Finally, this suggests that the low-energy approximation Z M-theory = Z SUGRA breaks down at one-loop order.« less

  17. A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, A.

    We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc

  18. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  19. Quaternary glaciations : from observations to theories (Milankovic Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Paillard, Didier

    2013-04-01

    Since the mid-nineteenth century, the idea that climate may change through time has been substantiated by the observation of past glacial periods. During this time, two alternative views of glaciations have dominated the scientific debates : astronomical theories and geochemical ones involving changes in greenhouse gas concentrations. In the last decades, the validity of the Milankovitch theory has been clearly demonstrated, though several problems have been pointed out, most notably the difficulty to explain the 100-kyr cycles in simple versions of this theory. Besides, changes in atmospheric CO2 concentration have been documented, and they appear tightly linked to glaciation cycles. A central question of Quaternary Climate Sciences is therefore to understand the respective roles of the astronomical and geochemical changes, and how they can be dynamically combined in order to explain paleoclimatic observations. After some historical background, I will address this question from the viewpoint of conceptual models. I will highlight their predictive power and their limitations. Most importantly, these models are helping us to formulate hypotheses in order to unravel the required dynamical structure of the astronomical-glaciological-geochemical-climatical problem. I will discuss in some details how the model of Paillard (1998) leads naturally to the counter-intuitive idea that full glaciations should trigger oceanic CO2 degassing and thus to the model of Paillard and Parrenin (2004), by using the underlying mechanism of brine rejection during sea ice formation around Antarctica. Then I will present results from a more complex model (CLIMBER-2) that validate this mechanism through the comparison of simulated and observed paleoclimatic tracer distributions of 13C and 14C (Bouttes et al., 2011; Mariotti et al. 2013). The model simulation of the last deglaciation (Bouttes et al., 2012) predicts that, when brine formation is stopped, atmospheric CO2 and Antarctic temperatures should start rising together at the exact same time. This fact has now been confirmed from Antarctic ice core analysis (Parrenin et al, 2013). It seems therefore that we are getting closer to a full synthesis of the astronomical and geochemical theories of Quaternary Climate. Paillard D. (1998) The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, vol. 391 pp. 378-381. Paillard D., Parrenin F. (2004) The Antarctic ice-sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. ,vol. 227 (3-4) pp. 263-271. Bouttes N. et al. (2011) Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophys. Res. Lett., vol. 38 (2) pp. 1-5. Bouttes N. et al. (2012) Impact of oceanic processes on the carbon cycle during the last termination. Clim Past, vol. 8 (1) pp. 149-170. Mariotti V. et al., (accepted) Simulated Last Glacial Maximum ?14CATM and the deep glacial ocean carbon reservoir, Radiocarbon. Parrenin F. et al., (in press) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming, Science.

  20. Relation between Spark-Ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-Speed Photography

    DTIC Science & Technology

    1946-01-01

    unfortunate” fiat this work has not, in the past few years , received more carcf~ll considera- tion. Th~ photographs of %kolik and Voinov wcro taken through a...with the propo8ed combined theory but not with either the simple autoignition theory or the simple detonation- wace theory. INTRODUCTION Knock is one of...countries for about 25 yeara. The past researches on knock have uncovered an immense amount of information, not only concerning the basic nature of knock but

  1. Accuracy of simple biochemical tests in identifying liver fibrosis in patients co-infected with human immunodeficiency virus and hepatitis C virus.

    PubMed

    Tural, Cristina; Tor, Jordi; Sanvisens, Arantza; Pérez-Alvarez, Núria; Martínez, Elisenda; Ojanguren, Isabel; García-Samaniego, Javier; Rockstroh, Juergen; Barluenga, Eva; Muga, Robert; Planas, Ramon; Sirera, Guillem; Rey-Joly, Celestino; Clotet, Bonaventura

    2009-03-01

    We assessed the ability of 3 simple biochemical tests to stage liver fibrosis in patients co-infected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). We analyzed liver biopsy samples from 324 consecutive HIV/HCV-positive patients (72% men; mean age, 38 y; mean CD4+ T-cell counts, 548 cells/mm(3)). Scheuer fibrosis scores were as follows: 30% had F0, 22% had F1, 19% had F2, 23% had F3, and 6% had F4. Logistic regression analyses were used to predict the probability of significant (>or=F2) or advanced (>or=F3) fibrosis, based on numeric scores from the APRI, FORNS, or FIB-4 tests (alone and in combination). Area under the receiver operating characteristic curves were analyzed to assess diagnostic performance. Area under the receiver operating characteristic curves analyses indicated that the 3 tests had similar abilities to identify F2 and F3; the ability of APRI, FORNS, and FIB-4 were as follows: F2 or greater: 0.72, 0.67, and 0.72, respectively; F3 or greater: 0.75, 0.73, and 0.78, respectively. The accuracy of each test in predicting which samples were F3 or greater was significantly higher than for F2 or greater (APRI, FORNS, and FIB-4: >or=F3: 75%, 76%, and 76%, respectively; >or=F2: 66%, 62%, and 68%, respectively). By using the lowest cut-off values for all 3 tests, F3 or greater was ruled out with sensitivity and negative predictive values of 79% to 94% and 87% to 91%, respectively, and 47% to 70% accuracy. Advanced liver fibrosis (>or=F3) was identified using the highest cut-off value, with specificity and positive predictive values of 90% to 96% and 63% to 73%, respectively, and 75% to 77% accuracy. Simple biochemical tests accurately predicted liver fibrosis in more than half the HIV/HCV co-infected patients. The absence and presence of liver fibrosis are predicted fairly using the lowest and highest cut-off levels, respectively.

  2. Non-Abelian semilocal strings in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2006-06-15

    We consider a benchmark bulk theory in four dimensions: N=2 supersymmetric QCD with the gauge group U(N) and N{sub f} flavors of fundamental matter hypermultiplets (quarks). The nature of the Bogomol'nyi-Prasad-Sommerfield (BPS) strings in this benchmark theory crucially depends on N{sub f}. If N{sub f}{>=}N and all quark masses are equal, it supports non-Abelian BPS strings which have internal (orientational) moduli. If N{sub f}>N these strings become semilocal, developing additional moduli {rho} related to (unlimited) variations of their transverse size. Using the U(2) gauge group with N{sub f}=3, 4 as an example, we derive an effective low-energy theory on themore » (two-dimensional) string world sheet. Our derivation is field theoretic, direct and explicit: we first analyze the Bogomol'nyi equations for string-geometry solitons, suggest an ansatz, and solve it at large {rho}. Then we use this solution to obtain the world-sheet theory. In the semiclassical limit our result confirms the Hanany-Tong conjecture, which rests on brane-based arguments, that the world-sheet theory is an N=2 supersymmetric U(1) gauge theory with N positively and N{sub e}=N{sub f}-N negatively charged matter multiplets and the Fayet-Iliopoulos term determined by the four-dimensional coupling constant. We conclude that the Higgs branch of this model is not lifted by quantum effects. As a result, such strings cannot confine. Our analysis of infrared effects, not seen in the Hanany-Tong consideration, shows that, in fact, the derivative expansion can make sense only provided that the theory under consideration is regularized in the infrared, e.g. by the quark mass differences. The world-sheet action discussed in this paper becomes a bona fide low-energy effective action only if {delta}m{sub AB}{ne}0.« less

  3. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    PubMed

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  4. A simple theory of motor protein kinetics and energetics. II.

    PubMed

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  5. Formulation design of ranitidine hydrochloride to reduce its moisture absorption characteristics.

    PubMed

    Khan, Shagufta; Giradkar, Praful; Yeole, Pramod

    2009-01-01

    This investigation examined the effect of a ranitidine hydrocholoride (RHCl)-ion exchange resin complexation on the drug's moisture uptake behavior. Drug resin complexes (DRCs) were prepared using the batch method with (i) two weak cation exchange resins, Polacrilex with exchangeable H+ and Polacrillin potassium; and (ii) a strong cation exchange resin;Sodium polystyrene sulfonate. RHCl, simple resins, and DRCs were subjected to storage stability under 40 +/- 2 degrees C and 75 +/- 5% relative humidity (RH) for 16 h, and the resulting percent increase in weight was calculated. DRCs gained less moisture than the simple drug and free resins. Out of the three complexes tested, DRC containing Polacrilex resin showed the most promising effect in protecting RHCl against moisture uptake with an increase in weight of 10.22 +/- 17% (free RHCl gained 28.11%) and was thereby selected for tablet formulation. Tablets were prepared using simple RHCl with Starch 1500 (F1); low moisture-grade Starch 1500 LM (F2); RHCl as DRC with Starch 1500 (F3); and, Starch 1500 LM (F4). Tablets were tested for equilibrium moisture content (EMC) under different humidity conditions and hygroscopicity in the presence and absence of light. In addition, stability studies were run over the duration of 6 months in conditions under 40 +/- 2 degrees C and 75 +/- 5% RH. The EMC of tablets at 80% RH decreased in the following order: F1 > F2 > marketed coated tablet > F3 > F4. The results of hygroscopicity testing revealed that both rate and extent of moisture gain in the presence or absence of light by F3 and F4 were significantly less than F1, F2, and marketed coated tablet (P < 0.05). Stability studies showed insignificant changes in weight, breaking force, friability, and disintegration time for tablets containing resin, while significant changes in these properties were found in tablets without resin. Thus, Polacrilex resin with exchangeable H+ was found to be the best for protecting RHCl against moisture uptake.

  6. Large dimensions and small curvatures from supersymmetric brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-04-01

    We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system's response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.

  7. Simulation for F.C.C. deformation texture by modified pencil glide theory[Face Centered Cubic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masui, H.

    1999-11-26

    Inspired by the pencil glide theory for b.c.c. metal, modified pencil glide theory for f.c.c. metal was proposed, dividing the 12 glide systems of f.c.c. metal into three groups individually composed of eight {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} glide systems around the principal axes X[100], Y[010] and Z[001]. These assumptions yielded two mathematical solutions {Omega}(3) and {Omega}(1). In {Omega}(3), from the three groups with four complete conjugated glide systems composed of, respectively, two glide systems of common {l{underscore}angle}110{r{underscore}angle} direction, only one group with the maximum plastic work may operate if the requirements are satisfied, otherwise glide systems in {Omega}(1) where one of the fourmore » conjugated glide systems is zero are activated. The model considering the 12 glide systems of f.c.c. as a whole explained many experimentally stable orientations in axisymmetric and rolling deformation. The differences between the two pencil glide theories for b.c.c. and f.c.c. are also discussed with data.« less

  8. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones.

    PubMed

    Wu, Weilong; Liu, Shaodong; Duan, Meng; Tan, Xuefeng; Chen, Caiyou; Xie, Yun; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu

    2016-06-17

    A series of modular and rich electronic tridentate ferrocene aminophosphoxazoline ligands (f-amphox) have been successfully developed and used in iridium-catalytic asymmetric hydrogenation of simple ketones to afford corresponding enantiomerically enriched alcohols under mild conditions with superb activities and excellent enantioselectivities (up to 1 000 000 TON, almost all products up to >99% ee, full conversion). The resulting chiral alcohols and their derivatives are important intermediates in pharmaceuticals.

  9. Collaborative Investigations of Shallow Water Optics Problems

    DTIC Science & Technology

    2004-12-01

    Appendix E. Reprint of Radiative transfer equation inversion: Theory and shape factor models for retrieval of oceanic inherent optical properties, by F ...4829-4834. 5 Hoge, F . E., P. E. Lyon, C. D. Mobley, and L. K. Sundman, 2003. Radiative transfer equation inversion: Theory and shape factor models for...multilinear regression algorithms for the inversion of synthetic ocean colour spectra,, Int. J. Remote Sensing, 25(21), 4829-4834. Hoge, F . E., P. E. Lyon

  10. Systematic Phenomenology on the Landscape of Calabi-Yau Hypersurfaces in Toric Varieties

    NASA Astrophysics Data System (ADS)

    Altman, Ross

    The largest known database of Calabi-Yau threefold string vacua was famously produced by Kreuzer and Skarke in the form of a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions [1]. These reflexive polyhedra describe the singu- lar limits of ambient Gorenstein toric Fano varieties in which Calabi-Yau threefolds are known to exist as the associated anticanonical hypersurfaces. In this thesis, we review how to unpack the topological and geometric information describing these Calabi-Yau threefolds using the toric construction, and provide, in a companion online database (see www.rossealtman.com), a detailed inventory of these quantities which are of interest to string phenomenologists. Many of the singular ambient varieties associated to the Kreuzer-Skarke list can be partially smoothed out into a multiplicity of distinct, terminal toric ambient spaces, each of which may embed a unique Calabi-Yau threefold. Some, however are not unique, and can be identified through topological and smoothness con- straints. A distribution of the unique Calabi-Yau threefolds which can be obtained from each 4D reflexive polyhedron, will be provided up to current computational limits. In addition, we will detail the computation of a variety of quantities associated to each of these vacua, such as the Chern classes, Hodge data, intersection numbers, and the Kahler and Mori cones. Then, moving on to actual string phenomenology on the Calabi-Yau compactification vacua, we outline the prescription for moduli stabilization with a supersymmetry breaking vacuum known as the LARGE Volume Scenario (LVS), paying particular attention to the so-called "Swiss cheese" models. It is an important open problem in string model building to identify the set of Swiss cheese solutions within the space of Calabi-Yau threefolds. In this thesis, we present an algorithm to isolate a special subset of Swiss cheese solutions that are characterized by "holes," or small 4-cycles in homology, descending from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these methods, we find 2,313 "toric" Swiss cheese manifolds, over half of which have h1,1 = 6. Of these, 70 have two or more large 4-cycles and a flat direction in the effective potential. In an explicit example, we find a stable minimum for the small Kahler moduli and a flat direction in the large moduli. Finally, we approach the subject of orientifolding the Calabi-Yau threefold vacuum of a type IIB theory in order to break N = 2 supergravity down to N = 1 in the low energy effective theory. To this end, we describe the process of choosing a non-trivial Z 2 involution, and locating its fixed points on the compactification manifold. It will be shown that consistency of this involution across the full Kahler cone is very restrictive and results in at most O3/O7 planes in nearly every case. We also discuss the splitting of the Kahler moduli space of the orientifold into even and odd parity components, and present concrete examples demonstrating this process.

  11. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The results of the numerical model indicate that bands form when buoyancy forces are large and that these can significantly alter the direction of the flow of liquid away from vertical. The bands form at angles similar to the angle of maximum instantaneous growth rate. Consequently, for strongly strain-rate dependent rheology, there may be two sets of bands formed that are symmetric about the direction of maximum compressive stress in the background mantle flow. This second set of bands would reduce the efficiency with which melt bands would focus melts towards the ridge axis.

  12. Neutron Star Models in Alternative Theories of Gravity

    NASA Astrophysics Data System (ADS)

    Manolidis, Dimitrios

    We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.

  13. The Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Minamitsuji, M.

    2008-04-01

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.

  14. Large trilinear At soft supersymmetry breaking coupling from 5D MSSM

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Cornell, A. S.

    2015-10-01

    The possibility of generating a large trilinear At soft supersymmetry breaking coupling at low energies through renormalisation group evolution in the 5D MSSM is investigated. Using the power law running in five dimensions and a compactification scale in the 10-103 TeV range, we show that gluino mass may drive a large enough At to reproduce the measured Higgs mass and have a light stop superpartner below ∼ 1 TeV, as preferred by the fine tuning argument for the Higgs mass.

  15. Population Control of Self-Replicating Systems: Option C

    NASA Technical Reports Server (NTRS)

    Mccord, R. L.

    1983-01-01

    From the conception and development of the theory of self-replicating automata by John von Neumann, others have expanded on his theories. In 1980, Georg von Tiesenhausen and Wesley A. Darbro developed a report which is a "first' in presenting the theories in a conceptualized engineering setting. In that report several options involving self-replicating systems are presented. One of the options allows each primary to generate n replicas, one in each sequential time frame after its own generation. Each replica is limited to a maximum of m ancestors. This study involves determining the state vector of the replicas in an efficient manner. The problem is cast in matrix notation, where F = fij is a non-diagonalizable matrix. Any element fij represents the number of elements of type j = (c,d) in time frame k+1 generated from type i = (a,b) in time frame k. It is then shown that the state vector is: bar F(k)=bar F (non-zero) X F sub K = bar F (non-zero) xmx J sub kx m sub-1 where J is a matrix in Jordan form having the same eigenvalues as F. M is a matrix composed of the eigenvectors and the generalized eigenvectors of F.

  16. The Lippmann-Dewey "Debate" Revisited: The Problem of Knowledge and the Role of Experts in Modern Democratic Theory

    ERIC Educational Resources Information Center

    DeCesare, Tony

    2012-01-01

    With only some fear of oversimplification, the fundamental differences between Walter Lippmann and John Dewey that are of concern here can be introduced by giving attention to Lippmann's deceptively simple formulation of a central problem in democratic theory: "The environment is complex. Man's political capacity is simple. Can a bridge be built…

  17. Constraint on reconstructed f(R) gravity models from gravitational waves

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2018-06-01

    The gravitational wave (GW) detection of a binary neutron star inspiral made by the Advanced LIGO and Advanced Virgo paves the unprecedented way for multi-messenger observations. The propagation speed of this GW can be scrutinized by comparing the arrival times between GW and neutrinos or photons. It provides the constraint on the mass of the graviton. f(R) gravity theories have the habitual non-zero mass gravitons in addition to usual massless ones. Previously, we show that the model independent f(R) gravity theories can be constructed from the both background evolution and the matter growth with one undetermined parameter. We show that this parameter can be constrained from the graviton mass bound obtained from GW detection. Thus, the GW detection provides the invaluable constraint on the validity of f(R) gravity theories.

  18. On Analytical Solutions of f(R) Modified Gravity Theories in FLRW Cosmologies

    NASA Astrophysics Data System (ADS)

    Domazet, Silvije; Radovanović, Voja; Simonović, Marko; Štefančić, Hrvoje

    2013-02-01

    A novel analytical method for f(R) modified theories without matter in Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is introduced. The equation of motion for the scale factor in terms of cosmic time is reduced to the equation for the evolution of the Ricci scalar R with the Hubble parameter H. The solution of equation of motion for actions of the form of power law in Ricci scalar R is presented with a detailed elaboration of the action quadratic in R. The reverse use of the introduced method is exemplified in finding functional forms f(R), which leads to specified scale factor functions. The analytical solutions are corroborated by numerical calculations with excellent agreement. Possible further applications to the phases of inflationary expansion and late-time acceleration as well as f(R) theories with radiation are outlined.

  19. A Thermote, a Novel Thermal Element Simplifying the Finding of a Medium's Entropy Emerges as a Sensible Dark Matter Candidate from Primordial Black Holes with a Mass in Range of Axion's, a Leading Candidate

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2017-06-01

    Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a sensible dark matter candidade with a mass of 235.14 μeV which is within the predicted range of 50 μeV to 1,500 μeV for the axion after inflation (Borsanyi, et al. 2016, Nature, http://dx.doi.org/10.1038/nature20115).

  20. Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure

    NASA Astrophysics Data System (ADS)

    Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2018-04-01

    The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.

  1. Modular forms, Schwarzian conditions, and symmetries of differential equations in physics

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Y.; Maillard, J.-M.

    2017-05-01

    We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.

  2. Spectral Reflectance Measurement of Evaporating Chemical Films: Initial Results and Application to Skin Permeation.

    PubMed

    Frasch, H Frederick; Lee, Larry; Barbero, Ana M

    2018-04-27

    The current study has two aims. First the method of spectral reflectance was used to measure evaporation rates of thin (∼25-300 μm) films of neat liquid volatile organic chemicals exposed to a well-regulated wind speed u. Gas phase evaporation mass transfer coefficient (k evap ) measurements of 10 chemicals, 9 of which were measured at similar u, are predicted (slope of log-log data = 1.01; intercept = 0.08; R 2 = 0.996) by a previously proposed mass transfer correlation. For one chemical, isoamyl alcohol, the dependence of k evap on u 0.52 was measured, in support of the predicted exponent value of ½. Second, measured k evap of nicotine was used as an input in analytical models based on diffusion theory to estimate the absorbed fraction (F abs ) of a small dose (5 μL/cm 2 ) applied to human epidermis in vitro. The measured F abs was 0.062 ± 0.023. Model-estimated values are 0.066 and 0.115. Spectral reflectance is a precise method of measuring k evap of liquid chemicals and the data are well-described by a simple gas phase mass transfer coefficient. For nicotine under the single exposure condition measured herein, F abs is well-predicted from a theoretical model that requires knowledge of k evap , maximal dermal flux and membrane lag time. Copyright © 2018. Published by Elsevier Inc.

  3. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    NASA Astrophysics Data System (ADS)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  4. Light bending in F [ g (□) R ] extended gravity theories

    NASA Astrophysics Data System (ADS)

    Giacchini, Breno L.; Shapiro, Ilya L.

    2018-05-01

    We show that in the weak field limit the light deflection alone cannot distinguish between different R + F [ g (□) R ] models of gravity, where F and g are arbitrary functions. This does not imply, however, that in all these theories an observer will see the same deflection angle. Owed to the need to calibrate the Newton constant, the deflection angle may be model-dependent after all necessary types of measurements are taken into account.

  5. An approach to an analysis of the energy response of LiF-TLD to high energy electrons.

    PubMed

    Shiragai, A

    1977-05-01

    Responses of LiF-TLD to high energy electrons relative to 60Co gamma-rays were investigated experimentally and theoretically. The Burlin et al. theory, its modified version by Almond and McCray and the Holt et al. semi-empirical theory were examined in comparison with each experiment. An approximate approach to theoretical analysis of energy response of LiF-TLD was attempted and compared with some experimental results.

  6. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  7. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

    NASA Astrophysics Data System (ADS)

    Saheb, Vahid; Maleki, Samira

    2018-03-01

    The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

  8. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    PubMed

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f)<--nu(i)) cross-sections sigma(nu(f)<--nu(i) )(E) in resonant e-N(2) and e-H(2) scattering are calculated from transition matrix elements T(nu(f),nu(i) )(E) obtained using Fourier transform of the cross correlation function , where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  9. Cosmological applications of F (T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Saridakis, Emmanuel N.

    2014-10-01

    We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.

  10. Rough Evaluation Structure: Application of Rough Set Theory to Generate Simple Rules for Inconsistent Preference Relation

    NASA Astrophysics Data System (ADS)

    Gehrmann, Andreas; Nagai, Yoshimitsu; Yoshida, Osamu; Ishizu, Syohei

    Since management decision-making becomes complex and preferences of the decision-maker frequently becomes inconsistent, multi-attribute decision-making problems were studied. To represent inconsistent preference relation, the concept of evaluation structure was introduced. We can generate simple rules to represent inconsistent preference relation by the evaluation structures. Further rough set theory for the preference relation was studied and the concept of approximation was introduced. One of our main aims of this paper is to introduce a concept of rough evaluation structure for representing inconsistent preference relation. We apply rough set theory to the evaluation structure, and develop a method for generating simple rules for inconsistent preference relations. In this paper, we introduce concepts of totally ordered information system, similarity class of preference relation, upper and lower approximation of preference relations. We also show the properties of rough evaluation structure and provide a simple example. As an application of rough evaluation structure, we analyze questionnaire survey of customer preferences about audio players.

  11. Linkage mapping in a watermelon population segregating for fusarium wilt resistance

    Treesearch

    Leigh K. Hawkins; Fenny Dane; Thomas L. Kubisiak; Billy B. Rhodes; Robert L. Jarret

    2001-01-01

    Isozyme, randomly amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR) markers were used to generate a linkage map in an F2 and F3 watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai) population derived from a cross between the fusarium wilt (Fusarium oxysporum f....

  12. Anderson localization and ''universal'' degradation of T/sub c/ in high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavens, C.R.

    Anderson, Muttalib, and Ramakrishnan (AMR) showed that strong disorder leads to a frequency (..omega..) dependent increase of the Coulomb repulsion in a three-dimensional superconductor. Their one-free-parameter theory agrees nicely with the experimentally observed decrease in T/sub c/ but only for a fitted critical resistivity (rho/sub c/) that is very much smaller than the free-electron-gas estimate (rho/sup f//sub c/). We reexamine the effect of AMR's disorder-enhanced Coulomb repulsion using the Eliashberg equations for T/sub c/ rather than the simple two-square-well aproximation to them which is suspect when there are more than two characteristic frequencies involved. The most important modification of themore » original calculation is the inclusion of the Coulomb contribution to the renormalization function Z(..omega..).« less

  13. Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Neil J.; Dehaudt, Jeremy; Bryantsev, Vyacheslav S.

    Bis-triazine phenanthrolines have shown great promise for f-block metal separations, attributable to their highly preorganized structure, nitrogen donors, and more enhanced covalent bonding with actinides over lanthanides. However, their limited solubility in traditional solvents remains a technological bottleneck. Here in this paper we report our recent work using a simple 2,9-bis(triazine)-1,10-phenanthroline (Me-BTPhen) dissolved in an ionic liquid (IL), demonstrating the efficacy of IL extraction systems for the selective separation of americium from europium, achieving separation factors in excess of 7500 and selectively removing up to 99% of the americium. Characterization of the coordination environment was performed using a combination ofmore » X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations.« less

  14. Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story

    DOE PAGES

    Williams, Neil J.; Dehaudt, Jeremy; Bryantsev, Vyacheslav S.; ...

    2017-02-10

    Bis-triazine phenanthrolines have shown great promise for f-block metal separations, attributable to their highly preorganized structure, nitrogen donors, and more enhanced covalent bonding with actinides over lanthanides. However, their limited solubility in traditional solvents remains a technological bottleneck. Here in this paper we report our recent work using a simple 2,9-bis(triazine)-1,10-phenanthroline (Me-BTPhen) dissolved in an ionic liquid (IL), demonstrating the efficacy of IL extraction systems for the selective separation of americium from europium, achieving separation factors in excess of 7500 and selectively removing up to 99% of the americium. Characterization of the coordination environment was performed using a combination ofmore » X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations.« less

  15. Metric-affine f (R ,T ) theories of gravity and their applications

    NASA Astrophysics Data System (ADS)

    Barrientos, E.; Lobo, Francisco S. N.; Mendoza, S.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2018-05-01

    We study f (R ,T ) theories of gravity, where T is the trace of the energy-momentum tensor Tμ ν, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f (R ) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion and consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications are discussed.

  16. An algorithm for the basis of the finite Fourier transform

    NASA Technical Reports Server (NTRS)

    Santhanam, Thalanayar S.

    1995-01-01

    The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.

  17. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  18. Reading off the nongeometric scalar potentials via the topological data of the compactifying Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2016-10-01

    In the context of studying the 4D-effective potentials of type IIB nongeometric flux compactifications, this article has a twofold goal. First, we present a modular invariant symplectic rearrangement of the tree level nongeometric scalar potential arising from a flux superpotential which includes the S-dual pairs of nongeometric fluxes (Q , P ), the standard NS-NS and RR three-form fluxes (F3 , H3 ), and the geometric flux (ω ). This "symplectic formulation" is valid for arbitrary numbers of Kähler moduli, and the complex structure moduli which are implicitly encoded in a set of symplectic matrices. In the second part, we further explicitly rewrite all the symplectic ingredients in terms of saxionic and axionic components of the complex structure moduli. The same leads to a compact form of the generic scalar potential being explicitly written out in terms of all the real moduli/axions. Moreover, the final form of the scalar potential needs only the knowledge of some topological data (such as Hodge numbers and the triple-intersection numbers) of the compactifying threefolds and their respective mirrors. Finally, we demonstrate how the same is equivalent to say that, for a given concrete example, various pieces of the scalar potential can be directly read off from our generic proposal, without the need of starting from the Kähler and superpotentials.

  19. Modeling the viscoplastic behavior of Inconel 718 at 1200 F

    NASA Technical Reports Server (NTRS)

    Abdel-Kader, M. S.; Eftis, J.; Jones, D. L.

    1988-01-01

    A large number of tests, including tensile, creep, fatigue, and creep-fatigue were performed to characterize the mechanical properties of Inconel 718 (a nickel based superalloy) at 1200 F, the operating temperature for turbine blades. In addition, a few attempts were made to model the behavior of Inconel 718 at 1200 F using viscoplastic theories. The Chaboche theory of viscoplasticity can model a wide variety of mechanical behavior, including monotonic, sustained, and cyclic responses of homogeneous, initially-isotropic, strain hardening (or softening) materials. It is shown how the Chaboche theory can be used to model the viscoplastic behavior of Inconel 718 at 1200 F. First, an algorithm was developed to systematically determine the material parameters of the Chaboche theory from uniaxial tensile, creep, and cyclic data. The algorithm is general and can be used in conjunction with similar high temperature materials. A sensitivity study was then performed and an optimal set of Chaboche's parameters were obtained. This study has also indicated the role of each parameter in modeling the response to different loading conditions.

  20. Simple Mindreading Abilities Predict Complex Theory of Mind: Developmental Delay in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Pino, Maria Chiara; Mazza, Monica; Mariano, Melania; Peretti, Sara; Dimitriou, Dagmara; Masedu, Francesco; Valenti, Marco; Franco, Fabia

    2017-01-01

    Theory of mind (ToM) is impaired in individuals with autism spectrum disorders (ASD). The aims of this study were to: (i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and (ii) to assess if a ToM simple test known as eyes-test could predict performance on…

  1. Theologies, ideologies and evolutionary biology.

    PubMed

    Scudo, Francesco M

    2010-01-01

    Since a century evolution has mostly been interpreted by two simple, "opposite" kinds of "theories" — i.e. as due either to fitness differences among genotypes or to some other simple mechanism — while bona fide, more complex theories were less popular throughout. In particular by far the most complete theories ever produced were suddenly, almost universally abandoned just after World War II, though not as a consequence of major breakthroughs. The causes of this situation are examined by analogy with much earlier developments and their demise by Cartesianism. The down to earth solutions these "complete" theories provide to the problems of "speciation" and the origins of cells are contrasted with the "miraculous" approaches by systemic neo-Darwinists.

  2. Comments on the variational modified-hypernetted-chain theory for simple fluids

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Yaakov

    1986-02-01

    The variational modified-hypernetted-chain (VMHNC) theory, based on the approximation of universality of the bridge functions, is reformulated. The new formulation includes recent calculations by Lado and by Lado, Foiles, and Ashcroft, as two stages in a systematic approach which is analyzed. A variational iterative procedure for solving the exact (diagrammatic) equations for the fluid structure which is formally identical to the VMHNC is described, featuring the theory of simple classical fluids as a one-iteration theory. An accurate method for calculating the pair structure for a given potential and for inverting structure factor data in order to obtain the potential and the thermodynamic functions, follows from our analysis.

  3. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  4. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    NASA Astrophysics Data System (ADS)

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  5. Constraining f(R) theories with cosmography

    NASA Astrophysics Data System (ADS)

    Anabella Teppa Pannia, Florencia; Esteban Perez Bergliaffa, Santiago

    2013-08-01

    A method to set constraints on the parameters of extended theories of gravitation is presented. It is based on the comparison of two series expansions of any observable that depends on H(z). The first expansion is of the cosmographical type, while the second uses the dependence of H with z furnished by a given type of extended theory. When applied to f(R) theories together with the redshift drift, the method yields limits on the parameters of two examples (the theory of Hu and Sawicki [1], and the exponential gravity introduced by Linder [2]) that are compatible with or more stringent than the existing ones, as well as a limit for a previously unconstrained parameter.

  6. The Idiographic Study of Leadership Behavior in Natural Settings: An Empirical Analysis Using a Single Case Experimental Design.

    DTIC Science & Technology

    1982-08-01

    Management , 1977, 1, 105-109. LAuthans, F. Leadership : A proposal for a social learning theory base and observational and functional analysis...Manz, C.C., & Sims, H.P. Self management as a substitute for leadership : A social learning theory perspective. Academy of Management Review, 1980, 5...AD-AI19 89 NEBRASKA UNIV LINCOLN DEPT OF MANAGEMENT F/G 5/1 THE IDIOGRAPHIC STUDY OF LEADERSHIP BEHAVIOR IN NATURAL SETTING-ETCIU)AUG 82 T R DAVI , F

  7. Primordial magnetic fields from a non-singular bouncing cosmology

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín

    2014-08-01

    Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f2(ϕ)FμνF (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>-ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f2(ϕ)F2-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.

  8. Theory and computation of general force balance in non-axisymmetric tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Park, Jong-Kyu; Logan, Nikolas; Wang, Zhirui; Kim, Kimin; Boozer, Allen; Liu, Yueqiang; Menard, Jonathan

    2014-10-01

    Non-axisymmetric equilibria in tokamaks can be effectively described by linearized force balance. In addition to the conventional isotropic pressure force, there are three important components that can strongly contribute to the force balance; rotational, anisotropic tensor pressure, and externally given forces, i.e. ∇ --> p + ρv-> . ∇ --> v-> + ∇ --> . <-->Π + f-> = j-> × B-> , especially in, but not limited to, high β and rotating plasmas. Within the assumption of nested flux surfaces, Maxwell equations and energy minimization lead to the modified-generalized Newcomb equation for radial displacements with simple algebraic relations for perpendicular and parallel displacements, including an inhomogeneous term if any of the forces are not explicitly dependent on displacements. The general perturbed equilibrium code (GPEC) solves this force balance consistent with energy and torque given by external perturbations. Local and global behaviors of solutions will be discussed when ∇ --> . <-->Π is solved by the semi-analytic code PENT and will be compared with MARS-K. Any first-principle transport code calculating ∇ --> . <-->Π or f-> , e.g. POCA, can also be incorporated without demanding iterations. This work was supported by DOE Contract DE-AC02-09CH11466.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Ye; Zhang, Ping; Qin, Yujia

    When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the networkmore » interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.« less

  10. Miscibility and Speciation in the Water/carbon Dioxide System

    NASA Astrophysics Data System (ADS)

    Abramson, E.; Bollengier, O.; Brown, J. M.

    2017-12-01

    We have been exploring fluid-fluid solubilities and speciation in mixed systems of CO2-H2O. Fluid-fluid immiscibility extends to the highest pressures and temperatures yet explored (7 GPa, 700K). In this region, commonly used COH fluid models agree neither with the data nor among themselves. The range of immiscibility is extended by addition of NaCl, but miscibility limits determined in preliminary experiments are not as expected from extrapolation of lower pressure (<0.2 GPa) results. For majority-water systems (XCO2<0.5) an abrupt increase of solubility with pressure is linked to an observed change in speciation as CO2(aq) reacts with water. The identity of the newly formed species is, as of the writing of this abstract, unknown, but presumed to be either H2CO3 or HCO3-. A reasonable match between the observed equilibria and an application of HKF theory suggests that the new species is, indeed, HCO3-, but with a Raman frequency shifted from that found in the dilute aqueous solution. Application of HKF theory to the CO2(f)-CO2(aq) equilibrium suffers from an incompatibility of the usual formulation of the theory with known molar volumes of CO2(f) at higher pressures. On the basis of these studies we conclude that models of CO2-H2O fluids must take into account major changes in speciation, and that simple equations-of-state, of a few fitted parameters, will not afford an adequate description of such fluids. "First principles" models, tested against real data, seem more likely to yield the desired results. This statement extends as well to the calculation of the dielectric constants of these mixed fluids, the basis of ionic solution chemistry. Further, semi-empirical formulations of solution thermodynamics, which function well at pressures of kbars, ought to be re-worked for use over larger pressure ranges.

  11. Oxidative enantioselective α-fluorination of aliphatic aldehydes enabled by N-heterocyclic carbene catalysis.

    PubMed

    Li, Fangyi; Wu, Zijun; Wang, Jian

    2015-01-07

    Described is the first study on oxidative enantioselective α-fluorination of simple aliphatic aldehydes enabled by N-heterocyclic carbene catalysis. N-fluorobis(phenyl)sulfonimide serves as a an oxidant and as an "F" source. The C-F bond formation occurs directly at the α position of simple aliphatic aldehydes, thus overcoming nontrivial challenges, such as competitive difluorination and nonfluorination, and proceeds with high to excellent enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. n  +  1 formalism of f (Lovelock) gravity

    NASA Astrophysics Data System (ADS)

    Lachaume, Xavier

    2018-06-01

    In this note we perform the n  +  1 decomposition, or Arnowitt–Deser–Misner (ADM) formulation of gravity theory. The Hamiltonian form of Lovelock gravity was known since the work of Teitelboim and Zanelli in 1987, but this result had not yet been extended to gravity. Besides, field equations of have been recently computed by Bueno et al, though without ADM decomposition. We focus on the non-degenerate case, i.e. when the Hessian of f is invertible. Using the same Legendre transform as for theories, we can identify the partial derivatives of f as scalar fields, and consider the theory as a generalised scalar‑tensor theory. We then derive the field equations, and project them along a n  +  1 decomposition. We obtain an original system of constraint equations for gravity, as well as dynamical equations. We give explicit formulas for the case.

  13. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  14. [Effects of Dietary Program based on Self-efficacy Theory on Dietary Adherence, Physical Indices and Quality of Life for Hemodialysis Patients].

    PubMed

    Yun, Kyung Soon; Choi, Ja Yun

    2016-08-01

    The purpose of this study was to examine effects of a dietary program based on self-efficacy theory on dietary adherence, physical status and quality of life (QoL) in hemodialysis patients. A non-equivalent control group pre-post test design was used. The intervention group received the dietary program for 8 weeks from August 4 to September 26, 2014. The control group received only usual care. ANCOVA showed that dietary adherence (F=64.75, p<.001) was significantly different between the two groups. Serum albumin (F=12.13, p =.001), interdialytic weight gain (F=56.97, p<.001), calories (F=15.80, p<.001) as physical status indices were significantly different, but serum potassium (F=2.69, p=.106) and serum phosphorus (F=1.08, p=.303) showed no significant difference between the two groups. In terms of health-related QoL, the physical component scale (F=10.05, p=.002) and the mental component scale (F=16.66, p<.001) were significantly different between the two groups. In addition, in terms of diet related QoL, diet level (F=35.33, p<.001) and satisfaction level (F=15.57, p<.001) were significantly different between the two groups, but dietary impact level (F=1.23, p =.271) was not significantly different. Findings show that the dietary program based on self-efficacy theory is an effective nursing intervention program to improve adherence to diet, and to maintain physical status and QoL for hemodialysis patients.

  15. More asymptotic safety guaranteed

    NASA Astrophysics Data System (ADS)

    Bond, Andrew D.; Litim, Daniel F.

    2018-04-01

    We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.

  16. Scalar pseudo-Nambu-Goldstone boson in nuclei and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Kyu; Paeng, Won-Gi; Rho, Mannque

    2015-12-01

    The notion that the scalar listed as f0(500 ) in the particle data booklet is a pseudo-Nambu-Goldstone (NG) boson of spontaneously broken scale symmetry, explicitly broken by a small departure from an infrared fixed point, is explored in nuclear dynamics. This notion—which puts the scalar (which we shall identify as the "dilaton") on the same footing as the pseudoscalar pseudo-NG bosons, i.e., octet π , while providing a simple explanation for the Δ I =1 /2 rule for kaon decay—generalizes the standard chiral perturbation theory (χ PT ) to "scale chiral perturbation theory," denoted χPT σ , with one infrared mass scale for both symmetries, with the σ figuring as a chiral singlet NG mode in the nonstrange sector. Applied to nuclear dynamics, it is seen to provide answers to various hitherto unclarified nuclear phenomena, such as the success of one-boson-exchange potentials, the large cancellation of a strongly attractive scalar potential by a strongly repulsive vector potential in relativistic mean-field theory of nuclear systems and in-medium QCD sum rules, the interplay of the dilaton and the vector meson ω in dense Skyrmion matter, the Bogomol'nyi-Prasad-Sommerfeld Skyrmion structure of nuclei accounting for small binding energies of medium-heavy nuclei, and the suppression of hyperon degrees of freedom in compact-star matter.

  17. Current distribution in a three-dimensional IC analyzed by a perturbation method. Part 1: A simple steady state theory

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1987-01-01

    The steady state current distribution in a three dimensional integrated circuit is presented. A device physics approach, based on a perturbation method rather than an equivalent lumped circuit approach, is used. The perturbation method allows the various currents to be expressed in terms of elementary solutions which are solutions to very simple boundary value problems. A Simple Steady State Theory is the subtitle because the most obvious limitation of the present version of the analysis is that all depletion region boundary surfaces are treated as equipotential surfaces. This may be an adequate approximation in some applications but it is an obvious weakness in the theory when applied to latched states. Examples that illustrate the use of these analytical methods are not given because they will be presented in detail in the future.

  18. On the hyperbolicity and stability of 3+1 formulations of metric f( R) gravity

    NASA Astrophysics Data System (ADS)

    Mongwane, Bishop

    2016-11-01

    3+1 formulations of the Einstein field equations have become an invaluable tool in Numerical relativity, having been used successfully in modeling spacetimes of black hole collisions, stellar collapse and other complex systems. It is plausible that similar considerations could prove fruitful for modified gravity theories. In this article, we pursue from a numerical relativistic viewpoint the 3+1 formulation of metric f( R) gravity as it arises from the fourth order equations of motion, without invoking the dynamical equivalence with Brans-Dicke theories. We present the resulting system of evolution and constraint equations for a generic function f( R), subject to the usual viability conditions. We confirm that the time propagation of the f( R) Hamiltonian and Momentum constraints take the same Mathematical form as in general relativity, irrespective of the f( R) model. We further recast the 3+1 system in a form akin to the BSSNOK formulation of numerical relativity. Without assuming any specific model, we show that the ADM version of f( R) is weakly hyperbolic and is plagued by similar zero speed modes as in the general relativity case. On the other hand the BSSNOK version is strongly hyperbolic and hence a promising formulation for numerical simulations in metric f( R) theories.

  19. Thermodynamics and cosmological reconstruction in f(T , B) gravity

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Zubair, M.; Abbas, G.

    2018-03-01

    Recently, it was formulated a teleparallel theory called f(T , B) gravity which connects both f(T) and f(R) under suitable limits. In this theory, the function in the action is assumed to depend on the torsion scalar T and also on a boundary term related with the divergence of torsion, B = 2∇μTμ. In this work, we study different features of a flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this theory. First, we show that the FLRW equations can be transformed to the form of Clausius relation TˆhSeff = - dE + WdV, where Tˆh is the horizon temperature and Seff is the entropy which contains contributions both from horizon entropy and an additional entropy term introduced due to the non-equilibrium. We also formulate the constraint for the validity of the generalised second law of thermodynamics (GSLT). Additionally, using a cosmological reconstruction technique, we show that both f(T , B) and - T + F(B) gravity can mimic power-law, de-Sitter and ΛCDM models. Finally, we formulate the perturbed evolution equations and analyse the stability of some important cosmological solutions.

  20. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.

    PubMed

    Mohoric, Tomaz; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-14

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

Top