NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
Simple scheme to implement decoy-state reference-frame-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Zhang, Chunmei; Zhu, Jianrong; Wang, Qin
2018-06-01
We propose a simple scheme to implement decoy-state reference-frame-independent quantum key distribution (RFI-QKD), where signal states are prepared in Z, X, and Y bases, decoy states are prepared in X and Y bases, and vacuum states are set to no bases. Different from the original decoy-state RFI-QKD scheme whose decoy states are prepared in Z, X and Y bases, in our scheme decoy states are only prepared in X and Y bases, which avoids the redundancy of decoy states in Z basis, saves the random number consumption, simplifies the encoding device of practical RFI-QKD systems, and makes the most of the finite pulses in a short time. Numerical simulations show that, considering the finite size effect with reasonable number of pulses in practical scenarios, our simple decoy-state RFI-QKD scheme exhibits at least comparable or even better performance than that of the original decoy-state RFI-QKD scheme. Especially, in terms of the resistance to the relative rotation of reference frames, our proposed scheme behaves much better than the original scheme, which has great potential to be adopted in current QKD systems.
Bolt clampup relaxation in a graphite/epoxy laminate
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Crews, J. H., Jr.
1982-01-01
A simple bolted joint was analyzed to calculate bolt clampup relaxation for a graphite/epoxy (T300/5208) laminate. A viscoelastic finite element analysis of a double-lap joint with a steel bolt was conducted. Clampup forces were calculated for various steady-state temperature-moisture conditions using a 20-year exposure duration. The finite element analysis predicted that clampup forces relax even for the room-temperature-dry condition. The relaxations were 8, 13, 20, and 30 percent for exposure durations of 1 day, 1 month, 1 year, and 20 years, respectively. As expected, higher temperatures and moisture levels each increased the relaxation rate. The combined viscoelastic effects of steady-state temperature and moisture appeared to be additive. From the finite-element analysis, a simple equation was developed for clampup force relaxation. This generalized equation was used to calculate clampup forces for the same temperature-moisture conditions as used in the finite-element analysis. The two sets of calculated results agreed well.
NASA Astrophysics Data System (ADS)
Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.
2018-05-01
The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.
The new finite temperature Schrödinger equations with strong or weak interaction
NASA Astrophysics Data System (ADS)
Li, Heling; Yang, Bin; Shen, Hongjun
2017-07-01
Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.
Active earth pressure model tests versus finite element analysis
NASA Astrophysics Data System (ADS)
Pietrzak, Magdalena
2017-06-01
The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.
On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
NASA Technical Reports Server (NTRS)
Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.
Ito, Makoto; Doya, Kenji
2015-01-01
Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the “win-stay, lose-switch” strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum. PMID:26529522
Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.
He, Ping; Ma, Shu-Hua; Fan, Tao
2012-12-01
This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.
Dini, Paolo; Nehaniv, Chrystopher L; Egri-Nagy, Attila; Schilstra, Maria J
2013-05-01
Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin
1989-01-01
A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.
Quantum Monte Carlo calculations of two neutrons in finite volume
Klos, P.; Lynn, J. E.; Tews, I.; ...
2016-11-18
Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground state and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial formore » determining observables from the calculated energies. Finally, using the Lüscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.« less
Finite state modeling of aeroelastic systems
NASA Technical Reports Server (NTRS)
Vepa, R.
1977-01-01
A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.
Easily Testable PLA-Based Finite State Machines
1989-03-01
PLATYPUS (20]. Then, justifi- type 1, 4 and 5 can be guaranteed to be testable via cation paths are obtained from the STG using simple logic...next state lines is found, if such a vector par that is gnrt d y the trupt eexists, using PLATYPUS [20]. pair that is generated by the first corrupted
Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states
NASA Astrophysics Data System (ADS)
de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry
2018-05-01
We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.
Simple 2.5 GHz time-bin quantum key distribution
NASA Astrophysics Data System (ADS)
Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Rusca, Davide; Gray, Stuart; Li, Ming-Jun; Nolan, Daniel; Martin, Anthony; Zbinden, Hugo
2018-04-01
We present a 2.5 GHz quantum key distribution setup with the emphasis on a simple experimental realization. It features a three-state time-bin protocol based on a pulsed diode laser and a single intensity modulator. Implementing an efficient one-decoy scheme and finite-key analysis, we achieve record breaking secret key rates of 1.5 kbps over 200 km of standard optical fibers.
ERIC Educational Resources Information Center
Andrews, David L.; Romero, Luciana C. Davila
2009-01-01
The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…
Valuation of financial models with non-linear state spaces
NASA Astrophysics Data System (ADS)
Webber, Nick
2001-02-01
A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.
A finite element based method for solution of optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.; Calise, Anthony J.
1989-01-01
A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables that are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to optimal control problems, however, time derivatives of the states and costates do not appear in the governing variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two. Numerical results are presented herein for an elementary trajectory optimization problem which show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The goal is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable for finite element solution.
A Riemann-Hilbert formulation for the finite temperature Hubbard model
NASA Astrophysics Data System (ADS)
Cavaglià, Andrea; Cornagliotto, Martina; Mattelliano, Massimo; Tateo, Roberto
2015-06-01
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin
2014-01-01
Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.
The Design of Finite State Machine for Asynchronous Replication Protocol
NASA Astrophysics Data System (ADS)
Wang, Yanlong; Li, Zhanhuai; Lin, Wei; Hei, Minglei; Hao, Jianhua
Data replication is a key way to design a disaster tolerance system and to achieve reliability and availability. It is difficult for a replication protocol to deal with the diverse and complex environment. This means that data is less well replicated than it ought to be. To reduce data loss and to optimize replication protocols, we (1) present a finite state machine, (2) run it to manage an asynchronous replication protocol and (3) report a simple evaluation of the asynchronous replication protocol based on our state machine. It's proved that our state machine is applicable to guarantee the asynchronous replication protocol running in the proper state to the largest extent in the event of various possible events. It also can helpful to build up replication-based disaster tolerance systems to ensure the business continuity.
Estimation of critical behavior from the density of states in classical statistical models
NASA Astrophysics Data System (ADS)
Malakis, A.; Peratzakis, A.; Fytas, N. G.
2004-12-01
We present a simple and efficient approximation scheme which greatly facilitates the extension of Wang-Landau sampling (or similar techniques) in large systems for the estimation of critical behavior. The method, presented in an algorithmic approach, is based on a very simple idea, familiar in statistical mechanics from the notion of thermodynamic equivalence of ensembles and the central limit theorem. It is illustrated that we can predict with high accuracy the critical part of the energy space and by using this restricted part we can extend our simulations to larger systems and improve the accuracy of critical parameters. It is proposed that the extensions of the finite-size critical part of the energy space, determining the specific heat, satisfy a scaling law involving the thermal critical exponent. The method is applied successfully for the estimation of the scaling behavior of specific heat of both square and simple cubic Ising lattices. The proposed scaling law is verified by estimating the thermal critical exponent from the finite-size behavior of the critical part of the energy space. The density of states of the zero-field Ising model on these lattices is obtained via a multirange Wang-Landau sampling.
State-constrained booster trajectory solutions via finite elements and shooting
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.; Seywald, Hans
1993-01-01
This paper presents an extension of a FEM formulation based on variational principles. A general formulation for handling internal boundary conditions and discontinuities in the state equations is presented, and the general formulation is modified for optimal control problems subject to state-variable inequality constraints. Solutions which only touch the state constraint and solutions which have a boundary arc of finite length are considered. Suitable shape and test functions are chosen for a FEM discretization. All element quadrature (equivalent to one-point Gaussian quadrature over each element) may be done in closed form. The final form of the algebraic equations is then derived. A simple state-constrained problem is solved. Then, for a practical application of the use of the FEM formulation, a launch vehicle subject to a dynamic pressure constraint (a first-order state inequality constraint) is solved. The results presented for the launch-vehicle trajectory have some interesting features, including a touch-point solution.
Self-organized criticality in asymmetric exclusion model with noise for freeway traffic
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-02-01
The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval < s>between consecutive jams scales as < s> ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime
NASA Astrophysics Data System (ADS)
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
Optimal nonlinear filtering using the finite-volume method
NASA Astrophysics Data System (ADS)
Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.
2018-01-01
Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.
Numerical Simulation of the Detonation of Condensed Explosives
NASA Astrophysics Data System (ADS)
Wang, Cheng; Ye, Ting; Ning, Jianguo
Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.
Finite horizon optimum control with and without a scrap value
NASA Astrophysics Data System (ADS)
Neck, R.; Blueschke-Nikolaeva, V.; Blueschke, D.
2017-06-01
In this paper, we study the effects of scrap values on the solutions of optimal control problems with finite time horizon. We show how to include a scrap value, either for the state variables or for the state and the control variables, in the OPTCON2 algorithm for the optimal control of dynamic economic systems. We ask whether the introduction of a scrap value can serve as a substitute for an infinite horizon in economic policy optimization problems where the latter option is not available. Using a simple numerical macroeconomic model, we demonstrate that the introduction of a scrap value cannot induce control policies which can be expected for problems with an infinite time horizon.
A cavitation transition in the energy landscape of simple cohesive liquids and glasses
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Stillinger, Frank H.; Debenedetti, Pablo G.
2016-12-01
In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.
Gradient corrections to the exchange-correlation free energy
Sjostrom, Travis; Daligault, Jerome
2014-10-07
We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures abovemore » 10 000 K.« less
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.
2001-03-01
Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.
Calculations of heavy ion charge state distributions for nonequilibrium conditions
NASA Technical Reports Server (NTRS)
Luhn, A.; Hovestadt, D.
1985-01-01
Numerical calculations of the charge state distributions of test ions in a hot plasma under nonequilibrium conditions are presented. The mean ionic charges of heavy ions for finite residence times in an instantaneously heated plasma and for a non-Maxwellian electron distribution function are derived. The results are compared with measurements of the charge states of solar energetic particles, and it is found that neither of the two simple cases considered can explain the observations.
Determination of stress intensity factors for interface cracks under mixed-mode loading
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.
Counterfactuals cannot count: a rejoinder to David Chalmers.
Bishop, Mark
2002-12-01
The initial argument presented herein is not significantly original--it is a simple reflection upon a notion of computation originally developed by Putnam (Putnam 1988; see also Searle, 1990) and criticised by Chalmers et al. (Chalmers, 1994; 1996a, b; see also the special issue, What is Computation?, in Minds and Machines, 4:4, November 1994). In what follows, instead of seeking to justify Putnam's conclusion that every open system implements every Finite State Automaton (FSA) and hence that psychological states of the brain cannot be functional states of a computer, I will establish the weaker result that, over a finite time window every open system implements the trace of FSA Q, as it executes program (P) on input (I). If correct the resulting bold philosophical claim is that phenomenal states--such as feelings and visual experiences--can never be understood or explained functionally. Copyright 2002 Elsevier Science (USA)
Mean-Potential Law in Evolutionary Games
NASA Astrophysics Data System (ADS)
Nałecz-Jawecki, Paweł; Miekisz, Jacek
2018-01-01
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
Learning Extended Finite State Machines
NASA Technical Reports Server (NTRS)
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
Counting statistics for genetic switches based on effective interaction approximation
NASA Astrophysics Data System (ADS)
Ohkubo, Jun
2012-09-01
Applicability of counting statistics for a system with an infinite number of states is investigated. The counting statistics has been studied a lot for a system with a finite number of states. While it is possible to use the scheme in order to count specific transitions in a system with an infinite number of states in principle, we have non-closed equations in general. A simple genetic switch can be described by a master equation with an infinite number of states, and we use the counting statistics in order to count the number of transitions from inactive to active states in the gene. To avoid having the non-closed equations, an effective interaction approximation is employed. As a result, it is shown that the switching problem can be treated as a simple two-state model approximately, which immediately indicates that the switching obeys non-Poisson statistics.
Relations between work and entropy production for general information-driven, finite-state engines
NASA Astrophysics Data System (ADS)
Merhav, Neri
2017-02-01
We consider a system model of a general finite-state machine (ratchet) that simultaneously interacts with three kinds of reservoirs: a heat reservoir, a work reservoir, and an information reservoir, the latter being taken to be a running digital tape whose symbols interact sequentially with the machine. As has been shown in earlier work, this finite-state machine can act as a demon (with memory), which creates a net flow of energy from the heat reservoir into the work reservoir (thus extracting useful work) at the price of increasing the entropy of the information reservoir. Under very few assumptions, we propose a simple derivation of a family of inequalities that relate the work extraction with the entropy production. These inequalities can be seen as either upper bounds on the extractable work or as lower bounds on the entropy production, depending on the point of view. Many of these bounds are relatively easy to calculate and they are tight in the sense that equality can be approached arbitrarily closely. In their basic forms, these inequalities are applicable to any finite number of cycles (and not only asymptotically), and for a general input information sequence (possibly correlated), which is not necessarily assumed even stationary. Several known results are obtained as special cases.
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grutzik, Scott Joseph; Reedy, Jr., E. D.
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Finite state model and compatibility theory - New analysis tools for permutation networks
NASA Technical Reports Server (NTRS)
Huang, S.-T.; Tripathi, S. K.
1986-01-01
A simple model to describe the fundamental operation theory of shuffle-exchange-type permutation networks, the finite permutation machine (FPM), is described, and theorems which transform the control matrix result to a continuous compatible vector result are developed. It is found that only 2n-1 shuffle exchange passes are necessary, and that 3n-3 passes are sufficient, to realize all permutations, reducing the sufficient number of passes by two from previous results. The flexibility of the approach is demonstrated by the description of a stack permutation machine (SPM) which can realize all permutations, and by showing that the FPM corresponding to the Benes (1965) network belongs to the SPM. The FPM corresponding to the network with two cascaded reverse-exchange networks is found to realize all permutations, and a simple mechanism to verify several equivalence relationships of various permutation networks is discussed.
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
Grutzik, Scott Joseph; Reedy, Jr., E. D.
2017-08-04
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Genetic noise mechanism for power-law switching in bacterial flagellar motors
NASA Astrophysics Data System (ADS)
Krivonosov, M. I.; Zaburdaev, V.; Denisov, S. V.; Ivanchenko, M. V.
2018-06-01
Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduced from simple thermodynamic arguments. Recently, it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of the barrier between the two rotation states, it is possible to generate switching statistics with an intermediate power-law asymptotics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated ‘noise’ can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as the equilibrium number of molecules, sensitivities, and the characteristic relaxation time.
NASA Astrophysics Data System (ADS)
Guzzo, H.; Hernández, I.; Sánchez-Valenzuela, O. A.
2014-09-01
Finite dimensional semisimple real Lie superalgebras are described via finite dimensional semisimple complex Lie superalgebras. As an application of these results, finite dimensional real Lie superalgebras mathfrak {m}=mathfrak {m}_0 oplus mathfrak {m}_1 for which mathfrak {m}_0 is a simple Lie algebra are classified up to isomorphism.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
Elasto visco-plastic flow with special attention to boundary conditions
NASA Technical Reports Server (NTRS)
Shimazaki, Y.; Thompson, E. G.
1981-01-01
A simple but nontrivial steady-state creeping elasto visco-plastic (Maxwell fluid) radial flow problem is analyzed, with special attention given to the effects of the boundary conditions. Solutions are obtained through integration of a governing equation on stress using the Runge-Kutta method for initial value problems and finite differences for boundary value problems. A more general approach through the finite element method, an approach that solves for the velocity field rather than the stress field and that is applicable to a wide range of problems, is presented and tested using the radial flow example. It is found that steady-state flows of elasto visco-plastic materials are strongly influenced by the state of stress of material as it enters the region of interest. The importance of this boundary or initial condition in analyses involving materials coming into control volumes from unusual stress environments is emphasized.
Mean-Potential Law in Evolutionary Games.
Nałęcz-Jawecki, Paweł; Miękisz, Jacek
2018-01-12
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Magic informationally complete POVMs with permutations
NASA Astrophysics Data System (ADS)
Planat, Michel; Gedik, Zafer
2017-09-01
Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.
Equation of state and QCD transition at finite temperature
NASA Astrophysics Data System (ADS)
Bazavov, A.; Bhattacharya, T.; Cheng, M.; Christ, N. H.; Detar, C.; Ejiri, S.; Gottlieb, Steven; Gupta, R.; Heller, U. M.; Huebner, K.; Jung, C.; Karsch, F.; Laermann, E.; Levkova, L.; Miao, C.; Mawhinney, R. D.; Petreczky, P.; Schmidt, C.; Soltz, R. A.; Soeldner, W.; Sugar, R.; Toussaint, D.; Vranas, P.
2009-07-01
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nτ=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nτ=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects.
Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods
NASA Astrophysics Data System (ADS)
Park, Brian T.; Petrosian, Vahe
1996-03-01
Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
Optimal protocols for slowly driven quantum systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.
Ground-state energies of simple metals
NASA Technical Reports Server (NTRS)
Hammerberg, J.; Ashcroft, N. W.
1974-01-01
A structural expansion for the static ground-state energy of a simple metal is derived. Two methods are presented, one an approach based on single-particle band structure which treats the electron gas as a nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi-surface distortions, and chemical-potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron-ion interaction and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero-temperature thermodynamic functions of atomic hydrogen are reported.
Structural expansions for the ground state energy of a simple metal
NASA Technical Reports Server (NTRS)
Hammerberg, J.; Ashcroft, N. W.
1973-01-01
A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.
Timing analysis by model checking
NASA Technical Reports Server (NTRS)
Naydich, Dimitri; Guaspari, David
2000-01-01
The safety of modern avionics relies on high integrity software that can be verified to meet hard real-time requirements. The limits of verification technology therefore determine acceptable engineering practice. To simplify verification problems, safety-critical systems are commonly implemented under the severe constraints of a cyclic executive, which make design an expensive trial-and-error process highly intolerant of change. Important advances in analysis techniques, such as rate monotonic analysis (RMA), have provided a theoretical and practical basis for easing these onerous restrictions. But RMA and its kindred have two limitations: they apply only to verifying the requirement of schedulability (that tasks meet their deadlines) and they cannot be applied to many common programming paradigms. We address both these limitations by applying model checking, a technique with successful industrial applications in hardware design. Model checking algorithms analyze finite state machines, either by explicit state enumeration or by symbolic manipulation. Since quantitative timing properties involve a potentially unbounded state variable (a clock), our first problem is to construct a finite approximation that is conservative for the properties being analyzed-if the approximation satisfies the properties of interest, so does the infinite model. To reduce the potential for state space explosion we must further optimize this finite model. Experiments with some simple optimizations have yielded a hundred-fold efficiency improvement over published techniques.
Orbital liquid in three-dimensional mott insulator: LaTiO3
Khaliullin; Maekawa
2000-10-30
We present a theory of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange interaction between d(1)(t(2g)) ions in cubic crystal suffers from a pathological degeneracy of orbital states at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t(2g) level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3.
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
Quantum teleportation of nonclassical wave packets: An effective multimode theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki
2011-07-15
We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.
Excited state correlations of the finite Heisenberg chain
NASA Astrophysics Data System (ADS)
Pozsgay, Balázs
2017-02-01
We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.
New Exact Solutions of Relativistic Hydrodynamics for Longitudinally Expanding Fireballs
NASA Astrophysics Data System (ADS)
Csörgő, Tamás; Kasza, Gábor; Csanád, Máté; Jiang, Zefang
2018-06-01
We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a temperature independent (average) value of the speed of sound. Observables like the rapidity density and the pseudorapidity density are evaluated analytically, resulting in simple and easy to fit formulae that can be matched to the high energy proton-proton and heavy ion collision data at RHIC and LHC. In the longitudinally boost-invariant limit, these new solutions approach the Hwa-Bjorken solution and the corresponding rapidity distributions approach a rapidity plateaux.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Sonnad, Vijay
1991-01-01
A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.
Finite element solution of optimal control problems with inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1990-01-01
A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.
HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2015-12-01
Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information.
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft's algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms.
NASA Technical Reports Server (NTRS)
Probst, D.; Jensen, L.
1991-01-01
Delay-insensitive VLSI systems have a certain appeal on the ground due to difficulties with clocks; they are even more attractive in space. We answer the question, is it possible to control state explosion arising from various sources during automatic verification (model checking) of delay-insensitive systems? State explosion due to concurrency is handled by introducing a partial-order representation for systems, and defining system correctness as a simple relation between two partial orders on the same set of system events (a graph problem). State explosion due to nondeterminism (chiefly arbitration) is handled when the system to be verified has a clean, finite recurrence structure. Backwards branching is a further optimization. The heart of this approach is the ability, during model checking, to discover a compact finite presentation of the verified system without prior composition of system components. The fully-implemented POM verification system has polynomial space and time performance on traditional asynchronous-circuit benchmarks that are exponential in space and time for other verification systems. We also sketch the generalization of this approach to handle delay-constrained VLSI systems.
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2010-11-01
Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.
RANS Simulations using OpenFOAM Software
2016-01-01
Averaged Navier- Stokes (RANS) simulations is described and illustrated by applying the simpleFoam solver to two case studies; two dimensional flow...to run in parallel over large processor arrays. The purpose of this report is to illustrate and test the use of the steady-state Reynolds Averaged ...Group in the Maritime Platforms Division he has been simulating fluid flow around ships and submarines using finite element codes, Lagrangian vortex
Biased growth processes and the ``rich-get-richer'' principle
NASA Astrophysics Data System (ADS)
de Moura, Alessandro P.
2004-05-01
We study a simple stochastic system with a “rich-get-richer” behavior, in which there are 2 states, and N particles that are successively assigned to one of the states, with a probability pi that depends on the states’ occupation ni as pi = nγi /( nγ1 + nγ2 ) . We show that there is a phase transition as γ crosses the critical value γc =1 . For γ<1 , in the thermodynamic limit the occupations are approximately the same, n1 ≈ n2 . For γ>1 , however, a spontaneous symmetry breaking occurs, and the system goes to a highly clustered configuration, in which one of the states has almost all the particles. These results also hold for any finite number of states (not only two). We show that this “rich-get-richer” principle governs the growth dynamics in a simple model of gravitational aggregation, and we argue that the same is true in all growth processes mediated by long-range forces like gravity.
Vacancies in epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, S. Yu., E-mail: Sergei-Davydov@mail.ru
The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphenemore » to the substrate increases.« less
Emergence of jams in the generalized totally asymmetric simple exclusion process
NASA Astrophysics Data System (ADS)
Derbyshev, A. E.; Povolotsky, A. M.; Priezzhev, V. B.
2015-02-01
The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014, 10.1088/1742-5468/2012/05/P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as an isolated particle. We are interested in the large time behavior of this process on a ring in the whole range of the parameter λ controlling the interaction. We study the stationary state correlations, the cluster size distribution, and the large-time fluctuations of integrated particle current. When λ is finite, we find the usual TASEP-like behavior: The correlation length is finite; there are only clusters of finite size in the stationary state and current fluctuations belong to the Kardar-Parisi-Zhang universality class. When λ grows with the system size, so does the correlation length. We find a nontrivial transition regime with clusters of all sizes on the lattice. We identify a crossover parameter and derive the large deviation function for particle current, which interpolates between the case considered by Derrida-Lebowitz and a single-particle diffusion.
Coherent and radiative couplings through two-dimensional structured environments
NASA Astrophysics Data System (ADS)
Galve, F.; Zambrini, R.
2018-03-01
We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.
Excitations in the Yang–Gaudin Bose gas
Robinson, Neil J.; Konik, Robert M.
2017-06-01
Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Neil J.; Konik, Robert M.
Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less
Trajectory controllability of semilinear systems with multiple variable delays in control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klamka, Jerzy, E-mail: Jerzy.Klamka@polsl.pl, E-mail: Michal.Niezabitowski@polsl.pl; Niezabitowski, Michał, E-mail: Jerzy.Klamka@polsl.pl, E-mail: Michal.Niezabitowski@polsl.pl
In this paper, finite-dimensional dynamical control system described by semilinear differential state equation with multiple variable delays in control are considered. The concept of controllability we extend on trajectory controllability for systems with multiple point delays in control. Moreover, remarks and comments on the relationships between different concepts of controllability are presented. Finally, simple numerical example, which illustrates theoretical considerations is also given. The possible extensions are also proposed.
Pseudo-simple heteroclinic cycles in R4
NASA Astrophysics Data System (ADS)
Chossat, Pascal; Lohse, Alexander; Podvigina, Olga
2018-06-01
We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.
A simple finite element method for the Stokes equations
Mu, Lin; Ye, Xiu
2017-03-21
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
A simple finite element method for the Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
Hadron mass spectrum from lattice QCD.
Majumder, Abhijit; Müller, Berndt
2010-12-17
Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.
NASA Astrophysics Data System (ADS)
Filippi, Claudia; Buda, Francesco
2005-02-01
We find that regions of the excited state potential energy surface of formaldimine, which are accessible from the Franck-Condon configuration, are incorrectly described by the restricted open-shell Kohn-Sham (ROKS) approach. In these regions, the deviations of the ROKS energies from the time-dependent density functional theory results are not a simple shift. Contrary to what is argued in the Comment by Doltsinis and Fink [J. Chem. Phys.XX, XXX (2004)], these differences can play a role in the excited state molecular dynamics of formaldimine at finite temperature.
Self-Organized Criticality and Scaling in Lifetime of Traffic Jams
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-01-01
The deterministic cellular automaton 184 (the one-dimensional asymmetric simple-exclusion model with parallel dynamics) is extended to take into account injection or extraction of particles. The model presents the traffic flow on a highway with inflow or outflow of cars.Introducing injection or extraction of particles into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. The typical lifetime
FRW Solutions and Holography from Uplifted AdS/CFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xi; Horn, Bart; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC
2012-02-15
Starting from concrete AdS/CFT dual pairs, one can introduce ingredients which produce cosmological solutions, including metastable de Sitter and its decay to non-accelerating FRW. We present simple FRW solutions sourced by magnetic flavor branes and analyze correlation functions and particle and brane dynamics. To obtain a holographic description, we exhibit a time-dependent warped metric on the solution and interpret the resulting redshifted region as a Lorentzian low energy effective field theory in one fewer dimension. At finite times, this theory has a finite cutoff, a propagating lower dimensional graviton and a finite covariant entropy bound, but at late times themore » lower dimensional Planck mass and entropy go off to infinity in a way that is dominated by contributions from the low energy effective theory. This opens up the possibility of a precise dual at late times. We reproduce the time-dependent growth of the number of degrees of freedom in the system via a count of available microscopic states in the corresponding magnetic brane construction.« less
Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.
Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L A; Yodh, A G; Torquato, Salvatore
2015-01-01
Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.
FRW solutions and holography from uplifted AdS/CFT systems
NASA Astrophysics Data System (ADS)
Dong, Xi; Horn, Bart; Matsuura, Shunji; Silverstein, Eva; Torroba, Gonzalo
2012-05-01
Starting from concrete AdS/CFT dual pairs, one can introduce ingredients which produce cosmological solutions, including metastable de Sitter and its decay to nonaccelerating Friedmann-Robertson-Walker. We present simple Friedmann-Robertson-Walker solutions sourced by magnetic flavor branes and analyze correlation functions and particle and brane dynamics. To obtain a holographic description, we exhibit a time-dependent warped metric on the solution and interpret the resulting redshifted region as a Lorentzian low energy effective field theory in one fewer dimension. At finite times, this theory has a finite cutoff, a propagating lower-dimensional graviton, and a finite covariant entropy bound, but at late times the lower-dimensional Planck mass and entropy go off to infinity in a way that is dominated by contributions from the low energy effective theory. This opens up the possibility of a precise dual at late times. We reproduce the time-dependent growth of the number of degrees of freedom in the system via a count of available microscopic states in the corresponding magnetic brane construction.
Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres
NASA Astrophysics Data System (ADS)
Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L. A.; Yodh, A. G.; Torquato, Salvatore
2015-01-01
Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft’s algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms. PMID:27806102
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
NASA Astrophysics Data System (ADS)
Goldberg, Niels; Ospald, Felix; Schneider, Matti
2017-10-01
In this article we introduce a fiber orientation-adapted integration scheme for Tucker's orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.
Nam, Jaewook
2011-01-01
We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752
Directions for computational mechanics in automotive crashworthiness
NASA Technical Reports Server (NTRS)
Bennett, James A.; Khalil, T. B.
1993-01-01
The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.
Directions for computational mechanics in automotive crashworthiness
NASA Astrophysics Data System (ADS)
Bennett, James A.; Khalil, T. B.
1993-08-01
The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.
Gradient optimization of finite projected entangled pair states
NASA Astrophysics Data System (ADS)
Liu, Wen-Yuan; Dong, Shao-Jun; Han, Yong-Jian; Guo, Guang-Can; He, Lixin
2017-05-01
Projected entangled pair states (PEPS) methods have been proven to be powerful tools to solve strongly correlated quantum many-body problems in two dimensions. However, due to the high computational scaling with the virtual bond dimension D , in a practical application, PEPS are often limited to rather small bond dimensions, which may not be large enough for some highly entangled systems, for instance, frustrated systems. Optimization of the ground state using the imaginary time evolution method with a simple update scheme may go to a larger bond dimension. However, the accuracy of the rough approximation to the environment of the local tensors is questionable. Here, we demonstrate that by combining the imaginary time evolution method with a simple update, Monte Carlo sampling techniques and gradient optimization will offer an efficient method to calculate the PEPS ground state. By taking advantage of massive parallel computing, we can study quantum systems with larger bond dimensions up to D =10 without resorting to any symmetry. Benchmark tests of the method on the J1-J2 model give impressive accuracy compared with exact results.
Three-body spectrum in a finite volume: The role of cubic symmetry
Doring, M.; Hammer, H. -W.; Mai, M.; ...
2018-06-15
The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less
Three-body spectrum in a finite volume: The role of cubic symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doring, M.; Hammer, H. -W.; Mai, M.
The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less
Optimal control of singularly perturbed nonlinear systems with state-variable inequality constraints
NASA Technical Reports Server (NTRS)
Calise, A. J.; Corban, J. E.
1990-01-01
The established necessary conditions for optimality in nonlinear control problems that involve state-variable inequality constraints are applied to a class of singularly perturbed systems. The distinguishing feature of this class of two-time-scale systems is a transformation of the state-variable inequality constraint, present in the full order problem, to a constraint involving states and controls in the reduced problem. It is shown that, when a state constraint is active in the reduced problem, the boundary layer problem can be of finite time in the stretched time variable. Thus, the usual requirement for asymptotic stability of the boundary layer system is not applicable, and cannot be used to construct approximate boundary layer solutions. Several alternative solution methods are explored and illustrated with simple examples.
Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Ash, Robert L.
1989-01-01
A method of predicting the radiant heat flux distribution produced by a bank of tubular quartz heaters was applied to a radiant system consisting of a single unreflected lamp irradiating a flat metallic incident surface. In this manner, the method was experimentally verified for various radiant system parameter settings and used as a source of input for a finite element thermal analysis. Two finite element thermal analyses were applied to a thermal system consisting of a thin metallic panel exposed to radiant surface heating. A two-dimensional steady-state finite element thermal analysis algorithm, based on Galerkin's Method of Weighted Residuals (GFE), was formulated specifically for this problem and was used in comparison to the thermal analyzers of the Engineering Analysis Language (EAL). Both analyses allow conduction, convection, and radiation boundary conditions. Differences in the respective finite element formulation are discussed in terms of their accuracy and resulting comparison discrepancies. The thermal analyses are shown to perform well for the comparisons presented here with some important precautions about the various boundary condition models. A description of the experiment, corresponding analytical modeling, and resulting comparisons are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivak, David; Crooks, Gavin
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
NASA Technical Reports Server (NTRS)
Armand, Sasan
1995-01-01
A spacecraft payload flown on a launch vehicle experiences dynamic loads. The dynamic loads are caused by various phenomena ranging from the start-up of the launch vehicle engine to wind gusts. A spacecraft payload should be designed to meet launch vehicle dynamic loads. One of the major steps taken towards determining the dynamic loads is to correlate the finite element model of the spacecraft with the test results of a modal survey test. A test-verified finite element model of the spacecraft should possess the same spatial properties (stiffness, mass, and damping) and modal properties (frequencies and mode shapes) as the test hardware representing the spacecraft. The test-verified and correlated finite element model of the spacecraft is then coupled with the finite element model of the launch vehicle for analysis of loads and stress. Modal survey testing, verification of a finite element model, and modification of the finite element model to match the modal survey test results can easily be accomplished if the spacecraft structure is simple. However, this is rarely the case. A simple structure here is defined as a structure where the influence of nonlinearity between force and displacement (uncertainty in a test, for example, with errors in input and output), and the influence of damping (structural, coulomb, and viscous) are not pronounced. The objective of this study is to develop system identification and correlation methods with the focus on the structural systems that possess nonproportional damping. Two approaches to correct the nonproportional damping matrix of a truss structure were studied, and have been implemented on truss-like structures such as the National Aeronautics and Space Administration's space station truss. The results of this study showed nearly 100 percent improvement of the correlated eigensystem over the analytical eigensystem. The first method showed excellent results with up to three modes used in the system identification process. The second method could handle more modes, but required more computer usage time, and the results were less accurate than those of the first method.
Excitation of multiple surface-plasmon-polariton waves using a compound surface-relief grating
NASA Astrophysics Data System (ADS)
Faryad, Muhammad; Lakhtakia, Akhlesh
2012-01-01
The excitation of multiple surface-plasmon-polariton waves, all of the same frequency but different polarization states, phase speeds, spatial profiles and degrees of localization, by a compound surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied using the rigorous coupled-wave approach. Each period of the compound surface-relief grating was chosen to have an integral number of periods of two different simple surface-relief gratings. The excitation of different SPP waves was inferred from the absorptance peaks that were independent of the thickness of the rugate filter. The excitation of each SPP wave could be attributed to either a simple surface-relief grating present in the compound surface-relief grating or to the compound surface-relief grating itself. However, the excitation of SPP waves was found to be less efficient with the compound surface-relief grating than with a simple surface-relief grating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia , Naples; Grup d'Informacio Quantica, Universitat Autonoma de Barcelona, E-08193 Bellaterra
2007-08-15
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantummore » correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.« less
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D
2013-11-01
An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. © 2013 Elsevier Ltd. All rights reserved.
How old is this bird? The age distribution under some phase sampling schemes.
Hautphenne, Sophie; Massaro, Melanie; Taylor, Peter
2017-12-01
In this paper, we use a finite-state continuous-time Markov chain with one absorbing state to model an individual's lifetime. Under this model, the time of death follows a phase-type distribution, and the transient states of the Markov chain are known as phases. We then attempt to provide an answer to the simple question "What is the conditional age distribution of the individual, given its current phase"? We show that the answer depends on how we interpret the question, and in particular, on the phase observation scheme under consideration. We then apply our results to the computation of the age pyramid for the endangered Chatham Island black robin Petroica traversi during the monitoring period 2007-2014.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
NASA Astrophysics Data System (ADS)
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin
2018-06-01
This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm
2018-03-01
We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.
The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,
1987-06-11
Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.
Kicking atoms with finite duration pulses
NASA Astrophysics Data System (ADS)
Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.
2016-05-01
The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.
Dynamics and rheology of finitely extensible polymer coils: An overview
NASA Astrophysics Data System (ADS)
Yao, Donggang
2017-05-01
One contemporary research issue in non-Newtonian fluid mechanics is to accurately and effectively model viscoelastic polymer flow of practical relevance. In the past several years, we have been working on the formulation of a finitely extensible coil model for polymer flow, particularly including these elements: (1) decoupled equations for kinematical and dynamical variables, (2) logarithmic relaxation at large deformation, (3) rotational retardation, (4) controllable straining, and (5) finite stretch. In this paper, we provide a constructive overview of this nonlinear coil formulation focusing on integration of these elements in a single, unified constitutive model with a minimal number of model parameters that are linked with corresponding physical processes. We also use this opportunity to share the rationale and thought process in the model development. In one particular implement of the general formulation, three parameters are used to tackle with the principal dynamics of a deforming polymer coil: one for finite stretch dictated by a ceiling stretch of the coil, the second one for rotational recovery/retardation, and the third one for adjusting stretch hardening of the rubbery coil. The new model, even in a single mode, is able to simultaneously predict practical material functions in simple shear and coaxial extension and to fit well to representative experimental data. Particularly in the steady-state (or quasi-steady state) flow case, a nearly closed-form stress to velocity gradient relationship can be derived with which shear thinning and elongational thickening can be simultaneously considered while computational advantages of a classical GNF model is retained. The model also fits reasonably well to representative experimental transient data for both shear and extension.
Extending the range of real time density matrix renormalization group simulations
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Karrasch, C.
2016-03-01
We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.
On the best bandstructure for thermoelectric performance: A Landauer perspective
NASA Astrophysics Data System (ADS)
Jeong, Changwook; Kim, Raseong; Lundstrom, Mark S.
2012-06-01
The question of what bandstructure produces the best thermoelectric device performance is revisited from a Landauer perspective. We find that a delta-function transport distribution function (TDF) results in operation at the Mahan-Sofo upper limit for the thermoelectric figure-of-merit, ZT. We show, however, the Mahan-Sofo upper limit itself depends on the bandwidth (BW) of the dispersion, and therefore, a finite BW dispersion produces a higher ZT when the lattice thermal conductivity is finite. Including a realistic model for scattering profoundly changes the results. Instead of a narrow band, we find that a broad BW is best. The prospects of increasing ZT through high valley degeneracy or by distorting the density-of-states are discussed from a Landauer perspective. We conclude that while there is no simple answer to the question of what bandstructure produces the best thermoelectric performance, the important considerations can be expressed in terms of three parameters derived from the bandstructure—the density-of-states, D(E ), the number of channels, M(E ), and the mean-free-path, λ(E ).
NASA Technical Reports Server (NTRS)
Gray, Carl E., Jr.
1988-01-01
Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
Solution of mixed convection heat transfer from isothermal in-line fins
NASA Technical Reports Server (NTRS)
Khalilollahi, Amir
1993-01-01
Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.
Scaling behavior of ground-state energy cluster expansion for linear polyenes
NASA Astrophysics Data System (ADS)
Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.
Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.
A particle finite element method for machining simulations
NASA Astrophysics Data System (ADS)
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
Chiral liquid phase of simple quantum magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei
2017-11-07
We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less
A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng
2017-06-01
The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.
A Simple Interactive Program to Design Supercavitating Propeller Blades.
1982-06-01
Torque coefficient CT - Thrust-load coefficient c - Blade chord length D - Propeller diameter, assumed Dopt - Propeller diameter, optimum F - Blade force...2 ci) (10) where: C = drag to lift ratio A. W ideal advance ratio. At this point, solutions can be made for the radial pitch, ( D x ir XX), and the...t/ D )0 .7 x D ൏ 1C (13) 0.7 C where: C Ia coefficient of lift fora finite foil. Reference 2 states that the optimum value for C . is 0.16 and that
Manufacturing of diamond windows for synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schildkamp, W.; Nikitina, L.
2012-09-15
A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.
Thermodynamic metrics and optimal paths.
Sivak, David A; Crooks, Gavin E
2012-05-11
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Finite-floe wave reflection and transmission coefficients from a semi-infinite model
NASA Astrophysics Data System (ADS)
Meylan, Michael; Squire, Vernon A.
1993-07-01
A model to describe the reflection and transmission of ocean waves by a single ice floe is developed from the semi-infinite model of Fox and Squire (1990, 1991). This is done by considering the coefficients for the transition from ice to water in the semi-infinite case in terms of those from water to ice. Finite-floe reflection and transmission coefficients, R and T, respectively, are then found as the solution of a set of four simple simultaneous equations. The properties of R and T are investigated, and examples of their absolute values are given for several geometries. |R| compares well with the predictions of a precise model in the case of deep water. These results suggest that the analytical model described has applications to defining the sea state within marginal ice zones, given the floe size and ice thickness distributions and the incoming sea wave spectrum.
Interacting with an artificial partner: modeling the role of emotional aspects.
Cattinelli, Isabella; Goldwurm, Massimiliano; Borghese, N Alberto
2008-12-01
In this paper we introduce a simple model based on probabilistic finite state automata to describe an emotional interaction between a robot and a human user, or between simulated agents. Based on the agent's personality, attitude, and nature, and on the emotional inputs it receives, the model will determine the next emotional state displayed by the agent itself. The probabilistic and time-varying nature of the model yields rich and dynamic interactions, and an autonomous adaptation to the interlocutor. In addition, a reinforcement learning technique is applied to have one agent drive its partner's behavior toward desired states. The model may also be used as a tool for behavior analysis, by extracting high probability patterns of interaction and by resorting to the ergodic properties of Markov chains.
Accumulator for Low-Energy Laser-Cooled Particles
NASA Astrophysics Data System (ADS)
Mertes, Kevin; Walstrom, Peter; di Rosa, Michael; LANL Collaboration
2017-04-01
An accumulator builds phase-space density by use of a non-Hamiltonian process, thereby circumventing Liouville's theorem, which states that phase-space density is preserved in processes governed by Hamilton's equations. We have built an accumulator by a simple magneto-static cusp trap formed from two ring shaped permanent magnets. In traps with a central minimum of | B | , the stored particles are in a field-repelled (FR) Zeeman state, pushed away by | B | and oscillating about its minimum. After laser-cooling our particles and before entering the trap, we employ the non-hamiltonian process of optical pumping: A FR particle approaches the trap and climbs to the top of the confining potential with a finite velocity. There, it is switched to a field seeking (FS) state. As the switch does not change the velocity, the particle proceeds into the trap but continues to lose momentum because, now in the FS state, the particles sees the decreasing field as a potential hill to climb. Before it comes to a halt, the particle is switched back to a FR state for storage. The process repeats, building the trapped number and density. A simple consideration of potential and kinetic energies would show the trapped particles to have less kinetic energy than those injected. Los Alamos National Laboratory's Office of Laboratory Directed Research and Development.
Introduction to sporadic groups for physicists
NASA Astrophysics Data System (ADS)
Boya, Luis J.
2013-04-01
We describe the collection of finite simple groups, with a view to physical applications. We recall first the prime cyclic groups Zp and the alternating groups Altn > 4. After a quick revision of finite fields {F}_q, q = pf, with p prime, we consider the 16 families of finite simple groups of Lie type. There are also 26 extra ‘sporadic’ groups, which gather in three interconnected ‘generations’ (with 5+7+8 groups) plus the pariah groups (6). We point out a couple of physical applications, including constructing the biggest sporadic group, the ‘Monster’ group, with close to 1054 elements from arguments of physics, and also the relation of some Mathieu groups with compactification in string and M-theory. This article is dedicated to the memory of Juan Sancho Guimerá.
An algorithm for the basis of the finite Fourier transform
NASA Technical Reports Server (NTRS)
Santhanam, Thalanayar S.
1995-01-01
The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.
Finitized conformal spectrum of the Ising model on the cylinder and torus
NASA Astrophysics Data System (ADS)
O'Brien, David L.; Pearce, Paul A.; Ole Warnaar, S.
1996-02-01
The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers-Ramanujan identities for the c = {1}/{2} Virasoro characters.
NASA Astrophysics Data System (ADS)
Motruk, Johannes; Pollmann, Frank
2017-10-01
We investigate the fate of hardcore bosons in a Harper-Hofstadter model which was experimentally realized by Aidelsburger et al. [Nat. Phys. 11, 162 (2015), 10.1038/nphys3171] at half-filling of the lowest band. We discuss the stability of an emergent fractional Chern insulator (FCI) state in a finite region of the phase diagram that is separated from a superfluid state by a first-order transition when tuning the band topology following the protocol used in the experiment. Since crossing a first-order transition is unfavorable for adiabatically preparing the FCI state, we extend the model to stabilize a featureless insulating state. The transition between this phase and the topological state proves to be continuous, providing a path in parameter space along which an FCI state could be adiabatically prepared. To further corroborate this statement, we perform time-dependent DMRG calculations which demonstrate that the FCI state may indeed be reached by adiabatically tuning a simple product state.
Interframe vector wavelet coding technique
NASA Astrophysics Data System (ADS)
Wus, John P.; Li, Weiping
1997-01-01
Wavelet coding is often used to divide an image into multi- resolution wavelet coefficients which are quantized and coded. By 'vectorizing' scalar wavelet coding and combining this with vector quantization (VQ), vector wavelet coding (VWC) can be implemented. Using a finite number of states, finite-state vector quantization (FSVQ) takes advantage of the similarity between frames by incorporating memory into the video coding system. Lattice VQ eliminates the potential mismatch that could occur using pre-trained VQ codebooks. It also eliminates the need for codebook storage in the VQ process, thereby creating a more robust coding system. Therefore, by using the VWC coding method in conjunction with the FSVQ system and lattice VQ, the formulation of a high quality very low bit rate coding systems is proposed. A coding system using a simple FSVQ system where the current state is determined by the previous channel symbol only is developed. To achieve a higher degree of compression, a tree-like FSVQ system is implemented. The groupings are done in this tree-like structure from the lower subbands to the higher subbands in order to exploit the nature of subband analysis in terms of the parent-child relationship. Class A and Class B video sequences from the MPEG-IV testing evaluations are used in the evaluation of this coding method.
The finite state projection approach to analyze dynamics of heterogeneous populations
NASA Astrophysics Data System (ADS)
Johnson, Rob; Munsky, Brian
2017-06-01
Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.
Validation Assessment of a Glass-to-Metal Seal Finite-Element Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less
Physical-depth architectural requirements for generating universal photonic cluster states
NASA Astrophysics Data System (ADS)
Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry
2018-01-01
Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.
A simple level set method for solving Stefan problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Merriman, B.; Osher, S.
1997-07-15
Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.
Constructing 1/omegaalpha noise from reversible Markov chains.
Erland, Sveinung; Greenwood, Priscilla E
2007-09-01
This paper gives sufficient conditions for the output of 1/omegaalpha noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omegaalpha condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omegaalpha noise which also has a long memory.
Quantum computation on the edge of a symmetry-protected topological order.
Miyake, Akimasa
2010-07-23
We elaborate the idea of quantum computation through measuring the correlation of a gapped ground state, while the bulk Hamiltonian is utilized to stabilize the resource. A simple computational primitive, by pulling out a single spin adiabatically from the bulk followed by its measurement, is shown to make any ground state of the one-dimensional isotropic Haldane phase useful ubiquitously as a quantum logical wire. The primitive is compatible with certain discrete symmetries that protect this topological order, and the antiferromagnetic Heisenberg spin-1 finite chain is practically available. Our approach manifests a holographic principle in that the logical information of a universal quantum computer can be written and processed perfectly on the edge state (i.e., boundary) of the system, supported by the persistent entanglement from the bulk even when the ground state and its evolution cannot be exactly analyzed.
Hierarchy of Certain Types of DNA Splicing Systems
NASA Astrophysics Data System (ADS)
Yusof, Yuhani; Sarmin, Nor Haniza; Goode, T. Elizabeth; Mahmud, Mazri; Heng, Fong Wan
A Head splicing system (H-system)consists of a finite set of strings (words) written over a finite alphabet, along with a finite set of rules that acts on the strings by iterated cutting and pasting to create a splicing language. Any interpretation that is aligned with Tom Head's original idea is one in which the strings represent double-stranded deoxyribonucleic acid (dsDNA) and the rules represent the cutting and pasting action of restriction enzymes and ligase, respectively. A new way of writing the rule sets is adopted so as to make the biological interpretation transparent. This approach is used in a formal language- theoretic analysis of the hierarchy of certain classes of splicing systems, namely simple, semi-simple and semi-null splicing systems. The relations between such systems and their associated languages are given as theorems, corollaries and counterexamples.
A Rewriting-Based Approach to Trace Analysis
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2002-01-01
We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic (LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring red applications that only run for limited time periods. The presented algorithm is implemented in the Maude executable specification language and essentially consists of a set of equations establishing an executable semantics of LTL using a simple formula transforming approach. The algorithm is further improved to build automata on-the-fly from formulae, using memoization. The result is a very efficient and small Maude program that can be used to monitor program executions. We furthermore present an alternative algorithm for synthesizing probably minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze execution traces without the need for a rewriting system, and can hence be used by observers written in conventional programming languages. The presented work is part of an ambitious runtime verification and monitoring project at NASA Ames, called PATHEXPLORER, and demonstrates that rewriting can be a tractable and attractive means for experimenting and implementing program monitoring logics.
Integrable subsectors from holography
NASA Astrophysics Data System (ADS)
de Mello Koch, Robert; Kim, Minkyoo; Van Zyl, Hendrik J. R.
2018-05-01
We consider operators in N=4 super Yang-Mills theory dual to closed string states propagating on a class of LLM geometries. The LLM geometries we consider are specified by a boundary condition that is a set of black rings on the LLM plane. When projected to the LLM plane, the closed strings are polygons with all corners lying on the outer edge of a single ring. The large N limit of correlators of these operators receives contributions from non-planar diagrams even for the leading large N dynamics. Our interest in these fluctuations is because a previous weak coupling analysis argues that the net effect of summing the huge set of non-planar diagrams, is a simple rescaling of the 't Hooft coupling. We carry out some nontrivial checks of this proposal. Using the su(2|2)2 symmetry we determine the two magnon S-matrix and demonstrate that it agrees, up to two loops, with a weak coupling computation performed in the CFT. We also compute the first finite size corrections to both the magnon and the dyonic magnon by constructing solutions to the Nambu-Goto action that carry finite angular momentum. These finite size computations constitute a strong coupling confirmation of the proposal.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
A finite-state, finite-memory minimum principle, part 2
NASA Technical Reports Server (NTRS)
Sandell, N. R., Jr.; Athans, M.
1975-01-01
In part 1 of this paper, a minimum principle was found for the finite-state, finite-memory (FSFM) stochastic control problem. In part 2, conditions for the sufficiency of the minimum principle are stated in terms of the informational properties of the problem. This is accomplished by introducing the notion of a signaling strategy. Then a min-H algorithm based on the FSFM minimum principle is presented. This algorithm converges, after a finite number of steps, to a person - by - person extremal solution.
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
Non-invasive estimation of dissipation from non-equilibrium fluctuations in chemical reactions.
Muy, S; Kundu, A; Lacoste, D
2013-09-28
We show how to extract an estimate of the entropy production from a sufficiently long time series of stationary fluctuations of chemical reactions. This method, which is based on recent work on fluctuation theorems, is direct, non-invasive, does not require any knowledge about the underlying dynamics and is applicable even when only partial information is available. We apply it to simple stochastic models of chemical reactions involving a finite number of states, and for this case, we study how the estimate of dissipation is affected by the degree of coarse-graining present in the input data.
Interesting examples of supervised continuous variable systems
NASA Technical Reports Server (NTRS)
Chase, Christopher; Serrano, Joe; Ramadge, Peter
1990-01-01
The authors analyze two simple deterministic flow models for multiple buffer servers which are examples of the supervision of continuous variable systems by a discrete controller. These systems exhibit what may be regarded as the two extremes of complexity of the closed loop behavior: one is eventually periodic, the other is chaotic. The first example exhibits chaotic behavior that could be characterized statistically. The dual system, the switched server system, exhibits very predictable behavior, which is modeled by a finite state automaton. This research has application to multimodal discrete time systems where the controller can choose from a set of transition maps to implement.
Electromagnetic density of modes for a finite-size three-dimensional structure.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J
2004-05-01
The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.
Fragmentation modeling of a resin bonded sand
NASA Astrophysics Data System (ADS)
Hilth, William; Ryckelynck, David
2017-06-01
Cemented sands exhibit a complex mechanical behavior that can lead to sophisticated models, with numerous parameters without real physical meaning. However, using a rather simple generalized critical state bonded soil model has proven to be a relevant compromise between an easy calibration and good results. The constitutive model formulation considers a non-associated elasto-plastic formulation within the critical state framework. The calibration procedure, using standard laboratory tests, is complemented by the study of an uniaxial compression test observed by tomography. Using finite elements simulations, this test is simulated considering a non-homogeneous 3D media. The tomography of compression sample gives access to 3D displacement fields by using image correlation techniques. Unfortunately these fields have missing experimental data because of the low resolution of correlations for low displacement magnitudes. We propose a recovery method that reconstructs 3D full displacement fields and 2D boundary displacement fields. These fields are mandatory for the calibration of the constitutive parameters by using 3D finite element simulations. The proposed recovery technique is based on a singular value decomposition of available experimental data. This calibration protocol enables an accurate prediction of the fragmentation of the specimen.
Finite Feedback Cycling in Structural Equation Models
ERIC Educational Resources Information Center
Hayduk, Leslie A.
2009-01-01
In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
A multitasking finite state architecture for computer control of an electric powertrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burba, J.C.
1984-01-01
Finite state techniques provide a common design language between the control engineer and the computer engineer for event driven computer control systems. They simplify communication and provide a highly maintainable control system understandable by both. This paper describes the development of a control system for an electric vehicle powertrain utilizing finite state concepts. The basics of finite state automata are provided as a framework to discuss a unique multitasking software architecture developed for this application. The architecture employs conventional time-sliced techniques with task scheduling controlled by a finite state machine representation of the control strategy of the powertrain. The complexitiesmore » of excitation variable sampling in this environment are also considered.« less
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
NASA Astrophysics Data System (ADS)
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
From progressive to finite deformation, and back: the universal deformation matrix
NASA Astrophysics Data System (ADS)
Provost, A.; Buisson, C.; Merle, O.
2003-04-01
It is widely accepted that any finite strain recorded in the field may be interpreted in terms of the simultaneous combination of a pure shear component with one or several simple shear components. To predict strain in geological structures, approximate solutions may be obtained by multiplying successive small increments of each elementary strain component. A more rigorous method consists in achieving the simultaneous combination in the velocity gradient tensor but solutions already proposed in the literature are valid for special cases only and cannot be used, e.g., for the general combination of a pure shear component and six elementary simple shear components. In this paper, we show that the combination of any strain components is as simple as a mouse click, both analytically and numerically. The finite deformation matrix is given by L=exp(L.Δt) where L.Δt is the time-integrated velocity gradient tensor. This method makes it possible to predict finite strain for any combination of strain components. Reciprocally, L.Δt=ln(D) , which allows to unravel the simplest deformation history that might be liable for a given finite deformation. Given the strain ellipsoid only, it is still possible to constrain the range of compatible deformation matrices and thus the range of strain component combinations. Interestingly, certain deformation matrices, though geologically sensible, have no real logarithm so cannot be explained by a deformation history implying strain rate components with constant proportions, what implies significant changes of the stress field during the history of deformation. The study as a whole opens the possibility for further investigations on deformation analysis in general, the method could be used wathever the configuration is.
Ren, Hangli; Zong, Guangdeng; Hou, Linlin; Yang, Yi
2017-03-01
This paper is concerned with the problem of finite-time control for a class of interconnected impulsive switched systems with neutral delay in which the time-varying delay appears in both the state and the state derivative. The concepts of finite-time boundedness and finite-time stability are respectively extended to interconnected impulsive switched systems with neutral delay for the first time. By applying the average dwell time method, sufficient conditions are first derived to cope with the problem of finite-time boundedness and finite-time stability for interconnected impulsive switched systems with neutral delay. In addition, the purpose of finite-time resilient decentralized control is to construct a resilient decentralized state-feedback controller such that the closed-loop system is finite-time bounded and finite-time stable. All the conditions are formulated in terms of linear matrix inequalities to ensure finite-time boundedness and finite-time stability of the given system. Finally, an example is presented to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Self-organized sorting limits behavioral variability in swarms
Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay
2016-01-01
Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters. PMID:27550316
Self-organized sorting limits behavioral variability in swarms
NASA Astrophysics Data System (ADS)
Copenhagen, Katherine; Quint, David A.; Gopinathan, Ajay
2016-08-01
Swarming is a phenomenon where collective motion arises from simple local interactions between typically identical individuals. Here, we investigate the effects of variability in behavior among the agents in finite swarms with both alignment and cohesive interactions. We show that swarming is abolished above a critical fraction of non-aligners who do not participate in alignment. In certain regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess non-aligners to maintain the average fraction close to the critical value. This persists even in swarms with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading to new evolutionarily stable equilibrium populations set by the physical swarm parameters.
A simple branching model that reproduces language family and language population distributions
NASA Astrophysics Data System (ADS)
Schwämmle, Veit; de Oliveira, Paulo Murilo Castro
2009-07-01
Human history leaves fingerprints in human languages. Little is known about language evolution and its study is of great importance. Here we construct a simple stochastic model and compare its results to statistical data of real languages. The model is based on the recent finding that language changes occur independently of the population size. We find agreement with the data additionally assuming that languages may be distinguished by having at least one among a finite, small number of different features. This finite set is also used in order to define the distance between two languages, similarly to linguistics tradition since Swadesh.
Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems
NASA Astrophysics Data System (ADS)
Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei
2016-07-01
This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.
Efficient state initialization by a quantum spectral filtering algorithm
NASA Astrophysics Data System (ADS)
Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond
2017-04-01
An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.
An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments
Guthrie, Michael A.
2013-01-01
limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment.more » For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.« less
Stability of the Nagaoka-type ferromagnetic state in a t2 g orbital system on a cubic lattice
NASA Astrophysics Data System (ADS)
Bobrow, Eric; Li, Yi
2018-04-01
We generalize the previous exact results of the Nagaoka-type itinerant ferromagnetic states in a three-dimensional t2 g orbital system to allow for multiple holes. The system is a simple cubic lattice with each site possessing dx y,dy z, and dx z orbitals, which allow two-dimensional hopping within each orbital plane. In the strong-coupling limit of U →∞ , the orbital-generalized Nagaoka ferromagnetic states are proved to be degenerate with the ground state in the thermodynamic limit when the hole number per orbital layer scales slower than L1/2. This result is valid for arbitrary values of the ferromagnetic Hund's coupling J >0 and interorbital repulsion V ≥0 . The stability of the Nagaoka-type state at finite electron densities with respect to a single spin flip is investigated. These results provide helpful guidance for studying the mechanism of itinerant ferromagnetism for the t2 g orbital materials.
Statistical learning and the challenge of syntax: Beyond finite state automata
NASA Astrophysics Data System (ADS)
Elman, Jeff
2003-10-01
Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.
Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.
2017-01-01
Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949
Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles
NASA Astrophysics Data System (ADS)
Saroukhani, S.; Nguyen, L. D.; Leung, K. W. K.; Singh, C. V.; Warner, D. H.
2016-05-01
Predicting the rate at which dislocations overcome obstacles is key to understanding the microscopic features that govern the plastic flow of modern alloys. In this spirit, the current manuscript examines the rate at which an edge dislocation overcomes an obstacle in aluminum. Predictions were made using different popular variants of Harmonic Transition State Theory (HTST) and compared to those of direct Molecular Dynamics (MD) simulations. The HTST predictions were found to be grossly inaccurate due to the large entropy barrier associated with the dislocation-obstacle interaction. Considering the importance of finite temperature effects, the utility of the Finite Temperature String (FTS) method was then explored. While this approach was found capable of identifying a prominent reaction tube, it was not capable of computing the free energy profile along the tube. Lastly, the utility of the Transition Interface Sampling (TIS) approach was explored, which does not need a free energy profile and is known to be less reliant on the choice of reaction coordinate. The TIS approach was found capable of accurately predicting the rate, relative to direct MD simulations. This finding was utilized to examine the temperature and load dependence of the dislocation-obstacle interaction in a simple periodic cell configuration. An attractive rate prediction approach combining TST and simple continuum models is identified, and the strain rate sensitivity of individual dislocation obstacle interactions is predicted.
Groups graded by root systems and property (T)
Ershov, Mikhail; Jaikin-Zapirain, Andrei; Kassabov, Martin; Zhang, Zezhou
2014-01-01
We establish property (T) for a large class of groups graded by root systems, including elementary Chevalley groups and Steinberg groups of rank at least 2 over finitely generated commutative rings with 1. We also construct a group with property (T) which surjects onto all finite simple groups of Lie type and rank at least two. PMID:25425669
Geometry and the onset of rigidity in a disordered network
NASA Astrophysics Data System (ADS)
Vermeulen, Mathijs F. J.; Bose, Anwesha; Storm, Cornelis; Ellenbroek, Wouter G.
2017-11-01
Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ★, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.
Hoyal Cuthill, Jennifer F.
2015-01-01
Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Hsieh, Timothy H.
2018-05-01
We show that time-reflection symmetry in periodically driven (Floquet) quantum systems enables an inherently nonequilibrium phenomenon structurally similar to quantum-mechanical supersymmetry. In particular, we find Floquet analogs of the Witten index that place lower bounds on the degeneracies of states with quasienergies 0 and π . Moreover, we show that in some cases time-reflection symmetry can also interchange fermions and bosons, leading to fermion-boson pairs with opposite quasienergy. We provide a simple class of disordered, interacting, and ergodic Floquet models with an exponentially large number of states at quasienergies 0 and π , which are robust as long as the time-reflection symmetry is preserved. Floquet supersymmetry manifests itself in the evolution of certain local observables as a period-doubling effect with dramatic finite-size scaling, providing a clear signature for experiments.
NASA Astrophysics Data System (ADS)
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-06-01
This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.
NASA Astrophysics Data System (ADS)
Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent
2017-08-01
Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.
NASA Astrophysics Data System (ADS)
Di Capua, R.; Offi, F.; Fontana, F.
2014-07-01
Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.
Simple model for molecular scattering
NASA Astrophysics Data System (ADS)
Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden
2017-04-01
The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.
State relations for a two-phase mixture of reacting explosives and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Shiro; Saburi, Tei; Ogata, Yuji
2007-10-15
To assess the assumptions behind the two phase mixture rule for reacting explosives, the shock-to-detonation transition process was calculated for high explosives using a finite difference method. An ignition and growth model and the Jones-Wilkins-Lee (JWL) equations of state were employed. The simple mixture rule assumes that the reacting explosive is a simple mixture of the reactant and product components. Four different assumptions, such as that of thermal equilibrium and isotropy, were adopted to calculate the pressure. The main purpose of this paper is to present the answer to the question of why the numerical results of shock-initiation are insensitivemore » to the assumptions adopted. The equations of state for reactants and products were assessed by considering plots of the specific internal energy E and specific volume V. If the slopes of the constant-pressure lines for both components in the E-V plane are almost the same, it is demonstrated that the numerical results are insensitive to the assumptions adopted. We have found that the relation for the specific volumes of the two components can be approximately expressed by a single curve of the specific volume of the reactant vs that of the products. We discuss this relationship in terms of the results of the numerical simulation. (author)« less
Stochastic theory of log-periodic patterns
NASA Astrophysics Data System (ADS)
Canessa, Enrique
2000-12-01
We introduce an analytical model based on birth-death clustering processes to help in understanding the empirical log-periodic corrections to power law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastic theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of co-operative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t0 is derived in terms of birth-death clustering coefficients.
Constraint Programming to Solve Maximal Density Still Life
NASA Astrophysics Data System (ADS)
Chu, Geoffrey; Petrie, Karen Elizabeth; Yorke-Smith, Neil
The Maximum Density Still Life problem fills a finite Game of Life board with a stable pattern of cells that has as many live cells as possible. Although simple to state, this problem is computationally challenging for any but the smallest sizes of board. Especially difficult is to prove that the maximum number of live cells has been found. Various approaches have been employed. The most successful are approaches based on Constraint Programming (CP). We describe the Maximum Density Still Life problem, introduce the concept of constraint programming, give an overview on how the problem can be modelled and solved with CP, and report on best-known results for the problem.
Chaotic Ising-like dynamics in traffic signals
Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki
2013-01-01
The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
ERIC Educational Resources Information Center
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
Finite-size corrections to the excitation energy transfer in a massless scalar interaction model
NASA Astrophysics Data System (ADS)
Maeda, Nobuki; Yabuki, Tetsuo; Tobita, Yutaka; Ishikawa, Kenzo
2017-05-01
We study the excitation energy transfer (EET) for a simple model in which a massless scalar particle is exchanged between two molecules. We show that a finite-size effect appears in EET by the interaction energy due to overlapping of the quantum waves in a short time interval. The effect generates finite-size corrections to Fermi's golden rule and modifies EET probability from the standard formula in the Förster mechanism. The correction terms come from transition modes outside the resonance energy region and enhance EET probability substantially.
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1979-01-01
A description and explanation of a simple multigrid algorithm for solving finite element systems is given. Numerical results for an implementation are reported for a number of elliptic equations, including cases with singular coefficients and indefinite equations. The method shows the high efficiency, essentially independent of the grid spacing, predicted by the theory.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
NASA Astrophysics Data System (ADS)
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-04-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEneaney, William M.
2004-08-15
Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity ofmore » an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.« less
Constructing 1/ωα noise from reversible Markov chains
NASA Astrophysics Data System (ADS)
Erland, Sveinung; Greenwood, Priscilla E.
2007-09-01
This paper gives sufficient conditions for the output of 1/ωα noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/ωα condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/ω noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/ωα noise which also has a long memory.
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan
2016-03-01
This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification
NASA Astrophysics Data System (ADS)
Hsieh, Chung-Yun; Liang, Yeong-Cherng; Lee, Ray-Kuang
2016-12-01
Quantum steering, also called Einstein-Podolsky-Rosen steering, is the intriguing phenomenon associated with the ability of spatially separated observers to steer—by means of local measurements—the set of conditional quantum states accessible by a distant party. In the light of quantum information, all steerable quantum states are known to be resources for quantum information processing tasks. Here, via a quantity dubbed steering fraction, we derive a simple, but general criterion that allows one to identify quantum states that can exhibit quantum steering (without having to optimize over the measurements performed by each party), thus making an important step towards the characterization of steerable quantum states. The criterion, in turn, also provides upper bounds on the largest steering-inequality violation achievable by arbitrary finite-dimensional maximally entangled states. For the quantification of steerability, we prove that a strengthened version of the steering fraction is a convex steering monotone and demonstrate how it is related to two other steering monotones, namely, steerable weight and steering robustness. Using these tools, we further demonstrate the superactivation of steerability for a well-known family of entangled quantum states, i.e., we show how the steerability of certain entangled, but unsteerable quantum states can be recovered by allowing joint measurements on multiple copies of the same state. In particular, our approach allows one to explicitly construct a steering inequality to manifest this phenomenon. Finally, we prove that there exist examples of quantum states (including some which are unsteerable under projective measurements) whose steering-inequality violation can be arbitrarily amplified by allowing joint measurements on as little as three copies of the same state. For completeness, we also demonstrate how the largest steering-inequality violation can be used to bound the largest Bell-inequality violation and derive, analogously, a simple sufficient condition for Bell nonlocality from the latter.
Optimum and Heuristic Algorithms for Finite State Machine Decomposition and Partitioning
1989-09-01
Heuristic Algorithms for Finite State Machine Decomposition and Partitioning Pravnav Ashar, Srinivas Devadas , and A. Richard Newton , T E’,’ .,jpf~s’!i3...94720. Devadas : Department of Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge, MA 02139. (617) 253-0454. Copyright* 1989 MIT...and reduction, A finite state miachinie is represenutedl by its State Transition Graphi itodlitied froini two-level B ~oolean imiinimizers. Ilist
Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2003-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.
NASA Astrophysics Data System (ADS)
Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.
2018-03-01
The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.
The forced sound transmission of finite single leaf walls using a variational technique.
Brunskog, Jonas
2012-09-01
The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.
Nonlinear transient analysis via energy minimization
NASA Technical Reports Server (NTRS)
Kamat, M. P.; Knight, N. F., Jr.
1978-01-01
The formulation basis for nonlinear transient analysis of finite element models of structures using energy minimization is provided. Geometric and material nonlinearities are included. The development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. The results indicate the effectiveness of the technique as a viable tool for this purpose.
Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding
NASA Technical Reports Server (NTRS)
Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.
1977-01-01
An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.
Calculation of flexoelectric deformations of finite-size bodies
NASA Astrophysics Data System (ADS)
Yurkov, A. S.
2015-03-01
The previously developed approximate theory of flexoelectric deformations of finite-size bodies has been considered as applied to three special cases: a uniformly polarized ball, a uniformly polarized circular rod, and a uniformly polarized thin circular plate of an isotropic material. For these cases simple algebraic formulas have been derived. In the case of the ball, the solution is compared with the previously obtained exact solution.
Evaporation effect on two-dimensional wicking in porous media.
Benner, Eric M; Petsev, Dimiter N
2018-03-15
We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.
Diversity of charge orderings in correlated systems
NASA Astrophysics Data System (ADS)
Kapcia, Konrad Jerzy; Barański, Jan; Ptok, Andrzej
2017-10-01
The phenomenon associated with inhomogeneous distribution of electron density is known as a charge ordering. In this work, we study the zero-bandwidth limit of the extended Hubbard model, which can be considered as a simple effective model of charge ordered insulators. It consists of the on-site interaction U and the intersite density-density interactions W1 and W2 between nearest neighbors and next-nearest neighbors, respectively. We derived the exact ground state diagrams for different lattice dimensionalities and discuss effects of small finite temperatures in the limit of high dimensions. In particular, we estimated the critical interactions for which new ordered phases emerge (laminar or stripe and four-sublattice-type). Our analysis show that the ground state of the model is highly degenerated. One of the most intriguing finding is that the nonzero temperature removes these degenerations.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh
2018-02-01
One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate mechanism, especially in the core of diapir with higher pure shear component relative to simple shear component, whilst a Couette flow at the margins of diapir is the dominate mechanism with higher simple shear component relative to pure shear component. The obtained kinematic vorticity number reflects spatial partitioning of dominantly Poiseuille flow in core and Couette flow along edges of diapir. These two mechanisms reflect a persistent flow governed by a simultaneous combination of pure shear and simple shear in a hybrid Poiseuille-Coutte Flow.
Finite-time output feedback control of uncertain switched systems via sliding mode design
NASA Astrophysics Data System (ADS)
Zhao, Haijuan; Niu, Yugang; Song, Jun
2018-04-01
The problem of sliding mode control (SMC) is investigated for a class of uncertain switched systems subject to unmeasurable state and assigned finite (possible short) time constraint. A key issue is how to ensure the finite-time boundedness (FTB) of system state during reaching phase and sliding motion phase. To this end, a state observer is constructed to estimate the unmeasured states. And then, a state estimate-based SMC law is designed such that the state trajectories can be driven onto the specified integral sliding surface during the assigned finite time interval. By means of partitioning strategy, the corresponding FTB over reaching phase and sliding motion phase are guaranteed and the sufficient conditions are derived via average dwell time technique. Finally, an illustrative example is given to illustrate the proposed method.
Simulation of wave propagation in three-dimensional random media
NASA Astrophysics Data System (ADS)
Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1995-04-01
Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of
Measures with locally finite support and spectrum.
Meyer, Yves F
2016-03-22
The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.
Measures with locally finite support and spectrum
Meyer, Yves F.
2016-01-01
The goal of this paper is the construction of measures μ on Rn enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ^ of μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order. PMID:26929358
Approximate Model Checking of PCTL Involving Unbounded Path Properties
NASA Astrophysics Data System (ADS)
Basu, Samik; Ghosh, Arka P.; He, Ru
We study the problem of applying statistical methods for approximate model checking of probabilistic systems against properties encoded as
Synchronization of Finite State Shared Resources
1976-03-01
IMHI uiw mmm " AFOSR -TR- 70- 0^8 3 QC o SYNCHRONIZATION OF FINITE STATE SHARED RESOURCES Edward A Sei neide.- DEPARTMENT of COMPUTER...34" ■ ■ ^ I I. i. . : ,1 . i-i SYNCHRONIZATION OF FINITE STATE SHARED RESOURCES Edward A Schneider Department of Computer...SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. ABSTRACT The problem of synchronizing a set of operations defined on a shared resource
Local Structure Theory for Cellular Automata.
NASA Astrophysics Data System (ADS)
Gutowitz, Howard Andrew
The local structure theory (LST) is a generalization of the mean field theory for cellular automata (CA). The mean field theory makes the assumption that iterative application of the rule does not introduce correlations between the states of cells in different positions. This assumption allows the derivation of a simple formula for the limit density of each possible state of a cell. The most striking feature of CA is that they may well generate correlations between the states of cells as they evolve. The LST takes the generation of correlation explicitly into account. It thus has the potential to describe statistical characteristics in detail. The basic assumption of the LST is that though correlation may be generated by CA evolution, this correlation decays with distance. This assumption allows the derivation of formulas for the estimation of the probability of large blocks of states in terms of smaller blocks of states. Given the probabilities of blocks of size n, probabilities may be assigned to blocks of arbitrary size such that these probability assignments satisfy the Kolmogorov consistency conditions and hence may be used to define a measure on the set of all possible (infinite) configurations. Measures defined in this way are called finite (or n-) block measures. A function called the scramble operator of order n maps a measure to an approximating n-block measure. The action of a CA on configurations induces an action on measures on the set of all configurations. The scramble operator is combined with the CA map on measure to form the local structure operator (LSO). The LSO of order n maps the set of n-block measures into itself. It is hypothesised that the LSO applied to n-block measures approximates the rule itself on general measures, and does so increasingly well as n increases. The fundamental advantage of the LSO is that its action is explicitly computable from a finite system of rational recursion equations. Empirical study of a number of CA rules demonstrates the potential of the LST to describe the statistical features of CA. The behavior of some simple rules is derived analytically. Other rules have more complex, chaotic behavior. Even for these rules, the LST yields an accurate portrait of both small and large time statistics.
NASA Astrophysics Data System (ADS)
Haghshenas, R.; Sheng, D. N.
2018-05-01
We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1<0.53 . For 0.53
A detailed experimental study of a DNA computer with two endonucleases.
Sakowski, Sebastian; Krasiński, Tadeusz; Sarnik, Joanna; Blasiak, Janusz; Waldmajer, Jacek; Poplawski, Tomasz
2017-07-14
Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro's group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity - increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effect of the number of states, the length of input data, and the nondeterminism on the computing process. We also tested different automata (with three, four, and six states) running on various accepted input words of different lengths such as ab, aab, aaab, ababa, and of an unaccepted word ba. Moreover, this article presents the reaction optimization and the methods of eliminating certain biochemical problems occurring in the implementation of a biomolecular DNA automaton based on two endonucleases.
Possible States Theory and Human Destiny in the Cosmos
NASA Astrophysics Data System (ADS)
Thomson, Shelley; Brandenburg, John
Possible States Theory posits a universe of unique objects and unique collections of interactions between them. The interactions are designated the possible states. The states include past, future and possible interactions. The theory concerns the propagation of change in the collections of possible states. Using a few simple assumptions, it becomes possible to generalize about the occurrence of change. The theory is consistent with quantum electrodynamics in a finite and discrete environment; however, in the possible states universe, an interaction does not cause alternative possibilities to disappear. The picture of the universe yielded by the theory differs from the conventional viewpoint in important ways. Past, future and possible states may interact with one another; interactions occur without reference to location in space-time. Given that all possibilities are present, the possible states universe is complete. Per Gšdel's incompleteness theorems, the universe cannot be unambiguously described as information. Many truths, some contradicting each other, can simultaneously exist. The human future already participates in the present, opening possibilities never previously envisaged. To imagine the future, therefore, is to quantum mechanically assemble it. Accordingly, humanity prepares its path to the stars by dreaming of it.
The control data "GIRAFFE" system for interactive graphic finite element analysis
NASA Technical Reports Server (NTRS)
Park, S.; Brandon, D. M., Jr.
1975-01-01
The Graphical Interface for Finite Elements (GIRAFFE) general purpose interactive graphics application package was described. This system may be used as a pre/post processor for structural analysis computer programs. It facilitates the operations of creating, editing, or reviewing all the structural input/output data on a graphics terminal in a time-sharing mode of operation. An application program for a simple three-dimensional plate problem was illustrated.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Digitizing for Computer-Aided Finite Element Model Generation.
1979-10-10
this approach is a collection of programs developed over the last eight years at the University of Arizona, and called the GIFTS system. This paper...briefly describes the latest version of the system, GIFTS -5, and demonstrates its suitability in a design environment by simple examples. The programs...constituting the GIFTS system were used as a tool for research in many areas, including mesh generation, finite element data base design, interactive
NASA Astrophysics Data System (ADS)
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state
NASA Astrophysics Data System (ADS)
Huang, Yi; Li, Tongcang; Yin, Zhang-qi
2018-01-01
We study the dynamics of the Lipkin-Meshkov-Glick (LMG) model with a finite number of spins. In the thermodynamic limit, the ground state of the LMG model with an isotropic Hamiltonian in the broken phase breaks to a mean-field ground state with a certain direction. However, when the spin number N is finite, the exact ground state is always unique and is not given by a classical mean-field ground state. Here, we prove that when N is large but finite, through a tiny external perturbation, a localized state which is close to a mean-field ground state can be prepared, which mimics spontaneous symmetry breaking. Also, we find the localized in-plane spin polarization oscillates with two different frequencies ˜O (1 /N ) , and the lifetime of the localized state is long enough to exhibit this oscillation. We numerically test the analytical results and find that they agree very well with each other. Finally, we link the phenomena to quantum time crystals and time quasicrystals.
NASA Astrophysics Data System (ADS)
Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal
2018-06-01
Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.
Fujarewicz, Krzysztof; Lakomiec, Krzysztof
2016-12-01
We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.
Dynamics of molecular motors with finite processivity on heterogeneous tracks.
Kafri, Yariv; Lubensky, David K; Nelson, David R
2005-04-01
The dynamics of molecular motors which occasionally detach from a heterogeneous track like DNA or RNA is considered. Motivated by recent single-molecule experiments, we study a simple model for a motor moving along a disordered track using chemical energy while an external force opposes its motion. The motors also have finite processivity, i.e., they can leave the track with a position-dependent rate. We show that the response of the system to disorder in the hopping-off rate depends on the value of the external force. For most values of the external force, strong disorder causes the motors which survive for long times on the track to be localized at preferred positions. However, near the stall force, localization occurs for any amount of disorder. To obtain these results, we study the complex eigenvalue spectrum of the time evolution operator. Existence of localized states near the top of the band implies a stretched exponential contribution to the decay of the survival probability. A similar spectral analysis also provides a very efficient method for studying the dynamics of motors with infinite processivity.
On Matrices, Automata, and Double Counting
NASA Astrophysics Data System (ADS)
Beldiceanu, Nicolas; Carlsson, Mats; Flener, Pierre; Pearson, Justin
Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances.
On a Result for Finite Markov Chains
ERIC Educational Resources Information Center
Kulathinal, Sangita; Ghosh, Lagnojita
2006-01-01
In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…
All-DNA finite-state automata with finite memory
Wang, Zhen-Gang; Elbaz, Johann; Remacle, F.; Levine, R. D.; Willner, Itamar
2010-01-01
Biomolecular logic devices can be applied for sensing and nano-medicine. We built three DNA tweezers that are activated by the inputs H+/OH-; ; nucleic acid linker/complementary antilinker to yield a 16-states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence from a fluorophore/quencher pair at the end of the arms of the tweezers. The system exhibits a memory because each current state and output depend not only on the source configuration but also on past states and inputs. PMID:21135212
Noisy bases in Hilbert space: A new class of thermal coherent states and their properties
NASA Technical Reports Server (NTRS)
Vourdas, A.; Bishop, R. F.
1995-01-01
Coherent mixed states (or thermal coherent states) associated with the displaced harmonic oscillator at finite temperature, are introduced as a 'random' (or 'thermal' or 'noisy') basis in Hilbert space. A resolution of the identity for these states is proved and used to generalize the usual coherent state formalism for the finite temperature case. The Bargmann representation of an operator is introduced and its relation to the P and Q representations is studied. Generalized P and Q representations for the finite temperature case are also considered and several interesting relations among them are derived.
Finite-time stabilisation of a class of switched nonlinear systems with state constraints
NASA Astrophysics Data System (ADS)
Huang, Shipei; Xiang, Zhengrong
2018-06-01
This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.
Selvaraj, P; Sakthivel, R; Kwon, O M
2018-06-07
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stable finite element approximations of two-phase flow with soluble surfactant
NASA Astrophysics Data System (ADS)
Barrett, John W.; Garcke, Harald; Nürnberg, Robert
2015-09-01
A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.
Finite element based N-Port model for preliminary design of multibody systems
NASA Astrophysics Data System (ADS)
Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice
2018-02-01
This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.
Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2017-01-01
We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field. PMID:28059129
Probing the Topology of Density Matrices
NASA Astrophysics Data System (ADS)
Bardyn, Charles-Edouard; Wawer, Lukas; Altland, Alexander; Fleischhauer, Michael; Diehl, Sebastian
2018-01-01
The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the "ensemble geometric phase" (EGP)—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities ("purity-gap" closing points) of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.
Measurement of multiaxial ply strength by an off-axis flexure test
NASA Technical Reports Server (NTRS)
Crews, John H., Jr.; Naik, Rajiv A.
1992-01-01
An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.
Raval, A H; Solanki, S C; Yadav, Rajvir
2013-04-01
A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.
1989-01-01
Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.
Finite difference time domain grid generation from AMC helicopter models
NASA Technical Reports Server (NTRS)
Cravey, Robin L.
1992-01-01
A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.
AOCS Performance and Stability Validation for a 160-m Solar Sail with Control-Structure Interactions
NASA Technical Reports Server (NTRS)
Wie, Bong; Murphy, David
2005-01-01
Future solar sail missions, such as NASA's Solar Polar Imager Vision, will require sails with dimensions on the order of 50-500 m. We are examining a square sail design with moving mass (trim control mass, TCM) and quadrant rotation primary actuators plus pulsed plasma thrusters (PPTs) at the mast tips for backup attitude control. Quadrant rotation is achieved via roll stabilizer bars (RSB) at the mast tips. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system, especially as these actuators are located on the flexible structure itself and not on the rigid core. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from finite element models of the system. Torsion and bending of the masts during maneuvers could significantly affect the function of the actuators while activation of the membrane modes could adversely affect the thrust vector direction and magnitude. Analysis of the RSB and TCM dynamics for developing high-fidelity simulations is included. For control analysis of the flexible system, standard finite-element models of the flexible sail body are loaded and the modal data is used to create a modal coordinate state-space system. Key parameters include which modes to include, which nodes are of interest for force inputs and displacement outputs, connecting nodes through which external forces and torques are applied from the flex body to the core, any nominal momentum in the system, and any steady rates. The system is linearized about the nominal attitude and rate. The state-space plant can then be analyzed with a state-space controller, and Bode, Nyquist, step and impulse responses generated. The approach is general for any rigid core with a flexible appendage. This paper develops a compensator for a simple two-mass flex system and extrapolates the results to the solar sail. A finite element model of the 20 m solar sail by ATK Space Systems, recently validated in ground tests, is used to demonstrate the sail analysis approach.
Anomalous bulk behavior in the free parafermion Z (N ) spin chain
NASA Astrophysics Data System (ADS)
Alcaraz, Francisco C.; Batchelor, Murray T.
2018-06-01
We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple Z (N ) model for N ≥3 for which the model Hamiltonian is non-Hermitian. For N =2 the model reduces to the well-known quantum Ising model in a transverse field. For open boundary conditions, the Z (N ) model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing N . Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent, and the specific-heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behavior is a topological effect.
Universal Non-Debye Scaling in the Density of States of Amorphous Solids.
Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Poncet, Alexis; Zamponi, Francesco
2016-07-22
At the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.
The entrainment matrix of a superfluid nucleon mixture at finite temperatures
NASA Astrophysics Data System (ADS)
Leinson, Lev B.
2018-06-01
It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.
Voter dynamics on an adaptive network with finite average connectivity
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Abhishek; Schmittmann, Beate
2009-03-01
We study a simple model for voter dynamics in a two-party system. The opinion formation process is implemented in a random network of agents in which interactions are not restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships, so that there is no history dependence in the model. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion and with opponents. Using simulations and analytic arguments, we determine the final steady states and the relaxation into these states for different system sizes. In contrast to earlier studies, the average connectivity (``degree'') of each agent is constant here, independent of the system size. This has significant consequences for the long-time behavior of the model.
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
A generalized algorithm to design finite field normal basis multipliers
NASA Technical Reports Server (NTRS)
Wang, C. C.
1986-01-01
Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.
A comparative study of computational solutions to flow over a backward-facing step
NASA Technical Reports Server (NTRS)
Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.
1993-01-01
A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1995-01-01
A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.
1981-01-01
Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-10-16
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.
Fulde–Ferrell superfluids in spinless ultracold Fermi gases
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo
2018-06-01
The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.
On some methods of discrete systems behaviour simulation
NASA Astrophysics Data System (ADS)
Sytnik, Alexander A.; Posohina, Natalia I.
1998-07-01
The project is solving one of the fundamental problems of mathematical cybernetics and discrete mathematics, the one connected with synthesis and analysis of managing systems, depending on the research of their functional opportunities and reliable behaviour. This work deals with the case of finite-state machine behaviour restoration when the structural redundancy is not available and the direct updating of current behaviour is impossible. The described below method, uses number theory to build a special model of finite-state machine, it is simulating the transition between the states of the finite-state machine using specially defined functions of exponential type with the help of several methods of number theory and algebra it is easy to determine, whether there is an opportunity to restore the behaviour (with the help of this method) in the given case or not and also derive the class of finite-state machines, admitting such restoration.
Measurement-based quantum teleportation on finite AKLT chains
NASA Astrophysics Data System (ADS)
Fujii, Akihiko; Feder, David
In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2016-01-01
We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed {gl(1|1)} spin-chain and its continuum limit—the {c=-2} symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than {V}, the product of the left and right Virasoro algebras. This algebra, {S}—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field {S(z,bar{z})≡ S_{αβ} ψ^α(z)bar{ψ}^β(bar{z})}, with a symmetric form {S_{αβ}} and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the {gl(1|1)} spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of {sp_{N-2}}. The semi-simple part of JTL N is represented by {U sp_{N-2}}, providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over {S} are identified with "fundamental" representations of {sp_∞}.
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising chain and 2D classical Ising model, showing the remarkable efficiency and accuracy of the AOP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanizaki, Yuya; Nishimura, Hiromichi; Verbaarschot, Jacobus J. M.
We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.
Magnetic helices as metastable states of finite XY ferromagnetic chains: An analytical study
NASA Astrophysics Data System (ADS)
Popov, Alexander P.; Pini, Maria Gloria
2018-04-01
We investigated a simple but non trivial model, consisting of a chain of N classical XY spins with nearest neighbor ferromagnetic interaction, where each of the two end-point spins is assumed to be exchange-coupled to a fully-pinned fictitious spin. In the mean field approximation, the system might be representative of a soft ferromagnetic film sandwiched between two magnetically hard layers. We show that, while the ground state is ferromagnetic and collinear, the system can attain non-collinear metastable states in the form of magnetic helices. The helical solutions and their stability were studied analytically in the absence of an external magnetic field. There are four possible classes of solutions. Only one class is metastable, and its helical states contain an integer number of turns. Among the remaining unstable classes, there is a class of helices which contain an integer number of turns. Therefore, an integer number of turns in a helical configuration is a necessary, but not a sufficient, condition for metastability. These results may be useful to devise future applications of metastable magnetic helices as energy-storing elements.
Study on ductility dip cracking susceptibility in Filler Metal 82 during welding
NASA Astrophysics Data System (ADS)
Chen, Jing-Qing; Lu, Hao; Cui, Wei
2011-06-01
In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.
NASA Astrophysics Data System (ADS)
Li, Fei-Ye; Li, Yao-Dong; Yu, Yue; Kim, Yong Baek; Balents, Leon; Chen, Gang
Conventional magnetic orders in Mott insulators are often believed to be trivial as they are simple product states. In this talk, we argue that this belief is not always right. We study a realistic spin model on the breathing pyrochlore lattice. We find that, although the system has a magnetic ordered ground state, the magnetic excitation is rather nontrivial and supports linear band touchings in its spectrum. This linear band touching is a topological property of the magnon band structure and is thus robust against small perturbation. We thus name this magnon band touching as ``Weyl magnon''. Just like the Weyl fermion, the existence of Weyl magnon suggests the presence of chiral magnon surface states. Unlike the surface Fermi arcs for the Weyl fermions, the chiral surface state for Weyl magnon appears at a finite energy due to the bosonic nature of the magnons. Moreover, the external magnetic field only couples to the spins with a Zeeman term and thus can readily shift the Weyl node position. This provides a way to control the Weyl magnon. Our work will inspire a re-examination of the excitation spectrum of many magnetic ordered systems. Chggst@gmail.com.
Model reduction in a subset of the original states
NASA Technical Reports Server (NTRS)
Yae, K. H.; Inman, D. J.
1992-01-01
A model reduction method is investigated to provide a smaller structural dynamic model for subsequent structural control design. A structural dynamic model is assumed to be derived from finite element analysis. It is first converted into the state space form, and is further reduced by the internal balancing method. Through the co-ordinate transformation derived from the states that are deleted during reduction, the reduced model is finally expressed with the states that are members of the original states. Therefore, the states in the final reduced model represent the degrees of freedom of the nodes that are selected by the designer. The procedure provides a more practical implementation of model reduction for applications in which specific nodes, such as sensor and/or actuator attachment points, are to be retained in the reduced model. Thus, it ensures that the reduced model is under the same input and output condition as the original physical model. The procedure is applied to two simple examples and comparisons are made between the full and reduced order models. The method can be applied to a linear, continuous and time-invariant model of structural dynamics with nonproportional viscous damping.
The Application of Finite Element Solution Techniques in Structural Analysis on a Microcomputer.
1981-12-01
my wife for her support of this research project and the amount of time she spent helping me in preparation. Thanks go to the personnel at Computer...questions which had to be answered concerning the microcomputer in relation to a sequentially programmed finite element program. The first was how big...central site, then usefullness of the microcomputer is limited. The first series of problems consisted of a simple truss structure, which was expanded
Finite-element grid improvement by minimization of stiffness matrix trace
NASA Technical Reports Server (NTRS)
Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.
1989-01-01
A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.
Finite-element grid improvement by minimization of stiffness matrix trace
NASA Technical Reports Server (NTRS)
Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.
1987-01-01
A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.
Cavitation and Wake Structure of Unsteady Tip Vortex Flows
1992-12-10
wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex
Computational methods for the control of distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Cliff, E. M.; Powers, R. K.
1985-01-01
It is shown that care must be taken to ensure that finite dimensional approximations of distributed parameter systems preserve important system properties (i.e., controllability, observability, stabilizability, detectability, etc.). It is noted that, if the particular scheme used to construct the finite dimensional model does not take into account these system properties, the model may not be suitable for control design and analysis. These ideas are illustrated by a simple example, i.e., a cable-spring-mass system.
Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helinski, Ryan
This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-01-01
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947
A new implementation of the programming system for structural synthesis (PROSSS-2)
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.
1984-01-01
This new implementation of the PROgramming System for Structural Synthesis (PROSSS-2) combines a general-purpose finite element computer program for structural analysis, a state-of-the-art optimization program, and several user-supplied, problem-dependent computer programs. The results are flexibility of the optimization procedure, organization, and versatility of the formulation of constraints and design variables. The analysis-optimization process results in a minimized objective function, typically the mass. The analysis and optimization programs are executed repeatedly by looping through the system until the process is stopped by a user-defined termination criterion. However, some of the analysis, such as model definition, need only be one time and the results are saved for future use. The user must write some small, simple FORTRAN programs to interface between the analysis and optimization programs. One of these programs, the front processor, converts the design variables output from the optimizer into the suitable format for input into the analyzer. Another, the end processor, retrieves the behavior variables and, optionally, their gradients from the analysis program and evaluates the objective function and constraints and optionally their gradients. These quantities are output in a format suitable for input into the optimizer. These user-supplied programs are problem-dependent because they depend primarily upon which finite elements are being used in the model. PROSSS-2 differs from the original PROSSS in that the optimizer and front and end processors have been integrated into the finite element computer program. This was done to reduce the complexity and increase portability of the system, and to take advantage of the data handling features found in the finite element program.
NASA Technical Reports Server (NTRS)
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
Rough Finite State Automata and Rough Languages
NASA Astrophysics Data System (ADS)
Arulprakasam, R.; Perumal, R.; Radhakrishnan, M.; Dare, V. R.
2018-04-01
Sumita Basu [1, 2] recently introduced the concept of a rough finite state (semi)automaton, rough grammar and rough languages. Motivated by the work of [1, 2], in this paper, we investigate some closure properties of rough regular languages and establish the equivalence between the classes of rough languages generated by rough grammar and the classes of rough regular languages accepted by rough finite automaton.
Deformation of two-phase aggregates using standard numerical methods
NASA Astrophysics Data System (ADS)
Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.
2013-04-01
Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.
Liu, Xiwei; Chen, Tianping
2018-01-01
In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.
Anomalous glassy dynamics in simple models of dense biological tissue
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa
2018-02-01
In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.
Improved modeling of turbulent forced convection heat transfer in straight ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokni, M.; Sunden, B.
1999-08-01
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the nonlinear {kappa}-{epsilon} model combined with the heat flux models of simple eddy diffusivity (SED), low Reynolds number version of generalized gradient diffusion hypothesis (GGDH), and wealth {proportional_to} earning {times} time (WET) in general three-dimensional geometries. The numerical approach is based on the finite volume technique with a nonstaggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the nonlinear {kappa}-{epsilon} model, combined with themore » Lam-Bremhorst and the Abe-Kondoh-Nagano damping functions for low Reynolds numbers.« less
A Martian global groundwater model
NASA Technical Reports Server (NTRS)
Howard, Alan D.
1991-01-01
A global groundwater flow model was constructed for Mars to study hydrologic response under a variety of scenarios, improving and extending earlier simple cross sectional models. The model is capable of treating both steady state and transient flow as well as permeability that is anisotropic in the horizontal dimensions. A single near surface confining layer may be included (representing in these simulations a coherent permafrost layer). Furthermore, in unconfined flow, locations of complete saturation and seepage are determined. The flow model assumes that groundwater gradients are sufficiently low that DuPuit conditions are satisfied and the flow component perpendicular to the ground surface is negligible. The flow equations were solved using a finite difference method employing 10 deg spacing of latitude and longitude.
Classical and special relativity in four steps
NASA Astrophysics Data System (ADS)
Browne, K. M.
2018-03-01
The most fundamental and pedagogically useful path to the space-time transformations of both classical and special relativity is to postulate the principle of relativity, derive the generalised or Ignatowsky transformation which contains both, then apply two different second postulates that give either the Galilean or Lorentz transformation. What is new here is (a) a simple two-step derivation of the Ignatowsky transformation, (b) a second postulate of universal time which yields the Galilean transformation, and (c) a different second postulate of finite universal lightspeed to give the Lorentz transformation using a simple Ignatowsky transformation of a light wave. This method demonstrates that the fundamental difference between Galilean and Lorentz transformations is not that lightspeed is universal (which is true for both) but whether the model requires lightspeed to be infinite or finite (as once mentioned by Einstein).
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
Finite element analysis of two disk rotor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Harsh Kumar
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding amore » relationship between natural whirl frequencies and rotation of the rotor.« less
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers
NASA Astrophysics Data System (ADS)
Prot, V.; Skallerud, B.
2009-02-01
An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.
Socio-economic applications of finite state mean field games.
Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese
2014-11-13
In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Fracture mechanics life analytical methods verification testing
NASA Technical Reports Server (NTRS)
Favenesi, J. A.; Clemmons, T. G.; Lambert, T. J.
1994-01-01
Verification and validation of the basic information capabilities in NASCRAC has been completed. The basic information includes computation of K versus a, J versus a, and crack opening area versus a. These quantities represent building blocks which NASCRAC uses in its other computations such as fatigue crack life and tearing instability. Several methods were used to verify and validate the basic information capabilities. The simple configurations such as the compact tension specimen and a crack in a finite plate were verified and validated versus handbook solutions for simple loads. For general loads using weight functions, offline integration using standard FORTRAN routines was performed. For more complicated configurations such as corner cracks and semielliptical cracks, NASCRAC solutions were verified and validated versus published results and finite element analyses. A few minor problems were identified in the basic information capabilities of the simple configurations. In the more complicated configurations, significant differences between NASCRAC and reference solutions were observed because NASCRAC calculates its solutions as averaged values across the entire crack front whereas the reference solutions were computed for a single point.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Shveyova, T.; Vafin, R.
2017-12-01
The level of a shear strain and equivalent strain plays a key role in terms of the possibility of using the asymmetric rolling process as a method of severe plastic deformation. Strain mode (pure shear or simple shear) can affect very strongly on the equivalent strain and the grain refinement of the material. This paper presents the results of FEM simulations and comparison of the equivalent strain in the aluminium alloy 5083 processed by a single-pass equal channel angular pressing (simple shear), symmetric rolling (pure shear) and asymmetric rolling (simultaneous pure and simple shear). The nonlinear effect of rolls speed ratio on the deformation characteristics during asymmetric rolling was found. Extremely high equivalent strain up to e=4.2 was reached during a single-pass asymmetric rolling. The influence of the shear strain on the level of equivalent strain is discussed. Finite element analysis of the deformation characteristics, presented in this study, can be used for optimization of the asymmetric rolling process as a method of severe plastic deformation.
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapliyal, Kishore, E-mail: tkishore36@yahoo.com; Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Pathak, Anirban, E-mail: anirban.pathak@gmail.com
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained frommore » experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.« less
Protecting a quantum state from environmental noise by an incompatible finite-time measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasil, Carlos Alexandre; Castro, L. A. de; Napolitano, R. d. J.
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analyticalmore » predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.« less
NASA Astrophysics Data System (ADS)
Parumasur, N.; Willie, R.
2008-09-01
We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
Enhanced hyperuniformity from random reorganization.
Hexner, Daniel; Chaikin, Paul M; Levine, Dov
2017-04-25
Diffusion relaxes density fluctuations toward a uniform random state whose variance in regions of volume [Formula: see text] scales as [Formula: see text] Systems whose fluctuations decay faster, [Formula: see text] with [Formula: see text], are called hyperuniform. The larger [Formula: see text], the more uniform, with systems like crystals achieving the maximum value: [Formula: see text] Although finite temperature equilibrium dynamics will not yield hyperuniform states, driven, nonequilibrium dynamics may. Such is the case, for example, in a simple model where overlapping particles are each given a small random displacement. Above a critical particle density [Formula: see text], the system evolves forever, never finding a configuration where no particles overlap. Below [Formula: see text], however, it eventually finds such a state, and stops evolving. This "absorbing state" is hyperuniform up to a length scale [Formula: see text], which diverges at [Formula: see text] An important question is whether hyperuniformity survives noise and thermal fluctuations. We find that hyperuniformity of the absorbing state is not only robust against noise, diffusion, or activity, but that such perturbations reduce fluctuations toward their limiting behavior, [Formula: see text], a uniformity similar to random close packing and early universe fluctuations, but with arbitrary controllable density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, University Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex
2010-06-15
In this article, we give a simple proof of the fact that the optimal collective attacks against continuous-variable quantum key distribution with a Gaussian modulation are Gaussian attacks. Our proof, which makes use of symmetry properties of the protocol in phase space, is particularly relevant for the finite-key analysis of the protocol and therefore for practical applications.
Finite-data-size study on practical universal blind quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Li, Qiong
2018-07-01
The universal blind quantum computation with weak coherent pulses protocol is a practical scheme to allow a client to delegate a computation to a remote server while the computation hidden. However, in the practical protocol, a finite data size will influence the preparation efficiency in the remote blind qubit state preparation (RBSP). In this paper, a modified RBSP protocol with two decoy states is studied in the finite data size. The issue of its statistical fluctuations is analyzed thoroughly. The theoretical analysis and simulation results show that two-decoy-state case with statistical fluctuation is closer to the asymptotic case than the one-decoy-state case with statistical fluctuation. Particularly, the two-decoy-state protocol can achieve a longer communication distance than the one-decoy-state case in this statistical fluctuation situation.
Combined tension and bending testing of tapered composite laminates
NASA Astrophysics Data System (ADS)
O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles
1994-11-01
A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.
ERIC Educational Resources Information Center
Chromy, James R.
This study addressed statistical techniques that might ameliorate some of the sampling problems currently facing states with small populations participating in State National Assessment of Educational Progress (NAEP) assessments. The study explored how the application of finite population correction factors to the between-school component of…
Improved Design of Tunnel Supports : Executive Summary
DOT National Transportation Integrated Search
1979-12-01
This report focuses on improvement of design methodologies related to the ground-structure interaction in tunneling. The design methods range from simple analytical and empirical methods to sophisticated finite element techniques as well as an evalua...
A hierarchy of granular continuum models: Why flowing grains are both simple and complex
NASA Astrophysics Data System (ADS)
Kamrin, Ken
2017-06-01
Granular materials have a strange propensity to behave as either a complex media or a simple media depending on the precise question being asked. This review paper offers a summary of granular flow rheologies for well-developed or steady-state motion, and seeks to explain this dichotomy through the vast range of complexity intrinsic to these models. A key observation is that to achieve accuracy in predicting flow fields in general geometries, one requires a model that accounts for a number of subtleties, most notably a nonlocal effect to account for cooperativity in the flow as induced by the finite size of grains. On the other hand, forces and tractions that develop on macro-scale, submerged boundaries appear to be minimally affected by grain size and, barring very rapid motions, are well represented by simple rate-independent frictional plasticity models. A major simplification observed in experiments of granular intrusion, which we refer to as the `resistive force hypothesis' of granular Resistive Force Theory, can be shown to arise directly from rate-independent plasticity. Because such plasticity models have so few parameters, and the major rheological parameter is a dimensionless internal friction coefficient, some of these simplifications can be seen as consequences of scaling.
Estimating finite-population reproductive numbers in heterogeneous populations.
Keegan, Lindsay T; Dushoff, Jonathan
2016-05-21
The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yun-jie; Li, Guo-fei
2018-01-01
Based on sliding mode extended state observer (SMESO) technique, an adaptive disturbance compensation finite control set optimal control (FCS-OC) strategy is proposed for permanent magnet synchronous motor (PMSM) system driven by voltage source inverter (VSI). So as to improve robustness of finite control set optimal control strategy, a SMESO is proposed to estimate the output-effect disturbance. The estimated value is fed back to finite control set optimal controller for implementing disturbance compensation. It is indicated through theoretical analysis that the designed SMESO could converge in finite time. The simulation results illustrate that the proposed adaptive disturbance compensation FCS-OC possesses better dynamical response behavior in the presence of disturbance.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Simple shear of deformable square objects
NASA Astrophysics Data System (ADS)
Treagus, Susan H.; Lan, Labao
2003-12-01
Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.
NASA Astrophysics Data System (ADS)
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
Decision theory with resource-bounded agents.
Halpern, Joseph Y; Pass, Rafael; Seeman, Lior
2014-04-01
There have been two major lines of research aimed at capturing resource-bounded players in game theory. The first, initiated by Rubinstein (), charges an agent for doing costly computation; the second, initiated by Neyman (), does not charge for computation, but limits the computation that agents can do, typically by modeling agents as finite automata. We review recent work on applying both approaches in the context of decision theory. For the first approach, we take the objects of choice in a decision problem to be Turing machines, and charge players for the "complexity" of the Turing machine chosen (e.g., its running time). This approach can be used to explain well-known phenomena like first-impression-matters biases (i.e., people tend to put more weight on evidence they hear early on) and belief polarization (two people with different prior beliefs, hearing the same evidence, can end up with diametrically opposed conclusions) as the outcomes of quite rational decisions. For the second approach, we model people as finite automata, and provide a simple algorithm that, on a problem that captures a number of settings of interest, provably performs optimally as the number of states in the automaton increases. Copyright © 2014 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Zulkifli, Muhammad Nubli; Ilias, Izzudin; Abas, Amir; Muhamad, Wan Mansor Wan
2017-09-01
Thermoelectric generator (TEG) is the solid state device that converts the thermal gradient into electrical energy. TEG is widely used as the renewable energy source especially for the electronic equipment that operates with the small amount of electrical power. In the present analysis, the finite element analysis (FEA) using ANSYS is conducted on a model of the TEG attached with the aluminium, Al plate on the hot side of the TEG. This simple construction of TEG model was built in order to be used in the waste heat recovery of solar application. It was shown that the changes of the area and thickness of the Al plate increased the temperature gradient between hot and cold sides of TEG. This directly increase the voltage produced by the TEG based on the Seeback effect. The increase of the thermal gradient due to the increment of thickness and width of Al plate might be because of the increase of thermal resistance of Al plate. This finding provides a valuable data in design process to build a good TEG attached with Al plate for the waste heat recovery of solar application.
Transient thermal analysis of a titanium multiwall thermal protection system
NASA Technical Reports Server (NTRS)
Blosser, M. L.
1982-01-01
The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.
Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers
NASA Astrophysics Data System (ADS)
Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin
2016-06-01
Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.
Interpreting electrically evoked emissions using a finite-element model of the cochlea
NASA Astrophysics Data System (ADS)
Deo, Niranjan V.; Grosh, Karl; Parthasarathi, Anand
2003-10-01
Electrically evoked otoacoustic emissions (EEOAEs) are used to investigate in vivo cochlear electromechanical function. Electrical stimulation through bipolar electrodes placed very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a narrow frequency range of EEOAEs, limited to around 20 kHz when the electrodes are placed near the 18-kHz best frequency place. Model predictions using a three-dimensional inviscid fluid model in conjunction with a middle ear model [S. Puria and J. B. Allen, J. Acoust. Soc. Am. 104, 3463-3481 (1998)] and a simple model for outer hair cell activity [S. Neely and D. Kim, J. Acoust. Soc. Am. 94, 137-146 (1993)] are used to interpret the experimental results. To estimate effect of viscosity, model results are compared with those obtained for a viscous fluid. The models are solved using a 2.5-D finite-element formulation. Predictions show that the high frequency limit of the excitation is determined by the spatial extent of the current stimulus. The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady state response predictions of the model are presented.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
2007-01-01
CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost
Effects of finite volume on the K L – K S mass difference
Christ, N. H.; Feng, X.; Martinelli, G.; ...
2015-06-24
Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less
An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems
NASA Technical Reports Server (NTRS)
Deng, Qingping
1996-01-01
A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Construction of mutually unbiased bases with cyclic symmetry for qubit systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyfarth, Ulrich; Ranade, Kedar S.
2011-10-15
For the complete estimation of arbitrary unknown quantum states by measurements, the use of mutually unbiased bases has been well established in theory and experiment for the past 20 years. However, most constructions of these bases make heavy use of abstract algebra and the mathematical theory of finite rings and fields, and no simple and generally accessible construction is available. This is particularly true in the case of a system composed of several qubits, which is arguably the most important case in quantum information science and quantum computation. In this paper, we close this gap by providing a simple andmore » straightforward method for the construction of mutually unbiased bases in the case of a qubit register. We show that our construction is also accessible to experiments, since only Hadamard and controlled-phase gates are needed, which are available in most practical realizations of a quantum computer. Moreover, our scheme possesses the optimal scaling possible, i.e., the number of gates scales only linearly in the number of qubits.« less
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Ochoa, Andrew J.; Katzgraber, Helmut G.
2018-05-01
The search for problems where quantum adiabatic optimization might excel over classical optimization techniques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasiplanar topologies. We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-lattice bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature spin-glass state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76, 4616 (1996), 10.1103/PhysRevLett.76.4616]. Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite zero-temperature simulations [Phys. Rev. B 63, 094423 (2001), 10.1103/PhysRevB.63.094423] suggesting the existence of a finite-temperature spin-glass transition. Therefore, deducing the finite-temperature behavior from zero-temperature simulations can be dangerous when corrections to scaling are large.
Gradient flows without blow-up for Lefschetz thimbles
Tanizaki, Yuya; Nishimura, Hiromichi; Verbaarschot, Jacobus J. M.
2017-10-16
We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.
Profinite Completions of Burnside-Type Quotients of Surface Groups
NASA Astrophysics Data System (ADS)
Funar, Louis; Lochak, Pierre
2018-06-01
Using quantum representations of mapping class groups, we prove that profinite completions of Burnside-type surface group quotients are not virtually prosolvable, in general. Further, we construct infinitely many finite simple characteristic quotients of surface groups.
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
A simple design of an artificial electromagnetic black hole
NASA Astrophysics Data System (ADS)
Lu, Wanli; Jin, JunFeng; Lin, Zhifang; Chen, Huanyang
2010-09-01
We conduct a rigorous study on the properties of an artificial electromagnetic black hole for transverse magnetic modes. A multilayered structure of such a black hole is then proposed as a reduced variety for easy experimental implementations. An actual design of composite materials based on the effective medium theory is given with only five kinds of real isotropic materials. The finite element method confirms the functionality of such a simple design.
Three Dimensional Time Dependent Stochastic Method for Cosmic-ray Modulation
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J. M.
2009-12-01
A proper understanding of the different behavior of intensities of galactic cosmic rays in different solar cycle phases requires solving the modulation equation with time dependence. We present a detailed description of our newly developed stochastic approach for cosmic ray modulation which we believe is the first attempt to solve the time dependent Parker equation in 3D evolving from our 3D steady state stochastic approach, which has been benchmarked extensively by using the finite difference method. Our 3D stochastic method is different from other stochastic approaches in literature (Ball et al 2005, Miyake et al 2005, and Florinski 2008) in several ways. For example, we employ spherical coordinates which makes the code much more efficient by reducing coordinate transformations. What's more, our stochastic differential equations are different from others because our map from Parker's original equation to the Fokker-Planck equation extends the method used by Jokipii and Levy 1977 while others don't although all 3D stochastic methods are essentially based on Ito formula. The advantage of the stochastic approach is that it also gives the probability information of travel times and path lengths of cosmic rays besides the intensities. We show that excellent agreement exists between solutions obtained by our steady state stochastic method and by the traditional finite difference method. We also show time dependent solutions for an idealized heliosphere which has a Parker magnetic field, a planar current sheet, and a simple initial condition.
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O.; Hansen, A. B.; Kaas, E.; Kent, J.; Lamarque, J.-F.; Prather, M. J.; Reinert, D.; Shashkin, V. V.; Skamarock, W. C.; Sørensen, B.; Taylor, M. A.; Tolstykh, M. A.
2013-09-01
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent, The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data-sets are made available to facilitate the process of model evaluation and scheme intercomparison.
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O.; Hansen, A. B.; Kaas, E.; Kent, J.; Lamarque, J.-F.; Prather, M. J.; Reinert, D.; Shashkin, V. V.; Skamarock, W. C.; Sørensen, B.; Taylor, M. A.; Tolstykh, M. A.
2014-01-01
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison.
Mesons in strong magnetic fields: (I) General analyses
Hattori, Koichi; Kojo, Toru; Su, Nan
2016-03-21
Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ 2 QCD with Λ QCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus amore » large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B 2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less
Comparison of some optimal control methods for the design of turbine blades
NASA Technical Reports Server (NTRS)
Desilva, B. M. E.; Grant, G. N. C.
1977-01-01
This paper attempts a comparative study of some numerical methods for the optimal control design of turbine blades whose vibration characteristics are approximated by Timoshenko beam idealizations with shear and incorporating simple boundary conditions. The blade was synthesized using the following methods: (1) conjugate gradient minimization of the system Hamiltonian in function space incorporating penalty function transformations, (2) projection operator methods in a function space which includes the frequencies of vibration and the control function, (3) epsilon-technique penalty function transformation resulting in a highly nonlinear programming problem, (4) finite difference discretization of the state equations again resulting in a nonlinear program, (5) second variation methods with complex state differential equations to include damping effects resulting in systems of inhomogeneous matrix Riccatti equations some of which are stiff, (6) quasi-linear methods based on iterative linearization of the state and adjoint equation. The paper includes a discussion of some substantial computational difficulties encountered in the implementation of these techniques together with a resume of work presently in progress using a differential dynamic programming approach.
Transport phenomena in helical edge state interferometers: A Green's function approach
NASA Astrophysics Data System (ADS)
Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael
2013-10-01
We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.
NASA Astrophysics Data System (ADS)
Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.
2018-03-01
The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.
Examining the accuracy of the infinite order sudden approximation using sensitivity analysis
NASA Astrophysics Data System (ADS)
Eno, Larry; Rabitz, Herschel
1981-08-01
A method is developed for assessing the accuracy of scattering observables calculated within the framework of the infinite order sudden (IOS) approximation. In particular, we focus on the energy sudden assumption of the IOS method and our approach involves the determination of the sensitivity of the IOS scattering matrix SIOS with respect to a parameter which reintroduces the internal energy operator ?0 into the IOS Hamiltonian. This procedure is an example of sensitivity analysis of missing model components (?0 in this case) in the reference Hamiltonian. In contrast to simple first-order perturbation theory a finite result is obtained for the effect of ?0 on SIOS. As an illustration, our method of analysis is applied to integral state-to-state cross sections for the scattering of an atom and rigid rotor. Results are generated within the He+H2 system and a comparison is made between IOS and coupled states cross sections and the corresponding IOS sensitivities. It is found that the sensitivity coefficients are very useful indicators of the accuracy of the IOS results. Finally, further developments and applications are discussed.
NASA Astrophysics Data System (ADS)
Cronin, V. S.
2012-12-01
First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.
Solution of the neutronics code dynamic benchmark by finite element method
NASA Astrophysics Data System (ADS)
Avvakumov, A. V.; Vabishchevich, P. N.; Vasilev, A. O.; Strizhov, V. F.
2016-10-01
The objective is to analyze the dynamic benchmark developed by Atomic Energy Research for the verification of best-estimate neutronics codes. The benchmark scenario includes asymmetrical ejection of a control rod in a water-type hexagonal reactor at hot zero power. A simple Doppler feedback mechanism assuming adiabatic fuel temperature heating is proposed. The finite element method on triangular calculation grids is used to solve the three-dimensional neutron kinetics problem. The software has been developed using the engineering and scientific calculation library FEniCS. The matrix spectral problem is solved using the scalable and flexible toolkit SLEPc. The solution accuracy of the dynamic benchmark is analyzed by condensing calculation grid and varying degree of finite elements.
Simulation of wave propagation in three-dimensional random media
NASA Technical Reports Server (NTRS)
Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1993-01-01
Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.
Evidence for a Finite-Temperature Insulator.
Ovadia, M; Kalok, D; Tamir, I; Mitra, S; Sacépé, B; Shahar, D
2015-08-27
In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T < 0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator.
Reexamination of optimal quantum state estimation of pure states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2005-09-15
A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independentmore » of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.« less
NASA Astrophysics Data System (ADS)
Balusu, K.; Huang, H.
2017-04-01
A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.
Computer-Aided Engineering of Semiconductor Integrated Circuits
1979-07-01
equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
NASA Astrophysics Data System (ADS)
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306
Robot Path Planning in Uncertain Environments: A Language-Measure-Theoretic Approach
2015-03-01
in the framework of probabilistic finite state automata (PFSA) and language measure from a control-theoretic perspective. The proposed concept has been...DOI: 10.1115/1.4027876] Keywords: path planning, language measure, probabilistic finite state automata 1 Motivation and Introduction In general
NASA Astrophysics Data System (ADS)
Zschocke, Fabian; Vojta, Matthias
2015-07-01
Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.
Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew
2007-10-07
A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.
Armstrong, Don L.; Lancet, Doron
2018-01-01
Abstract We studied the simulated replication and growth of prebiotic vesicles composed of 140 phospholipids and cholesterol using our R-GARD (Real Graded Autocatalysis Replication Domain) formalism that utilizes currently extant lipids that have known rate constants of lipid-vesicle interactions from published experimental data. R-GARD normally modifies kinetic parameters of lipid-vesicle interactions based on vesicle composition and properties. Our original R-GARD model tracked the growth and division of one vesicle at a time in an environment with unlimited lipids at a constant concentration. We explore here a modified model where vesicles compete for a finite supply of lipids. We observed that vesicles exhibit complex behavior including initial fast unrestricted growth, followed by intervesicle competition for diminishing resources, then a second growth burst driven by better-adapted vesicles, and ending with a final steady state. Furthermore, in simulations without kinetic parameter modifications (“invariant kinetics”), the initial replication was an order of magnitude slower, and vesicles' composition variability at the final steady state was much lower. The complex kinetic behavior was not observed either in the previously published R-GARD simulations or in additional simulations presented here with only one lipid component. This demonstrates that both a finite environment (inducing selection) and multiple components (providing variation for selection to act upon) are crucial for portraying evolution-like behavior. Such properties can improve survival in a changing environment by increasing the ability of early protocellular entities to respond to rapid environmental fluctuations likely present during abiogenesis both on Earth and possibly on other planets. This in silico simulation predicts that a relatively simple in vitro chemical system containing only lipid molecules might exhibit properties that are relevant to prebiotic processes. Key Words: Phospholipid vesicles—Prebiotic compartments—Prebiotic vesicle competition—Prebiotic vesicle variability. Astrobiology 18, 419–430. PMID:29634319
Cracking and debonding of a thin fiber reinforced concrete overlay.
DOT National Transportation Integrated Search
2017-04-01
Previous field studies suggested that macro-fibers incorporated in thin overlay pavements will result in reduced crack opening widths, vertical deflections, and debonding rates compared to that of unreinforced overlays. A simple finite element (FE) m...
Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons.
Sandberg, Henrik; Delvenne, Jean-Charles; Newton, Nigel J; Mitter, Sanjoy K
2014-10-01
We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon. This let us show that any implementation of the demon must necessarily include an external power source, which we prove both from classical thermodynamics arguments and from a version of Landauer's memory erasure argument extended to nonequilibrium linear systems.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model
NASA Astrophysics Data System (ADS)
Lvov, Yuri V.; Onorato, Miguel
2018-04-01
We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pries, Jason L.; Tang, Lixin; Burress, Timothy A.
This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less
Length filtration of the separable states.
Chen, Lin; Ðoković, Dragomir Ž
2016-11-01
We investigate the separable states ρ of an arbitrary multi-partite quantum system with Hilbert space [Formula: see text] of dimension d . The length L ( ρ ) of ρ is defined as the smallest number of pure product states having ρ as their mixture. The length filtration of the set of separable states, [Formula: see text], is the increasing chain [Formula: see text], where [Formula: see text]. We define the maximum length, [Formula: see text], critical length, L crit , and yet another special length, L c , which was defined by a simple formula in one of our previous papers. The critical length indicates the first term in the length filtration whose dimension is equal to [Formula: see text]. We show that in general d ≤ L c ≤ L crit ≤ L max ≤ d 2 . We conjecture that the equality L crit = L c holds for all finite-dimensional multi-partite quantum systems. Our main result is that L crit = L c for the bipartite systems having a single qubit as one of the parties. This is accomplished by computing the rank of the Jacobian matrix of a suitable map having [Formula: see text] as its range.
Global quantum discord and matrix product density operators
NASA Astrophysics Data System (ADS)
Huang, Hai-Lin; Cheng, Hong-Guang; Guo, Xiao; Zhang, Duo; Wu, Yuyin; Xu, Jian; Sun, Zhao-Yu
2018-06-01
In a previous study, we have proposed a procedure to study global quantum discord in 1D chains whose ground states are described by matrix product states [Z.-Y. Sun et al., Ann. Phys. 359, 115 (2015)]. In this paper, we show that with a very simple generalization, the procedure can be used to investigate quantum mixed states described by matrix product density operators, such as quantum chains at finite temperatures and 1D subchains in high-dimensional lattices. As an example, we study the global discord in the ground state of a 2D transverse-field Ising lattice, and pay our attention to the scaling behavior of global discord in 1D sub-chains of the lattice. We find that, for any strength of the magnetic field, global discord always shows a linear scaling behavior as the increase of the length of the sub-chains. In addition, global discord and the so-called "discord density" can be used to indicate the quantum phase transition in the model. Furthermore, based upon our numerical results, we make some reliable predictions about the scaling of global discord defined on the n × n sub-squares in the lattice.
Conformal bootstrap at large charge
NASA Astrophysics Data System (ADS)
Jafferis, Daniel; Mukhametzhanov, Baur; Zhiboedov, Alexander
2018-05-01
We consider unitary CFTs with continuous global symmetries in d > 2. We consider a state created by the lightest operator of large charge Q ≫ 1 and analyze the correlator of two light charged operators in this state. We assume that the correlator admits a well-defined large Q expansion and, relatedly, that the macroscopic (thermodynamic) limit of the correlator exists. We find that the crossing equations admit a consistent truncation, where only a finite number N of Regge trajectories contribute to the correlator at leading nontrivial order. We classify all such truncated solutions to the crossing. For one Regge trajectory N = 1, the solution is unique and given by the effective field theory of a Goldstone mode. For two or more Regge trajectories N ≥ 2, the solutions are encoded in roots of a certain degree N polynomial. Some of the solutions admit a simple weakly coupled EFT description, whereas others do not. In the weakly coupled case, each Regge trajectory corresponds to a field in the effective Lagrangian.
Low-frequency instabilities and plasma turbulence
NASA Technical Reports Server (NTRS)
Ilic, D. B.
1973-01-01
A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.
Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.
Slavchov, Radomir I; Ivanov, Tzanko I
2014-02-21
A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.
The effects of strain and stress state in hot forming of mg AZ31 sheet
NASA Astrophysics Data System (ADS)
Sherek, Paul A.; Carpenter, Alexander J.; Hector, Louis G.; Krajewski, Paul E.; Carter, Jon T.; Lasceski, Joshua; Taleff, Eric M.
Wrought magnesium alloys, such as AZ31 sheet, are of considerable interest for light-weighting of vehicle structural components. The poor room-temperature ductility of AZ31 sheet has been a hindrance to forming the complex part shapes necessary for practical applications. However, the outstanding formability of AZ31 sheet at elevated temperature provides an opportunity to overcome that problem. Complex demonstration components have already been produced at 450°C using gas-pressure forming. Accurate simulations of such hot, gas-pressure forming will be required for the design and optimization exercises necessary if this technology is to be implemented commercially. We report on experiments and simulations used to construct the accurate material constitutive models necessary for finite-element-method simulations. In particular, the effects of strain and stress state on plastic deformation of AZ31 sheet at 450°C are considered in material constitutive model development. Material models are validated against data from simple forming experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecseli, H. L.; Trulsen, J.
2009-10-08
Experimental as well as theoretical studies have demonstrated that turbulence can play an important role for the biosphere in marine environments, in particular also by affecting prey-predator encounter rates. Reference models for the encounter rates rely on simplifying assumptions of predators and prey being described as point particles moving passively with the local flow velocity. Based on simple arguments that can be tested experimentally we propose corrections for the standard expression for the encounter rates, where now finite sizes and Stokes drag effects are included.
A finite-difference time-domain electromagnetic solver in a generalized coordinate system
NASA Astrophysics Data System (ADS)
Hochberg, Timothy Allen
A new, finite-difference, time-domain method for the simulation of full-wave electromagnetic wave propogation in complex structures is developed. This method is simple and flexible; it allows for the simulation of transient wave propogation in a large class of practical structures. Boundary conditions are implemented for perfect and imperfect electrically conducting boundaries, perfect magnetically conducting boundaries, and absorbing boundaries. The method is validated with the aid of several different types of test cases. Two types of coaxial cables with helical breaks are simulated and the results are discussed.
Synthetic Aperture Sonar Imaging of Simple Finite Targets
2011-03-15
again including the geometric spreading. The target strength of a sphere, as given by Urick [22], is TSs = 10 log10(a2/4), which yields TSs = −19.58...respectively. find TSis = 12.63− 52.04 + 20.00 = −19.41 dB, which compares favorably with Urick’s value. From Urick , the target strength of a finite cylinder...is now TSic = 9.08 − 27.51 + 20.00 = 1.57, which is again in good agreement with Urick . It is noted that a value of N = 21.7 reproduces TSc. The final
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Holman, Richard; Kolb, Edward W.
1987-01-01
Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.
The Use of Finite Fields and Rings to Compute Convolutions
1975-06-06
showed in Ref. 1 that the convolution of two finite sequences of integers (a, ) and (b, ) for k = 1, 2, . . ., d can be obtained as the inverse transform of...since the T.’S are all distinct. Thus T~ exists and (7) can be solved as a = T A the inverse " transform . Next let us impose on (7) the...the inverse transform d-1 Cn= (d) I Cka k=0 If an a can be found so that multiplications by powers of a are simple in hardware, the
Liquid-gas phase transition in asymmetric nuclear matter at finite temperature
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi
2010-03-01
Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.
Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors
NASA Technical Reports Server (NTRS)
Hackett, R. M.; Juruf, R. S.
1976-01-01
A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.
A pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun
1988-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armour, E.A.G.
1982-06-07
It has been known since the work of Aronson, Kleinman and Spruch, and Armour that, if the proton is considered to be infinitely massive, no bound state of a system made up of a positron and a hydrogen atom can exist. In this Letter a new method is introduced for taking into account finite nuclear mass. With use of this method it is shown that the inclusion of the finite mass of the proton does not result in the appearance of a bound state. This is the first time that this result has been established.
Finite-size effects on bacterial population expansion under controlled flow conditions
NASA Astrophysics Data System (ADS)
Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico
2017-03-01
The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.
Keegan, Lindsay; Dushoff, Jonathan
2014-05-01
The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.
Distributed Finite-Time Cooperative Control of Multiple High-Order Nonholonomic Mobile Robots.
Du, Haibo; Wen, Guanghui; Cheng, Yingying; He, Yigang; Jia, Ruting
2017-12-01
The consensus problem of multiple nonholonomic mobile robots in the form of high-order chained structure is considered in this paper. Based on the model features and the finite-time control technique, a finite-time cooperative controller is explicitly constructed which guarantees that the states consensus is achieved in a finite time. As an application of the proposed results, finite-time formation control of multiple wheeled mobile robots is studied and a finite-time formation control algorithm is proposed. To show effectiveness of the proposed approach, a simulation example is given.
Nanowire nanocomputer as a finite-state machine.
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2014-02-18
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.
Nanowire nanocomputer as a finite-state machine
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.
2014-01-01
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812
Clustering based on adherence data.
Kiwuwa-Muyingo, Sylvia; Oja, Hannu; Walker, Sarah A; Ilmonen, Pauliina; Levin, Jonathan; Todd, Jim
2011-03-08
Adherence to a medical treatment means the extent to which a patient follows the instructions or recommendations by health professionals. There are direct and indirect ways to measure adherence which have been used for clinical management and research. Typically adherence measures are monitored over a long follow-up or treatment period, and some measurements may be missing due to death or other reasons. A natural question then is how to describe adherence behavior over the whole period in a simple way. In the literature, measurements over a period are usually combined just by using averages like percentages of compliant days or percentages of doses taken. In the paper we adapt an approach where patient adherence measures are seen as a stochastic process. Repeated measures are then analyzed as a Markov chain with finite number of states rather than as independent and identically distributed observations, and the transition probabilities between the states are assumed to fully describe the behavior of a patient. The patients can then be clustered or classified using their estimated transition probabilities. These natural clusters can be used to describe the adherence of the patients, to find predictors for adherence, and to predict the future events. The new approach is illustrated and shown to be useful with a simple analysis of a data set from the DART (Development of AntiRetroviral Therapy in Africa) trial in Uganda and Zimbabwe.
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
Liu, Xiaoyang; Ho, Daniel W C; Cao, Jinde; Xu, Wenying
This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.
Turbulent ship wakes: further evidence that the Earth is round.
Lynch, David K
2005-09-20
When viewed from the stern, a ship's turbulent wake appears as a narrow strip of bubble-whitened water converging toward the horizon. The wake does not reach a sharp point on the horizon but has a finite angular width, indicating that the Earth is not flat, but rather round. A simple analysis of the geometry of the observations shows that the radius of the Earth can be estimated using only simple instruments and observations.
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain
NASA Astrophysics Data System (ADS)
Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong
2010-07-01
This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.
Realization of non-linear coherent states by photonic lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn
2015-06-15
In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Numerical analysis on the cutting and finishing efficiency of MRAFF process
NASA Astrophysics Data System (ADS)
Lih, F. L.
2016-03-01
The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.
Stress analysis under component relative interference fit
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1978-01-01
Finite-element computer program enables analysis of distortions and stresses occurring in components having relative interference. Program restricts itself to simple elements and axisymmetric loading situations. External inertial and thermal loads may be applied in addition to forces arising from interference conditions.
Envisioning the Infinite by Projecting Finite Properties
ERIC Educational Resources Information Center
Ely, Robert
2011-01-01
We analyze interviews with 24 post-secondary students as they reason about infinite processes in the context of the tricky Tennis Ball Problem. By metaphorically projecting various properties from the finite states such as counting and indexing, participants envisioned widely varying final states for the infinite process. Depending on which…
Very Large Data Volumes Analysis of Collaborative Systems with Finite Number of States
ERIC Educational Resources Information Center
Ivan, Ion; Ciurea, Cristian; Pavel, Sorin
2010-01-01
The collaborative system with finite number of states is defined. A very large database is structured. Operations on large databases are identified. Repetitive procedures for collaborative systems operations are derived. The efficiency of such procedures is analyzed. (Contains 6 tables, 5 footnotes and 3 figures.)
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1993-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.
Computational strategies for tire monitoring and analysis
NASA Technical Reports Server (NTRS)
Danielson, Kent T.; Noor, Ahmed K.; Green, James S.
1995-01-01
Computational strategies are presented for the modeling and analysis of tires in contact with pavement. A procedure is introduced for simple and accurate determination of tire cross-sectional geometric characteristics from a digitally scanned image. Three new strategies for reducing the computational effort in the finite element solution of tire-pavement contact are also presented. These strategies take advantage of the observation that footprint loads do not usually stimulate a significant tire response away from the pavement contact region. The finite element strategies differ in their level of approximation and required amount of computer resources. The effectiveness of the strategies is demonstrated by numerical examples of frictionless and frictional contact of the space shuttle Orbiter nose-gear tire. Both an in-house research code and a commercial finite element code are used in the numerical studies.
Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, A.A.; Rizwan-uddin; Dorning, J.J.
1995-09-01
A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Frasch, H Frederick; Barbero, Ana M
2017-11-01
Nicotine plus flavorings in a propylene glycol (PG) vehicle are the components of electronic cigarette liquids (e-liquids), which are vaporized and inhaled by the user. Dermal exposure to nicotine and e-liquids may occur among workers in mixing and filling of e-cigarettes in the manufacturing process. Inadvertent skin contact among consumers is also a concern. In vitro nicotine permeation studies using heat-separated human epidermis were performed with surrogate and two commercial e-liquids, neat and aqueous nicotine donor formulations. Steady-state fluxes (J ss ), and lag times (t lag ) were measured for each formulation. In addition, transient (4 h) exposure and finite dose (1-10 μl/cm 2 ) experiments were undertaken using one commercial e-liquid. Average J ss (μg/cm 2 /h) from formulations were: nicotine in PG (24 mg/ml): 3.97; commercial e-liquid containing menthol (25 mg/ml nicotine): 10.2; commercial e-liquid containing limonene (25 mg/ml nicotine): 23.7; neat nicotine: 175. E-liquid lag times ranged from 5 to 10 h. Absorbed fraction of nicotine from finite doses was ≈0.3 at 48 h. The data were applied to transient exposure and finite dose dermal exposure assessment models and to a simple pharmacokinetic model. Three illustrative exposure scenarios demonstrate use of the data to predict systemic uptake and plasma concentrations from dermal exposure. The data demonstrate the potential for significant nicotine absorption through skin contact with e-cigarette refill solutions and the neat nicotine used to mix them.
Efficient discretization in finite difference method
NASA Astrophysics Data System (ADS)
Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris
2015-04-01
Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.
NASA Astrophysics Data System (ADS)
Bhattacharya, Utso; Dutta, Amit
2018-06-01
We study the one-dimensional Kitaev chain with long-range superconductive pairing terms at a finite temperature where the system is prepared in a mixed state in equilibrium with a heat reservoir maintained at a constant temperature T . In order to probe the footprint of the ground-state topological behavior of the model at finite temperature, we look at two global quantities extracted out of two geometrical constructions: the Uhlmann and the interferometric phase. Interestingly, when the long-range effect dominates, the Uhlmann phase approach fails to reproduce the topological aspects of the model in the pure-state limit; on the other hand, the interferometric phase which has a proper pure state reduction, shows a behavior independent of the ambient temperature.
Gao, Fangzheng; Yuan, Ye; Wu, Yuqiang
2016-09-01
This paper studies the problem of finite-time stabilization by state feedback for a class of uncertain nonholonomic systems in feedforward-like form subject to inputs saturation. Under the weaker homogeneous condition on systems growth, a saturated finite-time control scheme is developed by exploiting the adding a power integrator method, the homogeneous domination approach and the nested saturation technique. Together with a novel switching control strategy, the designed saturated controller guarantees that the states of closed-loop system are regulated to zero in a finite time without violation of the constraint. As an application of the proposed theoretical results, the problem of saturated finite-time control for vertical wheel on rotating table is solved. Simulation results are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A Coupling Strategy of FEM and BEM for the Solution of a 3D Industrial Crack Problem
NASA Astrophysics Data System (ADS)
Kouitat Njiwa, Richard; Taha Niane, Ngadia; Frey, Jeremy; Schwartz, Martin; Bristiel, Philippe
2015-03-01
Analyzing crack stability in an industrial context is challenging due to the geometry of the structure. The finite element method is effective for defect-free problems. The boundary element method is effective for problems in simple geometries with singularities. We present a strategy that takes advantage of both approaches. Within the iterative solution procedure, the FEM solves a defect-free problem over the structure while the BEM solves the crack problem over a fictitious domain with simple geometry. The effectiveness of the approach is demonstrated on some simple examples which allow comparison with literature results and on an industrial problem.
Modeling and control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.
1988-01-01
This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
Liu, Donghuan; Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
A mimetic finite difference method for the Stokes problem with elected edge bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, K; Berirao, L
2009-01-01
A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this articlemore » is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.« less
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism
Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651
Purely hydrodynamic ordering of rotating disks at a finite Reynolds number.
Goto, Yusuke; Tanaka, Hajime
2015-01-28
Self-organization of moving objects in hydrodynamic environments has recently attracted considerable attention in connection to natural phenomena and living systems. However, the underlying physical mechanism is much less clear due to the intrinsically nonequilibrium nature, compared with self-organization of thermal systems. Hydrodynamic interactions are believed to play a crucial role in such phenomena. To elucidate the fundamental physical nature of many-body hydrodynamic interactions at a finite Reynolds number, here we study a system of co-rotating hard disks in a two-dimensional viscous fluid at zero temperature. Despite the absence of thermal noise, this system exhibits rich phase behaviours, including a fluid state with diffusive dynamics, a cluster state, a hexatic state, a glassy state, a plastic crystal state and phase demixing. We reveal that these behaviours are induced by the off-axis and many-body nature of nonlinear hydrodynamic interactions and the finite time required for propagating the interactions by momentum diffusion.
Forgetfulness can help you win games.
Burridge, James; Gao, Yu; Mao, Yong
2015-09-01
We present a simple game model where agents with different memory lengths compete for finite resources. We show by simulation and analytically that an instability exists at a critical memory length, and as a result, different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes a connection to statistical urn models, and we show that temperature is mirrored by the agent's memory. Our simple model of memory may be incorporated into other game models with implications that we briefly discuss.
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J; Katzgraber, Helmut G
2016-09-01
We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; Label, Kenneth A.; Kim, Hak; Phan, Anthony; Seidleck, Christina
2014-01-01
Finite state-machines (FSMs) are used to control operational flow in application specific integrated circuits (ASICs) and field programmable gate array (FPGA) devices. Because of their ease of interpretation, FSMs simplify the design and verification process and consequently are significant components in a synchronous design.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.
NASA Technical Reports Server (NTRS)
Sandell, N. R., Jr.; Athans, M.
1975-01-01
The development of the theory of the finite - state, finite - memory (FSFM) stochastic control problem is discussed. The sufficiency of the FSFM minimum principle (which is in general only a necessary condition) was investigated. By introducing the notion of a signaling strategy as defined in the literature on games, conditions under which the FSFM minimum principle is sufficient were determined. This result explicitly interconnects the information structure of the FSFM problem with its optimality conditions. The min-H algorithm for the FSFM problem was studied. It is demonstrated that a version of the algorithm always converges to a particular type of local minimum termed a person - by - person extremal.
Verus: A Tool for Quantitative Analysis of Finite-State Real-Time Systems.
1996-08-12
Symbolic model checking is a technique for verifying finite-state concurrent systems that has been extended to handle real - time systems . Models with...up to 10(exp 30) states can often be verified in minutes. In this paper, we present a new tool to analyze real - time systems , based on this technique...We have designed a language, called Verus, for the description of real - time systems . Such a description is compiled into a state-transition graph and
Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation
NASA Astrophysics Data System (ADS)
Yun, Su-Jin
In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.
Reconnection in Three Dimensions
NASA Technical Reports Server (NTRS)
Hesse, Michael
1999-01-01
Analyzing the qualitative three-dimensional magnetic structure of a plasmoid, we were led to reconsider the concept of magnetic reconnection from a general point of view. The properties of relatively simple magnetic field models provide a strong preference for one of two definitions of magnetic reconnection that exist in the literature. Any concept of magnetic reconnection defined in terms of magnetic topology seems naturally restricted to cases where the magnetic field vanishes somewhere in the nonideal (diffusion) region. The main part of this paper is concerned with magnetic reconnection in nonvanishing magnetic fields (finite-B reconnection), which has attracted less attention in the past. We show that the electric field component parallel to the magnetic field plays a crucial physical role in finite-B reconnection, and we present two theorems involving the former. The first states a necessary and sufficient condition on the parallel electric field for global reconnection to occur. Here the term "global" means the generic case where the breakdown of magnetic connection occurs for plasma elements that stay outside the nonideal region. The second theorem relates the change of magnetic helicity to the parallel electric field for cases where the electric field vanishes at large distances. That these results provide new insight into three-dimensional reconnection processes is illustrated in terms of the plasmoid configuration, which was our starting point.
Experiment and numerical simulation for laser ultrasonic measurement of residual stress.
Zhan, Yu; Liu, Changsheng; Kong, Xiangwei; Lin, Zhongya
2017-01-01
Laser ultrasonic is a most promising method for non-destructive evaluation of residual stress. The residual stress of thin steel plate is measured by laser ultrasonic technique. The pre-stress loading device is designed which can easily realize the condition of the specimen being laser ultrasonic tested at the same time in the known stress state. By the method of pre-stress loading, the acoustoelastic constants are obtained and the effect of different test directions on the results of surface wave velocity measurement is discussed. On the basis of known acoustoelastic constants, the longitudinal and transverse welding residual stresses are measured by the laser ultrasonic technique. The finite element method is used to simulate the process of surface wave detection of welding residual stress. The pulsed laser is equivalent to the surface load and the relationship between the physical parameters of the laser and the load is established by the correction coefficient. The welding residual stress of the specimen is realized by the ABAQUS function module of predefined field. The results of finite element analysis are in good agreement with the experimental method. The simple and effective numerical and experimental methods for laser ultrasonic measurement of residual stress are demonstrated. Copyright © 2016. Published by Elsevier B.V.
A finite element formulation for scattering from electrically large 2-dimensional structures
NASA Technical Reports Server (NTRS)
Ross, Daniel C.; Volakis, John L.
1992-01-01
A finite element formulation is given using the scattered field approach with a fictitious material absorber to truncate the mesh. The formulation includes the use of arbitrary approximation functions so that more accurate results can be achieved without any modification to the software. Additionally, non-polynomial approximation functions can be used, including complex approximation functions. The banded system that results is solved with an efficient sparse/banded iterative scheme and as a consequence, large structures can be analyzed. Results are given for simple cases to verify the formulation and also for large, complex geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheswari, V.S.U.; Ramamurthy, V.S.; Satpathy, L.
1992-12-01
The liquid-drop model type expansion of the finite nuclear compressibility coefficients {ital K}{sub {ital A}} is studied in an energy density formalism, using a leptodermous expansion of the energies. It is found that the effective curvature compressibility coefficient {ital K}{sub {ital c}} is always negative for Skyrme type forces. It is also shown that the unexpectedly large value of about {minus}800 MeV of the surface compressibility coefficient {ital K}{sub {ital s}} found by Sharma {ital et} {ital al}. is an artifact of their analysis procedure.
Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Linder, Eric V.
2017-12-01
Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.
Bi-stability resistant to fluctuations
NASA Astrophysics Data System (ADS)
Caruel, M.; Truskinovsky, L.
2017-12-01
We study a simple micro-mechanical device that does not lose its snap-through behavior in an environment dominated by fluctuations. The main idea is to have several degrees of freedom that can cooperatively resist the de-synchronizing effect of random perturbations. As an inspiration we use the power stroke machinery of skeletal muscles, which ensures at sub-micron scales and finite temperatures a swift recovery of an abruptly applied slack. In addition to hypersensitive response at finite temperatures, our prototypical Brownian snap spring also exhibits criticality at special values of parameters which is another potentially interesting property for micro-scale engineering applications.
Exploring Empirical Rank-Frequency Distributions Longitudinally through a Simple Stochastic Process
Finley, Benjamin J.; Kilkki, Kalevi
2014-01-01
The frequent appearance of empirical rank-frequency laws, such as Zipf’s law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process’s complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications. PMID:24755621
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warehime, Mick; Alexander, Millard H., E-mail: mha@umd.edu
We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H{sub 2}), a heavy-light-light reaction (F+H{sub 2}), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience,more » as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.« less
Exploring empirical rank-frequency distributions longitudinally through a simple stochastic process.
Finley, Benjamin J; Kilkki, Kalevi
2014-01-01
The frequent appearance of empirical rank-frequency laws, such as Zipf's law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process's complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
NASA Astrophysics Data System (ADS)
Messica, A.
2016-10-01
The probability distribution function of a weighted sum of non-identical lognormal random variables is required in various fields of science and engineering and specifically in finance for portfolio management as well as exotic options valuation. Unfortunately, it has no known closed form and therefore has to be approximated. Most of the approximations presented to date are complex as well as complicated for implementation. This paper presents a simple, and easy to implement, approximation method via modified moments matching and a polynomial asymptotic series expansion correction for a central limit theorem of a finite sum. The method results in an intuitively-appealing and computation-efficient approximation for a finite sum of lognormals of at least ten summands and naturally improves as the number of summands increases. The accuracy of the method is tested against the results of Monte Carlo simulationsand also compared against the standard central limit theorem andthe commonly practiced Markowitz' portfolio equations.
Test One to Test Many: A Unified Approach to Quantum Benchmarks
NASA Astrophysics Data System (ADS)
Bai, Ge; Chiribella, Giulio
2018-04-01
Quantum benchmarks are routinely used to validate the experimental demonstration of quantum information protocols. Many relevant protocols, however, involve an infinite set of input states, of which only a finite subset can be used to test the quality of the implementation. This is a problem, because the benchmark for the finitely many states used in the test can be higher than the original benchmark calculated for infinitely many states. This situation arises in the teleportation and storage of coherent states, for which the benchmark of 50% fidelity is commonly used in experiments, although finite sets of coherent states normally lead to higher benchmarks. Here, we show that the average fidelity over all coherent states can be indirectly probed with a single setup, requiring only two-mode squeezing, a 50-50 beam splitter, and homodyne detection. Our setup enables a rigorous experimental validation of quantum teleportation, storage, amplification, attenuation, and purification of noisy coherent states. More generally, we prove that every quantum benchmark can be tested by preparing a single entangled state and measuring a single observable.
Viewing hybrid systems as products of control systems and automata
NASA Technical Reports Server (NTRS)
Grossman, R. L.; Larson, R. G.
1992-01-01
The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.
NASA Astrophysics Data System (ADS)
Rojas, M.; de Souza, S. M.; Rojas, Onofre
2014-03-01
Typically two particles (spins) could be maximally entangled at zero temperature, and for a certain temperature the phenomenon of entanglement vanishes at the threshold temperature. For the Heisenberg coupled model or even the Ising model with a transverse magnetic field, one can observe some rise of entanglement even for a disentangled region at zero temperature. So we can understand this emergence of entanglement at finite temperature as being due to the mixing of some maximally entangled states with some other untangled states. Here, we present a simple one-dimensional Ising model with alternating Ising and Heisenberg spins in an arbitrarily oriented magnetic field, which can be mapped onto the classical Ising model with a magnetic field. This model does not show any evidence of entanglement at zero temperature, but surprisingly at finite temperature rise a pairwise thermal entanglement between two untangled spins at zero temperature when an arbitrarily oriented magnetic field is applied. This effect is a purely magnetic field, and the temperature dependence, as soon as the temperature increases, causes a small increase in concurrence, achieving its maximum at around 0.1. Even for long-range entanglement, a weak concurrence still survives. There are also some real materials that could serve as candidates that would exhibit this effect, such as Dy(NO3)(DMSO)2Cu(opba)(DMSO)2 [DMSO = dimethyl sulfoxide; opba = o-phenylenebis(oxamoto)] [J. Strečka, M. Hagiwara, Y. Han, T. Kida, Z. Honda, and M. Ikeda, Condens. Matter Phys. 15, 43002 (2012), 10.5488/CMP.15.43002].
Asymptotic M5-brane entropy from S-duality
NASA Astrophysics Data System (ADS)
Kim, Seok; Nahmgoong, June
2017-12-01
We study M5-branes compactified on S 1 from the D0-D4 Witten index in the Coulomb phase. We first show that the prepotential of this index is S-dual, up to a simple anomalous part. This is an extension of the well-known S-duality of the 4d N=4 theory to the 6d (2, 0) theory on finite T 2. Using this anomalous S-duality, we find that the asymptotic free energy scales like N 3 when various temperature-like parameters are large. This shows that the number of 5d Kaluza-Klein fields for light D0-brane bound states is proportional to N 3. We also compute some part of the asymptotic free energy from 6d chiral anomalies, which precisely agrees with our D0-D4 calculus.
NASA Astrophysics Data System (ADS)
Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.
2010-11-01
AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.
N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.
[Application of finite element method in spinal biomechanics].
Liu, Qiang; Zhang, Jun; Sun, Shu-Chun; Wang, Fei
2017-02-25
The finite element model is one of the most important methods in study of modern spinal biomechanics, according to the needs to simulate the various states of the spine, calculate the stress force and strain distribution of the different groups in the state, and explore its principle of mechanics, mechanism of injury, and treatment effectiveness. In addition, in the study of the pathological state of the spine, the finite element is mainly used in the understanding the mechanism of lesion location, evaluating the effects of different therapeutic tool, assisting and completing the selection and improvement of therapeutic tool, in order to provide a theoretical basis for the rehabilitation of spinal lesions. Finite element method can be more provide the service for the patients suffering from spinal correction, operation and individual implant design. Among the design and performance evaluation of the implant need to pay attention to the individual difference and perfect the evaluation system. At present, how to establish a model which is more close to the real situation has been the focus and difficulty of the study of human body's finite element.Although finite element method can better simulate complex working condition, it is necessary to improve the authenticity of the model and the sharing of the group by using many kinds of methods, such as image science, statistics, kinematics and so on. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.
A Web-Based Visualization and Animation Platform for Digital Logic Design
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.
2015-01-01
This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…
Finite Size Corrections to the Parisi Overlap Function in the GREM
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2018-01-01
We investigate the effects of finite size corrections on the overlap probabilities in the Generalized Random Energy Model in two situations where replica symmetry is broken in the thermodynamic limit. Our calculations do not use replicas, but shed some light on what the replica method should give for finite size corrections. In the gradual freezing situation, which is known to exhibit full replica symmetry breaking, we show that the finite size corrections lead to a modification of the simple relations between the sample averages of the overlaps Y_k between k configurations predicted by replica theory. This can be interpreted as fluctuations in the replica block size with a negative variance. The mechanism is similar to the one we found recently in the random energy model in Derrida and Mottishaw (J Stat Mech 2015(1): P01021, 2015). We also consider a simultaneous freezing situation, which is known to exhibit one step replica symmetry breaking. We show that finite size corrections lead to full replica symmetry breaking and give a more complete derivation of the results presented in Derrida and Mottishaw (Europhys Lett 115(4): 40005, 2016) for the directed polymer on a tree.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.
1979-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
NASA Technical Reports Server (NTRS)
Bailey, Harry E.; Beam, Richard M.
1991-01-01
Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Simplified adaptive control of an orbiting flexible spacecraft
NASA Astrophysics Data System (ADS)
Maganti, Ganesh B.; Singh, Sahjendra N.
2007-10-01
The paper presents the design of a new simple adaptive system for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. A moment generating device located on the central rigid body of the spacecraft is used for the attitude control. It is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension. In addition, only the pitch angle and its derivative are measured and elastic modes are not available for feedback. The control output variable is chosen as the linear combination of the pitch angle and the pitch rate. Exploiting the hyper minimum phase nature of the spacecraft, a simple adaptive control law is derived for the pitch angle control and elastic mode stabilization. The adaptation rule requires only four adjustable parameters and the structure of the control system does not depend on the order of the truncated spacecraft model. For the synthesis of control system, the measured output error and the states of a third-order command generator are used. Simulation results are presented which show that in the closed-loop system adaptive output regulation is accomplished in spite of large parameter uncertainties and disturbance input.
On One-Dimensional Stretching Functions for Finite-Difference Calculations
NASA Technical Reports Server (NTRS)
Vinokur, M.
1980-01-01
The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.
An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1983-01-01
An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.
Finite element predictions of active buckling control of stiffened panels
NASA Astrophysics Data System (ADS)
Thompson, Danniella M.; Griffin, O. H., Jr.
1993-04-01
Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.
Xu, Xiaole; Chen, Shengyong
2014-01-01
This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach. PMID:24883367
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
ERIC Educational Resources Information Center
Jumper, William D.
2012-01-01
Many high school and introductory college physics courses make use of mousetrap car projects and competitions as a way of providing an engaging hands-on learning experience incorporating Newton's laws, conversion of potential to kinetic energy, dissipative forces, and rotational mechanics. Presented here is a simple analytical and finite element…
Science and Society Test VI: Energy Economics.
ERIC Educational Resources Information Center
Hafemeister, David W.
1982-01-01
Develops simple numerical estimates to quantify a variety of energy economics issues, including among others, a modified Verhulst equation (considers effect of finite resources on petroleum) for supply/demand economics and a phenomenological model for market penetration also presents an analysis of economic returns of an energy conservation…
Numerical Differentiation of Noisy, Nonsmooth Data
Chartrand, Rick
2011-01-01
We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.
Examining the accuracy of the infinite order sudden approximation using sensitivity analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eno, L.; Rabitz, H.
1981-08-15
A method is developed for assessing the accuracy of scattering observables calculated within the framework of the infinite order sudden (IOS) approximation. In particular, we focus on the energy sudden assumption of the IOS method and our approach involves the determination of the sensitivity of the IOS scattering matrix S/sup IOS/ with respect to a parameter which reintroduces the internal energy operator h/sub 0/ into the IOS Hamiltonian. This procedure is an example of sensitivity analysis of missing model components (h/sub 0/ in this case) in the reference Hamiltonian. In contrast to simple first-order perturbation theory a finite result ismore » obtained for the effect of h/sub 0/ on S/sup IOS/. As an illustration, our method of analysis is applied to integral state-to-state cross sections for the scattering of an atom and rigid rotor. Results are generated within the He+H/sub 2/ system and a comparison is made between IOS and coupled states cross sections and the corresponding IOS sensitivities. It is found that the sensitivity coefficients are very useful indicators of the accuracy of the IOS results. Finally, further developments and applications are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAI,YANG; BORISOV,ALEXEY B.; LONGWORTH,JAMES W.
The construction of inverse states in a finite field F{sub P{sub P{alpha}}} enables the organization of the mass scale by associating particle states with residue class designations. With the assumption of perfect flatness ({Omega}total = 1.0), this approach leads to the derivation of a cosmic seesaw congruence which unifies the concepts of space and mass. The law of quadratic reciprocity profoundly constrains the subgroup structure of the multiplicative group of units F{sub P{sub {alpha}}}* defined by the field. Four specific outcomes of this organization are (1) a reduction in the computational complexity of the mass state distribution by a factormore » of {approximately}10{sup 30}, (2) the extension of the genetic divisor concept to the classification of subgroup orders, (3) the derivation of a simple numerical test for any prospective mass number based on the order of the integer, and (4) the identification of direct biological analogies to taxonomy and regulatory networks characteristic of cellular metabolism, tumor suppression, immunology, and evolution. It is generally concluded that the organizing principle legislated by the alliance of quadratic reciprocity with the cosmic seesaw creates a universal optimized structure that functions in the regulation of a broad range of complex phenomena.« less
Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins
NASA Astrophysics Data System (ADS)
Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain
2015-03-01
We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).
A homogeneous 2D deformation of geological interest: Rotation shear
NASA Astrophysics Data System (ADS)
Bastida, Fernando; Bobillo-Ares, Nilo C.; Aller, Jesús; Lisle, Richard J.
2018-07-01
We define a simple two-dimensional deformation called "rotation shear". It has one line of no finite longitudinal strain with invariant direction and another one that rotates with the deformation. An analysis of this deformation is carried out. Rotation shear superficially resembles simple shear but the analysis reveals that the two deformations have very different properties. In general, lines deformed by simple shear show a more complex deformation history and undergo greater longitudinal strain, i.e. are more extended, than lines deformed by rotation shear. Rotation shear is used to explain the development of geological structures such as kink bands, ideal similar folds, crenulation and crenulation cleavage and shear zones.
Finite-Momentum Dimer Bound State in Spin-Orbit Coupled Fermi Gas
NASA Astrophysics Data System (ADS)
Dong, Lin; Jiang, Lei; Hu, Hui; Pu, Han
2013-03-01
We investigate the two-body properties of a spin-1/2 Fermi gas subject to a spin-orbit coupling induced by laser fields. When attractive s-wave interaction between unlike spins is present, the system may form a dimer bound state. Surprisingly, under proper conditions, the bound state obtains finite center-of-mass momentum, whereas under the same condition but in the absence of the two-body interaction, the system has zero total momentum. This unusual result can be regarded as a consequence of the broken Galilean invariance by the spin-orbit coupling. Such a finite-momentum bound state will have profound effects on the many-body properties of the system. HP is supported by the NSF, the Welch Foundation (Grant No. C-1669), and DARPA. HH is supported by the ARC Discovery Projects (Grant No. DP0984522) and the National Basic Research Program of China (NFRP-China, Grant No. 2011CB921502).
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok
2015-01-01
We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.
A motionless actuation system for magnetic shape memory devices
NASA Astrophysics Data System (ADS)
Armstrong, Andrew; Finn, Kevin; Hobza, Anthony; Lindquist, Paul; Rafla, Nader; Müllner, Peter
2017-10-01
Ni-Mn-Ga is a Magnetic Shape Memory (MSM) alloy that changes shape in response to a variable magnetic field. We can intentionally manipulate the shape of the material to function as an actuator, and the material can thus replace complicated small electromechanical systems. In previous work, a very simple and precise solid-state micropump was developed, but a mechanical rotation was required to translate the position of the magnetic field. This mechanical rotation defeats the purpose of the motionless solid-state device. Here we present a solid-state electromagnetic driver to linearly progress the position of the applied magnetic field and the associated shrinkage. The generated magnetic field was focused at either of two pole pieces, providing a mechanism for moving the localized shrinkage in the MSM element. We confirmed that our driver has sufficient strength to actuate the MSM element using optical microscopy. We validated the whole design by comparing results obtained with finite element analysis with the experimentally measured flux density. This drive system serves as a possible replacement to the mechanical rotation of the magnetic field by using a multi-pole electromagnet that sweeps the magnetic field across the MSM micropump element, solid-state switching the current to each pole piece in the multi-pole electromagnet.
ERIC Educational Resources Information Center
Song, Hairong; Ferrer, Emilio
2009-01-01
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altabet, Y. Elia; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu; Stillinger, Frank H.
In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρ{sub S}. The tensile limit at ρ{sub S} is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρ{sub S} is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherentmore » structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.« less
Volume dependence of N-body bound states
NASA Astrophysics Data System (ADS)
König, Sebastian; Lee, Dean
2018-04-01
We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.
Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Fan, Jiang
2018-03-01
Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.
NASA Astrophysics Data System (ADS)
Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley
2017-09-01
Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented subsidiary faults serve as magma pathways, particularly where they are close to the intersection with a master fault. Also, the slip of a fault segment is enhanced when an adjacent fault kinematics is superimposed on the regional tectonic loading. Hence, finite element models help to understand coupled tectonics and volcanic processes, demonstrating that geological and geophysical observations can be accounted for by a small number of key first order boundary conditions.
Relations between heat exchange and Rényi divergences
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2018-04-01
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.
Relations between heat exchange and Rényi divergences.
Wei, Bo-Bo
2018-04-01
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.
Finite element analysis of notch behavior using a state variable constitutive equation
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.
1985-01-01
The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.
Optimized emission in nanorod arrays through quasi-aperiodic inverse design.
Anderson, P Duke; Povinelli, Michelle L
2015-06-01
We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.
Development of methodology for horizontal axis wind turbine dynamic analysis
NASA Technical Reports Server (NTRS)
Dugundji, J.
1982-01-01
Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.
Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...
2015-07-10
Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Mesa, Aliezer; Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm; Saalfrank, Peter
2015-05-21
Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influencemore » of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.« less
NASA Astrophysics Data System (ADS)
Frei, S.; Gilfedder, B. S.
2015-08-01
A quantitative understanding of groundwater-surface water interactions is vital for sustainable management of water quantity and quality. The noble gas radon-222 (Rn) is becoming increasingly used as a sensitive tracer to quantify groundwater discharge to wetlands, lakes, and rivers: a development driven by technical and methodological advances in Rn measurement. However, quantitative interpretation of these data is not trivial, and the methods used to date are based on the simplest solutions to the mass balance equation (e.g., first-order finite difference and inversion). Here we present a new implicit numerical model (FINIFLUX) based on finite elements for quantifying groundwater discharge to streams and rivers using Rn surveys at the reach scale (1-50 km). The model is coupled to a state-of-the-art parameter optimization code Parallel-PEST to iteratively solve the mass balance equation for groundwater discharge and hyporheic exchange. The major benefit of this model is that it is programed to be very simple to use, reduces nonuniqueness, and provides numerically stable estimates of groundwater fluxes and hyporheic residence times from field data. FINIFLUX was tested against an analytical solution and then implemented on two German rivers of differing magnitude, the Salzach (˜112 m3 s-1) and the Rote Main (˜4 m3 s-1). We show that using previous inversion techniques numerical instability can lead to physically impossible negative values, whereas the new model provides stable positive values for all scenarios. We hope that by making FINIFLUX freely available to the community that Rn might find wider application in quantifying groundwater discharge to streams and rivers and thus assist in a combined management of surface and groundwater systems.
Oil & War: Revisiting M. King Hubbert's predictions.
NASA Astrophysics Data System (ADS)
Nur, A. M.
2003-12-01
Oil is, unlike almost any other natural resource on earth, not only finite but also irreversibly consumed. At the same time worldwide data shows that at least at present and for the foreseeable future oil consumption rate is directly proportional to the national standard of living. In 1956 and again in 1962, M. King Hubbert predicted, using a simple model based on the logistic equation, that oil production in the lower 48 United States will follow a bell shaped curve with a production peak around the year 1971 and a production level of ~ 3 billion barrels per year, followed by a rapid decline. While his model approach was ridiculed at the time production data to date reveals a remarkable agreement with this prediction: US oil production did peak in 1971 at a level of 3.2.10 barrels a day and has been declining ever since. M. King Hubbert similarly estimated also the future of oil production worldwide - predicting peak production sometime between 1995-2010 (now!) at a level of 25 to 35 billion barrels per year. Current worldwide production is ~ 27 billion barrels per year. Thus because about half of the oil in earth has already been discovered, the world is destined to face more and bigger conflicts over the control of global supplies. Although many economists and political scientists tend to dismiss the significance of Hubbert's thinking about the finiteness of recoverable oil as well as the consequent implications, it appears that without careful management these conflicts could turn into wars much bigger than in Kuwait in 1991 or in Iraq in 2003. It is therefore imperative for us as earth scientist to try to educate the public and our leaders about the basic geological reality of finite fossil energy resources, and the serious consequences of this fact.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2017-04-01
The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET
N. Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks. PMID:27285146
Some properties of asymmetric Hopfield neural networks with finite time of transition between states
NASA Astrophysics Data System (ADS)
Suleimenov, Ibragim; Mun, Grigoriy; Panchenko, Sergey; Pak, Ivan
2016-11-01
There were implemented samples of asymmetric Hopfield neural networks which have finite time of transition from one state to another. It was shown that in such systems, various oscillation modes could occur. It was revealed that the oscillation of the output signal of certain neuron could be treated as extra logical variable, which describes the state of the neuron. Asymmetric Hopfield neural networks are described in terms of ternary logic. Such logic may be employed in image recognition procedure.
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
Quantum break-time of de Sitter
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gómez, César; Zell, Sebastian
2017-06-01
The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.
Effective model approach to the dense state of QCD matter
NASA Astrophysics Data System (ADS)
Fukushima, Kenji
2011-12-01
The first-principle approach to the dense state of QCD matter, i.e. the lattice-QCD simulation at finite baryon density, is not under theoretical control for the moment. The effective model study based on QCD symmetries is a practical alternative. However the model parameters that are fixed by hadronic properties in the vacuum may have unknown dependence on the baryon chemical potential. We propose a new prescription to constrain the effective model parameters by the matching condition with the thermal Statistical Model. In the transitional region where thermal quantities blow up in the Statistical Model, deconfined quarks and gluons should smoothly take over the relevant degrees of freedom from hadrons and resonances. We use the Polyakov-loop coupled Nambu-Jona-Lasinio (PNJL) model as an effective description in the quark side and show how the matching condition is satisfied by a simple ansäatz on the Polyakov loop potential. Our results favor a phase diagram with the chiral phase transition located at slightly higher temperature than deconfinement which stays close to the chemical freeze-out points.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
A Single-Phase Analytic Equation of State for Solid Polyurea and Polyurea Aerogels
NASA Astrophysics Data System (ADS)
Whitworth, Nicholas; Lambourn, Brian
2017-06-01
Commercially available polymers are commonly used as impactors in high explosive gas-gun experiments. This paper presents a relatively simple, single-phase, analytic equation of state (EoS) for solid polyurea and polyurea aerogels suitable for use in hydrocode simulations. An exponential shock velocity-particle velocity relation is initially fit to available Hugoniot data on the solid material, which has a density of 1.13 g/cm3. This relation is then converted to a finite strain relation along the principal isentrope, which is used as the reference curve for a Mie-Gruneisen form of EoS with an assumed form for the variation of Gruneisen Γ with specific volume. Using the solid EoS in conjunction with the Snowplough model for porosity, experimental data on the shock response of solid polyurea and polyurea aerogels with initial densities of 0.20 and 0.35 g/cm3 can be reproduced to a reasonable degree of accuracy. A companion paper at this conference describes the application of this and other EoS in modelling shock-release-reshock gas-gun experiments on the insensitive high explosive PBX 9502.
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
NASA Astrophysics Data System (ADS)
Honarmand, M.; Moradi, M.
2018-06-01
In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P$sub 1$) in up to three- dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First- order perturbation analysis capability is available at the macroscopic cross section level. (auth)
A VLSI pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Shao, H. M.; Reed, I. S.; Shyu, H. C.
1986-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
The fast kinematic magnetic dynamo and the dissipationless limit
NASA Technical Reports Server (NTRS)
Finn, John M.; Ott, Edward
1990-01-01
The evolution of the magnetic field in models that incorporate chaotic field line stretching, field cancellation, and finite magnetic Reynolds number is examined analytically and numerically. Although the models used here are highly idealized, it is claimed that they display and illustrate typical behavior relevant to fast magnetic dynamic behavior. It is shown, in particular, that consideration of magnetic flux through a finite fixed surface provides a simple and effective way of deducing fast dynamo behavior from the zero resistivity equation. Certain aspects of the fast dynamo problem can thus be reduced to a study of nonlinear dynamic properties of the underlying flow.
An internal variable constitutive model for the large deformation of metals at high temperatures
NASA Technical Reports Server (NTRS)
Brown, Stuart; Anand, Lallit
1988-01-01
The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.
Moulin, Emmanuel; Grondel, Sébastien; Assaad, Jamal; Duquenne, Laurent
2008-12-01
The work described in this paper is intended to present a simple and efficient way of modeling a full Lamb wave emission and reception system. The emitter behavior and the Lamb wave generation are predicted using a two-dimensional (2D) hybrid finite element-normal mode expansion model. Then the receiver electrical response is obtained from a finite element computation with prescribed displacements. A numerical correction is applied to the 2D results in order to account for the in-plane radiation divergence caused by the finite length of the emitter. The advantage of this modular approach is that realistic configurations can be simulated without performing cumbersome modeling and time-consuming computations. It also provides insight into the physical interpretation of the results. A good agreement is obtained between predicted and measured signals. The range of application of the method is discussed.
Dynamical transition for a particle in a squared Gaussian potential
NASA Astrophysics Data System (ADS)
Touya, C.; Dean, D. S.
2007-02-01
We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ = phi2/2 where phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Flexible energy harvesting from hard piezoelectric beams
NASA Astrophysics Data System (ADS)
Delnavaz, Aidin; Voix, Jérémie
2016-11-01
This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.
Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Szafran, J.; Kamiński, M.
2017-02-01
The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
NASA Technical Reports Server (NTRS)
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
Developments in the Gung Ho dynamical core
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2017-04-01
Gung Ho is the new dynamical core being developed for the next generation Met Office weather and climate model, suitable for meeting the exascale challenge on emerging computer architectures. It builds upon the earlier collaborative project between the Met Office, NERC and STFC Daresbury of the same name to investigate suitable numerical methods for dynamical cores. A mixed-finite element approach is used, where different finite element spaces are used to represent various fields. This method provides a number of beneficial improvements over the current model, such a compatibility and inherent conservation on quasi-uniform unstructured meshes, whilst maintaining the accuracy and good dispersion properties of the staggered grid currently used. Furthermore, the mixed finite element approach allows a large degree of flexibility in the type of mesh, order of approximation and discretisation, providing a simple way to test alternative options to obtain the best model possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2017-07-01
This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2002-01-01
An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.
Nature of self-diffusion in two-dimensional fluids
NASA Astrophysics Data System (ADS)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun
2017-12-01
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.
Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Au, Samuel; Berniker, Max; Herr, Hugh
2008-05-01
The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the potential of prosthetic leg controllers that exploit neural signals to trigger terrain-appropriate, local prosthetic leg behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy
2009-12-15
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.
Finite-size Scaling of the Density of States in Photonic Band Gap Crystals
NASA Astrophysics Data System (ADS)
Hasan, Shakeeb Bin; Mosk, Allard P.; Vos, Willem L.; Lagendijk, Ad
2018-06-01
The famous vanishing of the density of states (DOS) in a band gap, be it photonic or electronic, pertains to the infinite-crystal limit. In contrast, all experiments and device applications refer to finite crystals, which raises the question: Upon increasing the linear size L of a crystal, how fast does the DOS approach the infinite-crystal limit? We present a theory for finite crystals that includes Bloch-mode broadening due to the presence of crystal boundaries. Our results demonstrate that the DOS for frequencies inside a band gap has a 1 /L scale dependence for crystals in one, two and three dimensions.
Computing Quantitative Characteristics of Finite-State Real-Time Systems
1994-05-04
Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this
Singular perturbation, state aggregation and nonlinear filtering
NASA Technical Reports Server (NTRS)
Hijab, O.; Sastry, S.
1981-01-01
Consideration is given to a state process evolving in R(n), whose motion is that of a pure jump process in R(n) in the 0(1) time scale, upon which is superimposed a continuous motion along the orbits of a gradient-like vector field g in R(n) in the 0(1/epsilon) time scale. The infinitesimal generator of the state process is, in other words, of the form L + (1/epsilon)g. It follows from the main results presented that the projected filters converge to the finite state Wonham filter corresponding to the problem of estimating the finite state process in the presence of additive white noise.
Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet
NASA Astrophysics Data System (ADS)
Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.
2017-03-01
The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.
Spatial Dimension as a Variable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Doren, Douglas James
Several approximation methods potentially useful in electronic structure calculations are developed. These methods all treat the spatial dimension, D, as a variable. In an Introduction, the motivations for these methods are described, with special attention to the semiclassical 1/D expansion. Several terms in this expansion have been calculated for two-electron atoms. The results have qualitative appeal but poor convergence properties when D = 3. Chapter 1 shows that this convergence problem is due to singularities in the energy at D = 1 and a method of removing their effects is demonstrated. Chapter 2 treats several model problems, showing how to identify special dimensions at which the energy becomes singular or the Hamiltonian simplifies. Expansions are developed about these special finite values of D which are quite accurate at low order, regardless of the physical parameters of the Hamiltonian. In Chapter 3, expansions about singular points in the energy at finite values of D are used to resum the 1/D series in cases where its leading orders are not sufficient. This leads to a hybrid expansion which typically improves on both the 1/D and the finite D series. These methods are applied in Chapter 4 to two -electron atoms. The ground state energy of few-electron systems is dominated by the presence of a pole when D = 1. The residue of this pole is determined by the eigenvalue of a simple limiting Schrodinger equation. The limit and first order correction are determined for both unapproximated nonrelativistic two-electron atoms and the Hartree-Fock approximation to them. The hybrid expansion using only the first few terms in the 1/D series determines the energy at arbitrary D, providing estimates accurate to four or five figures when D = 3. Degeneracies between D = 3 states and those in nonphysical dimensions are developed in Chapter 5 which provide additional applications for this series. Chapter 6 illustrates these methods in an application to the H(' -) ion, an especially stringent test case. Proposals for future work in this field are described in the final chapter.
Preconditioning and the limit to the incompressible flow equations
NASA Technical Reports Server (NTRS)
Turkel, E.; Fiterman, A.; Vanleer, B.
1993-01-01
The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.
Majorana bound states in the finite-length chain
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2015-08-01
Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.
Improved motors for utility applications: Volume 6, Squirrel-cage rotor analysis: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, J.W.; McCoy, R.M.
1986-11-01
An analysis of squirrel cage induction motor rotors was undertaken in response to an Industry Assessment Study finding 10% of motor failures to be rotor related. The analysis focuses on evaluating rotor design life. The evaluation combines state-of-the-art electromagnetic, thermal, and structural solution techniques into an integrated analysis and presents a simple summary. Finite element techniques are central tools in the analysis. The analysis is applied to a specific forced draft fan drive design. Fans as a category of application have a higher failure rate than other categories of power station auxiliary motor applications. Forced-draft fan drives are one ofmore » the major fan drives which accelerate a relatively high value of rotor load inertia. Various starting and operating conditions are studied for this forced-draft fan drive motor including a representative application duty cycle.« less