Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
NASA Astrophysics Data System (ADS)
Akasaka, Ryo
This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.
NASA Astrophysics Data System (ADS)
Sun, Jiu-Xun; Cai, Ling-Cang; Wu, Qiang; Jin, Ke
2013-09-01
Based on the expansion and extension of the virial equation of state (EOS) of hard-sphere fluids solved by the Percus-Yevick integration equation, a universal cubic (UC) EOS is developed. The UC EOS is applied to model hard-sphere and Lennard-Jones (LJ) fluids, simple Ar and N2 liquids at low temperatures, and supercritical Ar and N2 fluids at high temperatures, as well as ten solids, respectively. The three parameters are determined for the hard-sphere fluid by fitting molecular dynamics (MD) simulation data of the third to eighth virial coefficients in the literature; for other fluids by fitting isothermal compression data; and for solids by using the Einstein model. The results show that the UC EOS gives better results than the Carnahan-Starling EOS for compressibility of hard-sphere fluids. The Helmholtz free energy and internal energy for LJ fluids are predicted and compared with MD simulation data. The calculated pressures for simple Ar and N2 liquids are compared with experimental data. The agreement is fairly good. Eight three-parameter EOSs are applied to describe isothermals of ten typical solids. It is shown that the UC EOS gives the best precision with correct behavior at high-pressure limitation. The UC EOS considering thermal effects is used to analytically evaluate the isobaric thermal expansivity and isothermal compressibility coefficients. The results are in good agreement with experimental data.
Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2010-12-15
A molecular dynamics (MD) approach was employed to simulate the imbibition of a designed nanopore by a simple fluid (i.e., a Lennard-Jones (LJ) fluid). The length of imbibition as a function of time for various interactions between the LJ fluid and the pore wall was recorded for this system (i.e., the LJ fluid and the nanopore). By and large, the kinetics of imbibition was successfully described by the Lucas-Washburn (LW) equation, although deviation from it was observed in some cases. This lack of agreement is due to the neglect of the dynamic contact angle (DCA) in the LW equation. Two commonly used models (i.e., hydrodynamic and molecular-kinetic (MK) models) were thus employed to calculate the DCA. It is demonstrated that the MK model is able to justify the simulation results in which are not in good agreement with the simple LW equation. However, the hydrodynamic model is not capable of doing that. Further investigation of the MD simulation data revealed an interesting fact that there is a direct relationship between the wall-fluid interaction and the speed of the capillary imbibition. More evidence to support this claim is presented. Copyright © 2010 Elsevier Inc. All rights reserved.
Statistical mechanics of homogeneous partly pinned fluid systems.
Krakoviack, Vincent
2010-12-01
The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.
The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.
Hunjan, Jagtar Singh; Eu, Byung Chan
2010-04-07
The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.
Corresponding-states behavior of an ionic model fluid with variable dispersion interactions
NASA Astrophysics Data System (ADS)
Weiss, Volker C.
2016-06-01
Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.
Corresponding-states behavior of an ionic model fluid with variable dispersion interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de
2016-06-21
Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less
A simple model of fluid flow and electrolyte balance in the body
NASA Technical Reports Server (NTRS)
White, R. J.; Neal, L.
1973-01-01
The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.
Optimized theory for simple and molecular fluids.
Marucho, M; Montgomery Pettitt, B
2007-03-28
An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.
"Back of the Spoon" Outlook of Coanda Effect
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Bon, S.; Oss, S.
2009-01-01
The tendency of fluids to follow, in certain conditions, curved profiles is often referred to as the Coanda effect. A simple experiment modeling the common teapot effect, the curling of the liquid around the beak when it is poured, can be used in the classroom to illustrate simple dynamic principles and basic fluid dynamics concepts as well.
Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids
NASA Astrophysics Data System (ADS)
Soroush, F.; Moosavi, A.
2018-05-01
When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Slantwise convection on fluid planets: Interpreting convective adjustment from Juno observations
NASA Astrophysics Data System (ADS)
O'Neill, M. E.; Kaspi, Y.; Galanti, E.
2016-12-01
NASA's Juno mission provides unprecedented microwave measurements that pierce Jupiter's weather layer and image the transition to an adiabatic fluid below. This region is expected to be highly turbulent and complex, but to date most models use the moist-to-dry transition as a simple boundary. We present simple theoretical arguments and GCM results to argue that columnar convection is important even in the relatively thin boundary layer, particularly in the equatorial region. We first demonstrate how surface cooling can lead to very horizontal parcel paths, using a simple parcel model. Next we show the impact of this horizontal motion on angular momentum flux in a high-resolution Jovian model. The GCM is a state-of-the-art modification of the MITgcm, with deep geometry, compressibility and interactive two-stream radiation. We show that slantwise convection primarily mixes fluid along columnar surfaces of angular momentum, and discuss the impacts this should have on lapse rate interpretation of both the Galileo probe sounding and the Juno microwave observations.
Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids
NASA Astrophysics Data System (ADS)
Hadjiconstantinou, Nicolas; Wang, Gerald
2017-11-01
Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.
Rock deformation models and fluid leak-off in hydraulic fracturing
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya M.; Bercovici, David; Oristaglio, Michael L.
2013-09-01
Fluid loss into reservoir rocks during hydraulic fracturing is modelled via a poro-elastoplastic pressure diffusion equation in which the total compressibility is a sum of fluid, rock and pore space compressibilities. Inclusion of pore compressibility and porosity-dependent permeability in the model leads to a strong pressure dependence of leak-off (i.e. drainage rate). Dilation of the matrix due to fluid invasion causes higher rates of fluid leak-off. The present model is appropriate for naturally fractured and tight gas reservoirs as well as for soft and poorly consolidated formations whose mechanical behaviour departs from simple elastic laws. Enhancement of the leak-off coefficient by dilation, predicted by the new model, may help explain the low percentage recovery of fracturing fluid (usually between 5 and 50 per cent) in shale gas stimulation by hydraulic fracturing.
NASA Astrophysics Data System (ADS)
Johari, A. H.; Muslim
2018-05-01
Experiential learning model using simple physics kit has been implemented to get a picture of improving attitude toward physics senior high school students on Fluid. This study aims to obtain a description of the increase attitudes toward physics senior high school students. The research method used was quasi experiment with non-equivalent pretest -posttest control group design. Two class of tenth grade were involved in this research 28, 26 students respectively experiment class and control class. Increased Attitude toward physics of senior high school students is calculated using an attitude scale consisting of 18 questions. Based on the experimental class test average of 86.5% with the criteria of almost all students there is an increase and in the control class of 53.75% with the criteria of half students. This result shows that the influence of experiential learning model using simple physics kit can improve attitude toward physics compared to experiential learning without using simple physics kit.
NASA Astrophysics Data System (ADS)
Kawakubo, T.
2016-05-01
A simple, stable and reliable modeling of the real gas nature of the working fluid is required for the aerodesigns of the turbine in the Organic Rankine Cycle and of the compressor in the Vapor Compression Cycle. Although many modern Computational Fluid Dynamics tools are capable of incorporating real gas models, simulations with such a gas model tend to be more time-consuming than those with a perfect gas model and even can be unstable due to the simulation near the saturation boundary. Thus a perfect gas approximation is still an attractive option to stably and swiftly conduct a design simulation. In this paper, an effective method of the CFD simulation with a perfect gas approximation is discussed. A method of representing the performance of the centrifugal compressor or the radial-inflow turbine by means of each set of non-dimensional performance parameters and translating the fictitious perfect gas result to the actual real gas performance is presented.
Cloud fluid models of gas dynamics and star formation in galaxies
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
GFSSP Training Course Lectures
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.
2008-01-01
GFSSP has been extended to model conjugate heat transfer Fluid Solid Network Elements include: a) Fluid nodes and Flow Branches; b) Solid Nodes and Ambient Nodes; c) Conductors connecting Fluid-Solid, Solid-Solid and Solid-Ambient Nodes. Heat Conduction Equations are solved simultaneously with Fluid Conservation Equations for Mass, Momentum, Energy and Equation of State. The extended code was verified by comparing with analytical solution for simple conduction-convection problem The code was applied to model: a) Pressurization of Cryogenic Tank; b) Freezing and Thawing of Metal; c) Chilldown of Cryogenic Transfer Line; d) Boil-off from Cryogenic Tank.
Mesoscopic model for binary fluids
NASA Astrophysics Data System (ADS)
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
NASA Astrophysics Data System (ADS)
Weiss, Volker C.; Leroy, Frédéric
2016-06-01
More than two decades ago, the elusiveness of a liquid-vapor equilibrium and a corresponding critical point in simulations of the supposedly simple model of dipolar hard spheres came as a surprise to many liquid matter theorists. van Leeuwen and Smit [Phys. Rev. Lett. 71, 3991 (1993)] showed that a minimum of attractive dispersion interactions among the dipolar particles may be needed to observe regular fluid behavior. Here, we adopt their approach and use an only slightly modified model, in which the original point dipole is replaced by a dipole moment produced by charges that are separated in space, to study the influence of dispersion interactions of variable strength on the coexistence and interfacial properties of a polar fluid. The thermophysical properties are discussed in terms of Guggenheim's corresponding-states approach. In this way, the coexistence curve, the critical compressibility factor, the surface tension, Guggenheim's ratio, and modifications of Guldberg's and Trouton's rules (related to the vapor pressure and the enthalpy of vaporization) are analyzed. As the importance of dispersion is decreased, a crossover from simple-fluid behavior to that characteristic of strongly dipolar systems takes place; for some properties, this transition is monotonic, but for others it occurs non-monotonically. For strongly dipolar systems, the reduced surface tension is very low, whereas Guggenheim's ratio and Guldberg's ratio are found to be high. The critical compressibility factor is smaller, and the coexistence curve is wider and more skewed than for simple fluids. For very weak dispersion, liquid-vapor equilibrium is still observable, but the interfacial tension is extremely low and may, eventually, vanish marking the end of the existence of a liquid phase. We discuss the implications of our findings for real fluids, in particular, for hydrogen fluoride.
Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Sharma, Vivek
Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.
A systems approach to theoretical fluid mechanics: Fundamentals
NASA Technical Reports Server (NTRS)
Anyiwo, J. C.
1978-01-01
A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.
Calculating the surface tension of binary solutions of simple fluids of comparable size
NASA Astrophysics Data System (ADS)
Zaitseva, E. S.; Tovbin, Yu. K.
2017-11-01
A molecular theory based on the lattice gas model (LGM) is used to calculate the surface tension of one- and two-component planar vapor-liquid interfaces of simple fluids. Interaction between nearest neighbors is considered in the calculations. LGM is applied as a tool of interpolation: the parameters of the model are corrected using experimental surface tension data. It is found that the average accuracy of describing the surface tension of pure substances (Ar, N2, O2, CH4) and their mixtures (Ar-O2, Ar-N2, Ar-CH4, N2-CH4) does not exceed 2%.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Howard, W M; Fried, L E
2001-08-08
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less
Numerical evaluation of a single ellipsoid motion in Newtonian and power-law fluids
NASA Astrophysics Data System (ADS)
Férec, Julien; Ausias, Gilles; Natale, Giovanniantonio
2018-05-01
A computational model is developed for simulating the motion of a single ellipsoid suspended in a Newtonian and power-law fluid, respectively. Based on a finite element method (FEM), the approach consists in seeking solutions for the linear and angular particle velocities using a minimization algorithm, such that the net hydrodynamic force and torque acting on the ellipsoid are zero. For a Newtonian fluid subjected to a simple shear flow, the Jeffery's predictions are recovered at any aspect ratios. The motion of a single ellipsoidal fiber is found to be slightly disturbed by the shear-thinning character of the suspending fluid, when compared with the Jeffery's solutions. Surprisingly, the perturbation can be completely neglected for a particle with a large aspect ratio. Furthermore, the particle centroid is also found to translate with the same linear velocity as the undisturbed simple shear flow evaluated at particle centroid. This is confirmed by recent works based on experimental investigations and modeling approach (1-2).
Vena, Daniel; Yadollahi, A; Bradley, T Douglas
2014-01-01
Obstructive sleep apnea (OSA) is a common respiratory disorder among adults. Recently we have shown that sedentary lifestyle causes an increase in diurnal leg fluid volume (LFV), which can shift into the neck at night when lying down to sleep and increase OSA severity. The purpose of this work was to investigate various metrics that represent baseline fluid retention in the legs and examine their correlation with neck fluid volume (NFV) and to develop a robust model for predicting fluid accumulation in the neck. In 13 healthy awake non-obese men, LFV and NFV were recorded continuously and simultaneously while standing for 5 minutes and then lying supine for 90 minutes. Simple regression was used to examine correlations between baseline LFV, baseline neck circumference (NC) and change in LFV with the outcome variables: change in NC (ΔNC) and in NFV (ΔNFV90) after lying supine for 90 minutes. An exhaustive grid search was implemented to find combinations of input variables which best modeled outcomes. We found strong positive correlations between baseline LFV (supine and standing) and ΔNFV90. Models developed for predicting ΔNFV90 included baseline standing LFV, baseline NC combined with change in LFV after lying supine for 90 minutes. These correlations and the developed models suggest that a greater baseline LFV might contribute to increased fluid accumulation in the neck. These results give more evidence that sedentary lifestyle might play a role in the pathogenesis of OSA by increasing the baseline LFV. The best models for predicting ΔNC include baseline LFV and NC; they improved accuracies of estimating ΔNC over individual predictors, suggesting that a combination of baseline fluid metrics is a good predictor of the change in NC while lying supine. Future work is aimed at adding additional baseline demographic features to improve model accuracy and eventually use it as a screening tool to predict severity of OSA prior to sleep.
Some anticipated contributions to core fluid dynamics from the GRM
NASA Technical Reports Server (NTRS)
Vanvorhies, C.
1985-01-01
It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.
Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon
2015-01-15
An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of variousmore » non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.« less
Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M
2007-08-30
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu
2015-11-15
The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2012-10-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.
Nonequilibrium Interfacial Tension in Simple and Complex Fluids
NASA Astrophysics Data System (ADS)
Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca
2016-10-01
Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
NASA Astrophysics Data System (ADS)
Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.
2002-07-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap
NASA Astrophysics Data System (ADS)
Golinelli, Nicola; Spaggiari, Andrea
2018-07-01
This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.
Free-energy functional of the Debye-Hückel model of simple fluids
NASA Astrophysics Data System (ADS)
Piron, R.; Blenski, T.
2016-12-01
The Debye-Hückel approximation to the free energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Hückel equivalent to the functional derived in the hypernetted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-Hückel integral equation through a minimization with respect to the pair correlation function, leads to the correct form of the internal energy, and fulfills the virial theorem.
NASA Astrophysics Data System (ADS)
Hess, Julian; Wang, Yongqi
2016-11-01
A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eylenceoğlu, E.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.
2015-01-15
Two-dimensional hybrid Monte Carlo–fluid numerical code is developed and applied to model the dc glow discharge. The model is based on the separation of electrons into two parts: the low energetic (slow) and high energetic (fast) electron groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Fast electrons, represented by suitable number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume, which are simulated by the Monte Carlo collision method. Electrostatic field is obtained from the solution of Poisson equation. The test calculations weremore » carried out for an argon plasma. Main properties of the glow discharge are considered. Current-voltage curves, electric field reversal phenomenon, and the vortex current formation are developed and discussed. The results are compared to those obtained from the simple and extended fluid models. Contrary to reports in the literature, the analysis does not reveal significant advantages of existing hybrid methods over the extended fluid model.« less
Mechanisms of fluid production in smooth adhesive pads of insects
Dirks, Jan-Henning; Federle, Walter
2011-01-01
Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone. PMID:21208970
Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids
NASA Astrophysics Data System (ADS)
Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus
2017-11-01
The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.
Sinking bubbles in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; Kaar, S.; O'Brien, S. B. G.
2018-04-01
A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
NASA Astrophysics Data System (ADS)
Riley, Emily E.; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Corresponding-states behavior of SPC/E-based modified (bent and hybrid) water models
NASA Astrophysics Data System (ADS)
Weiss, Volker C.
2017-02-01
The remarkable and sometimes anomalous properties of water can be traced back at the molecular level to the tetrahedral coordination of molecules due to the ability of a water molecule to form four hydrogen bonds to its neighbors; this feature allows for the formation of a network that greatly influences the thermodynamic behavior. Computer simulations are becoming increasingly important for our understanding of water. Molecular models of water, such as SPC/E, are needed for this purpose, and they have proved to capture many important features of real water. Modifications of the SPC/E model have been proposed, some changing the H-O-H angle (bent models) and others increasing the importance of dispersion interactions (hybrid models), to study the structural features that set water apart from other polar fluids and from simple fluids such as argon. Here, we focus on the properties at liquid-vapor equilibrium and study the coexistence curve, the interfacial tension, and the vapor pressure in a corresponding-states approach. In particular, we calculate Guggenheim's ratio for the reduced apparent enthalpy of vaporization and Guldberg's ratio for the reduced normal boiling point. This analysis offers additional insight from a more macroscopic, thermodynamic perspective and augments that which has already been learned at the molecular level from simulations. In the hybrid models, the relative importance of dispersion interactions is increased, which turns the modified water into a Lennard-Jones-like fluid. Consequently, in a corresponding-states framework, the typical behavior of simple fluids, such as argon, is seen to be approached asymptotically. For the bent models, decreasing the bond angle turns the model essentially into a polar diatomic fluid in which the particles form linear molecular arrangements; as a consequence, characteristic features of the corresponding-states behavior of hydrogen halides emerge.
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2013-01-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691
Thickness-shear mode quartz crystal resonators in viscoelastic fluid media
NASA Astrophysics Data System (ADS)
Arnau, A.; Jiménez, Y.; Sogorb, T.
2000-10-01
An extended Butterworth-Van Dyke (EBVD) model to characterize a thickness-shear mode quartz crystal resonator in a semi-infinite viscoelastic medium is derived by means of analysis of the lumped elements model described by Cernosek et al. [R. W. Cernosek, S. J. Martin, A. R. Hillman, and H. L. Bandey, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1399 (1998)]. The EBVD model parameters are related to the viscoelastic properties of the medium. A capacitance added to the motional branch of the EBVD model has to be included when the elastic properties of the fluid are considered. From this model, an explicit expression for the frequency shift of a quartz crystal sensor in viscoelastic media is obtained. By combining the expressions for shifts in the motional series resonant frequency and in the motional resistance, a simple equation that relates only one unknown (the loss factor of the fluid) to those measurable quantities, and two simple explicit expressions for determining the viscoelastic properties of semi-infinite fluid media have been derived. The proposed expression for the parameter Δf/ΔR is compared with the corresponding ratio obtained with data computed from the complete admittance model. Relative errors below 4.5%, 3%, and 1.2% (for the ratios of the load surface mechanical impedance to the quartz shear characteristic impedance of 0.3, 0.25, and 0.1, respectively), are obtained in the range of the cases analyzed. Experimental data from the literature are used to validate the model.
Entropic Lattice Boltzmann Methods
2001-12-10
model of fluid dynamics in one dimension, first considered by Renda et al. in 1997 [14]. Here the geometric picture involves a four dimensional polytope...convention of including constant terms in an extra column of the matrix, using the device of appending 1 to the column vector of unknowns. In general, there...we apply the entropic lattice Boltzmann method to a simple five-velocity model of fluid dynamics in one dimension, first considered by Renda et al
Conifer ovulate cones accumulate pollen principally by simple impaction.
Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R
2007-11-13
In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.
Conifer ovulate cones accumulate pollen principally by simple impaction
Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.
2007-01-01
In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613
Whitcomb, David C; Ermentrout, G Bard
2004-08-01
To develop a simple, physiologically based mathematical model of pancreatic duct cell secretion using experimentally derived parameters that generates pancreatic fluid bicarbonate concentrations of >140 mM after CFTR activation. A new mathematical model was developed simulating a duct cell within a proximal pancreatic duct and included a sodium-2-bicarbonate cotransporter (NBC) and sodium-potassium pump (NaK pump) on a chloride-impermeable basolateral membrane, CFTR on the luminal membrane with 0.2 to 1 bicarbonate to chloride permeability ratio. Chloride-bicarbonate antiporters (Cl/HCO3 AP) were added or subtracted from the basolateral (APb) and luminal (APl) membranes. The model was integrated over time using XPPAUT. This model predicts robust, NaK pump-dependent bicarbonate secretion with opening of the CFTR, generates and maintains pancreatic fluid secretion with bicarbonate concentrations >140 mM, and returns to basal levels with CFTR closure. Limiting CFTR permeability to bicarbonate, as seen in some CFTR mutations, markedly inhibited pancreatic bicarbonate and fluid secretion. A simple CFTR-dependent duct cell model can explain active, high-volume, high-concentration bicarbonate secretion in pancreatic juice that reproduces the experimental findings. This model may also provide insight into why CFTR mutations that predominantly affect bicarbonate permeability predispose to pancreatic dysfunction in humans.
Mantle convection and the state of the Earth's interior
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1987-01-01
During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.
Fish robotics and hydrodynamics
NASA Astrophysics Data System (ADS)
Lauder, George
2010-11-01
Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.
NASA Astrophysics Data System (ADS)
Holzapfel, Wilfried B.
2018-06-01
Thermodynamic modeling of fluids (liquids and gases) uses mostly series expansions which diverge at low temperatures and do not fit to the behavior of metastable quenched fluids (amorphous, glass like solids). These divergences are removed in the present approach by the use of reasonable forms for the "cold" potential energy and for the thermal pressure of the fluid system. Both terms are related to the potential energy and to the thermal pressure of the crystalline phase in a coherent way, which leads to simpler and non diverging series expansions for the thermal pressure and thermal energy of the fluid system. Data for solid and fluid argon are used to illustrate the potential of the present approach.
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninokata, H.; Deguchi, A.; Kawahara, A.
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
Fractal Viscous Fingering in Fracture Networks
NASA Astrophysics Data System (ADS)
Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.
2007-12-01
We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.
Kinetic electron model for plasma thruster plumes
NASA Astrophysics Data System (ADS)
Merino, Mario; Mauriño, Javier; Ahedo, Eduardo
2018-03-01
A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.
Weiss, Volker C
2010-07-22
One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.
Brenner, Howard
2011-12-01
This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.
Recent applications of spectral methods in fluid dynamics
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
Origins of spectral methods, especially their relation to the method of weighted residuals, are surveyed. Basic Fourier and Chebyshev spectral concepts are reviewed and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic and mixzed type. Fluid dynamical applications are emphasized.
Nanoscale simple-fluid behavior under steady shear.
Yong, Xin; Zhang, Lucy T
2012-05-01
In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.
NASA Astrophysics Data System (ADS)
Tejeda, E.
2018-04-01
We present a simple, analytic model of an incompressible fluid accreting onto a moving gravitating object. This solution allows us to probe the highly subsonic regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a previously known relativistic model of a stiff fluid accreting onto a black hole. Besides filling this blank in the literature, the new solution should be useful as a benchmark test for numerical hydrodynamics codes. Given its simplicity, it can also be used as an illustrative example in a gas dynamics course.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot
NASA Astrophysics Data System (ADS)
Massey, Brian; Morgansen, Kristi; Dabiri, Dana
2003-11-01
Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.
NASA Astrophysics Data System (ADS)
Torabinia, Matin; Farzbod, Ali; Moon, Hyejin
2018-04-01
In electrowetting-on-dielectric (EWOD) microfluidics, a motion of a fluid is created by a voltage applied to the fluid/surface interface. Water and aqueous solutions are the most frequently used fluids in EWOD devices. In order for EWOD microfluidics to be a versatile platform for various applications, however, movability of different types of fluids other than aqueous solutions should be understood. An electromechanical model using a simple RC circuit has been used to predict the mechanical force exerted on a liquid droplet upon voltage application. In this present study, two important features missed in previous works are addressed. Energy dissipation by contact line friction is considered in the new model as the form of resistor. The phase angle is taken into account in the analysis of the AC circuit. The new electromechanical model and computation results are validated with experimental measurements of forces on two different liquids. The model is then used to explain influences of contact angle hysteresis, surface tension, conductivity, and dielectric constant of fluids to the mechanical force on a liquid droplet.
The Fluid Foil: The Seventh Simple Machine
ERIC Educational Resources Information Center
Mitts, Charles R.
2012-01-01
A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…
Key issues, observations and goals for coupled, thermodynamic/geodynamic models
NASA Astrophysics Data System (ADS)
Kelemen, P. B.
2017-12-01
In coupled, thermodynamic/geodynamic models, focus should be on processes involving major rock forming minerals and simple fluid compositions, and parameters with first-order effects on likely dynamic processes: In a given setting, will fluid mass increase or decrease? How about solid density? Will flow become localized or diffuse? Will rocks flow or break? How do reactions affect global processes such as formation and evolution of the plates, plate boundary deformation, metamorphism, weathering, climate and geochemical cycles. Important reaction feedbacks in geodynamics include formation of dissolution channels and armored channels; divergence of flow and formation of permeability barriers due to crystallization in pore space; localization of fluid transport and ductile deformation in shear zones; reaction-driven cracking; mechanical channels granular media; shear heating; density instabilities; viscous fluid-weakening; fluid-induced frictional failure; and hydraulic fracture. Density instabilities often lead to melting, and there is an interesting dialectic between porous flow and diapirs. The best models provide a simple but comprehensive framework that can account for the general features in many or most of these phenomena. Ideally, calculations based on thermodynamic data and rheological observations alone should delineate the regimes in which each of these processes will occur and the boundaries between them. These often start with "toy models" and lab experiments on analog systems, with highly approximate scaling to simplified geological conditions and materials. Geologic observations provide the best constraints where `frozen' fluid transport pathways or deformation processes are preserved. Inferences about completed processes based on fluid or solid products alone is more challenging and less unique. Not all important processes have good examples in outcrop, so directed searches for specific phenomena may fail. A highly generalized approach provides a way forward, allowing serendipitous discoveries of iconic examples wherever they are best developed. These then constrain and inspire the overall "phase diagram" of geodynamic processes.
Two Simple Models for Fracking
NASA Astrophysics Data System (ADS)
Norris, Jaren Quinn
Recent developments in fracking have enable the recovery of oil and gas from tight shale reservoirs. These developments have also made fracking one of the most controversial environmental issues in the United States. Despite the growing controversy surrounding fracking, there is relatively little publicly available research. This dissertation introduces two simple models for fracking that were developed using techniques from non-linear and statistical physics. The first model assumes that the volume of induced fractures must be equal to the volume of injected fluid. For simplicity, these fractures are assumed to form a spherically symmetric damage region around the borehole. The predicted volumes of water necessary to create a damage region with a given radius are in good agreement with reported values. The second model is a modification of invasion percolation which was previously introduced to model water flooding. The reservoir rock is represented by a regular lattice of local traps that contain oil and/or gas separated by rock barriers. The barriers are assumed to be highly heterogeneous and are assigned random strengths. Fluid is injected from a central site and the weakest rock barrier breaks allowing fluid to flow into the adjacent site. The process repeats with the weakest barrier breaking and fluid flowing to an adjacent site each time step. Extensive numerical simulations were carried out to obtain statistical properties of the growing fracture network. The network was found to be fractal with fractal dimensions differing slightly from the accepted values for traditional percolation. Additionally, the network follows Horton-Strahler and Tokunaga branching statistics which have been used to characterize river networks. As with other percolation models, the growth of the network occurs in bursts. These bursts follow a power-law size distribution similar to observed microseismic events. Reservoir stress anisotropy is incorporated into the model by assigning horizontal bonds weaker strengths on average than vertical bonds. Numerical simulations show that increasing bond strength anisotropy tends to reduce the fractal dimension of the growing fracture network, and decrease the power-law slope of the burst size distribution. Although simple, these two models are useful for making informed decisions about fracking.
Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
Park, H M; Lee, W M
2008-01-15
Many biofluids such as blood and DNA solutions are viscoelastic and exhibit extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. However, the governing equations for viscoelastic flows are not easily solvable, especially for electroosmotic flows where the streamwise velocity varies rapidly from zero at the wall to a nearly uniform velocity at the outside of the very thin electric double layer. In the present investigation, we have devised a simple method to find the volumetric flow rate of viscoelastic electroosmotic flows through microchannels. It is based on the concept of the Helmholtz-Smoluchowski velocity which is widely adopted in the electroosmotic flows of Newtonian fluids. It is shown that the Helmholtz-Smoluchowski velocity for viscoelastic fluids can be found by solving a simple cubic algebraic equation. The volumetric flow rate obtained using this Helmholtz-Smoluchowski velocity is found to be almost the same as that obtained by solving the governing partial differential equations for various viscoelastic fluids.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
A design methodology of magentorheological fluid damper using Herschel-Bulkley model
NASA Astrophysics Data System (ADS)
Liao, Linqing; Liao, Changrong; Cao, Jianguo; Fu, L. J.
2003-09-01
Magnetorheological fluid (MR fluid) is highly concentrated suspension of very small magnetic particle in inorganic oil. The essential behavior of MR fluid is its ability to reversibly change from free-flowing, linear viscous liquids to semi-solids having controllable yield strength in milliseconds when exposed to magnetic field. This feature provides simple, quiet, rapid-response interfaces between electronic controls and mechanical systems. In this paper, a mini-bus MR fluid damper based on plate Poiseuille flow mode is typically analyzed using Herschel-Bulkley model, which can be used to account for post-yield shear thinning or thickening under the quasi-steady flow condition. In the light of various value of flow behavior index, the influences of post-yield shear thinning or thickening on flow velocity profiles of MR fluid in annular damping orifice are examined numerically. Analytical damping coefficient predictions also are compared via the nonlinear Bingham plastic model and Herschel-Bulkley constitutive model. A MR fluid damper, which is designed and fabricated according to design method presented in this paper, has tested by electro-hydraulic servo vibrator and its control system in National Center for Test and Supervision of Coach Quality. The experimental results reveal that the analysis methodology and design theory are reasonable and MR fluid damper can be designed according to the design methodology.
The Freter model: a simple model of biofilm formation.
Jones, Don; Kojouharov, Hristo V; Le, Dung; Smith, Hal
2003-08-01
A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Vincent K., E-mail: vincent.shen@nist.gov; Siderius, Daniel W.
2014-06-28
Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phasemore » transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.« less
NASA Astrophysics Data System (ADS)
Shen, Vincent K.; Siderius, Daniel W.
2014-06-01
Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called "breathing" of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.
Surface tension and contact angles: Molecular origins and associated microstructure
NASA Technical Reports Server (NTRS)
Davis, H. T.
1982-01-01
Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.
Contact mechanics for poroelastic, fluid-filled media, with application to cartilage.
Persson, B N J
2016-12-21
I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.
Contact mechanics for poroelastic, fluid-filled media, with application to cartilage
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2016-12-01
I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.
Is the Cochlear Amplifier a Fluid Pump?
NASA Astrophysics Data System (ADS)
Karavitaki, K. D.; Mountain, D. C.
2003-02-01
We have visualized and quantified the effects of electrically evoked motility of outer hair cells (OHCs) within the organ of Corti using an excised cochlear preparation. We found that OHC motility induces oscillatory fluid flow in the tunnel of Corti (TC) and this flow is present at physiologically relevant frequencies. We also show, using a simple one-dimensional hydromechanical model of the TC, that a fluid wave within the tunnel can travel without significant attenuation for distances larger than the wavelength of the cochlear traveling wave. These results in combination with a recent hypothesis that fluid flow within the tunnel is necessary for cochlear amplification suggest that the function of the OHCs is to act as a fluid pump.
Molecular simulation of simple fluids and polymers in nanoconfinement
NASA Astrophysics Data System (ADS)
Rasmussen, Christopher John
Prediction of phase behavior and transport properties of simple fluids and polymers confined to nanoscale pores is important to a wide range of chemical and biochemical engineering processes. A practical approach to investigate nanoscale systems is molecular simulation, specifically Monte Carlo (MC) methods. One of the most challenging problems is the need to calculate chemical potentials in simulated phases. Through the seminal work of Widom, practitioners have a powerful method for calculating chemical potentials. Yet, this method fails for dense and inhomogeneous systems, as well as for complex molecules such as polymers. In this dissertation, the gauge cell MC method, which had previously been successfully applied to confined simple fluids, was employed and extended to investigate nanoscale fluids in several key areas. Firstly, the process of cavitation (the formation and growth of bubbles) during desorption of fluids from nanopores was investigated. The dependence of cavitation pressure on pore size was determined with gauge cell MC calculations of the nucleation barriers correlated with experimental data. Additional computational studies elucidated the role of surface defects and pore connectivity in the formation of cavitation bubbles. Secondly, the gauge cell method was extended to polymers. The method was verified against the literature results and found significantly more efficient. It was used to examine adsorption of polymers in nanopores. These results were applied to model the dynamics of translocation, the act of a polymer threading through a small opening, which is implicated in drug packaging and delivery, and DNA sequencing. Translocation dynamics was studied as diffusion along the free energy landscape. Thirdly, we show how computer simulation of polymer adsorption could shed light on the specifics of polymer chromatography, which is a key tool for the analysis and purification of polymers. The quality of separation depends on the physico-chemical mechanisms of polymer/pore interaction. We considered liquid chromatography at critical conditions, and calculated the dependence of the partition coefficient on chain length. Finally, solvent-gradient chromatography was modeled using a statistical model of polymer adsorption. A model for predicting separation of complex polymers (with functional groups or copolymers) was developed for practical use in chromatographic separations.
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
NASA Astrophysics Data System (ADS)
Novikov, Dmitrii K.; Diligenskii, Dmitrii S.
2018-01-01
The article considers the work of some squeeze film damper with elastic rings parts. This type of damper is widely used in gas turbine engines supports. Nevertheless, modern analytical solutions have a number of limitations. The article considers the behavior of simple hydrodynamic damping systems. It describes the analysis of fluid-solid interaction simulation applicability for the defying properties of hydrodynamic damper with elastic rings (“allison ring”). There are some recommendations on the fluid structural interaction analysis of the hydrodynamic damper with elastic rings.
On simulation of no-slip condition in the method of discrete vortices
NASA Astrophysics Data System (ADS)
Shmagunov, O. A.
2017-10-01
When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paricaud, P.
2015-07-28
A simple modification of the Boublík-Mansoori-Carnahan-Starling-Leland equation of state is proposed for an application to the metastable disordered region. The new model has a positive pole at the jamming limit and can accurately describe the molecular simulation data of pure hard in the stable fluid region and along the metastable branch. The new model has also been applied to binary mixtures hard spheres, and an excellent description of the fluid and metastable branches can be obtained by adjusting the jamming packing fraction. The new model for hard sphere mixtures can be used as the repulsive term of equations of statemore » for real fluids. In this case, the modified equations of state give very similar predictions of thermodynamic properties as the original models, and one can remove the multiple liquid density roots observed for some versions of the Statistical Associating Fluid Theory (SAFT) at low temperature without any modification of the dispersion term.« less
Traffic jam dynamics in stochastic cellular automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less
NASA Technical Reports Server (NTRS)
Prandtl, L.
1979-01-01
A discussion of the principles of hydrodynamics of nonviscous fluids in the case of motion of solid bodies in a fluid is presented. Formulae are derived to demonstrate the transition from the fluid surface to a corresponding 'control surface'. The external forces are compounded of the fluid pressures on the control surface and the forces which are exercised on the fluid by any solid bodies which may be inside of the control surfaces. Illustrations of these formulae as applied to the acquisition of transformations from a known simple flow to new types of flow for other boundaries are given. Theoretical and experimental investigations of models of airship bodies are presented.
From the Nano- to the Macroscale - Bridging Scales for the Moving Contact Line Problem
NASA Astrophysics Data System (ADS)
Nold, Andreas; Sibley, David; Goddard, Benjamin; Kalliadasis, Serafim; Complex Multiscale Systems Team
2016-11-01
The moving contact line problem remains an unsolved fundamental problem in fluid mechanics. At the heart of the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum hypothesis breaks down, must be resolved before effective macroscale parameters such as contact line friction and slip can be obtained. To capture nanoscale properties very close to the contact line and to establish a link to the macroscale behaviour, we employ classical density-functional theory (DFT), in combination with extended Navier-Stokes-like equations. Using simple models for viscosity and slip at the wall, we compare our computations with the Molecular Kinetic Theory, by extracting the contact line friction, depending on the imposed temperature of the fluid. A key fluid property captured by DFT is the fluid layering at the wall-fluid interface, which has a large effect on the shearing properties of a fluid. To capture this crucial property, we propose an anisotropic model for the viscosity, which also allows us to scrutinize the effect of fluid layering on contact line friction.
An internally consistent inverse model to calculate ridge-axis hydrothermal fluxes
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Dosso, S.
2010-12-01
Fluid and chemical fluxes from high-temperature, on-axis, hydrothermal systems at mid-ocean ridges have been estimated in a number of ways. These generally use simple mass balances based on either vent fluid compositions or the compositions of altered sheeted dikes. Here we combine these approaches in an internally consistent model. Seawater is assumed to enter the crust and react with the sheeted dike complex at high temperatures. Major element fluxes for both the rock and fluid are calculated from balanced stoichiometric reactions. These reactions include end-member components of the minerals plagioclase, pyroxene, amphibole, chlorite and epidote along with pure anhydrite, quartz, pyrite, pyrrhotite, titanite, magnetite, ilmenite and ulvospinel and the fluid species H2O, Mg2+, Ca2+, Fe2+, Na+, Si4+, H2S, H+ and H2. Trace element abundances (Li, B, K, Rb, Cs, Sr, Ba, U, Tl, Mn, Cu, Zn, Co, Ni, Pb and Os) and isotopic ratios (Li, B, O, Sr, Tl, Os) are calculated from simple mass balance of a fluid-rock reaction. A fraction of the Cu, Zn, Pb, Co, Ni, Os and Mn in the fluid after fluid-rock reaction is allowed to precipitate during discharge before the fluid reaches the seafloor. S-isotopes are tied to mineralogical reactions involving S-bearing phases. The free parameters in the model are the amounts of each mineralogical reaction that occurs, the amounts of the metals precipitated during discharge, and the water-to-rock ratio. These model parameters, and their uncertainties, are constrained by: (i) mineral abundances and mineral major element compositions in altered dikes from ODP Hole 504B and the Pito and Hess Deep tectonic windows (EPR crust); (ii) changes in dike bulk-rock trace element and isotopic compositions from these locations relative to fresh MORB glass compositions; and (iii) published vent fluid compositions from basalt-hosted high-temperature ridge axis hydrothermal systems. Using a numerical inversion algorithm, the probability density of different model parameter sets has been computed and thus the probability of different fluid and chemical fluxes. Most data can be fit by the model within their uncertainty. The entire dataset is best-fit with a water-to-rock mass ratio between 1.3 and 2.1 (~1 to 1.5 x10**13 kg yr-1) implying a substantial fraction of the magmatic (latent) heat available to drive the axial hydrothermal system is extracted by these systems. Many element fluxes are better constrained than in previous studies (e.g., Sr: 2 to 7 x10**8 moles yr-1; Ca: 2 to 7 x10**11 moles yr-1). Future developments will use experimental data to further constrain the model.
NASA Astrophysics Data System (ADS)
Colombant, Denis; Manheimer, Wallace; Busquet, Michel
2004-11-01
A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)
Neural network computer simulation of medical aerosols.
Richardson, C J; Barlow, D J
1996-06-01
Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.
NASA Astrophysics Data System (ADS)
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Sphere Drag and Heat Transfer.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-20
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Quiet swimming at low Reynolds number
NASA Astrophysics Data System (ADS)
Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas
2015-04-01
The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.
Quiet swimming at low Reynolds number.
Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas
2015-04-01
The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.
A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method
NASA Astrophysics Data System (ADS)
Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko
2018-03-01
This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid
NASA Astrophysics Data System (ADS)
Campos, M.
2014-02-01
To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.
Kojic, Milos; Filipovic, Nenad; Tsuda, Akira
2012-01-01
A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322
Abdollahzadeh Jamalabadi, M Y; Akbari Bidokhti, Amin Ali; Khak Rah, Hamid; Vaezi, Siavash; Hooshmand, Payam
2016-01-01
Current paper is focused on transient modeling of blood flow through a tapered stenosed arteries surrounded a by solenoid under the presence of heat transfer. The oxygenated and deoxygenated blood are considered here by the Newtonian and Non-Newtonian fluid (power law and Carreau-Yasuda) models. The governing equations of bio magnetic fluid flow for an incompressible, laminar, homogeneous, non-Newtonian are solved by finite volume method with SIMPLE algorithm for structured grid. Both magnetization and electric current source terms are well thought-out in momentum and energy equations. The effects of fluid viscosity model, Hartmann number, and magnetic number on wall shear stress, shearing stress at the stenosis throat and maximum temperature of the system are investigated and are optimized. The current study results are in agreement with some of the existing findings in the literature and are useful in thermal and mechanical design of spatially varying magnets to control the drug delivery and biomagnetic fluid flows through tapered arteries.
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando
2015-10-21
The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.
Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu
2017-12-01
In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.
Hydrodynamic Contributions to Amoeboid Cell Motility
NASA Astrophysics Data System (ADS)
Lewis, Owen; Guy, Robert
2011-11-01
Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.
The History and Implications of Design Standards for Underwater Breathing Apparatus - 1954 to 2015
2015-02-11
respiratory loading using both simple models of fluid mechanics and experimental evidence. An understanding of the influence of both respiratory ventilatory... fluid dynamics of flow in divers’ airways. It allows testing laboratories to make maximum use of all of their testing data, and lo present that data in...tireless efforts of numerous military divers at Navy Experimental Diving Unit in Panama City, FL and Naval Medical Research Institute, Bethesda, MD
Interactive multimedia demonstrations for teaching fluid dynamics
NASA Astrophysics Data System (ADS)
Rowley, Clarence
2008-11-01
We present a number of multimedia tools, developed by undergraduates, for teaching concepts from introductory fluid mechanics. Short movies are presented, illustrating concepts such as hydrostatic pressure, the no-slip condition, boundary layers, and surface tension. In addition, we present a number of interactive demonstrations, which allow the user to interact with a simple model of a given concept via a web browser, and compare with experimental data. In collaboration with Mack Pasqual and Lindsey Brown, Princeton University.
NASA Astrophysics Data System (ADS)
Zemach, T.; Chiapponi, L.; Petrolo, D.; Ungarish, M.; Longo, S.; Di Federico, V.
2017-10-01
We present a combined theoretical-experimental investigation of particle-driven gravity currents advancing in circular cross section channels in the high-Reynolds number Boussinesq regime; the ambient fluid is either homogeneous or linearly stratified. The predictions of the theoretical model are compared with experiments performed in lock-release configuration; experiments were performed with conditions of both full-depth and partial-depth locks. Two different particles were used for the turbidity current, and the full range 0 ≤S ≤1 of the stratification parameter was explored (S = 0 corresponds to the homogeneous case and S = 1 when the density of the ambient fluid and of the current are equal at the bottom). In addition, a few saline gravity currents were tested for comparison. The results show good agreement for the full-depth configuration, with the initial depth of the current in the lock being equal to the depth of the ambient fluid. The agreement is less good for the partial-depth cases and is improved by the introduction of a simple adjustment coefficient for the Froude number at the front of the current and accounting for dissipation. The general parameter dependencies and behaviour of the current, although influenced by many factors (e.g., mixing and internal waves), are well predicted by the relatively simple model.
NASA Astrophysics Data System (ADS)
Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.
2000-05-01
A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2016-04-01
Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.
Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.
2009-01-01
Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.
Optimal and Adaptive Control of Flow in a Thermal Convection Loop
NASA Astrophysics Data System (ADS)
Yuen, Po Ki; Bau, Haim
1998-11-01
In theory and experiment, we use nonlinear and linear optimal and adaptive controllers to suppress the naturally occurring chaotic convection in a thermal convection loop. The thermal convection loop is a simple experimental analog of the Lorenz equations, and it provides a convenient platform for testing and comparing the performance of various control strategies in a fluid mechanical setting. The performance of the optimal and adaptive controllers is compared with that of a previously developed simple feedback controller (Singer, J., Wang, Y., & Bau, H., H., 1991, Physical Review Letters, 66,123-1125.)(Wang, Y., Singer, J., & Bau, H., H., 1992, J. Fluid Mechanics, 237, 479-498.), a nonlinear controller with a cubic nonlinearity(Yuen, P., & Bau, H., H., 1996, J. Fluid Mechanics, 317, 91-109.), and a neural net controller(Yuen, P., & Bau, H., H., 1998, Neural Networks, 11, 557 - 569, 1998.). It is demonstrated that an adaptive controller can perform successfully even when the system's model is not known.
Santillán, Moisés
2003-07-21
A simple model of an oxygen exchanging network is presented and studied. This network's task is to transfer a given oxygen rate from a source to an oxygen consuming system. It consists of a pipeline, that interconnects the oxygen consuming system and the reservoir and of a fluid, the active oxygen transporting element, moving through the pipeline. The network optimal design (total pipeline surface) and dynamics (volumetric flow of the oxygen transporting fluid), which minimize the energy rate expended in moving the fluid, are calculated in terms of the oxygen exchange rate, the pipeline length, and the pipeline cross-section. After the oxygen exchanging network is optimized, the energy converting system is shown to satisfy a 3/4-like allometric scaling law, based upon the assumption that its performance regime is scale invariant as well as on some feasible geometric scaling assumptions. Finally, the possible implications of this result on the allometric scaling properties observed elsewhere in living beings are discussed.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Liquid-vapor rectilinear diameter revisited
NASA Astrophysics Data System (ADS)
Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.
2018-02-01
In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
NASA Astrophysics Data System (ADS)
Droghei, Riccardo; Salusti, Ettore
2013-04-01
Control of drilling parameters, as fluid pressure, mud weight, salt concentration is essential to avoid instabilities when drilling through shale sections. To investigate shale deformation, fundamental for deep oil drilling and hydraulic fracturing for gas extraction ("fracking"), a non-linear model of mechanic and chemo-poroelastic interactions among fluid, solute and the solid matrix is here discussed. The two equations of this model describe the isothermal evolution of fluid pressure and solute density in a fluid saturated porous rock. Their solutions are quick non-linear Burger's solitary waves, potentially destructive for deep operations. In such analysis the effect of diffusion, that can play a particular role in fracking, is investigated. Then, following Civan (1998), both diffusive and shock waves are applied to fine particles filtration due to such quick transients , their effect on the adjacent rocks and the resulting time-delayed evolution. Notice how time delays in simple porous media dynamics have recently been analyzed using a fractional derivative approach. To make a tentative comparison of these two deeply different methods,in our model we insert fractional time derivatives, i.e. a kind of time-average of the fluid-rocks interactions. Then the delaying effects of fine particles filtration is compared with fractional model time delays. All this can be seen as an empirical check of these fractional models.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
Phase diagrams of Janus fluids with up-down constrained orientations
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo; Giacometti, Achille; Maestre, Miguel Ángel G.; Santos, Andrés
2013-11-01
A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemispheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo simulations and simple analytical approximations. These fluids can be experimentally realized by the application of an external static electrical field. The gas-liquid and demixing phase transitions in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid transition is present in all the models, even if only one of the four possible patch-patch interactions is attractive. Moreover, provided the attraction between like particles is stronger than between unlike particles, the system demixes into two subsystems with different composition at sufficiently low temperatures and high densities.
NASA Technical Reports Server (NTRS)
Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.
1987-01-01
It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.
A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
Yu, Hai; Engel, Sebastian; Janiga, Gábor; Thévenin, Dominique
2017-07-01
Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Fluids of the Lower Crust: Deep Is Different
NASA Astrophysics Data System (ADS)
Manning, Craig E.
2018-05-01
Deep fluids are important for the evolution and properties of the lower continental and arc crust in tectonically active settings. They comprise four components: H2O, nonpolar gases, salts, and rock-derived solutes. Contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility and potential separation of phases with different chemical properties. Equilibrium thermodynamic modeling of fluid-rock interaction using simple ionic species known from shallow-crustal systems yields solutions too dilute to be consistent with experiments and resistivity surveys, especially if CO2 is added. Therefore, additional species must be present, and H2O-salt solutions likely explain much of the evidence for fluid action in high-pressure settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as polymerized clusters. Addition of salts changes solubility patterns, but aluminosilicate contents may remain high. Fluids with Xsalt = 0.05 to 0.4 in equilibrium with model crustal rocks have bulk conductivities of 10‑1.5 to 100 S/m at porosity of 0.001. Such fluids are consistent with observed conductivity anomalies and are capable of the mass transfer seen in metamorphic rocks exhumed from the lower crust.
Inertial migration of elastic particles in a pressure-driven power-law fluid
NASA Astrophysics Data System (ADS)
Bowie, Samuel; Alexeev, Alexander
2016-11-01
Using three-dimensional computer simulations, we study the cross-stream migration of deformable particles in a channel filled with a non-Newtonian fluid driven by a pressure gradient. Our numerical approach integrates lattice Boltzmann method and lattice spring method in order to model fluid structural interactions of the elastic particle and the surrounding power fluid in the channel. The particles are modeled as elastic shells filled with a viscous fluid that are initially spherical. We focus on the regimes where the inertial effects cannot be neglected and cause cross-stream drift of particles. We probe the flow with different power law indexes including both the shear thickening and thinning fluids. We also examine migration of particles of with different elasticity and relative size. To isolate the non-Newtonian effects on particle migration, we compare the results with the inertial migration results found in the case where the channel is filled with a simple Newtonian fluid. The results can be useful for applications requiring high throughput separation, sorting, and focusing of both synthetic particles and biological cells in microfluidic devices. Financial support provided by National Science Foundation (NSF) Grant No. CMMI1538161.
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2016-11-23
We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.
Nanoscale hydrodynamics near solids
NASA Astrophysics Data System (ADS)
Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid
2018-02-01
Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.
NASA Astrophysics Data System (ADS)
Belloul, M.; Engl, W.; Colin, A.; Panizza, P.; Ajdari, A.
2009-05-01
By studying the repartition of monodisperse droplets at a simple T junction, we show that the traffic of discrete fluid systems in microfluidic networks results from two competing mechanisms, whose significance is driven by confinement. Traffic is dominated by collisions occurring at the junction for small droplets and by collective hydrodynamic feedback for large ones. For each mechanism, we present simple models in terms of the pertinent dimensionless parameters of the problem.
NASA Astrophysics Data System (ADS)
Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro
2016-06-01
Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.
Simple models of the hydrofracture process
NASA Astrophysics Data System (ADS)
Marder, M.; Chen, Chih-Hung; Patzek, T.
2015-12-01
Hydrofracturing to recover natural gas and oil relies on the creation of a fracture network with pressurized water. We analyze the creation of the network in two ways. First, we assemble a collection of analytical estimates for pressure-driven crack motion in simple geometries, including crack speed as a function of length, energy dissipated by fluid viscosity and used to break rock, and the conditions under which a second crack will initiate while a first is running. We develop a pseudo-three-dimensional numerical model that couples fluid motion with solid mechanics and can generate branching crack structures not specified in advance. One of our main conclusions is that the typical spacing between fractures must be on the order of a meter, and this conclusion arises in two separate ways. First, it arises from analysis of gas production rates, given the diffusion constants for gas in the rock. Second, it arises from the number of fractures that should be generated given the scale of the affected region and the amounts of water pumped into the rock.
Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid
NASA Astrophysics Data System (ADS)
Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto
2017-08-01
The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.
NASA Astrophysics Data System (ADS)
Shogin, Dmitry; Amund Amundsen, Per
2016-10-01
We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.
Designing with non-linear viscoelastic fluids
NASA Astrophysics Data System (ADS)
Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy
2017-11-01
Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.
Self-sustained peristaltic waves: Explicit asymptotic solutions
NASA Astrophysics Data System (ADS)
Dudchenko, O. A.; Guria, G. Th.
2012-02-01
A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.
An analytical formula for the longitudinal resonance frequencies of a fluid-filled crack
NASA Astrophysics Data System (ADS)
Maeda, Y.; Kumagai, H.
2013-12-01
The fluid-filled crack model (Chouet, 1986, JGR) simulates the resonances of a rectangular crack filled with an inviscid fluid embedded in a homogeneous isotropic elastic medium. The model demonstrates the existence of a slow wave, known as the crack wave, that propagates along the solid-fluid interfaces. The wave velocity depends on the crack stiffness. The model has been used to interpret the peak frequencies of long-period (LP) and very long period (VLP) seismic events at various volcanoes (Chouet and Matoza, 2013, JVGR). Up to now, crack model simulations have been performed using the finite difference (Chouet, 1986) and boundary integral (Yamamoto and Kawakatsu, 2008, GJI) methods. These methods require computationally extensive procedures to estimate the complex frequencies of crack resonance modes. Establishing an easier way to calculate the frequencies of crack resonances would help understanding of the observed frequencies. In this presentation, we propose a simple analytical formula for the longitudinal resonance frequencies of a fluid-filled crack. We first evaluated the analytical expression proposed by Kumagai (2009, Encyc. Complex. Sys. Sci.) through a comparison of the expression with the peak frequencies computed by a 2D version of the FDM code of Chouet (1986). Our comparison revealed that the equation of Kumagai (2009) shows discrepancies with the resonant frequencies computed by the FDM. We then modified the formula as fmL = (m-1)a/[2L(1+2ɛmLC)1/2], (1) where L is the crack length, a is the velocity of sound in the fluid, C is the crack stiffness, m is a positive integer defined such that the wavelength of the normal displacement on the crack surface is 2L/m, and ɛmL is a constant that depends on the longitudinal resonance modes. Excellent fits were obtained between the peak frequencies calculated by the FDM and by Eq. (1), suggesting that this equation is suitable for the resonant frequencies. We also performed 3D FDM computations of the longitudinal mode resonances. The peak frequencies computed by the FDM are well fitted by Eq. (1). The best-fit ɛmL values are different from those for 2D and depend on W/L, where W is the crack width. Eq. (1) shows that fmL is a simple analytical function of a/L and C given m and W/L. This enables simple and rapid interpretations of the source processes of LP events, including estimation of the fluid properties and crack geometries as well as identification of the resonance modes of the individual peak frequencies. LP events at volcanoes often exhibit peak frequency variations. In such cases, the frequency variations can be easily converted to variations in the fluid properties and crack geometries. We showed that Eq. (1) is consistent with the analytical solution for an infinite crack given by Ferrazzini and Aki (1987, JGR). Although a theoretical derivation of Eq. (1) was not obtained yet, Eq. (1) is consistent with the frequencies expected from the wavelengths of the fluid pressure variation.
NASA Astrophysics Data System (ADS)
Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen
2018-03-01
In this Rapid Communication, we show that low-energy macroscopic properties of the one-dimensional (1D) attractive Hubbard model exhibit two fluids of bound pairs and of unpaired fermions. Using the thermodynamic Bethe ansatz equations of the model, we first determine the low-temperature phase diagram and analytically calculate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing correlation function for the partially polarized phase. We then show that for such an FFLO-like state in the low-density regime the effective chemical potentials of bound pairs and unpaired fermions behave like two free fluids. Consequently, the susceptibility, compressibility, and specific heat obey simple additivity rules, indicating the "free" particle nature of interacting fermions on a 1D lattice. In contrast to the continuum Fermi gases, the correlation critical exponents and thermodynamics of the attractive Hubbard model essentially depend on two lattice interacting parameters. Finally, we study scaling functions, the Wilson ratio and susceptibility, which provide universal macroscopic properties and dimensionless constants of interacting fermions at low energy.
A nonlinear cochlear model with the outer hair cell piezoelectric activity
NASA Astrophysics Data System (ADS)
Jiang, Xiaoai; Grosh, Karl
2003-10-01
In this paper we present a simple cochlear model which captures the most important aspect of nonlinearity in the cochlea-the nonlinearity caused by the piezoelectric-like activity of outer hair cells and the variable conductance of the outer hair cell stereocilia. A one-dimensional long-wave model is built to simulate the dynamic response of the fluid-loaded basilar membrane. The basilar membrane is simulated as isolated linear oscillators along the cochlear length, and its motion is coupled with the fluid pressure and the nonlinear force produced by the outer hair cells. As the basilar membrane moves, the fluid shears stereocilia, and the resulting ion flow changes the transmembrane potential of the outer hair cells and subsequently their length, leading to further movement of the basilar membrane. The piezoelectric-like activity of the outer hair cell is simulated by a current source, and stereocilia motion is modeled as a varying conductance that changes as the basilar membrane moves. A solution in the time domain will be presented. [Work supported by NIH.
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized " n -diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter [Formula: see text] introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-01-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized “n-diffusion theory,” which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system. PMID:28344433
Excess entropy and crystallization in Stillinger-Weber and Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Dhabal, Debdas; Nguyen, Andrew Huy; Singh, Murari; Khatua, Prabir; Molinero, Valeria; Bandyopadhyay, Sanjoy; Chakravarty, Charusita
2015-10-01
Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW23.15 or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by Strip, is also studied. Strip is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (Tthr). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2006-01-01
Complex (working memory) span tasks have generally shown larger and more consistent correlations with higher-order cognition than have simple (or short-term memory) span tasks. The relation between verbal complex and simple verbal span tasks to fluid abilities as a function of list-length was examined. The results suggest that the simple…
Jason Forthofer; Bret Butler
2007-01-01
A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
NASA Astrophysics Data System (ADS)
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Seismic waves and earthquakes in a global monolithic model
NASA Astrophysics Data System (ADS)
Roubíček, Tomáš
2018-03-01
The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2017-12-07
Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6≤T * ≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.
NASA Astrophysics Data System (ADS)
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2017-12-01
Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6 ≤T*≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.
Nonuniform fluids in the grand canonical ensemble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percus, J.K.
1982-01-01
Nonuniform simple classical fluids are considered quite generally. The grand canonical ensemble is particularly suitable, conceptually, in the leading approximation of local thermodynamics, which figuratively divides the system into approximately uniform spatial subsystems. The procedure is reviewed by which this approach is systematically corrected for slowly varying density profiles, and a model is suggested that carries the correction into the domain of local fluctuations. The latter is assessed for substrate bounded fluids, as well as for two-phase interfaces. The peculiarities of the grand ensemble in a two-phase region stem from the inherent very large number fluctuations. A primitive model showsmore » how these are quenched in the canonical ensemble. This is taken advantage of by applying the Kac-Siegert representation of the van der Waals decomposition with petit canonical corrections, to the two-phase regime.« less
Lagrangian formulation for penny-shaped and Perkins-Kern geometry models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.S.
1989-09-01
This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less
Communication: Simple liquids' high-density viscosity
NASA Astrophysics Data System (ADS)
Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-02-01
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Swimming & Propulsion in Viscoelastic Media
NASA Astrophysics Data System (ADS)
Arratia, Paulo
2012-02-01
Many microorganisms have evolved within complex fluids, which include soil, intestinal fluid, and mucus. The material properties or rheology of such fluids can strongly affect an organism's swimming behavior. A major challenge is to understand the mechanism of propulsion in media that exhibit both solid- and fluid-like behavior, such as viscoelastic fluids. In this talk, we present experiments that explore the swimming behavior of biological organisms and artificial particles in viscoelastic media. The organism is the nematode Caenorhabditis elegans, a roundworm widely used for biological research that swims by generating traveling waves along its body. Overall, we find that fluid elasticity hinders self-propulsion compared to Newtonian fluids due to the enhanced resistance to flow near hyperbolic points for viscoelastic fluids. As fluid elasticity increases, the nematode's propulsion speed decreases. These results are consistent with recent theoretical models for undulating sheets and cylinders. In order to gain further understanding on propulsion in viscoelastic media, we perform experiments with simple reciprocal artificial `swimmers' (magnetic dumbbell particles) in polymeric and micellar solutions. We find that self-propulsion is possible in viscoelastic media even if the motion is reciprocal.
Vortex breakdown in simple pipe bends
NASA Astrophysics Data System (ADS)
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Galach, Magda; Antosiewicz, Stefan; Baczynski, Daniel; Wankowicz, Zofia; Waniewski, Jacek
2013-02-01
In spite of many peritoneal tests proposed, there is still a need for a simple and reliable new approach for deriving detailed information about peritoneal membrane characteristics, especially those related to fluid transport. The sequential peritoneal equilibration test (sPET) that includes PET (glucose 2.27%, 4 h) followed by miniPET (glucose 3.86%, 1 h) was performed in 27 stable continuous ambulatory peritoneal dialysis patients. Ultrafiltration volumes, glucose absorption, ratio of concentration in dialysis fluid to concentration in plasma (D/P), sodium dip (Dip D/P Sodium), free water fraction (FWF60) and the ultrafiltration passing through small pores at 60 min (UFSP60), were calculated using clinical data. Peritoneal transport parameters were estimated using the three-pore model (3p model) and clinical data. Osmotic conductance for glucose was calculated from the parameters of the model. D/P creatinine correlated with diffusive mass transport parameters for all considered solutes, but not with fluid transport characteristics. Hydraulic permeability (L(p)S) correlated with net ultrafiltration from miniPET, UFSP60, FWF60 and sodium dip. The fraction of ultrasmall pores correlated with FWF60 and sodium dip. The sequential PET described and interpreted mechanisms of ultrafiltration and solute transport. Fluid transport parameters from the 3p model were independent of the PET D/P creatinine, but correlated with fluid transport characteristics from PET and miniPET.
Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming
Chen, J.; Friesen, W. O.; Iwasaki, T.
2011-01-01
Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304
A pendulum experiment on added mass and the principle of equivalence
NASA Astrophysics Data System (ADS)
Neill, Douglas; Livelybrooks, Dean; Donnelly, Russell J.
2007-03-01
The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an ideal (inviscid and irrotational) fluid, which has an added mass equal to one-half the mass of the fluid displaced. The period of oscillation of a simple pendulum in a vacuum is independent of its mass because of the equivalence of gravitational and inertial masses. In contrast, in a fluid both buoyancy and added mass affect the period. We present experimental results on simple pendula of different materials oscillating in various fluids. The results agree fairly well with the results obtained for the added mass in an ideal fluid.
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Tong, Chao; Jin, Qinghui; Zhao, Jianlong
2008-03-01
In this article, a kind of microfluidic method based on MEMS technology combined with gold immunochromatographic assay (GICA) is developed and discussed. Compared to the traditional GICA, this method supplies us convenient, multi-channel, in-parallel, low cost and similar efficiency approach in the fields of alpha-fetopro-tei (AFP)detection. Firstly, we improved the adhesion between the model material SU-8 and Silicon wafer, optimized approaches of the fabrication of the SU-8 model systematically, and fabricate the PDMS micro fluid chip with good reproduction successfully. Secondly, Surface modification and antibody immobilization methods with the GICA on the PDMS micro fluid analysis chip are studied, we choose the PDMS material and transfer GICA to the PDMS micro fluid chip successfully after researching the antibody immobilization efficiency of different materials utilized in fabrication of the micro fluid chip. In order to improve the reaction efficiency of the immobilized antibody, we studied the characteristics of micro fluid without the gas drive, and the fluid velocity control in our design; we also design structure of grove to strengthen the ability of immobilizing the antibody. The stimulation of the structure shows that it achieves great improvement and experiments prove the design is feasible.
Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids
NASA Astrophysics Data System (ADS)
Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2016-12-01
An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.
Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids.
Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E; Forsman, Jan
2016-12-21
An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.
Renewable fluid dynamic energy derived from aquatic animal locomotion.
Dabiri, John O
2007-09-01
Aquatic animals swimming in isolation and in groups are known to extract energy from the vortices in environmental flows, significantly reducing muscle activity required for locomotion. A model for the vortex dynamics associated with this phenomenon is developed, showing that the energy extraction mechanism can be described by simple criteria governing the kinematics of the vortices relative to the body in the flow. In this way, we need not make direct appeal to the fluid dynamics, which can be more difficult to evaluate than the kinematics. Examples of these principles as exhibited in swimming fish and existing energy conversion devices are described. A benefit of the developed framework is that the potentially infinite-dimensional parameter space of the fluid-structure interaction is reduced to a maximum of eight combinations of three parameters. The model may potentially aid in the design and evaluation of unsteady aero- and hydrodynamic energy conversion systems that surpass the Betz efficiency limit of steady fluid dynamic energy conversion systems.
Hydrodynamic Contributions to Amoeboid Cell Motility
NASA Astrophysics Data System (ADS)
Lewis, Owen; Guy, Robert
2012-11-01
Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics
NASA Astrophysics Data System (ADS)
Deparis, Simone; Forti, Davide; Grandperrin, Gwenol; Quarteroni, Alfio
2016-12-01
Modeling Fluid-Structure Interaction (FSI) in the vascular system is mandatory to reliably compute mechanical indicators in vessels undergoing large deformations. In order to cope with the computational complexity of the coupled 3D FSI problem after discretizations in space and time, a parallel solution is often mandatory. In this paper we propose a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. We name it FaCSI to indicate that it exploits the Factorized form of the linearized FSI matrix, the use of static Condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for saddle-point problems. FaCSI is built upon a block Gauss-Seidel factorization of the FSI Jacobian matrix and it uses ad-hoc preconditioners for each physical component of the coupled problem, namely the fluid, the structure and the geometry. In the fluid subproblem, after operating static condensation of the interface fluid variables, we use a SIMPLE preconditioner on the reduced fluid matrix. Moreover, to efficiently deal with a large number of processes, FaCSI exploits efficient single field preconditioners, e.g., based on domain decomposition or the multigrid method. We measure the parallel performances of FaCSI on a benchmark cylindrical geometry and on a problem of physiological interest, namely the blood flow through a patient-specific femoropopliteal bypass. We analyze the dependence of the number of linear solver iterations on the cores count (scalability of the preconditioner) and on the mesh size (optimality).
Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements
NASA Astrophysics Data System (ADS)
Liburdy, James
2017-11-01
Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.
A durable, non power consumptive, simple seal for rotary blood pumps.
Mitamura, Y; Sekine, K; Asakawa, M; Yozu, R; Kawada, S; Okamoto, E
2001-01-01
One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal was developed for an axial flow pump. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments and finite element modeling (FEM) analyses confirmed these advantages. The seal body was composed of a Ned-Fe magnet and two pole pieces; the seal was formed by injecting ferrofluid into the gap (50 microm) between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 188 mm Hg with ferrofluid LS-40 (saturated magnetization, 24.3 kA/m) at a motor speed of 10,000 rpm and 225 mm Hg under static conditions. The magnetic fluid seals performed perfectly at a pressure of 100 mm Hg for 594 + days in a static condition, and 51, 39+, and 34+ days at a motor speed of 8,000 rpm. FEM analyses indicated a theoretical sealing pressure of 260 mm Hg. The state of the magnetic fluid in the seal in water was observed with a microscope. Neither splashing of magnetic fluid nor mixing of the magnetic fluid and water was observed. The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intracardiac axial flow pump.
Hydrodynamics of metachronal paddling in crustaceans
NASA Astrophysics Data System (ADS)
Santhanakrishnan, A.; Lai, H. K.; Samaee, M.; Lewis, T. J.; Guy, R. D.
2016-02-01
Long-tailed crustaceans such as crayfish and krill swim by rhythmically paddling a set of four to five limbs (swimmerets) originating from their abdomen. Despite variations in limb size and stroke frequency, movements of ipsilateral limbs always maintain a tail-to-head metachronal rhythm with an approximate quarter-period inter-limb phase difference. Relatively few studies have examined the fluid dynamics of metachronal limb stroke for the range of Reynolds numbers at which crustaceans operate. The objective of this study is to investigate metachronal paddling as a function of Reynolds number (Re) for quantifying hydrodynamic scalability of this swimming mechanism, including the effect of hinges on paddles as seen in crustacean swimmerets. Our approach included experiments on a scaled physical model and computational fluid dynamics (CFD) simulations using the immersed boundary (IB) method. The scaled robotic model of metachronal paddling consisted of a rectangular aquarium tank fitted above with four stepper motors coupled to a four-bar linkage that actuated four acrylic paddles immersed in water-glycerin fluid medium. 2D particle image velocimetry (PIV) was used for quantitative flow visualization in the experiments. The swimmerets were modeled in CFD simulations as rigid 1D rods in a 2D fluid. The inter-limb phase difference was varied from 0% (synchronous paddling) through 50% across Re range of O(10-1000). Two types of experimental limb models were tested, including a simple flat plate and a `split-paddle' structure with two flat plates connected halfway with hinges. Our results show that the natural tail-to-head metachronal rhythm with an approximate quarter-period phase difference is the most effective and efficient rhythm across a wide range of Reynolds numbers. Limb models with hinges generated increased horizontal flow compared to the simple flat plate paddles, suggesting that asymmetry between power and return stroke is important to augment thrust.
Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1987-01-01
Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.
A simple hydrodynamic model of tornado-like vortices
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2015-05-01
Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.
The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework
NASA Astrophysics Data System (ADS)
Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare
2014-06-01
In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.
Evaluation of Preduster in Cement Industry Based on Computational Fluid Dynamic
NASA Astrophysics Data System (ADS)
Septiani, E. L.; Widiyastuti, W.; Djafaar, A.; Ghozali, I.; Pribadi, H. M.
2017-10-01
Ash-laden hot air from clinker in cement industry is being used to reduce water contain in coal, however it may contain large amount of ash even though it was treated by a preduster. This study investigated preduster performance as a cyclone separator in the cement industry by Computational Fluid Dynamic method. In general, the best performance of cyclone is it have relatively high efficiency with the low pressure drop. The most accurate and simple turbulence model, Reynold Average Navier Stokes (RANS), standard k-ε, and combination with Lagrangian model as particles tracking model were used to solve the problem. The measurement in simulation result are flow pattern in the cyclone, pressure outlet and collection efficiency of preduster. The applied model well predicted by comparing with the most accurate empirical model and pressure outlet in experimental measurement.
NASA Astrophysics Data System (ADS)
Ariki, Taketo
2018-02-01
A hyperfluid model is constructed on the basis of its action entirely free from external constraints, regarding the hyperfluid as a self-consistent classical field. Intrinsic hypermomentum is no longer a supplemental variable given by external constraints, but arises purely from the diffeomorphism covariance of dynamical field. The field-theoretic approach allows natural classification of a hyperfluid on the basis of its symmetry group and corresponding homogeneous space; scalar, spinor, vector, and tensor fluids are introduced as simple examples. Apart from phenomenological constraints, the theory predicts the hypermomentum exchange of fluid via field-theoretic interactions of various classes; fluid–fluid interactions, minimal and non-minimal SU(n) -gauge couplings, and coupling with metric-affine gravity are all successfully formulated within the classical regime.
Resonant Frequency Shifts of a Fluid Filled Cavity Caused by a Bubble
NASA Astrophysics Data System (ADS)
Zhang, Hailan; Wang, Xiuming; Chen, Dehua; Che, Chengxuan
2009-03-01
In the previous studies for estimating acoustic wave velocities and attenuations of a rock specimen in a low frequency range using an acoustic resonance spectroscopy method, it was found that bubbles in a fluid filled cavity reduce the resonant frequency of the cavity significantly, which makes the measurement unstable. In this paper, this phenomenon is explained by using a simple model of a spherical fluid filled cavity with a single air bubble. It is pointed out that air bubble effects are caused by the vibration of the bubble coupled with the vibration of the cavity and, therefore, the measurement must be carefully prepared to prevent any air bubbles from entering the cavity.
Investigation of geomagnetic field forecasting and fluid dynamics of the core
NASA Technical Reports Server (NTRS)
Benton, E. R. (Principal Investigator)
1981-01-01
The discovery of simple, theoretically sound upper limits for geomagnetic moments (dipole, quadrupole, etc.) provides a significant use of MAGSAT data, establishes useful constraints for future magnetic models, and bears strongly on the probable time required before the next polarity reversal can occur. The field models of MAGSAT data are of prime use and are highly suitable as supplied to date.
Mathematical model of simple spalling formation during coal cutting with extracting machine
NASA Astrophysics Data System (ADS)
Gabov, V. V.; Zadkov, D. A.
2018-05-01
A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.
Inevitable inflation in Einstein-Cartan theory with improved energy-momentum tensor with spin
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.
1988-01-01
Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic, (Bianchi Type-1) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley improved energy momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density. Shear is not effective in preventing inflation in the ECRS model. The relation between fluid vorticity, torsion, reference axis rotation, and shear ellipsoid precession shows through clearly.
Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.
NASA Astrophysics Data System (ADS)
Hanna, James; Chakrabarti, Brato
2015-11-01
Slender structures live in fluid flows across many scales, from towed instruments to plant blades to microfluidic valves. The present work details a simple model of a flexible structure in a uniform flow. We present analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and linear drag forces. This is an extension of the classical catenaries to a five-parameter family of solutions, represented as trajectories in angle-curvature ``phase space.'' Limiting cases include neutrally buoyant towed cables and freely sedimenting flexible filaments. Now at University of California, San Diego.
Modeling fluid transport in 2d paper networks
NASA Astrophysics Data System (ADS)
Tirapu Azpiroz, Jaione; Fereira Silva, Ademir; Esteves Ferreira, Matheus; Lopez Candela, William Fernando; Bryant, Peter William; Ohta, Ricardo Luis; Engel, Michael; Steiner, Mathias Bernhard
2018-02-01
Paper-based microfluidic devices offer great potential as a low-cost platform to perform chemical and biochemical tests. Commercially available formats such as dipsticks and lateral-flow test devices are widely popular as they are easy to handle and produce fast and unambiguous results. While these simple devices lack precise control over the flow to enable integration of complex functionality for multi-step processes or the ability to multiplex several tests, intense research in this area is rapidly expanding the possibilities. Modeling and simulation is increasingly more instrumental in gaining insight into the underlying physics driving the processes inside the channels, however simulation of flow in paper-based microfluidic devices has barely been explored to aid in the optimum design and prototyping of these devices for precise control of the flow. In this paper, we implement a multiphase fluid flow model through porous media for the simulation of paper imbibition of an incompressible, Newtonian fluid such as when water, urine or serum is employed. The formulation incorporates mass and momentum conservation equations under Stokes flow conditions and results in two coupled Darcy's law equations for the pressures and saturations of the wetting and non-wetting phases, further simplified to the Richard's equation for the saturation of the wetting fluid, which is then solved using a Finite Element solver. The model tracks the wetting fluid front as it displaces the non-wetting fluid by computing the time-dependent saturation of the wetting fluid. We apply this to the study of liquid transport in two-dimensional paper networks and validate against experimental data concerning the wetting dynamics of paper layouts of varying geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneva, Yana G.; Laguna, Alejandro Alvarez; Poedts, Stefaan
2017-02-20
In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magneticmore » field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.« less
Episodic Tremor and Slip (ETS) as a chaotic multiphysics spring
NASA Astrophysics Data System (ADS)
Veveakis, E.; Alevizos, S.; Poulet, T.
2017-03-01
Episodic Tremor and Slip (ETS) events display a rich behaviour of slow and accelerated slip with simple oscillatory to complicated chaotic time series. It is commonly believed that the fast events appearing as non volcanic tremors are signatures of deep fluid injection. The fluid source is suggested to be related to the breakdown of hydrous phyllosilicates, mainly the serpentinite group minerals such as antigorite or lizardite that are widespread in the top of the slab in subduction environments. Similar ETS sequences are recorded in different lithologies in exhumed crustal carbonate-rich thrusts where the fluid source is suggested to be the more vigorous carbonate decomposition reaction. If indeed both types of events can be understood and modelled by the same generic fluid release reaction AB(solid) ⇌A(solid) +B(fluid) , the data from ETS sequences in subduction zones reveal a geophysically tractable temporal evolution with no access to the fault zone. This work reviews recent advances in modelling ETS events considering the multiphysics instabilities triggered by the fluid release reaction and develops a thermal-hydraulic-mechanical-chemical oscillator (THMC spring) model for such mineral reactions (like dehydration and decomposition) in Megathrusts. We describe advanced computational methods for THMC instabilities and discuss spectral element and finite element solutions. We apply the presented numerical methods to field examples of this important mechanism and reproduce the temporal signature of the Cascadia and Hikurangi trench with a serpentinite oscillator.
Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.
2012-01-31
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimum in situ compressive stress, so the fractures are not completely open but permeability improvement can be achieved through shear dilation. We found that in this low pressure regime, the coupling between the fluid phase and the rock solid phase becomes very simple, and the numerical model can achieve a low computational cost. Using this modified model, we study the behavior of a single fracture and a random fracture network.
A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks
NASA Astrophysics Data System (ADS)
Miller, S. A.
2015-12-01
Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very strong spatial correlations of the simulated evolved permeability and fluid pressure field with aftershock hypocenters from this 1992 Landers and 1994 Northridge aftershock sequences, and reproduce the observed aftershock decay rates. Controls on the decay rates (p-value) will also be discussed.
Balance point characterization of interstitial fluid volume regulation.
Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M
2009-07-01
The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.
Dynamics of flexible molecules in thinning fluid filaments
NASA Astrophysics Data System (ADS)
Arratia, Paulo E.; Juarez, Gabriel
2011-11-01
Newtonian liquids that contain small amounts (~ppm) of flexible polymers can exhibit viscoelastic behavior in extensional flows. In this talk, we report the results of experiments on the thinning and breakup of polymeric fluids in a simple microfluidic device. We aim to understand the stretching dynamics of flexible polymers by direct visualization of fluorescent DNA molecules, a model polymer. A Boger fluid, composed of 100 ppm polyacrylamide and 85% w/w glycerol, is seeded with stained lambdaâDNA molecules (<10% v/v) imaged by high speed epifluorescence microscopy. We observe that the strong flow in the thinning fluid threads provide sufficient forces to stretch the DNA molecules away from their equilibrium coiled state. The distribution of stretch lengths, however, is very heterogeneous due to molecular individualism and initial conditions. Once the molecules are stretched to their full length and aligned with the flow, they translate along the fluid thread as rigid rods until the point of pinch off. After pinch off, both the fluid and molecules return to a relaxed state.
On the Link Between Kolmogorov Microscales and Friction in Wall-Bounded Flow of Viscoplastic Fluids
NASA Astrophysics Data System (ADS)
Ramos, Fabio; Anbarlooei, Hamid; Cruz, Daniel; Silva Freire, Atila; Santos, Cecilia M.
2017-11-01
Most discussions in literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In this work, we present a new family of formulas for the evaluation of the friction coefficient of turbulent flows of a large family of viscoplastic fluids. The developments combine an unified analysis for the description of the Kolmogorov's micro-scales and the phenomenological turbulence model of Gioia and Chakraborty. The resulting Blasius-type friction equation has only Blasius' constant as a parameter, and tests against experimental data show excellent agreement over a significant range of Hedstrom and Reynolds numbers. The limits of the proposed model are also discussed. We also comment on the role of the new formula as a possible benchmark test for the convergence of DNS simulations of viscoplastic flows. The friction formula also provides limits for the Maximum Drag Reduction (MDR) for viscoplastic flows, which resembles MDR asymptote for viscoelastic flows.
Plasma Model V&V of Collisionless Electrostatic Shock
NASA Astrophysics Data System (ADS)
Martin, Robert; Le, Hai; Bilyeu, David; Gildea, Stephen
2014-10-01
A simple 1D electrostatic collisionless shock was selected as an initial validation and verification test case for a new plasma modeling framework under development at the Air Force Research Laboratory's In-Space Propulsion branch (AFRL/RQRS). Cross verification between PIC, Vlasov, and Fluid plasma models within the framework along with expected theoretical results will be shown. The non-equilibrium velocity distributions (VDF) captured by PIC and Vlasov will be compared to each other and the assumed VDF of the fluid model at selected points. Validation against experimental data from the University of California, Los Angeles double-plasma device will also be presented along with current work in progress at AFRL/RQRS towards reproducing the experimental results using higher fidelity diagnostics to help elucidate differences between model results and between the models and original experiment. DISTRIBUTION A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 14332.
NASA Astrophysics Data System (ADS)
Zaichik, Leonid I.; Alipchenkov, Vladimir M.
2007-11-01
The purposes of the paper are threefold: (i) to refine the statistical model of preferential particle concentration in isotropic turbulence that was previously proposed by Zaichik and Alipchenkov [Phys. Fluids 15, 1776 (2003)], (ii) to investigate the effect of clustering of low-inertia particles using the refined model, and (iii) to advance a simple model for predicting the collision rate of aerosol particles. The model developed is based on a kinetic equation for the two-point probability density function of the relative velocity distribution of particle pairs. Improvements in predicting the preferential concentration of low-inertia particles are attained due to refining the description of the turbulent velocity field of the carrier fluid by including a difference between the time scales of the of strain and rotation rate correlations. The refined model results in a better agreement with direct numerical simulations for aerosol particles.
On the estimation of sound speed in two-dimensional Yukawa fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, I. L., E-mail: Igor.Semenov@dlr.de; Thomas, H. M.; Khrapak, S. A.
2015-11-15
The longitudinal sound speed in two-dimensional Yukawa fluids is estimated using the conventional hydrodynamic expression supplemented by appropriate thermodynamic functions proposed recently by Khrapak et al. [Phys. Plasmas 22, 083706 (2015)]. In contrast to the existing approaches, such as quasi-localized charge approximation (QLCA) and molecular dynamics simulations, our model provides a relatively simple estimate for the sound speed over a wide range of parameters of interest. At strong coupling, our results are shown to be in good agreement with the results obtained using the QLCA approach and those derived from the phonon spectrum for the triangular lattice. On the othermore » hand, our model is also expected to remain accurate at moderate values of the coupling strength. In addition, the obtained results are used to discuss the influence of the strong coupling effects on the adiabatic index of two-dimensional Yukawa fluids.« less
Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.
Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang
2017-02-22
Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.
Friction on the Bond and the Vibrational Relaxation in Simple Liquids.
NASA Astrophysics Data System (ADS)
Mishra, Bimalendu Kumar
In chapter 1, the energy relaxation of a stiff Morse oscillator dissolved in a simple LJ fluid is calculated using a reversible integrator (r-RESPA) in molecular dynamics generated from the Trotter factorization of the classical propagator. We compare the "real" relaxation from full MD simulations with that predicted by the Generalized Langevin Equation (GLE) with memory friction determined from the full Molecular Dynamics for a series of fluid densities. It is found that the GLE gives very good agreement with MD for the vibrational energy relaxation for this nonlinear oscillator far from equilibrium only for high density fluids, but reduced densities rho < 0.5 the energy relaxation from the MD simulation becomes considered slower than that from the GLE. An analysis of the statistical properties of the random force shows that as the density is lowered the non-Gaussian behavior of the random force becomes more prominent. This behavior is consistent with a simple model in which the oscillator undergoes generalized Langevin dynamics between strong binary collisions with solvent atoms. In chapter 2, molecular hydrodynamics is used to calculate the memory friction on the intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a simple liquid. The predicted memory friction is then compared to recent computer experiments. Agreement with the experimental memory functions is obtained when the linearized hydrodynamics is modified to include gaussian viscoelasticity and compressibility. The hydrodynamic friction on the bond appears to agree qualitatively very well, although quantitative agreement is not found at high frequencies. Various limits of the hydrodynamic friction are discussed.
Relationships of models of the inner magnetosphere to the Rice Convection Model
NASA Astrophysics Data System (ADS)
Heinemann, M.; Wolf, R. A.
2001-08-01
Ideal magnetohydrodynamics is known to be inaccurate for the Earth's inner magnetosphere, where transport by gradient-curvature drift is nonnegligible compared to E×B drift. Most theoretical treatments of the inner plasma sheet and ring current, including the Rice Convection Model (RCM), treat the inner magnetospheric plasma in terms of guiding center drifts. The RCM assumes that the distribution function is isotropic, but particles with different energy invariants are treated as separate guiding center fluids. However, Peymirat and Fontaine [1994] developed a two-fluid picture of the inner magnetosphere, which utilizes modified forms of the conventional fluid equations, not guiding center drift equations. Heinemann [1999] argued theoretically that for inner magnetospheric conditions the fluid energy equation should include a heat flux term, which, in the case of Maxwellian plasma, was derived by Braginskii [1965]. We have now reconciled the Heinemann [1999] fluid approach with the RCM. The fluid equations, including the Braginskii heat flux, can be derived by taking appropriate moments of the RCM equations for the case of the Maxwellian distribution. The physical difference between the RCM formalism and the Heinemann [1999] fluid approach is that the RCM pretends that particles suffer elastic collisions that maintain the isotropy of the distribution function but do not change particle energies. The Heinemann [1999] fluid treatment makes a different physical approximation, namely that the collisions maintain local thermal equilibrium among the ions and separately among the electrons. For some simple cases, numerical results are presented that illustrate the differences in the predictions of the two formalisms, along with those of MHD, guiding center theory, and Peymirat and Fontaine [1994].
Watertight cataract incision closure using fibrin tissue adhesive.
Hovanesian, John A; Karageozian, Vicken H
2007-08-01
To determine whether a simple method for applying fibrin tissue adhesive to a clear corneal cataract incision can create a watertight seal. Laboratory investigation. Clear corneal cataract incisions were simulated in 8 eye-bank eyes. In 4 eyes, fibrin adhesive was applied to the incision in a simple manner; the other 4 eyes were controls with no adhesive. Each eye was tested under low pressure conditions to detect fluid ingress of India Ink on the eye's surface. The eyes were tested again with external compression to distort the incision to detect fluid egress. In the eyes with fibrin adhesive, there was no egress of fluid with incision distortion and no ingress of India Ink. In the 4 eyes without adhesive, there was ingress and egress of fluid. A simple method of applying fibrin adhesive to cataract incisions created a watertight seal.
Bacterial accumulation in viscosity gradients
NASA Astrophysics Data System (ADS)
Waisbord, Nicolas; Guasto, Jeffrey
2016-11-01
Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.
A soft porous drop in linear flows
NASA Astrophysics Data System (ADS)
Young, Yuan-Nan; Miksis, Michael; Mori, Yoichiro; Shelley, Michael
2017-11-01
The cellular cytoplasm consists a viscous fluid filled with fibrous networks that also have their own dynamics. Such fluid-structure interactions have been modeled as a soft porous material immersed in a viscous fluid. In this talk we focus on the hydrodynamics of a viscous drop filled with soft porous material inside. Suspended in a Stokes flow, such a porous viscous drop is allowed to deform, both the drop interface and the porous structures inside. Special focus is on the deformation dynamics of both the porosity and the shape of the drop under simple flows such as a uniform streaming flow and linear flows. We examine the effects of flow boundary conditions at interface between the porous drop and the surrounding viscous fluid. We also examine the dynamics of a porous drop with active stress from the porous network.
Resonant Drag Instability of Grains Streaming in Fluids
NASA Astrophysics Data System (ADS)
Squire, J.; Hopkins, P. F.
2018-03-01
We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.
Liquid-liquid critical point in a simple analytical model of water.
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Liquid-liquid critical point in a simple analytical model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Tree Hydraulics: How Sap Rises
ERIC Educational Resources Information Center
Denny, Mark
2012-01-01
Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…
CFD study of a simple orifice pulse tube cooler
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.
2007-05-01
Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.
NASA Astrophysics Data System (ADS)
Salomone, Horacio D.; Olivieri, Néstor A.; Véliz, Maximiliano E.; Raviola, Lisandro A.
2018-05-01
In the context of fluid mechanics courses, it is customary to consider the problem of a sphere falling under the action of gravity inside a viscous fluid. Under suitable assumptions, this phenomenon can be modelled using Stokes’ law and is routinely reproduced in teaching laboratories to determine terminal velocities and fluid viscosities. In many cases, however, the measured physical quantities show important deviations with respect to the predictions deduced from the simple Stokes’ model, and the causes of these apparent ‘anomalies’ (for example, whether the flow is laminar or turbulent) are seldom discussed in the classroom. On the other hand, there are various variable-mass problems that students tackle during elementary mechanics courses and which are discussed in many textbooks. In this work, we combine both kinds of problems and analyse—both theoretically and experimentally—the evolution of a system composed of a sphere pulled by a chain of variable length inside a tube filled with water. We investigate the effects of different forces acting on the system such as weight, buoyancy, viscous friction and drag force. By means of a sequence of mathematical models of increasing complexity, we obtain a progressive fit that accounts for the experimental data. The contrast between the various models exposes the strengths and weaknessess of each one. The proposed experience can be useful for integrating concepts of elementary mechanics and fluids, and is suitable as laboratory practice, stressing the importance of the experimental validation of theoretical models and showing the model-building processes in a didactic framework.
Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium
NASA Astrophysics Data System (ADS)
González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César
2018-01-01
This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.
Impact of the Equation of State in Models for Surfactant Spreading Experiments
NASA Astrophysics Data System (ADS)
Levy, Rachel
2014-11-01
Pulmonary surfactant spreading models often rely on an equation of state relating surfactant concentration to surface tension. Mathematically, these models have been analyzed with simple functional relationships. However, to model an experiment with a given fluid and surfactant, a physically meaningful equation of state can be derived from experimentally obtained isotherms. We discuss the comparison between model and experiment for NBD-PC lipid (surfactant) spreading on glycerol for an empirically-determined equation of state, and compare those results to simulations with traditionally employed functional forms. In particular we compare the timescales by tracking the leading edge of surfactant, the central fluid height and dynamics of the Marangoni ridge. We consider both outward spreading of a disk-shaped region of surfactant and the hole-closure problem in which a disk-shaped surfactant-free region self-heals. Support from NSF-DMS-FRG 0968154, RCSA-CCS-19788, and HHMI.
A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma
NASA Technical Reports Server (NTRS)
Scott, Carl D.
1993-01-01
This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.
Bed Erosion Process in Geophysical Viscoplastic Fluid
NASA Astrophysics Data System (ADS)
Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.
2017-12-01
The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.
Macromolecular crowding impacts on the diffusion and conformation of DNA hairpins
NASA Astrophysics Data System (ADS)
Stiehl, Olivia; Weidner-Hertrampf, Kathrin; Weiss, Matthias
2015-01-01
Biochemical reactions in crowded fluids differ significantly from those in dilute solutions. Both, excluded-volume interactions with surrounding macromolecules ("crowders") and an enhanced rebinding of reaction partners due to crowding-induced viscoelasticity and subdiffusion have been hypothesized to shift chemical equilibria towards the associated state. We have explored the impact of both cues in an experimentally tunable system by monitoring the steady-state fraction of open DNA hairpins in crowded fluids with varying viscoelastic characteristics but similar occupied volume fractions. As a result, we observed an increased fraction of closed DNA hairpins in viscoelastic crowded fluids. Our observations compare favorably to a simple statistical model that considers both facets of crowding, while preferential interactions between crowders and DNA hairpins appear to have little influence.
Focusing Fluids towards the Arc: the Role of Rehydration Reactions and Rheology
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M. W.; Van Keken, P. E.; Hacker, B. R.
2015-12-01
Aqueous fluids released from the down-going slab in subduction zones are generally thought to be the cause of arc volcanism. However there is a significant discrepancy between the consistent location of the volcanic front with respect to intermediate depth earthquakes (e.g. 100+/-40 km; England et al., GJI, 2004, Syracuse & Abers, G-cubed, 2006) and the large depth range over which dehydration reactions are predicted to occur in the slab (e.g. 80-250 km; van Keken et al., JGR, 2011).By coupling the fluid flow to the solid rheology through compaction pressure, recent numerical models (Wilson et al., EPSL, 2014) demonstrated a number of focusing mechanisms that can be invoked to explain this apparent discrepancy. Most notable among these were permeability channels within the slab. These were shown to be highly effective in transporting fluid from deeper fluid sources along the slab towards the shallowest source. In the presence of these channels the majority of the fluid is released into the mantle wedge far shallower and closer to the arc than it was originally generated.While observations consistent with free fluids in the slab have been reported (e.g. Shiina et al., GRL, 2013), it is possible that changing the reactivity and rheology of the slab can change the efficiency of in-slab transport (e.g. Wada et al., EPSL, 2012, Faccenda et al., G3, 2012). We present a series of simplified model problems of fluid flow within the slab and mantle wedge demonstrating the potential effect of these processes on fluid flux. In particular, pseudo-1D models show that if fluids can efficiently rehydrate slab minerals, then these reactions can shut down fluid pathways within the slab, resulting in deeper release of fluid into the mantle wedge. We will expand these results to consider the effects of rehydration in 2-D calculations. In addition, our previous models have considered only the simplest rheologies and geometries for the slab. We will also discuss new results that investigate simple visco-plastic models for the slab that limit the stresses and maximum viscosities in the slab for more realistic slab geometries. Despite these additional complexities, the robust observation of the location of the volcanic front with respect to intermediate depth earthquakes provides a clear test for evaluating subduction zone models.
Soltani, M.; Chen, P.
2013-01-01
Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579
Blending and nudging in fluid dynamics: some simple observations
NASA Astrophysics Data System (ADS)
Germano, M.
2017-10-01
Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed.
Fluid-Driven Deformation of a Soft Granular Material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2015-01-01
Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.
NASA Technical Reports Server (NTRS)
Defacio, B.; Vannevel, Alan; Brander, O.
1993-01-01
A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.
... Solitary Kidney Your Kidneys & How They Work Simple Kidney Cysts What are simple kidney cysts? Simple kidney cysts are abnormal, fluid-filled ... that form in the kidneys. What are the kidneys and what do they do? The kidneys are ...
NASA Astrophysics Data System (ADS)
Campo, A.; Cortés, C.
This paper is concerned with a distinct and effective technique to insulate horizontal tubes carrying hot fluids without using the variety of insulating materials traditionally utilized in industry. The tubes transport hot fluids and are exposed to a natural convection environment of air at standard atmospheric temperature and pressure. Essentially, an ``equivalent quantity of insulation'' is provided by an envelope of straight symmetric baffles made from a low conductivity material that is affixed to the outer surface of the horizontal tubes. A simple 1-D lumped model of comparable precision to the customary 2-D differential model serves to regulate the thermal interaction between the two perpendicular fluid streams, one horizontal due to internal forced convection and the other vertical due to external natural convection in air. All computations are algebraic and lead to a rapid determination of the two quantities that are indispensable to design engineers: the mean bulk temperatures of the internal hot fluid moving either laminarly or turbulently, together with the degraded levels of heat transfer rates.
Prediction of the low-velocity distribution from the pore structure in simple porous media
NASA Astrophysics Data System (ADS)
de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben
2017-12-01
The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.
Barton, P.B.; Chou, I.-Ming
1993-01-01
Pressure is the most important of the intensive parameters for relating epirthemal mineralization to the geologic setting. This paper describes the limitations on pressure (and therefore depth) of mineralization that may reasonably be derived from simple observations on the behaviour of fluid inclusions. It is based on the reasonable model that mineralization occurs from a hydrostatically pressured NaCl-CO2-H2O fluid, consistent with the probability that H2O and CO2 are the only gases contributing significantly to the total pressure. -from Authors
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Sound radiation from a water-filled pipe, radiation into light fluid.
Liu, Bilong; Pan, Jie; Li, Xiaodong; Tian, Jing
2002-12-01
This paper is concerned with the sound radiation from a water-filled exhaust pipe. The pipe opening and a plate attached to it form a vibrating surface for this radiation. Fluid-structural coupling between the pipe and enclosed fluid is included in the system modeling, but light fluid assumption is used for sound radiation into the space above the vibrating surface. In this paper, a numerical study on the n = 0 mode in the pipe shows that the wave types associated with this mode have different characteristics in two regions of the nondimensional frequency omega. In the first region of 0
Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
NASA Astrophysics Data System (ADS)
Cates, Michael E.; Tjhung, Elsen
2018-02-01
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.
Application of Mathematical Modeling in Potentially Survivable Blast Threats in Military Vehicles
2008-12-01
elastic – compression and tension of body under loading if elastic tolerances are exceeded, (b) viscous – when fluid matter is involved in the...lumbar spine biomechanical response. The model is a simple spring and damper system and its equation of motion is represented as: 2...dynamic motion. The seat structural management system was represented using Kelvin spring damper element provided in MADYMO. In the actual seat system
On turbulence decay of a shear-thinning fluid
NASA Astrophysics Data System (ADS)
Rahgozar, S.; Rival, D. E.
2017-12-01
An experimental investigation of turbulent flow in a shear-thinning fluid is presented. The experimental flow is a boundary-free, uniformly sheared flow at a relatively high Reynolds number (i.e., Re λmax=275 ), which decays in time. As just one example of decaying turbulence, the experiment can be thought of as a simple model of bulk turbulence in large arteries. The dimensionless parameters used are Reynolds, Strouhal, and Womersley numbers, which have been adapted according to the characteristics of the present experiment. The working fluid is a solution of aqueous 35 ppm xanthan gum, a well-known shear-thinning fluid. The velocity fields are acquired via time-resolved particle image velocimetry in the streamwise/cross-stream and streamwise/spanwise planes. The results show that the presence of xanthan gum not only modifies the turbulent kinetic energy and the dissipation rate but also significantly alters the characteristics of the large-scale eddies.
[Bioimpedometry and its utilization in dialysis therapy].
Lopot, František
2016-01-01
Measurement of living tissue impedance - bioimpedometry - started to be used in medicine some 50 years ago, first exclusively for estimation of extracellular and intracellular compartment volumes. Its most simple single frequency (50 kHz) version works directly with the measured impedance vector. Technically more sophisticated versions convert the measured impedance in values of volumes of different compartments of body fluids and calculate also principal markers of nutritional status (lean body mass, adipose tissue mass). The latest version specifically developed for application in dialysis patients includes body composition modelling and provides even absolute value of overhydration (excess fluid). Still in experimental phase is the bioimpedance exploitation for more precise estimation of residual glomerular filtration. Not yet standardized is also segmental bioimpedance measurement which should enable separate assessment of hydration status of the trunk segment and ultrafiltration capacity of peritoneum in peritoneal dialysis patients.Key words: assessment - bioimpedance - excess fluid - fluid status - glomerular filtration - haemodialysis - nutritional status - peritoneal dialysis.
The fluid trampoline: droplets bouncing on a soap film
NASA Astrophysics Data System (ADS)
Bush, John; Gilet, Tristan
2008-11-01
We present the results of a combined experimental and theoretical investigation of droplets falling onto a horizontal soap film. Both static and vertically vibrated soap films are considered. A quasi-static description of the soap film shape yields a force-displacement relation that provides excellent agreement with experiment, and allows us to model the film as a nonlinear spring. This approach yields an accurate criterion for the transition between droplet bouncing and crossing on the static film; moreover, it allows us to rationalize the observed constancy of the contact time and scaling for the coefficient of restitution in the bouncing states. On the vibrating film, a variety of bouncing behaviours were observed, including simple and complex periodic states, multiperiodicity and chaos. A simple theoretical model is developed that captures the essential physics of the bouncing process, reproducing all observed bouncing states. Quantitative agreement between model and experiment is deduced for simple periodic modes, and qualitative agreement for more complex periodic and chaotic bouncing states.
NASA Astrophysics Data System (ADS)
Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio
2017-04-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.
A study of the flow field surrounding interacting line fires
Trevor Maynard; Marko Princevac; David R. Weise
2016-01-01
The interaction of converging fires often leads to significant changes in fire behavior, including increased flame length, angle, and intensity. In this paper, the fluid mechanics of two adjacent line fires are studied both theoretically and experimentally. A simple potential flow model is used to explain the tilting of interacting flames towards each other, which...
A pendulum experiment on added mass and equivalence.
NASA Astrophysics Data System (ADS)
Donnelly, Russell; Neill, Douglas; Livelybrooks, Dean
2005-11-01
The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an inviscid fluid which has an added mass of one-half the mass of the fluid displaced. This result is widely used in quantum fluids; for example giving a finite mass to a trapped electron in superfluid helium-4, which is a free electron in a bubble about 36 Angstroms in diameter. A derivation of this result is contained in Landau-Lifshitz ``Fluid Mechanics'', Section 12. The period of oscillation of a simple pendulum in a vacuum is independent of the mass because of the principle of equivalence of gravitational and inertial masses. In a fluid however, both buoyancy and added mass enter the problem. We present results of experiments of simple pendulums of different materials oscillating in various fluids. The results agree closely with the results obtained for the added mass in inviscid fluids, as expected.
Freund, J B; Shukla, R K; Evan, A P
2009-11-01
Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid "tissue." A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves.
Freund, J. B.; Shukla, R. K.; Evan, A. P.
2009-01-01
Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid “tissue.” A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves. PMID:19894850
Flow of a Casson fluid through a locally-constricted porous channel: a numerical study
NASA Astrophysics Data System (ADS)
Amlimohamadi, Haleh; Akram, Maryammosadat; Sadeghy, Kayvan
2016-05-01
Flow of a Casson fluid through a two-dimensional porous channel containing a local constriction is numerically investigated assuming that the resistance offered by the porous medium obeys the Darcy's law. Treating the constriction as another porous medium which obeys the Darcy-Forcheimer model, the equations governing fluid flow in the main channel and the constriction itself are numerically solved using the finite-volume method (FVM) based on the pseudo-transient SIMPLE algorithm. It is shown that an increase in the porosity of the channel decreases the shear stress exerted on the constriction. On the other hand, an increase in the fluid's yield stress is predicted to increase the maximum shear stress experienced by the constriction near its crest. The porosity of the constriction itself is predicted to have a negligible effect on the plaque's shear stress. But, the momentum of the weak flow passing through the constriction is argued to lower the bulk fluid from separating downstream of the constriction.
Stoner, D. L.; Watson, S. M.; Stedtfeld, R. D.; Meakin, P.; Griffel, L. K.; Tyler, T. L.; Pegram, L. M.; Barnes, J. M.; Deason, V. A.
2005-01-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices. PMID:16332867
Stoner, D L; Watson, S M; Stedtfeld, R D; Meakin, P; Griffel, L K; Tyler, T L; Pegram, L M; Barnes, J M; Deason, V A
2005-12-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Stoner; S. M. Watson; R. D. Stedtfeld
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbialmore » colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.« less
Demekhin, E A; Kalaidin, E N; Kalliadasis, S; Vlaskin, S Yu
2010-09-01
We validate experimentally the Kapitsa-Shkadov model utilized in the theoretical studies by Demekhin [Phys. Fluids 19, 114103 (2007)10.1063/1.2793148; Phys. Fluids 19, 114104 (2007)]10.1063/1.2793149 of surface turbulence on a thin liquid film flowing down a vertical planar wall. For water at 15° , surface turbulence typically occurs at an inlet Reynolds number of ≃40 . Of particular interest is to assess experimentally the predictions of the model for three-dimensional nonlinear localized coherent structures, which represent elementary processes of surface turbulence. For this purpose we devise simple experiments to investigate the instabilities and transitions leading to such structures. Our experimental results are in good agreement with the theoretical predictions of the model. We also perform time-dependent computations for the formation of coherent structures and their interaction with localized structures of smaller amplitude on the surface of the film.
Computer modeling and simulation in inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Verdon, C.P.
1989-03-01
The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less
Chill Down Process of Hydrogen Transport Pipelines
NASA Technical Reports Server (NTRS)
Mei, Renwei; Klausner, James
2006-01-01
A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.
Pore-scale discretisation limits of multiphase lattice-Boltzmann methods
NASA Astrophysics Data System (ADS)
Li, Z.; Middleton, J.; Varslot, T.; Sheppard, A.
2015-12-01
Lattice-Boltzmann (LB) modeling is a popular method for the numerical solution of the Navier-Stokes equations and several multi-component LB models are widely used to simulate immiscible two-phase fluid flow in porous media. However, there has been relatively little study of the models' ability to make optimal use of 3D imagery by considering the minimum number of grid points that are needed to represent geometric features such as pore throats. This is of critical importance since 3D images of geological samples are a compromise between resolution and field of view. In this work we explore the discretisation limits of LB models, their behavior near these limits, and the consequences of this behavior for simulations of drainage and imbibition. We quantify the performance of two commonly used multiphase LB models: Shan-Chen (SC) and Rothman-Keller (RK) models in a set of tests, including simulations of bubbles in bulk fluid, on flat surfaces, confined in flat/tilted tubes, and fluid invasion into single tubes. Simple geometries like these allow better quantification of model behavior and better understanding of breakdown mechanisms. In bulk fluid, bubble radii less than 2.5 grid units (image voxels) cause numerical instability in SC model; the RK model is stable to a radius of 2.5 units and below, but with poor agreement with the Laplace's law. When confined to a flat duct, the SC model can simulate similar radii to RK model, but with higher interface spurious currents than the RK model and some risk of instability. In tilted ducts with 'staircase' voxel-level roughness, the SC model seems to average the roughness, whereas for RK model only the 'peaks' of the surface are relevant. Overall, our results suggest that LB models can simulate fluid capillary pressure corresponding to interfacial radii of just 1.5 grid units, with the RK model exhibiting significantly better stability.
Fluid-structure coupling for an oscillating hydrofoil
NASA Astrophysics Data System (ADS)
Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.
2010-08-01
Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.
Universal thermodynamics of the one-dimensional attractive Hubbard model
NASA Astrophysics Data System (ADS)
Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen
2018-03-01
The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction, provides a paradigm for the physics of quantum many-body phenomena. Here, by solving the thermodynamic Bethe ansatz equations, we study the universal thermodynamics, quantum criticality, and magnetism of the 1D attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures, and the quantum fluid to non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z =2 and correlation critical exponent ν =1 /2 in the quantum critical region whenever a phase transition occurs. Our results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D lattice.
Sound synchronization of bubble trains in a viscous fluid: experiment and modeling.
Pereira, Felipe Augusto Cardoso; Baptista, Murilo da Silva; Sartorelli, José Carlos
2014-10-01
We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude (A), the height (H) of the solution above the top of the nozzle, and three values of the sound frequency (fs). Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues (frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.
NASA Astrophysics Data System (ADS)
Dannberg, J.; Heister, T.; Grove, R. R.; Gassmoeller, R.; Spiegelman, M. W.; Bangerth, W.
2017-12-01
Earth's surface shows many features whose genesis can only be understood through the interplay of geodynamic and thermodynamic models. This is particularly important in the context of melt generation and transport: Mantle convection determines the distribution of temperature and chemical composition, the melting process itself is then controlled by the thermodynamic relations and in turn influences the properties and the transport of melt. Here, we present our extension of the community geodynamics code ASPECT, which solves the equations of coupled magma/mantle dynamics, and allows to integrate different parametrizations of reactions and phase transitions: They may alternatively be implemented as simple analytical expressions, look-up tables, or computed by a thermodynamics software. As ASPECT uses a variety of numerical methods and solvers, this also gives us the opportunity to compare different approaches of modelling the melting process. In particular, we will elaborate on the spatial and temporal resolution that is required to accurately model phase transitions, and show the potential of adaptive mesh refinement when applied to melt generation and transport. We will assess the advantages and disadvantages of iterating between fluid dynamics and chemical reactions derived from thermodynamic models within each time step, or decoupling them, allowing for different time step sizes. Beyond that, we will expand on the functionality required for an interface between computational thermodynamics and fluid dynamics models from the geodynamics side. Finally, using a simple example of melting of a two-phase, two-component system, we compare different time-stepping and solver schemes in terms of accuracy and efficiency, in dependence of the time scales of fluid flow and chemical reactions relative to each other. Our software provides a framework to integrate thermodynamic models in high resolution, 3d simulations of coupled magma/mantle dynamics, and can be used as a tool to study links between physical processes and geochemical signals in the Earth.
Development of hybrid computer plasma models for different pressure regimes
NASA Astrophysics Data System (ADS)
Hromadka, Jakub; Ibehej, Tomas; Hrach, Rudolf
2016-09-01
With increased performance of contemporary computers during last decades numerical simulations became a very powerful tool applicable also in plasma physics research. Plasma is generally an ensemble of mutually interacting particles that is out of the thermodynamic equilibrium and for this reason fluid computer plasma models give results with only limited accuracy. On the other hand, much more precise particle models are often limited only on 2D problems because of their huge demands on the computer resources. Our contribution is devoted to hybrid modelling techniques that combine advantages of both modelling techniques mentioned above, particularly to their so-called iterative version. The study is focused on mutual relations between fluid and particle models that are demonstrated on the calculations of sheath structures of low temperature argon plasma near a cylindrical Langmuir probe for medium and higher pressures. Results of a simple iterative hybrid plasma computer model are also given. The authors acknowledge the support of the Grant Agency of Charles University in Prague (project 220215).
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit
2012-11-01
Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.
Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
Sadeghi, Hossein; Kniesburges, Stefan; Kaltenbacher, Manfred; Schützenberger, Anne; Döllinger, Michael
2018-02-07
Human phonation is based on the interaction between tracheal airflow and laryngeal dynamics. This fluid-structure interaction is based on the energy exchange between airflow and vocal folds. Major challenges in analyzing the phonatory process in-vivo are the small dimensions and the poor accessibility of the region of interest. For improved analysis of the phonatory process, numerical simulations of the airflow and the vocal fold dynamics have been suggested. Even though most of the models reproduced the phonatory process fairly well, development of comprehensive larynx models is still a subject of research. In the context of clinical application, physiological accuracy and computational model efficiency are of great interest. In this study, a simple numerical larynx model is introduced that incorporates the laryngeal fluid flow. It is based on a synthetic experimental model with silicone vocal folds. The degree of realism was successively increased in separate computational models and each model was simulated for 10 oscillation cycles. Results show that relevant features of the laryngeal flow field, such as glottal jet deflection, develop even when applying rather simple static models with oscillating flow rates. Including further phonatory components such as vocal fold motion, mucosal wave propagation, and ventricular folds, the simulations show phonatory key features like intraglottal flow separation and increased flow rate in presence of ventricular folds. The simulation time on 100 CPU cores ranged between 25 and 290 hours, currently restricting clinical application of these models. Nevertheless, results show high potential of numerical simulations for better understanding of phonatory process. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis-Richards, J.; Watanable, K.; Yamaguchi, T.
A set of models of HDR systems is presented which attempts to explain the formation and operation of HDR systems using only the in-situ properties of the fractured rock mass, the earth stress field, the engineering intervention applied by way of stimulation and the relative positions and pressures of the well(s). A statistical and rock mechanics description of fractures in low permeability rocks provides the basis for modeling of stimulation, circulation and water loss in HDR systems. The model uses a large number of parameters, chiefly simple directly measurable quantities, describing the rock mass and fracture system. The effect ofmore » stimulation (raised fluid pressure allowing slip) on fracture apertures is calculated, and the volume of rock affected per volume of fluid pumped estimated. The total rock volume affected by stimulation is equated with the rock volume containing the associated AE (microseismicity). The aperture and compliance properties of the stimulated fractures are used to estimate impedance and flow within the reservoir. Fluid loss from the boundary of the stimulated volume is treated using radial leak-off with pressure-dependent permeability.« less
Restricted Euler dynamics along trajectories of small inertial particles in turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2016-11-01
The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of severely reduced self-stretching of strain-rate. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825 and by a Grant from The Gulf of Mexico Research Initiative.
A fluid-structure interaction model of soft robotics using an active strain approach
NASA Astrophysics Data System (ADS)
Hess, Andrew; Lin, Zhaowu; Gao, Tong
2017-11-01
Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.
Stress modeling in colloidal dispersions undergoing non-viscometric flows
NASA Astrophysics Data System (ADS)
Dolata, Benjamin; Zia, Roseanna
2017-11-01
We present a theoretical study of the stress tensor for a colloidal dispersion undergoing non-viscometric flow. In such flows, the non-homogeneous suspension stress depends on not only the local average total stresslet-the sum of symmetric first moments of both the hydrodynamic traction and the interparticle force-but also on the average quadrupole, octupole, and higher-order moments. To compute the average moments, we formulate a six dimensional Smoluchowski equation governing the microstructural evolution of a suspension in an arbitrary fluid velocity field. Under the conditions of rheologically slow flow, where the Brownian relaxation of the particles is much faster than the spatiotemporal evolution of the flow, the Smoluchowski equation permits asymptotic solution, revealing a suspension stress that follows a second-order fluid constitutive model. We obtain a reciprocal theorem and utilize it to show that all constitutive parameters of the second-order fluid model may be obtained from two simpler linear-response problems: a suspension undergoing simple shear and a suspension undergoing isotropic expansion. The consequences of relaxing the assumption of rheologically slow flow, including the appearance of memory and microcontinuum behaviors, are discussed.
Developing a new intelligent system for the diagnosis of tuberculous pleural effusion.
Li, Chengye; Hou, Lingxian; Sharma, Bishundat Yanesh; Li, Huaizhong; Chen, ChengShui; Li, Yuping; Zhao, Xuehua; Huang, Hui; Cai, Zhennao; Chen, Huiling
2018-01-01
In countries with high prevalence of tuberculosis (TB), clinicians often diagnose tuberculous pleural effusion (TPE) by using diagnostic tests, which have not only poor sensitivity, but poor availability as well. The aim of our study is to develop a new artificial intelligence based diagnostic model that is accurate, fast, non-invasive and cost effective to diagnose TPE. It is expected that a tool derived based on the model be installed on simple computer devices (such as smart phones and tablets) and be used by clinicians widely. For this study, data of 140 patients whose clinical signs, routine blood test results, blood biochemistry markers, pleural fluid cell type and count, and pleural fluid biochemical tests' results were prospectively collected into a database. An Artificial intelligence based diagnostic model, which employs moth flame optimization based support vector machine with feature selection (FS-MFO-SVM), is constructed to predict the diagnosis of TPE. The optimal model results in an average of 95% accuracy (ACC), 0.9564 the area under the receiver operating characteristic curve (AUC), 93.35% sensitivity, and 97.57% specificity for FS-MFO-SVM. The proposed artificial intelligence based diagnostic model is found to be highly reliable for diagnosing TPE based on simple clinical signs, blood samples and pleural effusion samples. Therefore, the proposed model can be widely used in clinical practice and further evaluated for use as a substitute of invasive pleural biopsies. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Stephen J.; Ni, Guangjian
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motionmore » will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang, E-mail: liang.wang@unh.edu; Germaschewski, K.; Hakim, Ammar H.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically andmore » numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.« less
NASA Technical Reports Server (NTRS)
Wohlrab, R.
1983-01-01
Instabilities in turbine operation can be caused by forces which are produced in connection with motions involving the oil film in the bearings. An experimental investigation regarding the characteristics of such forces in the case of three typical steam turbine stages is conducted, taking into account the effect of various parameters. Supplementary kinetic tests are carried out to obtain an estimate of the flow forces which are proportional to the velocity. The measurements are based on the theoretical study of the damping characteristics of a vibrational model. A computational analysis of the effect of the measured fluid forces on the stability characteristics of simple rotor model is also conducted.
Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Salazar, Erik; Mittal, Rajat
2017-11-01
Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.
Modeling Respiratory Gas Dynamics in the Aviator’s Breathing System. Volume 2. Appendices
1994-05-01
Rideout, at at. Dfference-Differentlat Equations for Fluid C... Flow in Distensible Tubes. IEEE Transactions on Bio-Medlcat C... Enginhering. Vot INE-14...McGraw-Hill; 1970; Chapter 13: 433-450. 12. Astrand, PO; Saltin, B. Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol...1802-1814; 1986. 233. Linehan, JH; Haworth, ST; Nelin, LD; Krenz, GS; Dawson, CA. A Simple Distensible Vessel Model for Interpreting Pulmonary
NASA Astrophysics Data System (ADS)
Marchitto, T. M.; Bryan, S. P.; Doss, W.; McCulloch, M. T.; Montagna, P.
2018-01-01
In contrast to Li/Ca and Mg/Ca, Li/Mg is strongly anticorrelated with temperature in aragonites precipitated by the benthic foraminifer Hoeglundina elegans and a wide range of scleractinian coral taxa. We propose a simple conceptual model of biomineralization that explains this pattern and is consistent with available abiotic aragonite partition coefficients. Under this model the organism actively modifies seawater within its calcification pool by raising its [Ca2+], using a pump that strongly discriminates against both Li+ and Mg2+. Rayleigh fractionation during calcification effectively reverses this process, removing Ca2+ while leaving most Li+ and Mg2+ behind in the calcifying fluid. The net effect of these two processes is that Li/Mg in the calcifying fluid remains very close to the seawater value, and temperature-dependent abiotic partition coefficients are expressed in the biogenic aragonite Li/Mg ratio. We further show that coral Sr/Ca is consistent with this model if the Ca2+ pump barely discriminates against Sr2+. In H. elegans the covariation of Sr/Ca and Mg/Ca requires either that the pump more strongly discriminates against Sr2+, or that cation incorporation is affected by aragonite precipitation rate via the mechanism of surface entrapment. In either case Li/Mg is minimally affected by such 'vital effects' which plague other elemental ratio paleotemperature proxies.
Effect of elastic constants of liquid crystals in their electro-optical properties
NASA Astrophysics Data System (ADS)
Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.
Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.
Spontaneous oscillation and fluid-structure interaction of cilia.
Han, Jihun; Peskin, Charles S
2018-04-24
The exact mechanism to orchestrate the action of hundreds of dynein motor proteins to generate wave-like ciliary beating remains puzzling and has fascinated many scientists. We present a 3D model of a cilium and the simulation of its beating in a fluid environment. The model cilium obeys a simple geometric constraint that arises naturally from the microscopic structure of a real cilium. This constraint allows us to determine the whole 3D structure at any instant in terms of the configuration of a single space curve. The tensions of active links, which model the dynein motor proteins, follow a postulated dynamical law, and together with the passive elasticity of microtubules, this dynamical law is responsible for the ciliary motions. In particular, our postulated tension dynamics lead to the instability of a symmetrical steady state, in which the cilium is straight and its active links are under equal tensions. The result of this instability is a stable, wave-like, limit cycle oscillation. We have also investigated the fluid-structure interaction of cilia using the immersed boundary (IB) method. In this setting, we see not only coordination within a single cilium but also, coordinated motion, in which multiple cilia in an array organize their beating to pump fluid, in particular by breaking phase synchronization.
Modeling the efficiency of a magnetic needle for collecting magnetic cells
NASA Astrophysics Data System (ADS)
Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.
2014-07-01
As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.
Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-01-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828
Modeling the Efficiency of a Magnetic Needle for Collecting Magnetic Cells
Butler, Kimberly S; Adolphi, Natalie L.; Bryant, H C; Lovato, Debbie M; Larson, Richard S; Flynn, Edward R
2014-01-01
As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in 1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and 2) water in which 3, 5, 10 and 100 % of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency vs. time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. PMID:24874577
Sampling guidelines for oral fluid-based surveys of group-housed animals.
Rotolo, Marisa L; Sun, Yaxuan; Wang, Chong; Giménez-Lirola, Luis; Baum, David H; Gauger, Phillip C; Harmon, Karen M; Hoogland, Marlin; Main, Rodger; Zimmerman, Jeffrey J
2017-09-01
Formulas and software for calculating sample size for surveys based on individual animal samples are readily available. However, sample size formulas are not available for oral fluids and other aggregate samples that are increasingly used in production settings. Therefore, the objective of this study was to develop sampling guidelines for oral fluid-based porcine reproductive and respiratory syndrome virus (PRRSV) surveys in commercial swine farms. Oral fluid samples were collected in 9 weekly samplings from all pens in 3 barns on one production site beginning shortly after placement of weaned pigs. Samples (n=972) were tested by real-time reverse-transcription PCR (RT-rtPCR) and the binary results analyzed using a piecewise exponential survival model for interval-censored, time-to-event data with misclassification. Thereafter, simulation studies were used to study the barn-level probability of PRRSV detection as a function of sample size, sample allocation (simple random sampling vs fixed spatial sampling), assay diagnostic sensitivity and specificity, and pen-level prevalence. These studies provided estimates of the probability of detection by sample size and within-barn prevalence. Detection using fixed spatial sampling was as good as, or better than, simple random sampling. Sampling multiple barns on a site increased the probability of detection with the number of barns sampled. These results are relevant to PRRSV control or elimination projects at the herd, regional, or national levels, but the results are also broadly applicable to contagious pathogens of swine for which oral fluid tests of equivalent performance are available. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Flash vaporization during earthquakes evidenced by gold deposits
NASA Astrophysics Data System (ADS)
Weatherley, Dion K.; Henley, Richard W.
2013-04-01
Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.
PREFACE: Ionic fluids Ionic fluids
NASA Astrophysics Data System (ADS)
Levin, Yan; Kornyshev, Alexei; Barbosa, Marcia C.
2009-10-01
In spite of its apparent simplicity Coulomb law, when applied to many body systems, leads to an amazingly rich mathematical structure. The simple idea that two similarly charged objects always repel, is not necessarily true in a colloidal suspension or a dusty plasma. Neither can one simply predict the direction of the electrophoretic motion of a polyion from only knowing its chemical charge. Strong Coulomb correlations in ionic fluids result in instabilities very similar to the gas--liquid phase separation observed in atomic fluids. It is fair to say that bulk behavior of simple aqueous monovalent electrolytes is now very well understood. Unfortunately this is not the case for multivalent electrolytes or molten salts. In these systems cation-anion association leads to strong non-linear effects which manifest themselves in formations of tightly bound ionic clusters. In spite of the tremendous effort invested over the years, our understanding of these systems remains qualitative. In this special issue we have collected articles from some of the biggest experts working on ionic fluids. The papers are both experimental and theoretical. They range from simple electrolytes in the bulk and near interfaces, to polyelectrolytes, colloids, and molten salts. The special issue, covers a wide spectrum of the ongoing research on ionic fluids. All readers should find something of interest here.
Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets
NASA Astrophysics Data System (ADS)
Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.
2006-12-01
Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.
A Simplified Model for Detonation Based Pressure-Gain Combustors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2010-01-01
A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.
Urbic, T.; Mohoric, T.
2017-01-01
Non–equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes–Benz water model. We establish a non–equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard–Jones fluid like.
NASA Astrophysics Data System (ADS)
Urbic, T.; Mohoric, T.
2017-03-01
Non-equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. We establish a non-equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard-Jones fluid like.
Quantification of the cerebrospinal fluid from a new whole body MRI sequence
NASA Astrophysics Data System (ADS)
Lebret, Alain; Petit, Eric; Durning, Bruno; Hodel, Jérôme; Rahmouni, Alain; Decq, Philippe
2012-03-01
Our work aims to develop a biomechanical model of hydrocephalus both intended to perform clinical research and to assist the neurosurgeon in diagnosis decisions. Recently, we have defined a new MR imaging sequence based on SPACE (Sampling Perfection with Application optimized Contrast using different flip-angle Evolution). On these images, the cerebrospinal fluid (CSF) appears as a homogeneous hypersignal. Therefore such images are suitable for segmentation and for volume assessment of the CSF. In this paper we present a fully automatic 3D segmentation of such SPACE MRI sequences. We choose a topological approach considering that CSF can be modeled as a simply connected object (i.e. a filled sphere). First an initial object which must be strictly included in the CSF and homotopic to a filled sphere, is determined by using a moment-preserving thresholding. Then a priority function based on an Euclidean distance map is computed in order to control the thickening process that adds "simple points" to the initial thresholded object. A point is called simple if its addition or its suppression does not result in change of topology neither for the object, nor for the background. The method is validated by measuring fluid volume of brain phantoms and by comparing our volume assessments on clinical data to those derived from a segmentation controlled by expert physicians. Then we show that a distinction between pathological cases and healthy adult people can be achieved by a linear discriminant analysis on volumes of the ventricular and intracranial subarachnoid spaces.
Spectral methods for partial differential equations
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Streett, C. L.; Zang, T. A.
1983-01-01
Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized.
Pressure-Temperature Simulation at Brady Hot Springs
Feigl, Kurt (ORCID:0000000220596708)
2017-07-11
These files contain the output of a model calculation to simulate the pressure and temperature of fluid at Brady Hot Springs, Nevada, USA. The calculation couples the hydrologic flow (Darcy's Law) with simple thermodynamics. The epoch of validity is 24 March 2015. Coordinates are UTM Easting, Northing, and Elevation in meters. Temperature is specified in degrees Celsius. Pressure is specified in Pascal.
A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions
ERIC Educational Resources Information Center
Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s
2014-01-01
A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…
Modeling Hydrothermal Activity on Enceladus
NASA Astrophysics Data System (ADS)
Stamper, T., Jr.; Farough, A.
2017-12-01
Cassini's mass spectrometer data and gravitational field measurements imply water-rock interactions around the porous core of Enceladus. Using such data we characterize global heat and fluid transport properties of the core and model the ongoing hydrothermal activity on Enceladus. We assume that within the global ocean beneath the surface ice, seawater percolates downward into the core where it is heated and rises to the oceanfloor where it emanates in the form of diffuse discharge. We utilize the data from Hsu et al., [2015] with models of diffuse flow in seafloor hydrothermal systems by Lowell et al., [2015] to characterize the global heat transport properties of the Enceladus's core. Based on direct observations the gravitational acceleration (g) is calculated 0.123 m s-2. We assume fluid's density (ρ) is 103 kg m-3 and the specific heat of the fluid (cf) is 4000 Jkg-1 °C-1. From these values effective thermal diffusivity (a*) is calculated as 10-6 m2 s-1. We also assume the coefficient of thermal expansion of fluid (αf) and the kinematic viscosity of fluid (ν) to be 10-4 °C-1 and 10-6 m2 s-1 respectively. The estimated Rayleigh number (Ra) ranges between 0.11-2468.0, for core porosity (φ) of 5-15%, permeability (k) between 10-12-10-8 m2 and temperature between 90-200 °C and the depth of fluid circulation of 100 m. High values of Rayleigh number, cause vigorous convection within the core of Enceladus. Numerical modeling of reactive transport in multicomponent, multiphase systems is required to obtain a full understanding of the characteristics and evolution of the hydrothermal system on Enceladus, but simple scaling laws can provide insight into the physics of water-rock interactions.
SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, A.; Ellero, M.
2017-12-01
In this work, we extend the three-dimensional Smoothed Particle Hydrodynamics (SPH) non-colloidal particulate model previously developed for Newtonian suspending media in Vázquez-Quesada and Ellero ["Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics," J. Non-Newtonian Fluid Mech. 233, 37-47 (2016)] to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in Vázquez-Quesada, Ellero, and Español ["Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations," Phys. Rev. E 79, 056707 (2009)] is adopted. The property of this particular set of equations is that they are entirely derived within the general equation for non-equilibrium reversible-irreversible coupling formalism and therefore enjoy automatically thermodynamic consistency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent entropy function for the fluid particles. In the simple case of suspended Hookean dumbbells, this delivers a specific SPH discretization of the Oldroyd-B constitutive equation. We validate the suspended particle model by studying the dynamics of single and mutually interacting "noncolloidal" rigid spheres under shear flow and in the presence of confinement. Numerical results agree well with available numerical and experimental data. It is straightforward to extend the particulate model to Brownian conditions and to more complex viscoelastic solvents.
Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin
England, Philip; Wells, Ray E.
1991-01-01
Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.
Local invariants in non-ideal flows of neutral fluids and two-fluid plasmas
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The main objective is the locally invariant geometric object of any (magneto-)fluid dynamics with forcing and damping (nonideal), while more attention is paid to the untouched dynamical properties of two-fluid fashion. Specifically, local structures, beyond the well-known "frozen-in" to the barotropic flows of the generalized vorticities, of the two-fluid model of plasma flows are presented. More general non-barotropic situations are also considered. A modified Euler equation [T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE 2, 9 (2016)] is also accordingly analyzed and remarked from the angle of view of the two-fluid model, with emphasis on the local structures. The local constraints of high-order differential forms such as helicity, among others, find simple formulation for possible practices in modeling the dynamics. Thus, the Cauchy invariants equation [N. Besse and U. Frisch, "Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces," J. Fluid Mech. 825, 412 (2017)] may be enabled to find applications in non-ideal flows. Some formal examples are offered to demonstrate the calculations, and particularly interestingly the two-dimensional-three-component (2D3C) or the 2D passive scalar problem presents that a locally invariant Θ = 2θζ, with θ and ζ being, respectively, the scalar value of the "vertical velocity" (or the passive scalar) and the "vertical vorticity," may be used as if it were the spatial density of the globally invariant helicity, providing a Lagrangian prescription to control the latter in some situations of studying its physical effects in rapidly rotating flows (ubiquitous in atmosphere of astrophysical objects) with marked 2D3C vortical modes or in purely 2D passive scalars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in; Nguyen, Andrew Huy
Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW{sub 16}). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW{sub 20}), silicon (SW{sub 21}), and water (SW{sub 23.15} or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. Themore » tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S{sub trip}, is also studied. S{sub trip} is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (T{sub thr}). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.« less
Dynamic Deployment Simulations of Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Wang, John T.
2005-01-01
The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.
Physically based model for extracting dual permeability parameters using non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.
2017-12-01
Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.
Sleep, Norman H.; Blanpied, M.L.
1994-01-01
A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.
Complexity and compositionality in fluid intelligence.
Duncan, John; Chylinski, Daphne; Mitchell, Daniel J; Bhandari, Apoorva
2017-05-16
Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition.
Causal implications of viscous damping in compressible fluid flows
Jordan; Meyer; Puri
2000-12-01
Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special and limiting cases, are found and compared for the two models. The effects of the physical parameters on the solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations. In addition, discontinuities and shock waves are noted and a physical system is modeled under both formulations. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic fluids are noted. In particular, the research presented here supports the notion that linear compressible, isothermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.
A simple bubble-flowmeter with quasicontinuous registration.
Ludt, H; Herrmann, H D
1976-07-22
The construction of a simple bubble-flow-meter is described. The instrument has the following features: 1. automatic bubble injection, 2. precise measurement of the bubble passage time by a digital counter, 3. quasicontinuous registration of the flow rate, 4. alternative run with clear fluid (water) and coloured fluid (blood), 5. low volume, 6. closed measuring system for measurements in low and high pressure systems.
Modeling of active transmembrane transport in a mixture theory framework.
Ateshian, Gerard A; Morrison, Barclay; Hung, Clark T
2010-05-01
This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature.
NASA Astrophysics Data System (ADS)
Worster, Grae; Huppert, Herbert; Robison, Rosalyn; Nandkishore, Rahul; Rajah, Luke
2008-11-01
We have used simple laboratory experiments with viscous fluids to explore the dynamics of grounding lines between Antarctic marine ice sheets and the freely floating ice shelves into which they develop. Ice sheets are shear-dominated gravity currents, while ice shelves are extensional gravity currents with zero shear to leading order. Though ice sheets have non-Newtonian rheology, fundamental aspects of their flow can be explored using Newtonian fluid mechanics. We have derived a mathematical model of this flow that incorporates a new dynamic boundary condition for the position of the grounding line, where the gravity current loses contact with the solid base. Good agreement between our theoretical predictions and our experimental measurements, made using gravity currents of syrup flowing down a rigid slope into a deep, dense salt solution, gives confidence in the fundamental assumptions of our model, which can be incorporated into shallow-ice models to make important predictions regarding the dynamical stability of marine ice sheets.
NASA Astrophysics Data System (ADS)
Toner, John; Tu, Yu-Hai
2002-05-01
We have developed a new continuum dynamical model for the collective motion of large "flocks" of biological organisms (e.g., flocks of birds, schools of fish, herds of wildebeest, hordes of bacteria, slime molds, etc.) . This model does for flocks what the Navier-Stokes equation does for fluids. The model predicts that, unlike simple fluids, flocks show huge fluctuation effects in spatial dimensions d < 4 that radically change their behavior. In d=2, it is only these effects that make it possible for the flock to move coherently at all. This explains why a million wildebeest can march together across the Serengeti plain, despite the fact that a million physicists gathered on the same plane could NOT all POINT in the same direction. Detailed quantitative predictions of this theory agree beautifully with computer simulations of flock motion.
Twisting microfluidics in a planetary centrifuge.
Yasuda, Shoya; Hayakawa, Masayuki; Onoe, Hiroaki; Takinoue, Masahiro
2017-03-15
This paper reports a twisting microfluidic method utilising a centrifuge-based fluid extruding system in a planetary centrifuge which simultaneously generates an orbital rotation and an axial spin. In this method, fluid extrusion from a micro-scale capillary to an 'open-space' solution or air enables release of the fluid from the capillary-based microchannel, which physically means that there is a release of fluids from a confined low-Reynolds-number environment to an open non-low-Reynolds-number environment. As a result, the extruded fluids are separated from the axial spin of the capillary, and the difference in the angular rates of the axial spin between the capillary and the extruded fluids produces the 'twisting' of the fluid. In this study, we achieve control of the twist of highly viscous fluids, and we construct a simple physical model for the fluid twist. In addition, we demonstrate the formation of twisted hydrogel microstructures (stripe-patterned microbeads and multi-helical microfibres) with control over the stripe pattern and the helical pitch length. We believe that this method will enable the generation of more sophisticated microstructures which cannot easily be formed by usual channel-based microfluidic devices. This method can also provide advanced control of microfluids, as in the case of rapid mixing of highly viscous fluids. This method can contribute to a wide range of applications in materials science, biophysics, biomedical science, and microengineering in the future.
Balzani, Daniel; Deparis, Simone; Fausten, Simon; Forti, Davide; Heinlein, Alexander; Klawonn, Axel; Quarteroni, Alfio; Rheinbach, Oliver; Schröder, Joerg
2016-10-01
The accurate prediction of transmural stresses in arterial walls requires on the one hand robust and efficient numerical schemes for the solution of boundary value problems including fluid-structure interactions and on the other hand the use of a material model for the vessel wall that is able to capture the relevant features of the material behavior. One of the main contributions of this paper is the application of a highly nonlinear, polyconvex anisotropic structural model for the solid in the context of fluid-structure interaction, together with a suitable discretization. Additionally, the influence of viscoelasticity is investigated. The fluid-structure interaction problem is solved using a monolithic approach; that is, the nonlinear system is solved (after time and space discretizations) as a whole without splitting among its components. The linearized block systems are solved iteratively using parallel domain decomposition preconditioners. A simple - but nonsymmetric - curved geometry is proposed that is demonstrated to be suitable as a benchmark testbed for fluid-structure interaction simulations in biomechanics where nonlinear structural models are used. Based on the curved benchmark geometry, the influence of different material models, spatial discretizations, and meshes of varying refinement is investigated. It turns out that often-used standard displacement elements with linear shape functions are not sufficient to provide good approximations of the arterial wall stresses, whereas for standard displacement elements or F-bar formulations with quadratic shape functions, suitable results are obtained. For the time discretization, a second-order backward differentiation formula scheme is used. It is shown that the curved geometry enables the analysis of non-rotationally symmetric distributions of the mechanical fields. For instance, the maximal shear stresses in the fluid-structure interface are found to be higher in the inner curve that corresponds to clinical observations indicating a high plaque nucleation probability at such locations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Using graph approach for managing connectivity in integrative landscape modelling
NASA Astrophysics Data System (ADS)
Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger
2013-04-01
In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.
Polymer Fluid Dynamics: Continuum and Molecular Approaches.
Bird, R B; Giacomin, A J
2016-06-07
To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
NASA Astrophysics Data System (ADS)
Pohlman, Matthew Michael
The study of heat transfer and fluid flow in a vertical Bridgman device is motivated by current industrial difficulties in growing crystals with as few defects as possible. For example, Gallium Arsenide (GaAs) is of great interest to the semiconductor industry but remains an uneconomical alternative to silicon because of the manufacturing problems. This dissertation is a two dimensional study of the fluid in an idealized Bridgman device. The model nonlinear PDEs are discretized using second order finite differencing. Newton's method solves the resulting nonlinear discrete equations. The large sparse linear systems involving the Jacobian are solved iteratively using the Generalized Minimum Residual method (GMRES). By adapting fast direct solvers for elliptic equations with simple boundary conditions, a good preconditioner is developed which is essential for GMRES to converge quickly. Trends of the fluid flow and heat transfer for typical ranges of the physical parameters are determined. Also, the size of the terms in the mathematical model are found by numerical investigation, in order to find what terms are in balance as the physical parameters vary. The results suggest the plausibility of simpler asymptotic solutions.
A computational method for sharp interface advection.
Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje
2016-11-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.
A simple, approximate model of parachute inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.
1992-11-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less
A simple, approximate model of parachute inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.
1992-01-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less
An efficient transport solver for tokamak plasmas
Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...
2017-01-03
A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.
NASA Astrophysics Data System (ADS)
Paillet, Frederick
2012-08-01
A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.
Numerical Modeling of Poroelastic-Fluid Systems Using High-Resolution Finite Volume Methods
NASA Astrophysics Data System (ADS)
Lemoine, Grady
Poroelasticity theory models the mechanics of porous, fluid-saturated, deformable solids. It was originally developed by Maurice Biot to model geophysical problems, such as seismic waves in oil reservoirs, but has also been applied to modeling living bone and other porous media. Poroelastic media often interact with fluids, such as in ocean bottom acoustics or propagation of waves from soft tissue into bone. This thesis describes the development and testing of high-resolution finite volume numerical methods, and simulation codes implementing these methods, for modeling systems of poroelastic media and fluids in two and three dimensions. These methods operate on both rectilinear grids and logically rectangular mapped grids. To allow the use of these methods, Biot's equations of poroelasticity are formulated as a first-order hyperbolic system with a source term; this source term is incorporated using operator splitting. Some modifications are required to the classical high-resolution finite volume method. Obtaining correct solutions at interfaces between poroelastic media and fluids requires a novel transverse propagation scheme and the removal of the classical second-order correction term at the interface, and in three dimensions a new wave limiting algorithm is also needed to correctly limit shear waves. The accuracy and convergence rates of the methods of this thesis are examined for a variety of analytical solutions, including simple plane waves, reflection and transmission of waves at an interface between different media, and scattering of acoustic waves by a poroelastic cylinder. Solutions are also computed for a variety of test problems from the computational poroelasticity literature, as well as some original test problems designed to mimic possible applications for the simulation code.
Analytical insights into optimality and resonance in fish swimming
Kohannim, Saba; Iwasaki, Tetsuya
2014-01-01
This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125
NASA Astrophysics Data System (ADS)
Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.
2012-04-01
In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).
Phase behavior of a simple dipolar fluid under shear flow in an electric field.
McWhirter, J Liam
2008-01-21
Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.
NASA Astrophysics Data System (ADS)
Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.
2013-12-01
Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant to the serpentinization of peridotite, these stresses can reach hundreds of MPa, exceeding the tensile strength of peridotite.
Testing particle filters on convective scale dynamics
NASA Astrophysics Data System (ADS)
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.
Hwang, Jungyun; Kim, Kiyoung; Brothers, R Matthew; Castelli, Darla M; Gonzalez-Lima, F
2018-05-01
Studies of the effects of physical activity on cognition suggest that aerobic fitness can improve cognitive abilities. However, the physiological mechanisms for the cognitive benefit of aerobic fitness are less well understood. We examined the association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Participants aged 18-29 years underwent measurements of cerebral vasomotor reactivity (CVMR) in response to rebreathing-induced hypercapnia, maximal oxygen uptake (VO 2 max) during cycle ergometry to voluntary exhaustion, and simple- and complex-neurocognitive assessments at rest. Ten subjects were identified as having low-aerobic fitness (LF < 15th fitness percentile), and twelve subjects were identified as having high-aerobic fitness (HF > 80th fitness percentile). There were no LF versus HF group differences in cerebrovascular hemodynamics during the baseline condition. Changes in middle cerebral artery blood velocity and CVMR during hypercapnia were elevated more in the HF than the LF group. Compared to the LF, the HF performed better on a complex-cognitive task assessing fluid reasoning, but not on simple attentional abilities. Statistical modeling showed that measures of VO 2 max, CVMR, and fluid reasoning were positively inter-correlated. The relationship between VO 2 max and fluid reasoning, however, did not appear to be reliably mediated by CVMR. In conclusion, a high capacity for maximal oxygen uptake among healthy, young adults was associated with greater CVMR and better fluid reasoning, implying that high-aerobic fitness may promote cerebrovascular and cognitive functioning abilities.
Thermodynamics of Thomas-Fermi screened Coulomb systems
NASA Technical Reports Server (NTRS)
Firey, B.; Ashcroft, N. W.
1977-01-01
We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.
A New Mixing Diagnostic and Gulf Oil Spill Movement
2010-10-01
could be used with new estimates of the suppression parameter to yield appreciably larger estimates of the hydrogen content in the shallow lunar ...paradigm for mixing in fluid flows with simple time dependence. Its skeletal structure is based on analysis of invariant attracting and repelling...continues to the present day. Model analysis and forecasts are compared to independent (nonassimilated) infrared frontal po- sitions and drifter trajectories
Complexity and compositionality in fluid intelligence
Duncan, John; Chylinski, Daphne
2017-01-01
Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition. PMID:28461462
Uniqueness of Petrov Type D Spatially Inhomogeneous Irrotational Silent Models
NASA Astrophysics Data System (ADS)
Apostolopoulos, Pantelis S.; Carot, Jaume
The consistency of the constraint with the evolution equations for spatially inhomogeneous and irrotational silent (SIIS) models of Petrov type I, demands that the former are preserved along the timelike congruence represented by the velocity of the dust fluid, leading to new nontrivial constraints. This fact has been used to conjecture that the resulting models correspond to the spatially homogeneous (SH) models of Bianchi type I, at least for the case where the cosmological constant vanish. By exploiting the full set of the constraint equations as expressed in the 1+3 covariant formalism and using elements from the theory of the spacelike congruences, we provide a direct and simple proof of this conjecture for vacuum and dust fluid models, which shows that the Szekeres family of solutions represents the most general class of SIIS models. The suggested procedure also shows that, the uniqueness of the SIIS of the Petrov type D is not, in general, affected by the presence of a nonzero pressure fluid. Therefore, in order to allow a broader class of Petrov type I solutions apart from the SH models of Bianchi type I, one should consider more general "silent" configurations by relaxing the vanishing of the vorticity and the magnetic part of the Weyl tensor but maintaining their "silence" properties, i.e. the vanishing of the curls of Eab, Hab and the pressure p.
Setting the pace of microswimmers: when increasing viscosity speeds up self-propulsion
NASA Astrophysics Data System (ADS)
Pande, Jayant; Merchant, Laura; Krüger, Timm; Harting, Jens; Smith, Ana-Sunčana
2017-05-01
It has long been known that some microswimmers seem to swim counter-intuitively faster when the viscosity of the surrounding fluid is increased, whereas others slow down. This conflicting dependence of the swimming velocity on the viscosity is poorly understood theoretically. Here we explain that any mechanical microswimmer with an elastic degree of freedom in a simple Newtonian fluid can exhibit both kinds of response to an increase in the fluid viscosity for different viscosity ranges, if the driving is weak. The velocity response is controlled by a single parameter Γ, the ratio of the relaxation time of the elastic component of the swimmer in the viscous fluid and the swimming stroke period. This defines two velocity-viscosity regimes, which we characterize using the bead-spring microswimmer model and analyzing the different forces acting on the parts of this swimmer. The analytical calculations are supported by lattice-Boltzmann simulations, which accurately reproduce the two velocity regimes for the predicted values of Γ.
Feedback control of flow vorticity at low Reynolds numbers.
Zeitz, Maria; Gurevich, Pavel; Stark, Holger
2015-03-01
Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P
2013-02-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P.
2012-01-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 µm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Threedimensional echocardiography was used to obtain systolic leaflet geometry for direct comparison of resultant leaflet kinematics. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet was observed during peak systole, with minimal out-of-plane velocities (V~0.6m/s). In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, these data represent the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations. PMID:22965640
Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.
2006-04-01
We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
Fluids of the lower crust and upper mantle: deep is different
NASA Astrophysics Data System (ADS)
Manning, C. E.
2017-12-01
Deep fluids are important for the evolution and properties of the lower crust and upper mantle in tectonically active settings. Uncertainty about their chemistry has led past workers to use upper crustal fluids as analogues. However, recent results show that fluids at >15 km differ fundamentally from shallow fluids and help explain high-pressure metasomatism and resistivity patterns. Deep fluids are comprised of four components: H2O, non-polar gases (chiefly CO2), salts (mostly alkali chlorides), and rock-derived solutes (dominated by aluminosilicates and related components). The first three generally define the solvent properties of the fluid, and models must account for observations that H2O activity may be quite low. The contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility in the ternary system, which can lead to separation of two phases with fundamentally different chemical and transport properties. Thermodynamic modeling of equilibrium between rocks and H2O using simple ionic species known from shallow-crustal systems yields solutions possessing total dissolved solids and ionic strength that are too low to be consistent with experiments and resistivity surveys. Addition of CO2 further lowers bulk solubility and conductivity. Therefore, additional species must be present in H2O, and H2O-salt solutions likely explain much of the evidence for fluid action in high-P settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as previously unrecognized polymerized clusters. Experiments show that, near H2O-saturated melting, Al-Si polymers comprise >80% of solutes. The stability of these species facilitates critical critical mixing in rock-H2O systems. Addition of salt (e.g., NaCl) changes solubility patterns, but aluminosilicate contents remain high. Thermodynamic models indicate that the ionic strength of fluids with Xsalt = 0.05 to 0.4 and equilibrated with model crustal rocks have predicted bulk conductivities of 10-1.5 to 100 S/m at porosity of 0.001. Such fluids are thus consistent with conductivity anomalies commonly observed in the lower crust (e.g., the "G" anomaly), and are capable of the mass transfer commonly seen in metamorphic rocks exhumed from the lower crust and subduction zones.
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.
PUFoam : A novel open-source CFD solver for the simulation of polyurethane foams
NASA Astrophysics Data System (ADS)
Karimi, M.; Droghetti, H.; Marchisio, D. L.
2017-08-01
In this work a transient three-dimensional mathematical model is formulated and validated for the simulation of polyurethane (PU) foams. The model is based on computational fluid dynamics (CFD) and is coupled with a population balance equation (PBE) to describe the evolution of the gas bubbles/cells within the PU foam. The front face of the expanding foam is monitored on the basis of the volume-of-fluid (VOF) method using a compressible solver available in OpenFOAM version 3.0.1. The solver is additionally supplemented to include the PBE, solved with the quadrature method of moments (QMOM), the polymerization kinetics, an adequate rheological model and a simple model for the foam thermal conductivity. The new solver is labelled as PUFoam and is, for the first time in this work, validated for 12 different mixing-cup experiments. Comparison of the time evolution of the predicted and experimentally measured density and temperature of the PU foam shows the potentials and limitations of the approach.
Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics
NASA Astrophysics Data System (ADS)
Benjamin, Robert F.
1999-09-01
A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.
NASA Astrophysics Data System (ADS)
Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.
2017-07-01
There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.
NASA Astrophysics Data System (ADS)
Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.
2018-02-01
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen; ...
2017-08-12
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
Miscibility and Speciation in the Water/carbon Dioxide System
NASA Astrophysics Data System (ADS)
Abramson, E.; Bollengier, O.; Brown, J. M.
2017-12-01
We have been exploring fluid-fluid solubilities and speciation in mixed systems of CO2-H2O. Fluid-fluid immiscibility extends to the highest pressures and temperatures yet explored (7 GPa, 700K). In this region, commonly used COH fluid models agree neither with the data nor among themselves. The range of immiscibility is extended by addition of NaCl, but miscibility limits determined in preliminary experiments are not as expected from extrapolation of lower pressure (<0.2 GPa) results. For majority-water systems (XCO2<0.5) an abrupt increase of solubility with pressure is linked to an observed change in speciation as CO2(aq) reacts with water. The identity of the newly formed species is, as of the writing of this abstract, unknown, but presumed to be either H2CO3 or HCO3-. A reasonable match between the observed equilibria and an application of HKF theory suggests that the new species is, indeed, HCO3-, but with a Raman frequency shifted from that found in the dilute aqueous solution. Application of HKF theory to the CO2(f)-CO2(aq) equilibrium suffers from an incompatibility of the usual formulation of the theory with known molar volumes of CO2(f) at higher pressures. On the basis of these studies we conclude that models of CO2-H2O fluids must take into account major changes in speciation, and that simple equations-of-state, of a few fitted parameters, will not afford an adequate description of such fluids. "First principles" models, tested against real data, seem more likely to yield the desired results. This statement extends as well to the calculation of the dielectric constants of these mixed fluids, the basis of ionic solution chemistry. Further, semi-empirical formulations of solution thermodynamics, which function well at pressures of kbars, ought to be re-worked for use over larger pressure ranges.
Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization
NASA Astrophysics Data System (ADS)
Abou Najm, M. R.; Atallah, N. M.; Selker, J. S.; Roques, C.; Stewart, R. D.; Rupp, D. E.; Saad, G.; El-Fadel, M.
2015-12-01
Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization while still representing the functional hydraulic behavior of real porous media. We present a new method for experimentally estimating the pore structure of porous media using a combination of Newtonian and non-Newtonian fluids. The proposed method transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). This method allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation comparing the functional flow behavior of different soils to their modeled flow with N representative radii revealed the ability of the proposed method to represent the water retention and infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media that the use of different non-Newtonian fluids enables the definition of the radii and corresponding percent contribution to flow of multiple representative pores, thus improving the ability of pore-scale models to mimic the functional behavior of real porous media in terms of flow and porosity. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil-root-plant continuum, carbon sequestration into geologic formations, soil remediation, petroleum reservoir engineering, oil exploration and groundwater modeling.
A Simple Apparatus for Demonstrating Fluid Forces and Newton's Third Law
NASA Astrophysics Data System (ADS)
Mohazzabi, Pirooz; James, Mark C.
2012-12-01
Over 2200 years ago, in order to determine the purity of a golden crown of the king of Syracuse, Archimedes submerged the crown in water and determined its volume by measuring the volume of the displaced water. This simple experiment became the foundation of what eventually became known as Archimedes' principle: An object fully or partially immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. The principle is used to explain all questions regarding buoyancy, and the method is still prescribed for determination of the volume of irregularly shaped objects.2
Houdi, A A; Crooks, P A; Van Loon, G R; Schubert, C A
1987-05-01
The determination of picomolar levels of histamine and its major metabolite, N tau-methylhistamine, in biological fluids was achieved using reversed-phase liquid chromatography coupled with electrochemical detection. A simple sample purification procedure for blood and urine samples was carried out prior to analysis using an Amberlite CG-50 cation-exchange resin, which afforded an excellent recovery of both compounds.
Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.
2005-01-01
The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .
Solid-like features in dense vapors near the fluid critical point
NASA Astrophysics Data System (ADS)
Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry
2017-06-01
The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.
Lee, Byung Kook; Jeung, Kyung Woon; Lee, Seung Cheol; Min, Yong Il; Ryu, Hyun Ho; Kim, Mu Jin; Lee, Hyoung Youn; Heo, Tag
2010-06-01
This study was undertaken to determine how rapidly refrigerated fluids gain heat during bolus infusion and to determine whether the refrigerated fluids could be kept cold by a simple cold-insulation method. One liter of refrigerated fluid was run through either a 16-gauge catheter (16G(-) and 16G(+) groups) or an 18-gauge catheter (18G(-) and 18G(+) groups) while monitoring the temperature in the fluid bag and the outflow site. In the 16G(+) and the 18G(+) groups, the fluid bag was placed with an ice pack inside an insulating sleeve during the fluid run. In the 16G(-) and the 18G(-) groups, the outflow temperature increased to 10-12 degrees C during the fluid run. Meanwhile, outflow temperatures in the 16G(+) and the 18G(+) groups remained below 4.6 and 6.8 degrees C, respectively. The temperatures differed significantly between the 16G(-) and the 16G(+) groups (p < 0.001) and between the 18G(-) and the 18G(+) groups (p < 0.001), respectively. Substantial heat gain occurred in the refrigerated fluid even during the relatively short duration of bolus infusion. The heat gain could, however, be easily minimized by cold insulation of the fluid bag. (c) 2010 by the Society for Academic Emergency Medicine.
Turbidity of a Binary Fluid Mixture: Determining Eta
NASA Technical Reports Server (NTRS)
Jacobs, Donald T.
1996-01-01
A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.
Simple Bone Cyst of Metacarpal: Rare Lesion with Unique Treatment
Patwardhan, Sandeep; Shah, Kunal; Shyam, Ashok; Sancheti, Parag
2014-01-01
Introduction: Simple bone cyst or unicameral bone cyst (UBC) are benign cystic lesions commonly found in femur and humerus. However hand is a very rare site of occurrence. Treatment described for UBC of hand commonly involves curettage and bone grafting. Case Report: A 7 year old right hand dominant girl presented to us with chief complaints of pain and swelling in right 4th metacarpal since 2 month. On imaging, plain radiographs of right hand showed expansile lytic lesion on Metaphyseal-diaphyseal region of 4th metacarpal with pathological fracture. MRI showed cystic lesions with internal loculations and fluid-fluid levels (Fig 2). There was minimal soft tissue extension. We performed aspiration which showed serosanguinous fluid with haemorrhagic tinge. With the diagnosis of unicameral bone cyst in mind we performed and closed intramedullary nail with k wire. The cyst healed up completely within 2 months. There was no recurrence at 18 month follow up. Conclusion: In conclusion simple bone cyst is very rare in metacarpal bone. However it should be considered as important differential since it warrants simple treatment and extensive procedures should be avoided. PMID:27298987
Neeper, D A
2001-04-01
A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.
Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.
Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik
2017-07-01
The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.
Learning about Non-Newtonian Fluids in a Student-Driven Classroom
ERIC Educational Resources Information Center
Dounas-Frazer, D. R.; Lynn, J.; Zaniewski, A. M.; Roth, N.
2013-01-01
We describe a simple, low-cost experiment and corresponding pedagogical strategies for studying fluids whose viscosities depend on shear rate, referred to as "non-Newtonian fluids." We developed these materials teaching for the Compass Project, an organization that fosters a creative, diverse, and collaborative community of science…
Ability Structure in 10-11 Year-Old Children and the Theory of Fluid and Crystallized Intelligence
ERIC Educational Resources Information Center
Undheim, Johan Olav
1976-01-01
Using a simple structure factor analysis of test data of 144 fourth grade children in Norway, second order factors interpreted to represent Broad Visualization, Speediness, Fluid, and Crystallized intelligence intercorrelated substantially, the correlation between Fluid and Crystallized intelligence being the highest. (Author/BW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, C.; Potts, I.; Reeks, M. W., E-mail: mike.reeks@ncl.ac.uk
We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting tomore » the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.« less
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
Effect of pore geometry on the compressibility of a confined simple fluid
NASA Astrophysics Data System (ADS)
Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.
2018-02-01
Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.
NASA Technical Reports Server (NTRS)
Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel
2014-01-01
The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful model can be developed.
Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.
dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare
2008-08-07
A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.
Attraction of swimming microorganisms by solid surfaces
NASA Astrophysics Data System (ADS)
Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard
2007-11-01
Swimming microorganisms such as spermatozoa or bacteria are usually observed to accumulate near surfaces. Here, we report on an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates. The distribution for the bacteria concentration is found to peak near the glass plates, in agreement with a simple physical model based on the far-field hydrodynamics of swimming cells.
Thermal bending of liquid sheets and jets
NASA Astrophysics Data System (ADS)
Brenner, Michael P.; Paruchuri, Srinivas
2003-11-01
We present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending.
Acid-base homeostasis in the human system
NASA Technical Reports Server (NTRS)
White, R. J.
1974-01-01
Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro
2017-04-01
We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
A new simple dynamo model for solar activity cycle
NASA Astrophysics Data System (ADS)
Yokoi, Nobumitsu; Schmitt, Dieter
2015-04-01
The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).
NASA Technical Reports Server (NTRS)
Bateman, H
1923-01-01
The principal result obtained in this report is a generalization of Taylor's formula for a simple eddy. The discussion of the properties of the eddy indicates that there is a slight analogy between the theory of eddies in a viscous fluid and the quantum theory of radiation. Another exact solution of the equations of motion of viscous fluid yields a result which reminds one of the well-known condition for instability in the case of a horizontally stratified atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J. D.; Jiang, P. X.; Liu, B.
2012-07-01
This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experimentsmore » using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)« less
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.
Molecular mechanics and structure of the fluid-solid interface in simple fluids
NASA Astrophysics Data System (ADS)
Wang, Gerald J.; Hadjiconstantinou, Nicolas G.
2017-09-01
Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
Simple Pencil-and-Paper Notation for Representing Electrical Charge States
ERIC Educational Resources Information Center
Morse, Robert A.
2017-01-01
In Benjamin Franklin's one fluid theory of electrification, ordinary unelectrified matter consisted of a matrix of matter suffused with a certain amount of "electrical fluid." Electrical effects were due to an excess or deficit of electrical fluid, hence the terms positive and negative. Before the development of a modern view of the…
A self-consistent treatment of a fluid in an external potential
NASA Astrophysics Data System (ADS)
Boudh-Hir, M.-E.
A simple fluid of particles near a repulsive structureless wall can be approximated by an identical fluid interacting with an ideal wall. The expansion in powers of the Andersen-Weeks-Chandler (AWC) blip function is used. Lado's criterion, which permits a self-consistent approximation, is extended to the surface case.
Steady-states for shear flows of a liquid-crystal model: Multiplicity, stability, and hysteresis
NASA Astrophysics Data System (ADS)
Dorn, Tim; Liu, Weishi
In this work, we study shear flows of a fluid layer between two solid blocks via a liquid-crystal type model proposed in [C.H.A. Cheng, L.H. Kellogg, S. Shkoller, D.L. Turcotte, A liquid-crystal model for friction, Proc. Natl. Acad. Sci. USA 21 (2007) 1-5] for an understanding of frictions. A characterization on the existence and multiplicity of steady-states is provided. Stability issue of the steady-states is examined mainly focusing on bifurcations of zero eigenvalues. The stability result suggests that this simple model exhibits hysteresis, and it is supported by a numerical simulation.
Numerical study of the current sheet and PSBL in a magnetotail model
NASA Technical Reports Server (NTRS)
Doxas, I.; Horton, W.; Sandusky, K.; Tajima, T.; Steinolfson, R.
1989-01-01
The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis.
Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.
2012-01-01
Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654
Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire
NASA Astrophysics Data System (ADS)
Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai
2018-02-01
According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
NASA Astrophysics Data System (ADS)
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Comments on the variational modified-hypernetted-chain theory for simple fluids
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1986-02-01
The variational modified-hypernetted-chain (VMHNC) theory, based on the approximation of universality of the bridge functions, is reformulated. The new formulation includes recent calculations by Lado and by Lado, Foiles, and Ashcroft, as two stages in a systematic approach which is analyzed. A variational iterative procedure for solving the exact (diagrammatic) equations for the fluid structure which is formally identical to the VMHNC is described, featuring the theory of simple classical fluids as a one-iteration theory. An accurate method for calculating the pair structure for a given potential and for inverting structure factor data in order to obtain the potential and the thermodynamic functions, follows from our analysis.
From viscous to elastic sheets: Dynamics of smectic bubbles
NASA Astrophysics Data System (ADS)
Harth, Kirsten; Trittel, Torsten; van der Meer, Devaraj; Stannarius, Ralf
2015-11-01
Oscillations and rupture of bubbles composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties apart from surface tension are often neglected for fluids (e.g. soap bubbles), whereas they govern the dynamics in systems with a rigid membrane (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to-handle fluid films of immense aspect ratios. Only recently, freely floating bubbles detached from a support could be prepared. We analyze their relaxation from strongly non-spherical shapes and the rupture using high-speed video recordings. Peculiar dynamics intermediate between simple viscous fluid films and an elastic response are observed: Fast oscillations, slowed relaxation and even the reversible formation of wrinkles and extrusions. Bubble rupture deviates qualitatively from previously observed behavior of simple Newtonian and other complex fluids. It becomes retarded by at least two orders of magnitude compared to the predictions of Taylor and Culick. A transition between fluid-like and elastic behavior is seen with increasing thickness. We give experimental results, an intuitive explanation and a novel hydrodynamic description.
Elastic moduli of a smectic membrane: a rod-level scaling analysis
NASA Astrophysics Data System (ADS)
Wensink, H. H.; Morales Anda, L.
2018-02-01
Chiral rodlike colloids exposed to strong depletion attraction may self-assemble into chiral membranes whose twisted director field differs from that of a 3D bulk chiral nematic. We formulate a simple microscopic variational theory to determine the elastic moduli of rods assembled into a bidimensional smectic membrane. The approach is based on a simple Onsager-Straley theory for a non-uniform director field that we apply to describe rod twist within the membrane. A microscopic approach enables a detailed estimate of the individual Frank elastic moduli (splay, twist and bend) as well as the twist penetration depth of the smectic membrane in relation to the rod density and shape. We find that the elastic moduli are distinctly different from those of a bulk nematic fluid, with the splay elasticity being much stronger and the curvature elasticity much weaker than for rods assembled in a three-dimensional nematic fluid. We argue that the use of the simplistic one-constant approximation in which all moduli are assumed to be of equal magnitude is not appropriate for modelling the structure-property relation of smectic membranes.
Effect of rock rheology on fluid leak- off during hydraulic fracturing
NASA Astrophysics Data System (ADS)
Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.
2012-04-01
In this communication, we evaluate the effect of rock rheology on fluid leakoff during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leakoff from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is nondeformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leakoff. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.
From viscous to elastic sheets: Dynamics of smectic freely floating films
NASA Astrophysics Data System (ADS)
Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf
2015-03-01
Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.
Mathematical modelling of cell layer growth in a hollow fibre bioreactor.
Chapman, Lloyd A C; Whiteley, Jonathan P; Byrne, Helen M; Waters, Sarah L; Shipley, Rebecca J
2017-04-07
Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices, owing to their potential for scale-up. However, further research is required to establish how to specify appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall, cell layer and extra-capillary space are coupled to reaction-advection-diffusion equations for oxygen and lactate transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are tolerant to high shear stresses, but may be detrimental for shear-sensitive cells. The cell layer growth rate is predicted to increase, and be less sensitive to the lactate tolerance of the cells, when the exit ports are opened, as the radial flow through the bioreactor is enhanced and the lactate produced by the cells cleared more rapidly from the cell layer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Landahl, M. T.
1984-08-01
The fundamental ideas behind Prandtl's famous mixing length theory are discussed in the light of newer findings from experimental and theoretical research on coherent turbulence structures in the region near solid walls. A simple theoretical model for 'flat' structures is used to examine the fundamental assumptions behind Prandtl's theory. The model is validated by comparisons with conditionally sampled velocity data obtained in recent channel flow experiments. Particular attention is given to the role of pressure fluctuations on the evolution of flat eddies. The validity of Prandtl's assumption that an element of fluid retains its streamwise momentum as it is moved around by turbulence is confirmed for flat eddies. It is demonstrated that spanwise pressure gradients give rise to a contribution to the vertical displacement of a fluid element which is proportional to the distance from the wall. This contribution is particularly important for eddies that are highly elongated in the streamwise direction.
Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag
Harman, Michael; Vig, Dhruv K.; Radolf, Justin D.; Wolgemuth, Charles W.
2013-01-01
The spirochetes that cause Lyme disease (Borrelia burgdorferi) and syphilis (Treponema pallidum) swim through viscous fluids, such as blood and interstitial fluid, by undulating their bodies as traveling, planar waves. These undulations are driven by rotation of the flagella within the periplasmic space, the narrow (∼20–40 nm in width) compartment between the inner and outer membranes. We show here that the swimming speeds of B. burgdorferi and T. pallidum decrease with increases in viscosity of the external aqueous milieu, even though the flagella are entirely intracellular. We then use mathematical modeling to show that the measured changes in speed are consistent with the exertion of constant torque by the spirochetal flagellar motors. Comparison of simulations, experiments, and a simple model for power dissipation allows us to estimate the torque and resistive drag that act on the flagella of these major spirochetal pathogens. PMID:24268139
Toroidal gyrofluid equations for simulations of tokamak turbulence
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
1996-11-01
A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.
Heat transfer from nanoparticles: a corresponding state analysis.
Merabia, Samy; Shenogin, Sergei; Joly, Laurent; Keblinski, Pawel; Barrat, Jean-Louis
2009-09-08
In this contribution, we study situations in which nanoparticles in a fluid are strongly heated, generating high heat fluxes. This situation is relevant to experiments in which a fluid is locally heated by using selective absorption of radiation by solid particles. We first study this situation for different types of molecular interactions, using models for gold particles suspended in octane and in water. As already reported in experiments, very high heat fluxes and temperature elevations (leading eventually to particle destruction) can be observed in such situations. We show that a very simple modeling based on Lennard-Jones (LJ) interactions captures the essential features of such experiments and that the results for various liquids can be mapped onto the LJ case, provided a physically justified (corresponding state) choice of parameters is made. Physically, the possibility of sustaining very high heat fluxes is related to the strong curvature of the interface that inhibits the formation of an insulating vapor film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavignet, A.A.; Wick, C.J.
In current practice, pressure drops in the mud circulating system and the settling velocity of cuttings are calculated with simple rheological models and simple equations. Wellsite computers now allow more sophistication in drilling computations. In this paper, experimental results on the settling velocity of spheres in drilling fluids are reported, along with rheograms done over a wide range of shear rates. The flow curves are fitted to polynomials and general methods are developed to predict friction losses and settling velocities as functions of the polynomial coefficients. These methods were incorporated in a software package that can handle any rig configurationmore » system, including riser booster. Graphic displays show the effect of each parameter on the performance of the circulating system.« less
Method and apparatus for fluid dispersion
Stone, Howard A.; Anna, Shelley L.; Bontoux, Nathalie; Link, Darren Roy; Weitz, David A.; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow R.; Whitesides, George M.
2012-12-25
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Method and apparatus for fluid dispersion
Stone, Howard A; Anna, Shelley L; Bontoux, Nathalie; Link, Darren Roy; Weitz, David A; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow R; Whitesides, George M
2015-03-24
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Method and apparatus for fluid dispersion
Stone, Howard A.; Anna, Shelley L.; Bontoux, Nathalie; Link, Darren R.; Weitz, David A.; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow; Whitesides, George M.
2010-05-04
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Moving line model and avalanche statistics of Bingham fluid flow in porous media.
Chevalier, Thibaud; Talon, Laurent
2015-07-01
In this article, we propose a simple model to understand the critical behavior of path opening during flow of a yield stress fluid in porous media as numerically observed by Chevalier and Talon (2015). This model can be mapped to the problem of a contact line moving in an heterogeneous field. Close to the critical point, this line presents an avalanche dynamic where the front advances by a succession of waiting time and large burst events. These burst events are then related to the non-flowing (i.e. unyielded) areas. Remarkably, the statistics of these areas reproduce the same properties as in the direct numerical simulations. Furthermore, even if our exponents seem to be close to the mean field universal exponents, we report an unusual bump in the distribution which depends on the disorder. Finally, we identify a scaling invariance of the cluster spatial shape that is well fit, to first order, by a self-affine parabola.
Particle dynamics in a viscously decaying cat's eye: The effect of finite Schmidt numbers
NASA Astrophysics Data System (ADS)
Newton, P. K.; Meiburg, Eckart
1991-05-01
The dynamics and mixing of passive marker particles for the model problem of a decaying cat's eye flow is studied. The flow field corresponds to Stuart's one-parameter family of solutions [J. Fluid Mech. 29, 417 (1967)]. It is time dependent as a result of viscosity, which is modeled by allowing the free parameter to depend on time according to the self-similar solution of the Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically simulated by a random walk model. While earlier work had shown that, for small values of time over Reynolds number t/Re≪1, the interval length characterizing the formation of lobes of fluid escaping from the cat's eye scales as Re-1/2, the present study shows that, for the case of diffusive effects and t/Pe≪1, the scaling follows Pe-1/4. A simple argument, taking into account streamline convergence and divergence in different parts of the flow field, explains the Pe-1/4 scaling.
Modelling of sea floor spreading initiation and rifted continental margin formation
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Isimm Team
2003-04-01
Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
Interpreting electrically evoked emissions using a finite-element model of the cochlea
NASA Astrophysics Data System (ADS)
Deo, Niranjan V.; Grosh, Karl; Parthasarathi, Anand
2003-10-01
Electrically evoked otoacoustic emissions (EEOAEs) are used to investigate in vivo cochlear electromechanical function. Electrical stimulation through bipolar electrodes placed very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a narrow frequency range of EEOAEs, limited to around 20 kHz when the electrodes are placed near the 18-kHz best frequency place. Model predictions using a three-dimensional inviscid fluid model in conjunction with a middle ear model [S. Puria and J. B. Allen, J. Acoust. Soc. Am. 104, 3463-3481 (1998)] and a simple model for outer hair cell activity [S. Neely and D. Kim, J. Acoust. Soc. Am. 94, 137-146 (1993)] are used to interpret the experimental results. To estimate effect of viscosity, model results are compared with those obtained for a viscous fluid. The models are solved using a 2.5-D finite-element formulation. Predictions show that the high frequency limit of the excitation is determined by the spatial extent of the current stimulus. The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady state response predictions of the model are presented.
NASA Astrophysics Data System (ADS)
Klein, D. Harley; Leal, L. Gary; García-Cervera, Carlos J.; Ceniceros, Hector D.
2007-02-01
We consider the behavior of the Doi-Marrucci-Greco (DMG) model for nematic liquid crystalline polymers in planar shear flow. We found the DMG model to exhibit dynamics in both qualitative and quantitative agreement with experimental observations reported by Larson and Mead [Liq. Cryst. 15, 151 (1993)] for the Ericksen number and Deborah number cascades. For increasing shear rates within the Ericksen number cascade, the DMG model displays three distinct regimes: stable simple shear, stable roll cells, and irregular structure accompanied by disclination formation. In accordance with experimental observations, the model predicts both ±1 and ±1/2 disclinations. Although ±1 defects form via the ridge-splitting mechanism first identified by Feng, Tao, and Leal [J. Fluid Mech. 449, 179 (2001)], a new mechanism is identified for the formation of ±1/2 defects. Within the Deborah number cascade, with increasing Deborah number, the DMG model exhibits a streamwise banded texture, in the absence of disclinations and roll cells, followed by a monodomain wherein the mean orientation lies within the shear plane throughout the domain.
The impact of fluid topology on residual saturations - A pore-network model study
NASA Astrophysics Data System (ADS)
Doster, F.; Kallel, W.; van Dijke, R.
2014-12-01
In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).
Ervik, Åsmund; Mejía, Andrés; Müller, Erich A
2016-09-26
Coarse-grained molecular simulation has become a popular tool for modeling simple and complex fluids alike. The defining aspects of a coarse grained model are the force field parameters, which must be determined for each particular fluid. Because the number of molecular fluids of interest in nature and in engineering processes is immense, constructing force field parameter tables by individually fitting to experimental data is a futile task. A step toward solving this challenge was taken recently by Mejía et al., who proposed a correlation that provides SAFT-γ Mie force field parameters for a fluid provided one knows the critical temperature, the acentric factor and a liquid density, all relatively accessible properties. Building on this, we have applied the correlation to more than 6000 fluids, and constructed a web application, called "Bottled SAFT", which makes this data set easily searchable by CAS number, name or chemical formula. Alternatively, the application allows the user to calculate parameters for components not present in the database. Once the intermolecular potential has been found through Bottled SAFT, code snippets are provided for simulating the desired substance using the "raaSAFT" framework, which leverages established molecular dynamics codes to run the simulations. The code underlying the web application is written in Python using the Flask microframework; this allows us to provide a modern high-performance web app while also making use of the scientific libraries available in Python. Bottled SAFT aims at taking the complexity out of obtaining force field parameters for a wide range of molecular fluids, and facilitates setting up and running coarse-grained molecular simulations. The web application is freely available at http://www.bottledsaft.org . The underlying source code is available on Bitbucket under a permissive license.
Virial Coefficients and Equations of State for Hard Polyhedron Fluids.
Irrgang, M Eric; Engel, Michael; Schultz, Andrew J; Kofke, David A; Glotzer, Sharon C
2017-10-24
Hard polyhedra are a natural extension of the hard sphere model for simple fluids, but there is no general scheme for predicting the effect of shape on thermodynamic properties, even in moderate-density fluids. Only the second virial coefficient is known analytically for general convex shapes, so higher-order equations of state have been elusive. Here we investigate high-precision state functions in the fluid phase of 14 representative polyhedra with different assembly behaviors. We discuss historic efforts in analytically approximating virial coefficients up to B 4 and numerically evaluating them to B 8 . Using virial coefficients as inputs, we show the convergence properties for four equations of state for hard convex bodies. In particular, the exponential approximant of Barlow et al. (J. Chem. Phys. 2012, 137, 204102) is found to be useful up to the first ordering transition for most polyhedra. The convergence behavior we explore can guide choices in expending additional resources for improved estimates. Fluids of arbitrary hard convex bodies are too complicated to be described in a general way at high densities, so the high-precision state data we provide can serve as a reference for future work in calculating state data or as a basis for thermodynamic integration.
Renormalized Two-Fluid Hydrodynamics of Cosmic-Ray--modified Shocks
NASA Astrophysics Data System (ADS)
Malkov, M. A.; Voelk, H. J.
1996-12-01
A simple two-fluid model of diffusive shock acceleration, introduced by Axford, Leer, & Skadron and Drury & Völk, is revisited. This theory became a chief instrument in the studies of shock modification due to particle acceleration. Unfortunately its most intriguing steady state prediction about a significant enhancement of the shock compression and a corresponding increase of the cosmic-ray production violates assumptions which are critical for the derivation of this theory. In particular, for strong shocks the spectral flattening makes a cutoff-independent definition of pressure and energy density impossible and therefore causes an additional closure problem. Confining ourselves for simplicity to the case of plane shocks, assuming reacceleration of a preexisting cosmic-ray population, we argue that also under these circumstances the kinetic solution has a rather simple form. It can be characterized by only a few parameters, in the simplest case by the slope and the magnitude of the momentum distribution at the upper momentum cutoff. We relate these parameters to standard hydrodynamic quantities like the overall shock compression ratio and the downstream cosmic-ray pressure. The two-fluid theory produced in this way has the traditional form but renormalized closure parameters. By solving the renormalized Rankine-Hugoniot equations, we show that for the efficient stationary solution, most significant for cosmic-ray acceleration, the renormalization is needed in the whole parameter range of astrophysical interest.
Novo, P; Chu, V; Conde, J P
2014-07-15
The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
A System for Measurement of Convection Aboard Space Station
NASA Technical Reports Server (NTRS)
Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.
1996-01-01
A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.
Numerical Simulation of Fluid Flow in a Simple Rotor/Stator Pair
1991-06-01
describes a series of numerical experiments dealing with rotor/stator interactions in hydroturbines . The means of analysis was a nonconforming sliding...science and industry is the improvement of the efficiency of the hydroturbine . Numerical flow analysis is essential in order to properly conduct this...evaluation. The hydroturbine is typically modeled as an infinite series of rotor/stator pairs. Figure 1 is an illustration of an axial-flow machine with
Exact relativistic models of conformastatic charged dust thick disks
NASA Astrophysics Data System (ADS)
García-Reyes, Gonzalo
2018-04-01
We construct relativistic models of charged dust thick disks for a particular conformastatic spacetime through a Miyamoto-Nagai transformation used in Newtonian gravity to model disk like galaxies. Two simple families of thick disk models and a family of thick annular disks based on the field of an extreme Reissner-Nordström black hole and a Morgan-Morgan-like metric are considered. The electrogeodesic motion of test particles around the structures are analyzed. Also the stability of the particles against radial perturbation is studied using an extension of the Rayleigh criteria of stability of a fluid in rest in a gravitational field. The models built satisfy all the energy conditions.
Turbulent shear layers in confining channels
NASA Astrophysics Data System (ADS)
Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.
2018-06-01
We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.
Comparison of Viscous and Pressure Energy Exchange in Fluid Flow Induction
1981-06-01
phases of the same fluid). 14 VSt PRIMARY JET NOZZLE HIGH VELOCITY CORE SUCT SECONFFARY FLUID FIGURE 1: A SIMPLE JET PUMP A.- ~is * II. BACKGROUND A...ratio. As the helix gets tighter, as from the twenty to thirty-five degree nozzles, the angular speed of the nozzle increases and the number of
NASA Technical Reports Server (NTRS)
Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.
1981-01-01
A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBGmore » run No. 11 and transfer of data to USC.« less
A streaming birefringence study of the flow at the junction of the aorta and the renal arteries
NASA Astrophysics Data System (ADS)
Rankin, G. W.; Sabbah, H. N.; Stein, P. D.
1989-11-01
Streaming birefringence with an organic dye (Milling Yellow) was used to investigate the flow near the junction of the renal arteries and the descending aorta in a model of human vessels. The dye concentration was adjusted to give fluid rheological properties, typical of blood. Steady and pulsatile flow were investigated at branch-to-trunk flow ratios of 0.050 0.350. The flow ratio range over which flow separation and simple secondary flows were identified during systole near the renal ostia are reported. Streaming birefringence has the advantage of allowing visualization of the entire flow field. Also, the fluid rather than suspended particles are observed. An important disadvantage, however, is that three-dimensional flows make interpretation difficult.
LUMA: A many-core, Fluid-Structure Interaction solver based on the Lattice-Boltzmann Method
NASA Astrophysics Data System (ADS)
Harwood, Adrian R. G.; O'Connor, Joseph; Sanchez Muñoz, Jonathan; Camps Santasmasas, Marta; Revell, Alistair J.
2018-01-01
The Lattice-Boltzmann Method at the University of Manchester (LUMA) project was commissioned to build a collaborative research environment in which researchers of all abilities can study fluid-structure interaction (FSI) problems in engineering applications from aerodynamics to medicine. It is built on the principles of accessibility, simplicity and flexibility. The LUMA software at the core of the project is a capable FSI solver with turbulence modelling and many-core scalability as well as a wealth of input/output and pre- and post-processing facilities. The software has been validated and several major releases benchmarked on supercomputing facilities internationally. The software architecture is modular and arranged logically using a minimal amount of object-orientation to maintain a simple and accessible software.
Boiling of an emulsion in a yield stress fluid.
Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence
2010-11-01
We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.
Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.
Berkouk, K; Carpenter, P W; Lucey, A D
2003-12-01
Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.
Viscous dipping, application to the capture of fluids in living organisms
NASA Astrophysics Data System (ADS)
Lechantre, Amandine; Michez, Denis; Damman, Pascal
Some insects, birds and mammals use flower nectar as their energy resources. For this purpose, they developed specific skills to ingest viscous fluids. Depending on the sugar content, i.e., the viscosity, different strategies are observed in vivo. Indeed, butterflies use simple suction for low viscosity nectars; hummingbirds have a tongue made from two thin flexible sheets that bend to form a tube when immersed in a fluid; other animals exhibit in contrast complex papillary structures. We focus on this last method generally used for very viscous nectars. More specifically, bees and bats possess a tongue decorated with microstructures that, according to biologists, would be optimized for fluid capture by viscous dipping. In this talk, we will discuss this assumption by comparing physical models of viscous dipping to in vivo measurements. To mimic the tongue morphology, we used various rod shapes obtained by 3D printing. The influence of the type and size of lateral microstructures was then investigated and used to build a global framework describing viscous dipping for structured rods/tongues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Clay A.; Thomas, James M.; Lyles, Brad F.
Samples from a well drilled in the Astor Pass area six-km north of the Needle Rocks area of Pyramid Lake indicate that the reservoir fluid is dominantly sodium, chloride, and sulfate, with a pH between 8.6 and 8.9. The total dissolved solids in the reservoir is approximately 1600 mg/l, about half that of the TDS of the fluids in the Needle Rocks area. One sample of dissolved gas from fluids produced during a well test in the reservoir had 4He value of 2.32 x 10 14 atoms 4He/g water, or approximately 100 times the value of atmospheric 4He. This measurement,more » in conjunction with a R/Ra measurement of 0.28, suggests that most of the reservoir helium is derived from the crust, with possibly a small value (~3.3 percent) derived from the mantle. Tritium concentration of the sample was 0.09 TU, indicating that the reservoir fluid was recharged more than 60 years ago; a simple model based upon carbon-14 suggests recharge has occurred within the past 1500 years.« less
Mobility of power-law and Carreau fluids through fibrous media.
Shahsavari, Setareh; McKinley, Gareth H
2015-12-01
The flow of generalized Newtonian fluids with a rate-dependent viscosity through fibrous media is studied, with a focus on developing relationships for evaluating the effective fluid mobility. Three methods are used here: (i) a numerical solution of the Cauchy momentum equation with the Carreau or power-law constitutive equations for pressure-driven flow in a fiber bed consisting of a periodic array of cylindrical fibers, (ii) an analytical solution for a unit cell model representing the flow characteristics of a periodic fibrous medium, and (iii) a scaling analysis of characteristic bulk parameters such as the effective shear rate, the effective viscosity, geometrical parameters of the system, and the fluid rheology. Our scaling analysis yields simple expressions for evaluating the transverse mobility functions for each model, which can be used for a wide range of medium porosity and fluid rheological parameters. While the dimensionless mobility is, in general, a function of the Carreau number and the medium porosity, our results show that for porosities less than ɛ≃0.65, the dimensionless mobility becomes independent of the Carreau number and the mobility function exhibits power-law characteristics as a result of the high shear rates at the pore scale. We derive a suitable criterion for determining the flow regime and the transition from a constant viscosity Newtonian response to a power-law regime in terms of a new Carreau number rescaled with a dimensionless function which incorporates the medium porosity and the arrangement of fibers.
Zumrutdal, Emin; Karateke, Faruk; Eser, Pınar Eylem; Turan, Umit; Ozyazici, Sefa; Sozutek, Alper; Gulkaya, Mustafa; Kunt, Mevlut
2016-12-01
We aimed to determine the biochemical and histopathologic effects of direct oxygen supply to the preservation fluid of static cold storage system with a simple method on rat livers. Sixteen rats were randomly divided into 2 groups: the control group, which contained Ringer's lactate as preservation fluid; and the oxygen group, which contained oxygen and Ringer's lactate for preservation. Each liver was placed in a bag containing 50 mL Ringer's lactate and placed in ice-filled storage containers. One hundred percent oxygen supplies were given via a simple, inexpensive system created in our laboratory, to the livers in oxygen group. We obtained samples for histopathologic evaluation in the 12th hour. In addition, 3 mL of preservation fluid was subjected to biochemical analysis at 0, sixth, and twelfth hours. Aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and pH levels were measured from the preservation fluid. In oxygen-supplemented group, the acceleration speed of increase in alanine aminotransferase and lactate dehydrogenase levels at sixth hour and lactate dehydrogenase, alanine aminotransferase, and lactate dehydrogenase levels at 12th hour were statistically significantly reduced. In histopathologic examination, all parameters except ballooning were statistically significantly better in the oxygen-supplemented group. This simple system for oxygenation of liver tissues during static cold storage was shown to be effective with good results in biochemical and histopathologic assessments. Because this is a simple, inexpensive, and easily available method, larger studies are warranted to evaluate its effects (especially in humans).
Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1998-01-01
A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The axial stiffness coefficient shows a maximum for a certain intermediate load while the damping coefficient steadily increases. The computed results evidence the paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where there is actually an inflow through the bearing inner diameter, accompanied by subambient pressures just downstream of the bearing recess edge. These results are solely due to centrifugal fluid inertia and advection transport effects. Recommendations include the extension of the computer program to handle flexure pivot tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft angular misalignments.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Mathematical Metaphors: Problem Reformulation and Analysis Strategies
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
This paper addresses the critical need for the development of intelligent or assisting software tools for the scientist who is working in the initial problem formulation and mathematical model representation stage of research. In particular, examples of that representation in fluid dynamics and instability theory are discussed. The creation of a mathematical model that is ready for application of certain solution strategies requires extensive symbolic manipulation of the original mathematical model. These manipulations can be as simple as term reordering or as complicated as discovery of various symmetry groups embodied in the equations, whereby Backlund-type transformations create new determining equations and integrability conditions or create differential Grobner bases that are then solved in place of the original nonlinear PDEs. Several examples are presented of the kinds of problem formulations and transforms that can be frequently encountered in model representation for fluids problems. The capability of intelligently automating these types of transforms, available prior to actual mathematical solution, is advocated. Physical meaning and assumption-understanding can then be propagated through the mathematical transformations, allowing for explicit strategy development.
Fluid Dynamics of Thrombosis in Transcatheter Aortic Valves
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Zhu, Chi; Dou, Zhongwang; Resar, Jon; Mittal, Rajat
2017-11-01
Transcatheter aortic valve replacement (TAVR) with bioprosthetic valves (BPV) has become highly prevalent in recent years. While one advantage of BPVs over mechanical ones is the lower incidence of valve thrombosis, recent clinical studies have suggested a higher than expected incidence of subclinical bioprosthetic valve thrombosis (BVT). Many factors that might affect the transvalvular hemodynamics including the valve position, orientation, stent, and interaction with the coronary flow, have been suggested, but the casual mechanisms of valve thrombosis are still unknown. In the present study, the hemodynamics associated with the formation of BVT is investigated using a novel, coupled flow-structure-biochemical computational modeling. A reduced degree of freedom, fluid-structure-interaction model is proposed for the efficient simulation of the hemodynamics and leaflet dynamics in the BPVs. Simple models to take into account the effects of the stent and coronary flows have also been developed. Simulations are performed for canonical models of BPVs in the aorta in various configurations and the results are examined to provide insights into the mechanisms for valve thrombosis. Supported by the NSF Grants IIS-1344772, CBET-1511200 and NSF XSEDE Grant TG-CTS100002.
Steady flow model user's guide
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.
1984-07-01
Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.
Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1992-01-01
Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.
NASA Astrophysics Data System (ADS)
Fischer, T.; Matyska, C.; Heinicke, J.
2017-02-01
The West Bohemia/Vogtland region is characterized by earthquake swarm activity and degassing of CO2 of mantle origin. A fast increase of CO2 flow rate was observed 4 days after a ML 3.5 earthquake in May 2014 in the Hartoušov mofette, 9 km from the epicentres. During the subsequent 150 days the flow reached sixfold of the original level, and has been slowly decaying until present. Similar behavior was observed during and after the swarm in 2008 pointing to a fault-valve mechanism in long-term. Here, we present the results of simulation of gas flow in a two dimensional model of Earth's crust composed of a sealing layer at the hypocentre depth which is penetrated by the earthquake fault and releases fluid from a relatively low-permeability lower crust. This simple model is capable of explaining the observations, including the short travel time of the flow pulse from 8 km depth to the surface, long-term flow increase and its subsequent slow decay. Our model is consistent with other analyse of the 2014 aftershocks which attributes their anomalous character to exponentially decreasing external fluid force. Our observations and model hence track the fluid pressure pulse from depth where it was responsible for aftershocks triggering to the surface where a significant long-term increase of CO2 flow started 4 days later.
NASA Astrophysics Data System (ADS)
Gilmore, M.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Rogers, B. N.
2017-10-01
Ongoing experiments and numerical modeling of the dynamics of electrostatic turbulence and transport in the presence of flow shear are being conducted in helicon plasmas in the linear HelCat (Helicon-Cathode) device. Modeling is being done using GBS, a 3D, global two-fluid Braginskii code that solves self-consistently for plasma equilibrium as well as fluctuations. Past experimental measurements of flows have been difficult to reconcile with simple expectations, such as azimuthal flows being dominated by Er x Bz rotation. Therefore, recent measurements have focused on understanding plasma flows, and the role of neutral dynamics. In the model, a set of two-fluid drift-reduced Braginskii equations are evolved using the Global Braginskii Solver Code (GBS). For low-field helicon-sourced Ar plasmas a non-negligible cross-field thermal collisional term must be added to shift the electric potential in the ion momentum and vorticity equations as the ions are unmagnetized. Significant radially and axially dependent neutral profiles are also included in the simulations to try and match those observed in HelCat. Ongoing simulations show a mode dependence on the axial magnetic field along with strong axial variations that suggest drift waves may be important in the low-field case. Supported by U.S. National Science Foundation Award 1500423.
A mean spherical model for soft potentials: The hard core revealed as a perturbation
NASA Technical Reports Server (NTRS)
Rosenfeld, Y.; Ashcroft, N. W.
1978-01-01
The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I 2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I 2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
A Reduced-Order Model For Zero-Mass Synthetic Jet Actuators
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.; Vatsa, Veer S.
2007-01-01
Accurate details of the general performance of fluid actuators is desirable over a range of flow conditions, within some predetermined error tolerance. Designers typically model actuators with different levels of fidelity depending on the acceptable level of error in each circumstance. Crude properties of the actuator (e.g., peak mass rate and frequency) may be sufficient for some designs, while detailed information is needed for other applications (e.g., multiple actuator interactions). This work attempts to address two primary objectives. The first objective is to develop a systematic methodology for approximating realistic 3-D fluid actuators, using quasi-1-D reduced-order models. Near full fidelity can be achieved with this approach at a fraction of the cost of full simulation and only a modest increase in cost relative to most actuator models used today. The second objective, which is a direct consequence of the first, is to determine the approximate magnitude of errors committed by actuator model approximations of various fidelities. This objective attempts to identify which model (ranging from simple orifice exit boundary conditions to full numerical simulations of the actuator) is appropriate for a given error tolerance.
Modeling of pulsating heat pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Givler, Richard C.; Martinez, Mario J.
This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. Themore » physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.« less
Yeung, Sophia E; Fenton, Tanis R
2009-09-01
Randomized controlled trials have established that there is no benefit to withholding oral food and fluids from colorectal surgery patients postoperatively. The aim of this survey was to determine food preferences for the first postoperative meal and compare these with a traditional clear-fluid diet. One hundred forty-five elective colorectal surgery patients were surveyed about their preferences for 35 common foods within 72 hours of surgery and their levels of nausea, hunger, and pain. Preferences were examined by postoperative day (one vs. two) and levels of nausea, hunger, and pain. The survey showed that patients significantly preferred solid foods as early as the first postoperative day and their preferences had little congruency with the traditional clear-fluid diet. Foods highest in preference, such as eggs, regular broth soup (e.g., chicken noodle soup), toast, and potatoes, were significantly more preferred than common clear-fluid diet items such as gelatin, clear broth, and carbonated beverages (P < 0.01). Oral supplements were preferred by only 44%. Patients reported low levels of nausea, hunger, and pain. Postoperative colorectal surgery patients prefer to receive simple solid foods rather than a clear-fluid diet as their first postoperative meal.
A zero-equation turbulence model for two-dimensional hybrid Hall thruster simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelli, Mark A., E-mail: cap@stanford.edu; Young, Christopher V.; Cha, Eunsun
2015-11-15
We present a model for electron transport across the magnetic field of a Hall thruster and integrate this model into 2-D hybrid particle-in-cell simulations. The model is based on a simple scaling of the turbulent electron energy dissipation rate and the assumption that this dissipation results in Ohmic heating. Implementing the model into 2-D hybrid simulations is straightforward and leverages the existing framework for solving the electron fluid equations. The model recovers the axial variation in the mobility seen in experiments, predicting the generation of a transport barrier which anchors the region of plasma acceleration. The predicted xenon neutral andmore » ion velocities are found to be in good agreement with laser-induced fluorescence measurements.« less
NASA Astrophysics Data System (ADS)
Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.
2014-12-01
The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The evolved gases are then convoyed to a quadrupole mass spectrometer through a heated line to avoid the condensation of water. Our results suggest that fluid speciation can diverge considerably compared to the thermodynamic model depending on the experimental strategies adopted and on the presence of solutes in complex COH systems.
Scalar-tensor extension of the ΛCDM model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algoner, W.C.; Velten, H.E.S.; Zimdahl, W., E-mail: w.algoner@cosmo-ufes.org, E-mail: velten@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br
2016-11-01
We construct a cosmological scalar-tensor-theory model in which the Brans-Dicke type scalar Φ enters the effective (Jordan-frame) Hubble rate as a simple modification of the Hubble rate of the ΛCDM model. This allows us to quantify differences between the background dynamics of scalar-tensor theories and general relativity (GR) in a transparent and observationally testable manner in terms of one single parameter. Problems of the mapping of the scalar-field degrees of freedom on an effective fluid description in a GR context are discused. Data from supernovae, the differential age of old galaxies and baryon acoustic oscillations are shown to strongly limitmore » potential deviations from the standard model.« less
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2018-04-01
Plasma-surface interactions are ubiquitous in the field of plasma science and technology. Much of the physics of these interactions can be captured with a simple model comprising a cold ion fluid and electrons which satisfy the Boltzmann relation. However, this model permits analytical solutions in a very limited number of cases. This paper presents a versatile and robust numerical implementation of the model for arbitrary surface geometries in cartesian and axisymmetric cylindrical coordinates. Specific examples of surfaces with sinusoidal corrugations, trenches, and hemi-ellipsoidal protrusions verify this numerical implementation. The application of the code to problems involving plasma-liquid interactions, plasma etching, and electron emission from the surface is discussed.
Effect of the Environment and Environmental Uncertainty on Ship Routes
2012-06-01
models consisting of basic differential equations simulating the fluid dynamic process and physics of the environment. Based on Newton’s second law of...Charles and Hazel Hall, for their unconditional love and support. They were there for me during this entire process , as they have been throughout...A simple transit across the Atlantic Ocean can easily become a rough voyage if the ship encounters high winds, which in turn will cause a high sea
Zheng, Yufang; Sparve, Erik; Bergström, Mats
2018-06-01
A UPLC-MS/MS method was developed to identify and quantitate 37 commonly abused drugs in oral fluid. Drugs of interest included amphetamines, benzodiazepines, cocaine, opiates, opioids, phencyclidine and tetrahydrocannabinol. Sample preparation and extraction are simple, and analysis times short. Validation showed satisfactory performance at relevant concentrations. The possibility of contaminated samples as well as the interpretation in relation to well-knows matrices, such as urine, will demand further study. Copyright © 2017 John Wiley & Sons, Ltd.
Materials processing in a centrifuge - Numerical modeling of macrogravity effects
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Downey, J. P.; Jones, J. C.; Curreri, P. A.
1992-01-01
The fluid mechanics associated with crystal growth processes on a centrifuge is investigated. A simple scaling analysis is used to examine the relative magnitudes of the forces acting on the system and good agreement is obtained with previous studies. A two-dimensional model of crystal growth on a centrifuge is proposed and calculations are undertaken to help in understanding the fundamental transport processes within the crystal growth cell. Results from three-dimensional calculations of actual centrifuge-based crystal growth systems are presented both for the thermodynamically stable and unstable configurations. The calculations show the existence of flow bifurcations in certain configurations but not in all instances. The numerical simulations also show that the centrifugal force is the dominant stabilizing force on fluid convection in the stable configuration. The stabilizing influence of the Coriolis force is found to be only secondary in nature. No significant impact of gravity gradient is found in the calculations. Simulations of unstable configurations show that the Coriolis force has a stabilizing influence on fluid motion by delaying the onset of unsteady convection. Detailed flow and thermal field characteristics are presented for all the different cases that are simulated.
NASA Astrophysics Data System (ADS)
Lindstrom, Michael
2017-06-01
Fluid instabilities arise in a variety of contexts and are often unwanted results of engineering imperfections. In one particular model for a magnetized target fusion reactor, a pressure wave is propagated in a cylindrical annulus comprised of a dense fluid before impinging upon a plasma and imploding it. Part of the success of the apparatus is a function of how axially-symmetric the final pressure pulse is upon impacting the plasma. We study a simple model for the implosion of the system to study how imperfections in the pressure imparted on the outer circumference grow due to geometric focusing. Our methodology entails linearizing the compressible Euler equations for mass and momentum conservation about a cylindrically symmetric problem and analysing the perturbed profiles at different mode numbers. The linearized system gives rise to singular shocks and through analysing the perturbation profiles at various times, we infer that high mode numbers are dampened through the propagation. We also study the Linear Klein-Gordon equation in the context of stability of linear cylindrical wave formation whereby highly oscillatory, bounded behaviour is observed in a far field solution.
Simplified method to solve sound transmission through structures lined with elastic porous material.
Lee, J H; Kim, J
2001-11-01
An approximate analysis method is developed to calculate sound transmission through structures lined with porous material. Because the porous material has both the solid phase and fluid phase, three wave components exist in the material, which makes the related analysis very complicated. The main idea in developing the approximate method is very simple: modeling the porous material using only the strongest of the three waves, which in effect idealizes the material as an equivalent fluid. The analysis procedure has to be conducted in two steps. In the first step, sound transmission through a flat double panel with a porous liner of infinite extents, which has the same cross sectional construction as the actual structure, is solved based on the full theory and the strongest wave component is identified. In the second step sound transmission through the actual structure is solved modeling the porous material as an equivalent fluid while using the actual geometry of the structure. The development and validation of the method are discussed in detail. As an application example, the transmission loss through double walled cylindrical shells with a porous core is calculated utilizing the simplified method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M., E-mail: chengm@ihpc.a-star.edu.sg; Lou, J.; Lim, T. T.
A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with themore » aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.« less
Simple Pencil-and-Paper Notation for Representing Electrical Charge States
NASA Astrophysics Data System (ADS)
Morse, Robert A.
2017-11-01
In Benjamin Franklin's one fluid theory of electrification, ordinary unelectrified matter consisted of a matrix of matter suffused with a certain amount of "electrical fluid." Electrical effects were due to an excess or deficit of electrical fluid, hence the terms positive and negative. Before the development of a modern view of the atom, diagrams showing charged objects would simply have "+" or "-" signs to indicate the charged state. As physicists we know how to interpret these diagrams and understand what they are telling us about the underlying atomic model of charging. However, novice students may not readily make the connection between the atomic model, in which a charged solid object either gains or loses electrons but does not gain or lose positive charges. Furthermore, when isolated objects become charged, the total number of electrons must be accounted for as charge is a conserved quantity. To really understand the changes that occur in charging by contact, conduction, or induction, it is useful for students to visually represent the processes in a way that emphasizes the atomicity of the processes, including the induced polarization of objects, and the requirement that charge be conserved.
Translocation of a polymer through a nanopore across a viscosity gradient.
de Haan, Hendrick W; Slater, Gary W
2013-04-01
The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.
Using dust as probes to determine sheath extent and structure
NASA Astrophysics Data System (ADS)
Douglass, Angela; Land, V.; Qiao, K.; Matthews, L.; Hyde, T.
2016-08-01
Two in situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a radio frequency (RF) plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma towards the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that the particles exhibiting a levitation height that is independent of RF voltage indicate the sheath edge - the boundary between the quasineutral bulk plasma and the sheath. Therefore, both of these simple and inexpensive, yet effective, methods can be applied across a wide range of experimental parameters in any ground-based RF plasma chamber to gain useful information regarding the sheath, which is needed for interpretation of dusty plasma experiments.
On the inverse Magnus effect in free molecular flow
NASA Astrophysics Data System (ADS)
Weidman, Patrick D.; Herczynski, Andrzej
2004-02-01
A Newton-inspired particle interaction model is introduced to compute the sideways force on spinning projectiles translating through a rarefied gas. The simple model reproduces the inverse Magnus force on a sphere reported by Borg, Söderholm and Essén [Phys. Fluids 15, 736 (2003)] using probability theory. Further analyses given for cylinders and parallelepipeds of rectangular and regular polygon section point to a universal law for this class of geometric shapes: when the inverse Magnus force is steady, it is proportional to one-half the mass M of gas displaced by the body.
Energy conservation and H theorem for the Enskog-Vlasov equation
NASA Astrophysics Data System (ADS)
Benilov, E. S.; Benilov, M. S.
2018-06-01
The Enskog-Vlasov (EV) equation is a widely used semiphenomenological model of gas-liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.
Impact of the time scale of model sensitivity response on coupled model parameter estimation
NASA Astrophysics Data System (ADS)
Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu
2017-11-01
That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.
Phase behavior of the modified-Yukawa fluid and its sticky limit.
Schöll-Paschinger, Elisabeth; Valadez-Pérez, Néstor E; Benavides, Ana L; Castañeda-Priego, Ramón
2013-11-14
Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.
Ringin' the water bell: dynamic modes of curved fluid sheets
NASA Astrophysics Data System (ADS)
Kolinski, John; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran
2015-11-01
A water bell is formed by fluid flowing in a thin, coherent sheet in the shape of a bell. Experimentally, a water bell is created via the impact of a cylindrical jet on a flat surface. Its shape is set by the splash angle (the separation angle) of the resulting cylindrically symmetric water sheet. The separation angle is altered by adjusting the height of a lip surrounding the impact point, as in a water sprinkler. We drive the lip's height sinusoidally, altering the separation angle, and ringin' the water bell. This forcing generates disturbances on the steady-state water bell that propagate forward and backward in the fluid's reference frame at well-defined velocities, and interact, resulting in the emergence of an interference pattern unique to each steady-state geometry. We analytically model these dynamics by linearizing the amplitude of the bell's response about the underlying curved geometry. This simple model predicts the nodal structure over a wide range of steady-state water bell configurations and driving frequencies. Due to the curved water bell geometry, the nodal structure is quite complex; nevertheless, the predicted nodal structure agrees extremely well with the experimental data. When we drive the bell beyond perturbative separation angles, the nodal locations surprisingly persist, despite the strikingly altered underlying water bell shape. At extreme driving amplitudes the water sheet assumes a rich variety of tortuous, non-convex shapes; nevertheless, the fluid sheet remains intact.
Giant slip lengths of a simple fluid at vibrating solid interfaces
NASA Astrophysics Data System (ADS)
Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël
2010-04-01
It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.
Giant slip lengths of a simple fluid at vibrating solid interfaces.
Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël
2010-04-01
It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.
Propulsion by passive filaments and active flagella near boundaries.
Evans, Arthur A; Lauga, Eric
2010-10-01
Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.; ...
2017-02-16
Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.
Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less
NASA Astrophysics Data System (ADS)
Herring, A. L.; Li, Z.; Middleton, J.; Varslot, T.; McClure, J. E.; Sheppard, A.
2017-12-01
Multicomponent lattice-Boltzmann (LB) modeling is widely applied to study two-phase flow in various porous media. However, the impact on LB modeling of the fundamental trade-off between image resolution and field of view has received relatively little attention. This is important since 3D images of geological samples rarely have both sufficient resolution to capture fine structure and sufficient field of view to capture a full representative elementary volume of the medium. To optimize the simulations, it is important to know the minimum number of grid points that LB methods require to deliver physically meaningful results, and allow for the sources of measurement uncertainty to be appropriately balanced. In this work, we study the behavior of the Shan-Chen (SC) and Rothman-Keller (RK) models when the phase interfacial radius of curvature and the feature size of the medium approach the discrete unit size of the computational grid. Both simple, small-scale test geometries and real porous media are considered. Models' behavior in the extreme discrete limit is classified ranging from gradual loss of accuracy to catastrophic numerical breakdown. Based on this study, we provide guidance for experimental data collection and how to apply the LBM to accurately resolve physics of interest for two-fluid flow in porous media. Resolution effects are particularly relevant to the study of low-porosity systems, including fractured materials, when the typical pore width may only be a few voxels across.Overall, we find that the shortcoming of the SC model predominantly arises from the strongly pressure-dependent miscibility of the fluid components, where small droplets with high interfacial curvature have an exaggerated tendency to dissolve into the surrounding fluid. For the RK model, the most significant shortcoming is unphysical flow of non-wetting phase through narrow channels and crevices (2 voxels across or smaller), which we observed both in simple capillary tube and realistic porous medium. This process generates unphysical non-wetting phase ganglia that are hard to distinguish from ganglia of physical origin (e.g. arising from snap-off). While both methods have advantages and shortcomings, the RK model with modern enhancements seems to exhibit fewer instabilities, and is more suitable for system of low miscibility.
Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo
2016-05-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.
Two-phase reduced gravity experiments for a space reactor design
NASA Technical Reports Server (NTRS)
Antoniak, Zenen I.
1987-01-01
Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.
Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo
2015-01-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866
Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplishedmore » during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.« less
Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT
NASA Astrophysics Data System (ADS)
Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna
2008-09-01
Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.
NASA Technical Reports Server (NTRS)
Baskharone, Erian A.
1993-01-01
This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated as three dimensional, with the number of computational planes in the circumferential direction being specified a priori. The reader is reminded that the deformations in the finite elements are all infinitesimally small because the rotor eccentricity itself is a virtual displacement. This explains why we have generically termed the perturbation model the 'virtually' deformable finite-element category. The primary outcome of implementing the perturbation model is the tangential and radial components, F(sub theta)(sup *) and F(sub r)(sup *) of the fluid-exerted force on the rotor surface due to the whirling motion. Repetitive execution of the perturbation model subprogram over a sufficient range of whirl frequency ratios, and subsequent interpolation of these fluid forces, using the least-square method, finally enable the user to compute the impeller rotor dynamic coefficients of the fluid/rotor interaction. These are the direct and cross-coupled stiffness, damping, and inertia effects of the fluid/rotor interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostlymore » filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations« less
Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth
2017-11-01
Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.
2008-01-01
A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017
A level set method for determining critical curvatures for drainage and imbibition.
Prodanović, Masa; Bryant, Steven L
2006-12-15
An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.
NASA Astrophysics Data System (ADS)
Schmidt-Hattenberger, C.; Weiner, M.; Liebscher, A.; Spangenberg, E.
2009-04-01
A fiber optic refractive index sensor is tested for continuous monitoring of fluid-fluid and fluid-gas interactions within the frame of laboratory investigations of CO2 storage, monitoring and safety technology research (COSMOS project, "Geotechnologien" program). The sensor bases on a Fabry-Perot white light interferometer technique, where the refractive index (RI) of the solution under investigation is measured by variation of the liquid-filled Fabry-Perot optical cavity length. Such sensor system is typically used for measuring and controlling oil composition and also fluid quality. The aim of this study is to test the application of the fiber optic refractive index sensor for monitoring the CO2 dissolution in formation fluids (brine, oil, gas) of CO2 storage sites. Monitoring and knowledge of quantity and especially rate of CO2 dissolution in the formation fluid is important for any assessment of long-term risks of CO2 storage sites. It is also a prerequisite for any precise reservoir modelling. As a first step we performed laboratory experiments in standard autoclaves on a variety of different fluids and fluid mixtures (technical alcohols, pure water, CO2, synthetic brines, natural formation brine from the Ketzin test site). The RI measurements are partly combined with default electrical conductivity and sonic velocity measurements. The fiber optic refractive index sensor system allows for RI measurements within the range 1.0000 to 1.7000 RI with a resolution of approximately 0.0001 RI. For simple binary fluid mixtures first results indicate linear relationships between refractive indices and fluid composition. Within the pressure range investigated (up to 60 bar) the data suggest only minor changes of RI with pressure. Further, planned experiments will focus on the determination of i) the temperature dependency of RI, ii) the combined effects of pressure and temperature on RI, and finally iii) the kinetics of CO2 dissolution in realistic formation fluids.
Porous medium acoustics of wave-induced vorticity diffusion
NASA Astrophysics Data System (ADS)
Müller, T. M.; Sahay, P. N.
2011-02-01
A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.
NASA Astrophysics Data System (ADS)
Crowell, Andrew Rippetoe
This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.
Spiral waves in driven dusty plasma medium: Generalized hydrodynamic fluid description
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Patel, Bhavesh; Das, Amita
2018-04-01
Spiral waves are observed in many natural phenomena. They have been extensively represented by the mathematical FitzHugh-Nagumo model [Barkley et al., Phys. Rev. A 42, 2489 (1990)] of excitable media. Also, in incompressible fluid simulations, the excitation of thermal spiral waves has been reported by Li et al. [Phys. of Fluids 22, 011701 (2010)]. In the present paper, the spatiotemporal development of spiral waves in the context of weak and strong coupling limits has been shown. While the weakly coupled medium has been represented by a simple fluid description, for strong coupling, a generalized visco-elastic fluid description has been employed. The medium has been driven by an external force in the form of a rotating electric field. It is shown that when the amplitude of force is small, the density perturbations in the medium are also small. In this case, the excitations do not develop as a spiral wave. Only when the amplitude of force is high so as to drive the density perturbations to nonlinear amplitudes does the spiral density wave formation occurs. The role of the forcing frequency and the effect of strong coupling and the sound velocity of medium in the formation and evolution of spiral waves have been investigated in detail.
Looking for Plate Tectonics in all the wrong fluids
NASA Astrophysics Data System (ADS)
Davaille, Anne
2017-04-01
Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.
A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs
NASA Astrophysics Data System (ADS)
Huber, Christian; Parmigiani, Andrea
2018-04-01
We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-11-15
In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less
NASA Astrophysics Data System (ADS)
Rozairo, Damith; Croll, Andrew
Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.
Piezoelectric control of needle-free transdermal drug delivery.
Stachowiak, Jeanne C; von Muhlen, Marcio G; Li, Thomas H; Jalilian, Laleh; Parekh, Sapun H; Fletcher, Daniel A
2007-12-04
Transdermal drug delivery occurs primarily through hypodermic needle injections, which cause pain, require a trained administrator, and may contribute to the spread of disease. With the growing number of pharmaceutical therapies requiring transdermal delivery, an effective, safe, and simple needle-free alternative is needed. We present and characterize a needle-free jet injector that employs a piezoelectric actuator to accelerate a micron-scale stream of fluid (40-130 microm diameter) to velocities sufficient for skin penetration and drug delivery (50-160 m/s). Existing jet injectors, powered by compressed springs and gases, are not widely used due to painful injections and poor reliability in skin penetration depth and dose. In contrast, our device offers electronic control of the actuator expansion rate, resulting in direct control of jet velocity and thus the potential for more precise injections. We apply a simple fluid-dynamic model to predict the device response to actuator expansion. Further, we demonstrate that injection parameters including expelled volume, jet pressure, and penetration depth in soft materials vary with actuator expansion rate, but are highly coupled. Finally, we discuss how electronically-controlled jet injectors may enable the decoupling of injection parameters such as penetration depth and dose, improving the reliability of needle-free transdermal drug delivery.
Continuum approaches for describing solid-gas and solid-liquid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, P.; Harvey, J.; Levine, H.
Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less
NASA Astrophysics Data System (ADS)
Dixon, W. G.
1982-11-01
Preface; 1. The physics of space and time; 2. Affine spaces in mathematics and physics; 3. Foundations of dynamics; 4. Relativistic simple fluids; 5. Electrodynamics of polarisable fluids; Appendix: Vector and dyadic notation in three dimensions; Publications referred to in the text; Summary and index of symbols and conventions; Subject index.
NASA Astrophysics Data System (ADS)
Honnell, Kevin; Burnett, Sarah; Yorke, Chloe'; Howard, April; Ramsey, Scott
2017-06-01
The Noh problem is classic verification problem in the field of compressible flows. Simple to conceptualize, it is nonetheless difficult for numerical codes to predict correctly, making it an ideal code-verification test bed. In its original incarnation, the fluid is a simple ideal gas; once validated, however, these codes are often used to study highly non-ideal fluids and solids. In this work the classic Noh problem is extended beyond the commonly-studied polytropic ideal gas to more realistic equations of state (EOS) including the stiff gas, the Nobel-Abel gas, and the Carnahan-Starling hard-sphere fluid, thus enabling verification studies to be performed on more physically-realistic fluids. Exact solutions are compared with numerical results obtained from the Lagrangian hydrocode FLAG, developed at Los Alamos. For these more realistic EOSs, the simulation errors decreased in magnitude both at the origin and at the shock, but also spread more broadly about these points compared to the ideal EOS. The overall spatial convergence rate remained first order.
Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.
Fujita, Yoshihiko; Kubo, Shin-ichi
2006-01-01
FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.
Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Wardle, Mark
2018-05-01
The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.
Usage of ensemble geothermal models to consider geological uncertainties
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Steiner, Sarah; Welsch, Bastian; Sass, Ingo
2015-04-01
The usage of geothermal energy for instance by borehole heat exchangers (BHE) is a promising concept for a sustainable supply of heat for buildings. BHE are closed pipe systems, in which a fluid is circulating. Heat from the surrounding rocks is transferred to the fluid purely by conduction. The fluid carries the heat to the surface, where it can be utilized. Larger arrays of BHE require typically previous numerical models. Motivations are the design of the system (number and depth of the required BHE) but also regulatory reasons. Especially such regulatory operating permissions often require maximum realistic models. Although such realistic models are possible in many cases with today's codes and computer resources, they are often expensive in terms of time and effort. A particular problem is the knowledge about the accuracy of the achieved results. An issue, which is often neglected while dealing with highly complex models, is the quantification of parameter uncertainties as a consequence of the natural heterogeneity of the geological subsurface. Experience has shown, that these heterogeneities can lead to wrong forecasts. But also variations in the technical realization and especially of the operational parameters (which are mainly a consequence of the regional climate) can lead to strong variations in the simulation results. Instead of one very detailed single forecast model, it should be considered, to model numerous more simple models. By varying parameters, the presumed subsurface uncertainties, but also the uncertainties in the presumed operational parameters can be reflected. Finally not only one single result should be reported, but instead the range of possible solutions and their respective probabilities. In meteorology such an approach is well known as ensemble-modeling. The concept is demonstrated at a real world data set and discussed.
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
2012-03-01
simple 1-step mechanism taking into account 4 species: CH4, O2, CO2 and H2O. Figure 2. Multiblock grid for the CVRC experiment. Left: Overall view, Right... Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and...hydrogen shear-coaxial jet flames at supercritical pressure. Com- bustion science and technology, 178(1-3):229–252, 2006. 12 B. E. Poling, J. M. Prausnitz
Granular convection observed by magnetic resonance imaging.
Ehrichs, E E; Jaeger, H M; Karczmar, G S; Knight, J B; Kuperman, V Y; Nagel, S R
1995-03-17
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.
Solution of the Bagley Torvik equation by fractional DTM
NASA Astrophysics Data System (ADS)
Arora, Geeta; Pratiksha
2017-07-01
In this paper, fractional differential transform method(DTM) is implemented on the Bagley Torvik equation. This equation models the viscoelastic behavior of geological strata, metals, glasses etc. It explains the motion of a rigid plate immersed in a Newtonian fluid. DTM is a simple, reliable and efficient method that gives a series solution. Caputo fractional derivative is considered throughout this work. Two examples are given to demonstrate the validity and applicability of the method and comparison is made with the existing results.
The Cyclic Life-Test of a T5 Ion Thruster Hollow Cathode to 4200 Hours.
1981-05-01
Conference on Fluid Mechanics in Energy Conversion, Alta (Utah) 1979, p. 263. (Published by SIAM, 1980.) Invited paper. 101. G.S.S. Ludford & Asok K. Sen...GCttingen 1979. Progress in Astronautics and Aeronautics, 76 (1981). p. 427. (Combustion in Reactive Systems, ed. by J. Ray Bowen, N. Manson, Antoni...steady detonation waves in a simple model problem. To appear in Studies in Applied Mathematics. 106. Asok K. Sen & G.S.S. Ludford: Effects of mass
Dehghani, H; Delpy, D T
2000-09-01
Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers.
Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop
NASA Astrophysics Data System (ADS)
Lamorgese, A.; Mauri, R.
2016-03-01
We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.
Modeling of RF/MHD coupling using NIMROD and GENRAY
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2008-11-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations, specifically considering the stabilization of resistive tearing modes in tokamak (DIII--D--like) geometry by electron cyclotron current drive. Previous investigations [T. G. Jenkins et al., Bull. APS 52, 131 (2007)] have demonstrated that relatively simple (though non--self--consistent) models for the RF--induced currents can be incorporated into the fluid equations, and that these currents can markedly reduce the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (which calculate RF propagation and energy/momentum deposition) is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and initial studies exploring the efficient reduction of saturated island widths through time modulation of the ECCD are presented. Conducted as part of the SWIM*** project; funded by U. S. DoE. *www.nimrodteam.org **www.compxco.com ***www.cswim.org
Modeling of RF/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2009-05-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically considering resistive tearing mode stabilization in tokamak (DIII--D--like) geometry via ECCD. Relatively simple (though non--self--consistent) models for the RF--induced currents are incorporated into the fluid equations, markedly reducing the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (calculating RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework*** is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and studies exploring the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD are presented. *[Sovinec et al., JCP 195, 355 (2004)] **[www.compxco.com] ***[This research and the IPS development are both part of the SWIM project. Funded by U.S. DoE.
Molecular dynamics simulation: a tool for exploration and discovery using simple models
NASA Astrophysics Data System (ADS)
Rapaport, D. C.
2014-12-01
Emergent phenomena share the fascinating property of not being obvious consequences of the design of the system in which they appear. This characteristic is no less relevant when attempting to simulate such phenomena, given that the outcome is not always a foregone conclusion. The present survey focuses on several simple model systems that exhibit surprisingly rich emergent behavior, all studied by molecular dynamics (MD) simulation. The examples are taken from the disparate fields of fluid dynamics, granular matter and supramolecular self-assembly. In studies of fluids modeled at the detailed microscopic level using discrete particles, the simulations demonstrate that complex hydrodynamic phenomena in rotating and convecting fluids—the Taylor-Couette and Rayleigh-Bénard instabilities—can not only be observed within the limited length and time scales accessible to MD, but even allow quantitative agreement to be achieved. Simulation of highly counter-intuitive segregation phenomena in granular mixtures, again using MD methods, but now augmented by forces producing damping and friction, leads to results that resemble experimentally observed axial and radial segregation in the case of a rotating cylinder and to a novel form of horizontal segregation in a vertically vibrated layer. Finally, when modeling self-assembly processes analogous to the formation of the polyhedral shells that package spherical viruses, simulation of suitably shaped particles reveals the ability to produce complete, error-free assembly and leads to the important general observation that reversible growth steps contribute to the high yield. While there are limitations to the MD approach, both computational and conceptual, the results offer a tantalizing hint of the kinds of phenomena that can be explored and what might be discovered when sufficient resources are brought to bear on a problem.
NASA Astrophysics Data System (ADS)
Gerszewski, Daniel James
Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-01-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
NASA Astrophysics Data System (ADS)
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-10-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
NASA Astrophysics Data System (ADS)
Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.
2014-11-01
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future developments can be safely built, which is also relevant for stochastic subgrid models for particle-laden flows in the context of Large Eddy Simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minier, Jean-Pierre, E-mail: Jean-Pierre.Minier@edf.fr; Chibbaro, Sergio; Pope, Stephen B.
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangianmore » stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future developments can be safely built, which is also relevant for stochastic subgrid models for particle-laden flows in the context of Large Eddy Simulations.« less
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.
2011-02-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R.
2009-12-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.
A nano cold-wire for velocity measurements
NASA Astrophysics Data System (ADS)
Huang, Yi-Chun; Fu, Matthew; Fan, Yuyang; Byers, Clayton; Hultmark, Marcus
2016-11-01
We introduce a novel, strain-based sensor for both gaseous and liquid flows. The sensor consists of a free-standing, electrically conductive, nanoscale ribbon suspended between silicon supports. Due to its size, the nanoribbon deflects in flow under viscously dominated fluid forcing, which induces axial strain and a resistance change in the sensing element. The change in resistance can then be measured by a Wheatstone bridge, resulting in straightforward design and operation of the sensor. Since its operating principle is based on viscous fluid forcing, the sensor has high sensitivity especially in liquid or other highly viscous flows. A simple analytical model to understand the relation between forcing and strain is derived from the geometric and material constraints, and preliminary analysis using a low order model of the dynamic systems suggests that the sensor has a high frequency response. Lastly, a cylindrical structure to house the sensor with an axial and ventral channel to generate a pressure differential is being considered for typical velocimetry applications.
Role of computational fluid dynamics in unsteady aerodynamics for aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Goorjian, Peter M.
1989-01-01
In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.
Heat transfer from nanoparticles: A corresponding state analysis
Merabia, Samy; Shenogin, Sergei; Joly, Laurent; Keblinski, Pawel; Barrat, Jean-Louis
2009-01-01
In this contribution, we study situations in which nanoparticles in a fluid are strongly heated, generating high heat fluxes. This situation is relevant to experiments in which a fluid is locally heated by using selective absorption of radiation by solid particles. We first study this situation for different types of molecular interactions, using models for gold particles suspended in octane and in water. As already reported in experiments, very high heat fluxes and temperature elevations (leading eventually to particle destruction) can be observed in such situations. We show that a very simple modeling based on Lennard–Jones (LJ) interactions captures the essential features of such experiments and that the results for various liquids can be mapped onto the LJ case, provided a physically justified (corresponding state) choice of parameters is made. Physically, the possibility of sustaining very high heat fluxes is related to the strong curvature of the interface that inhibits the formation of an insulating vapor film. PMID:19571000
A simple analogue of lung mechanics.
Sherman, T F
1993-12-01
A model of the chest and lungs can be easily constructed from a bottle of water, a balloon, a syringe, a rubber stopper, glass and rubber tubing, and clamps. The model is a more exact analogue of the body than the classic apparatus of Hering in two respects: 1) the pleurae and intrapleural fluid are represented by water rather than air, and 2) the subatmospheric "intrapleural" pressure is created by the elasticity of the "lung" (balloon) rather than by a vacuum pump. With this model, students can readily see how the lung is inflated and deflated by movements of the "diaphragm and chest" (syringe plunger) and how intrapleural pressures change as this is accomplished.
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Vinet, P.
1986-01-01
Two pressure chambers, for compression experiments with liquids from zero to 2.2 GPa pressure, are described. The experimentally measured compressions are then compared to theoretical values given by an isothermal model of equation of state recently introduced for solids. The model describes the pressure and bulk modulus as a function of compression for different types of lubricants with a very high accuracy up to the pressure limit of the high pressure chamber used (2.2 GPa). In addition the influence of temperature on static solidification pressure was found to be a simple function of the thermal expansion of the fluid.
Profile of student critical thinking ability on static fluid concept
NASA Astrophysics Data System (ADS)
Sulasih; Suparmi, A.; Sarwanto
2017-11-01
Critical thinking ability is an important part of educational goals. It has higher complex processes, such as analyzing, synthesizing and evaluating, drawing conclusion and reflection. This study is aimed to know the critical thinking ability of students in learning static fluids of senior high school students. This research uses the descriptive method which its instruments based on the indicator of critical thinking ability developed according to Ennis. The population of this research is XIth grade science class Public Senior High School, SMA N 1, Sambungmacan, Sragen, Central Java. The static fluid teaching material is delivered using Problem Based Learning Model through class experiment. The results of this study shows that the average student of XIth science class have high critical thinking skills, particularly in the ability of providing simple explanation, build basic skill, and provide advanced explanation, but they do not have high enough in ability of drawing conclusion and strategic and tactical components of critical thinking ability in the study of static fluid teaching material. The average of students critical thinking ability is 72.94, with 27,94% of students are in a low category and 72,22% of students in the high category of critical thinking ability.
NASA Astrophysics Data System (ADS)
Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz
2017-12-01
The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.
Microcanonical ensemble simulation method applied to discrete potential fluids
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro
2015-09-01
In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.
Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farell, A.E.; Reddy, S.
1995-03-01
This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order tomore » assess MGAS for use as a model of the FBG for control systems analysis.« less
Force fields of charged particles in micro-nanofluidic preconcentration systems
NASA Astrophysics Data System (ADS)
Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon
2017-12-01
Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.
Kovac, Andrej; Somikova, Zuzana; Zilka, Norbert; Novak, Michal
2014-02-01
Alzheimer's disease (AD) is still being recognized today as an unmet medical need. Currently, there is no cure and early preclinical diagnostic assay available for AD. Therefore much attention is now being directed at the development of novel methods for quantitative determination of AD biomarkers in the cerebrospinal fluid (CSF). Here, we describe the liquid chromatography-tandem mass spectrometry method for determination of 5-hydroxytryptamine (SER), 5-hydroxyindoleacetic acid (5-HIAA), homovanilic acid (HVA), noradrenaline (NADR), adrenaline (ADR), dopamine (DA), glutamic acid (Glu), γ-aminobutyric acid (GABA), 3,4-dihydroxyphenylacetic acid (DOPAC) and histamine (HIS) in cerebrospinal fluid (CSF) from the rat model for human tauopathy. The benzoyl chloride was used as pre-column derivatization reagents. Neurotransmitters and metabolites were analysed on ultra performance liquid chromatography (UPLC) on C18 column in combination with tandem mass spectrometry. The method is simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.99. The accuracy was in a range of 93-113% for all analytes. The inter-day precision (n=5 days), expressed as %RSD, was in a range 2-10% for all analytes. Using this method we detected significant changes of CSF levels of two important neurotransmitters/metabolites, ADR and 5-HIAA, which correlates with progression of neurodegeneration in our animal model. © 2013 Published by Elsevier B.V.
Hydro-dynamic damping theory in flowing water
NASA Astrophysics Data System (ADS)
Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.
2014-03-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.
Equilibrium, stability, and orbital evolution of close binary systems
NASA Technical Reports Server (NTRS)
Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.
1994-01-01
We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.
Geophysical fluid dynamics: whence, whither and why?
2016-01-01
This article discusses the role of geophysical fluid dynamics (GFD) in understanding the natural environment, and in particular the dynamics of atmospheres and oceans on Earth and elsewhere. GFD, as usually understood, is a branch of the geosciences that deals with fluid dynamics and that, by tradition, seeks to extract the bare essence of a phenomenon, omitting detail where possible. The geosciences in general deal with complex interacting systems and in some ways resemble condensed matter physics or aspects of biology, where we seek explanations of phenomena at a higher level than simply directly calculating the interactions of all the constituent parts. That is, we try to develop theories or make simple models of the behaviour of the system as a whole. However, these days in many geophysical systems of interest, we can also obtain information for how the system behaves by almost direct numerical simulation from the governing equations. The numerical model itself then explicitly predicts the emergent phenomena—the Gulf Stream, for example—something that is still usually impossible in biology or condensed matter physics. Such simulations, as manifested, for example, in complicated general circulation models, have in some ways been extremely successful and one may reasonably now ask whether understanding a complex geophysical system is necessary for predicting it. In what follows we discuss such issues and the roles that GFD has played in the past and will play in the future. PMID:27616918
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Assessment of the geothermal potential of fault zones in Germany by numerical modelling
NASA Astrophysics Data System (ADS)
Kuder, Jörg
2017-04-01
Fault zones with significantly better permeabilities than host rocks can act as natural migration paths for ascending fluids that are able to transport thermal energy from deep geological formations. Under these circumstances, fault zones are interesting for geothermal utilization especially those in at least 7 km depth (Jung et al. 2002, Paschen et al. 2003). One objective of the joint project "The role of deep rooting fault zones for geothermal energy utilization" supported by the Federal Ministry for Economic Affairs and Energy was the evaluation of the geothermal potential of fault zones in Germany by means of numerical modelling with COMSOL. To achieve this goal a method was developed to estimate the potential of regional generalized fault zones in a simple but yet sophisticated way. The main problem for the development of a numerical model is the lack of geological and hydrological data. To address this problem the geothermal potential of a cube with 1 km side length including a 20 meter broad, 1000 m high and 1000 m long fault zone was calculated as a unified model with changing parameter sets. The properties of the surrounding host rock and the fault zone are assumed homogenous. The numerical models were calculated with a broad variety of fluid flow, rock and fluid property parameters for the depths of 3000-4000 m, 4000-5000 m, 5000-6000 m and 6000-7000 m. The fluid parameters are depending on temperature, salt load and initial pressure. The porosity and permeability values are provided by the database of the geothermal information system (GeotIS). The results are summarized in a table of values of geothermal energy modelled with different parameter sets and depths. The geothermal potential of fault zones in Germany was then calculated on the basis of this table and information of the geothermal atlas of Germany (2016).
Numerical modelling of bedload sediment transport
NASA Astrophysics Data System (ADS)
Langlois, Vincent J.
2010-05-01
We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.
Improved modeling of turbulent forced convection heat transfer in straight ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokni, M.; Sunden, B.
1999-08-01
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the nonlinear {kappa}-{epsilon} model combined with the heat flux models of simple eddy diffusivity (SED), low Reynolds number version of generalized gradient diffusion hypothesis (GGDH), and wealth {proportional_to} earning {times} time (WET) in general three-dimensional geometries. The numerical approach is based on the finite volume technique with a nonstaggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the nonlinear {kappa}-{epsilon} model, combined with themore » Lam-Bremhorst and the Abe-Kondoh-Nagano damping functions for low Reynolds numbers.« less
Flow-induced Flutter of Heart Valves: Experiments with Canonical Models
NASA Astrophysics Data System (ADS)
Dou, Zhongwang; Seo, Jung-Hee; Mittal, Rajat
2017-11-01
For the better understanding of hemodynamics associated with valvular function in health and disease, the flow-induced flutter of heart valve leaflets is studied using benchtop experiments with canonical valve models. A simple experimental model with flexible leaflets is constructed and a pulsatile pump drives the flow through the leaflets. We quantify the leaflet dynamics using digital image analysis and also characterize the dynamics of the flow around the leaflets using particle imaging velocimetry. Experiments are conducted over a wide range of flow and leaflet parameters and data curated for use as a benchmark for validation of computational fluid-structure interaction models. The authors would like to acknowledge Supported from NSF Grants IIS-1344772, CBET-1511200 and NSF XSEDE Grant TG-CTS100002.
Self-Assembled Magnetic Surface Swimmers: Theoretical Model
NASA Astrophysics Data System (ADS)
Aranson, Igor; Belkin, Maxim; Snezhko, Alexey
2009-03-01
The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.
Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)
NASA Astrophysics Data System (ADS)
Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.
2002-12-01
Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.
Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)
2002-01-01
Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.