Simple Test Functions in Meshless Local Petrov-Galerkin Methods
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.
2016-01-01
Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.
Holomorphic projections and Ramanujan’s mock theta functions
Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.
2014-01-01
We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582
Closed-form confidence intervals for functions of the normal mean and standard deviation.
Donner, Allan; Zou, G Y
2012-08-01
Confidence interval methods for a normal mean and standard deviation are well known and simple to apply. However, the same cannot be said for important functions of these parameters. These functions include the normal distribution percentiles, the Bland-Altman limits of agreement, the coefficient of variation and Cohen's effect size. We present a simple approach to this problem by using variance estimates recovered from confidence limits computed for the mean and standard deviation separately. All resulting confidence intervals have closed forms. Simulation results demonstrate that this approach performs very well for limits of agreement, coefficients of variation and their differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study
ERIC Educational Resources Information Center
Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.
2007-01-01
Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…
Free-energy functional of the Debye-Hückel model of simple fluids
NASA Astrophysics Data System (ADS)
Piron, R.; Blenski, T.
2016-12-01
The Debye-Hückel approximation to the free energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Hückel equivalent to the functional derived in the hypernetted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-Hückel integral equation through a minimization with respect to the pair correlation function, leads to the correct form of the internal energy, and fulfills the virial theorem.
A comparison of simple global kinetic models for coal devolatilization with the CPD model
Richards, Andrew P.; Fletcher, Thomas H.
2016-08-01
Simulations of coal combustors and gasifiers generally cannot incorporate the complexities of advanced pyrolysis models, and hence there is interest in evaluating simpler models over ranges of temperature and heating rate that are applicable to the furnace of interest. In this paper, six different simple model forms are compared to predictions made by the Chemical Percolation Devolatilization (CPD) model. The model forms included three modified one-step models, a simple two-step model, and two new modified two-step models. These simple model forms were compared over a wide range of heating rates (5 × 10 3 to 10 6 K/s) at finalmore » temperatures up to 1600 K. Comparisons were made of total volatiles yield as a function of temperature, as well as the ultimate volatiles yield. Advantages and disadvantages for each simple model form are discussed. In conclusion, a modified two-step model with distributed activation energies seems to give the best agreement with CPD model predictions (with the fewest tunable parameters).« less
Bristles before down: a new perspective on the functional origin of feathers.
Persons, Walter S; Currie, Philip J
2015-04-01
Over the course of the last two decades, the understanding of the early evolution of feathers in nonavian dinosaurs has been revolutionized. It is now recognized that early feathers had a simple form comparable in general structure to the hairs of mammals. Insight into the prevalence of simple feathers throughout the dinosaur family tree has gradually arisen in tandem with the growing evidence for endothermic dinosaur metabolisms. This has led to the generally accepted opinion that the early feather coats of dinosaurs functioned as thermo insulation. However, thermo insulation is often erroneously stated to be a likely functional explanation for the origin of feathers. The problem with this explanation is that, like mammalian hair, simple feathers could serve as insulation only when present in sufficiently high concentrations. The theory therefore necessitates the origination of feathers en masse. We advocate for a novel origin theory of feathers as bristles. Bristles are facial feathers common among modern birds that function like mammalian tactile whiskers, and are frequently simple and hair-like in form. Bristles serve their role in low concentrations, and therefore offer a feasible first stage in feather evolution. © 2015 The Author(s).
A Parameter-Free Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems.
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-04-05
The method of constructing semilocal density functional for exchange in two dimensions using one of the premier approaches, i.e., density matrix expansion, is revisited, and an accurate functional is constructed. The form of the functional is quite simple and includes no adjustable semiempirical parameters. In it, the kinetic energy dependent momentum is used to compensate nonlocal effects of the system. The functional is then examined by considering the very well-known semiconductor quantum dot systems. And despite its very simple form, the results obtained for quantum dots containing a higher number of electrons agrees pretty well with that of the standard exact exchange theory. Some of the desired properties relevant for the two-dimensional exchange functional and the lower bound associated with it are also discussed. It is observed that the above parameter-free semilocal exchange functional satisfies most of the discussed conditions.
Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...
2016-06-23
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Peptides at Membrane Surfaces and their Role in the Origin of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, D. (Technical Monitor)
2002-01-01
All ancestors of contemporary cells (protocells) had to transport ions and organic matter across membranous walls, capture and utilize energy and transduce environmental signals. In modern organisms, all these functions are preformed by membrane proteins. We make the parsimonious assumption that in the protobiological milieu the same functions were carried out by their simple analogs - peptides. This, however, required that simple peptides could self-organize into ordered, functional structures. In a series of detailed, molecular-level computer simulations we demonstrated how this is possible. One example is the peptide (LSLLLSL)3 which forms a trameric bundle capable of transporting protons across membranes. Another example is the transmembrane pore of the influenza M2 protein. This aggregate of four identical alpha-helices, each built of 25 amino acids, forms an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism in this channel. The channel can be re-engineered into a simple proton pump.
SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?
NASA Astrophysics Data System (ADS)
Rührmair, Ulrich
This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.
"In Situ" Observation of a Soap-Film Catenoid--A Simple Educational Physics Experiment
ERIC Educational Resources Information Center
Ito, Masato; Sato, Taku
2010-01-01
The solution to the Euler-Lagrange equation is an extremal functional. To understand that the functional is stationary at local extrema (maxima or minima), we propose a physics experiment that involves using a soap film to form a catenoid. A catenoid is a surface that is formed between two coaxial circular rings and is classified mathematically as…
Modeling Protein Domain Function
ERIC Educational Resources Information Center
Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth
2007-01-01
This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…
Enhancement of equivalence class formation by pretraining discriminative functions.
Nartey, Richard K; Arntzen, Erik; Fields, Lanny
2015-03-01
The present experiment showed that a simple discriminative function acquired by an abstract stimulus through simultaneous and/or successive discrimination training enhanced the formation of an equivalence class of which that stimulus was a member. College students attempted to form three equivalence classes composed of three nodes and five members (A→B→C→D→E), using the simultaneous protocol. In the PIC group, the C stimuli were pictures and the A, B, D, and E stimuli were abstract shapes. In the ABS group, all of the stimuli were abstract shapes. In the SIM + SUCC (simultaneous and successive) group, simple discriminations were formed with the C stimuli through both simultaneous and successive discrimination training before class formation. Finally, in the SIM-only and SUCC-only groups, prior to class formation, simple discriminations were established for the C stimuli with a simultaneous procedure and a successive procedure, respectively. Equivalence classes were formed by 80% and 70% of the participants in the PIC and SIM + SUCC groups respectively, by 30% in the SUCC-only group, and by 10% apiece in the ABS and SIM-only groups. Thus, pretraining of combined simultaneous and successive discriminations enhanced class formation, as did the inclusion of a meaningful stimulus in a class. The isolated effect of forming successive discriminations was more influential than that of forming simultaneous discriminations. The establishment of both discriminations together produced an enhancement greater than the sum of the two procedures alone. Finally, a sorting test documented the maintenance of the classes formed during the simultaneous protocol. These results also provide a stimulus control-function account of the class-enhancing effects of meaningful stimuli.
Continuous Optimization on Constraint Manifolds
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
This paper demonstrates continuous optimization on the differentiable manifold formed by continuous constraint functions. The first order tensor geodesic differential equation is solved on the manifold in both numerical and closed analytic form for simple nonlinear programs. Advantages and disadvantages with respect to conventional optimization techniques are discussed.
A bivariate rational interpolation with a bi-quadratic denominator
NASA Astrophysics Data System (ADS)
Duan, Qi; Zhang, Huanling; Liu, Aikui; Li, Huaigu
2006-10-01
In this paper a new rational interpolation with a bi-quadratic denominator is developed to create a space surface using only values of the function being interpolated. The interpolation function has a simple and explicit rational mathematical representation. When the knots are equally spaced, the interpolating function can be expressed in matrix form, and this form has a symmetric property. The concept of integral weights coefficients of the interpolation is given, which describes the "weight" of the interpolation points in the local interpolating region.
Using the Rasch Model to Determine Equivalence of Forms In the Trilingual Lollipop Readiness Test
ERIC Educational Resources Information Center
Lang, W. Steve; Chew, Alex L.; Crownover, Carol; Wilkerson, Judy R.
2007-01-01
Determining the cross-cultural equivalence of multilingual tests is a challenge that is more complex than simple horizontal equating of test forms. This study examines the functioning of a trilingual test of preschool readiness to determine the equivalence. Different forms of the test have previously been examined using classical statistical…
ERIC Educational Resources Information Center
Page, Judith L.; Horn, Donna
1985-01-01
Twelve preschoolers who had Down's Syndrome, hydrocephalus, or brain damage of unknown etiology and who functioned at early and late linguistic Stage I were asked to respond to commands in simple, complete adult forms and in incomplete, telegraphic child forms. Late Stage I Ss were superior in comprehension of all forms. (CL)
Relicts and models of the RNA world
NASA Astrophysics Data System (ADS)
Lehto, Kirsi; Karetnikov, Alexey
2005-01-01
It is widely believed that the current DNA-RNA-protein-based life forms have evolved from preceding RNA-protein-based life forms, and these again, from mere RNA replicons. By rationale, it can be assumed that the early RNA replicons were fully heterotrophic in terms of obtaining all their building blocks from their environment. In the absence of protein catalysts, their essential life functions had to be mediated by simple functional structures and mechanisms, such as RNA secondary structures, RNA-RNA interactions and RNA-mediated catalysis, and possibly by catalytic minerals or clays. The central role of RNA catalysts in early life forms is supported by the fact that several catalytic RNAs still perform central biological functions in current life forms, and at least some of these may be derived as molecular relicts from the early RNA-based life. The RNA-catalysed metabolic reactions and molecular fossils are more conserved in the eukaryotic life forms than in the prokaryotes, suggesting that the linear eukaryote genomes may more closely resemble the structure and function of the early RNA replicons, than what do the circular prokaryote genomes. Present-day RNA viruses and viroids utilize ultimately simple life strategies, which may be similar to those used by the early RNA replicons. Thus, molecular and functional properties of viruses and viroids may be considered as examples or models of the structures and replication mechanisms, which might have been used for the replication of the early biopolymers.
On the analytical form of the Earth's magnetic attraction expressed as a function of time
NASA Technical Reports Server (NTRS)
Carlheim-Gyllenskold, V.
1983-01-01
An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.
Lorentz Trial Function for the Hydrogen Atom: A Simple, Elegant Exercise
ERIC Educational Resources Information Center
Sommerfeld, Thomas
2011-01-01
The quantum semester of a typical two-semester physical chemistry course is divided into two parts. The initial focus is on quantum mechanics and simple model systems for which the Schrodinger equation can be solved in closed form, but it then shifts in the second half to atoms and molecules, for which no closed solutions exist. The underlying…
A Latent Variable Approach to the Simple View of Reading
ERIC Educational Resources Information Center
Kershaw, Sarah; Schatschneider, Chris
2012-01-01
The present study utilized a latent variable modeling approach to examine the Simple View of Reading in a sample of students from 3rd, 7th, and 10th grades (N = 215, 188, and 180, respectively). Latent interaction modeling and other latent variable models were employed to investigate (a) the functional form of the relationship between decoding and…
Grammatical Analysis as a Distributed Neurobiological Function
Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D
2015-01-01
Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences—inflectionally complex words and minimal phrases—and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. PMID:25421880
Interpretation of styles of simple stations in Korea
NASA Astrophysics Data System (ADS)
Hwang, Minhye; Shin, Yekyeong
2018-06-01
The purpose of this paper is to apply stylistic interpretation through the exterior of simple stations in Korea. Simple Station is a kind of railway stations. It was installed when there were not a lot of passengers and it was not necessary to operate the station at a high cost. It has minimal functions such as a waiting room, an office, an operating room, and toilets and was built between the 1910s and the 1960s. The form of the building is as simple as the name of "Simple Station". That is why the reading its style is easy and obvious. But it is also difficult to interpret because of the lack of stylistic evidences. Nevertheless, in the relationship between the station and the station tree, the concept of the Picturesque and Palladian Style are found. But it is still hard to distinguish whether the whole building style is Western or Japanese. Simple Station is one of the things that Japan has built as Western Culture in Korea during the Japanese colonial era, so it is natural that its style of form is complex.
"As Simple as Possible, but Not Simpler"--The Case of Dehydroascorbic Acid
ERIC Educational Resources Information Center
Kerber, Robert C.
2008-01-01
Ascorbic acid (vitamin C) is an essential nutrient, whose metabolic roles depend on its function as a reducing agent. Textbooks routinely assign its oxidized form, dehydroascorbic acid, a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. The actual structures of the various forms of…
Matrix Theory of Small Oscillations
ERIC Educational Resources Information Center
Chavda, L. K.
1978-01-01
A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)
NASA Technical Reports Server (NTRS)
Gould, Gerogle L. (Inventor); Lee, Je Kyun (Inventor)
2010-01-01
The present invention relates to cross-linked polyolefin aerogels in simple and fiber-reinforced composite form. Of particular interest are polybutadiene aerogels. Especially aerogels derived from polybutadienes functionalized with anhydrides, amines, hydroxyls, thiols, epoxies, isocyanates or combinations thereof.
A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity
NASA Astrophysics Data System (ADS)
Kuiroukidis, A.
We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc
A Semantic Map Approach to English Articles (A, The, and Ø)
ERIC Educational Resources Information Center
Butler, Brian C.
2012-01-01
The three structural possibilities marking a noun with an English article are "a," "the," and "Ø" (the absence of an article). Although these structural possibilities are simple, they encode a multitude of semantic and pragmatic functions, and it is these complex form-function interactions that this study explores and…
A Simple Question to Think about When Considering the Hemoglobin Function
ERIC Educational Resources Information Center
Ruiz-Larrea, M. Begona
2002-01-01
Hemoglobin is a complex protein formed by various subunits interacting with each other. These noncovalent interactions, quaternary structure, are responsible for hemoglobin functioning as an excellent oxygen transporter, loading up with oxygen in the lungs and delivering it to tissues, where the oxygen pressure is lower. The communications between…
The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing
Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan
2017-01-01
Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014
NASA Astrophysics Data System (ADS)
Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian
2016-12-01
In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
Grammatical analysis as a distributed neurobiological function.
Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D
2015-03-01
Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences--inflectionally complex words and minimal phrases--and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. Copyright © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Evolution of finite-amplitude localized vortices in planar homogeneous shear flows
NASA Astrophysics Data System (ADS)
Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob
2017-02-01
An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.
1994-01-01
It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.
NASA Astrophysics Data System (ADS)
Boissier, S.; Buat, V.; Ilbert, O.
2010-11-01
Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.
QUEST - A Bayesian adaptive psychometric method
NASA Technical Reports Server (NTRS)
Watson, A. B.; Pelli, D. G.
1983-01-01
An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.
Context-free parsing with connectionist networks
NASA Astrophysics Data System (ADS)
Fanty, M. A.
1986-08-01
This paper presents a simple algorithm which converts any context-free grammar into a connectionist network which parses strings (of arbitrary but fixed maximum length) in the language defined by that grammar. The network is fast, O(n), and deterministicd. It consists of binary units which compute a simple function of their input. When the grammar is put in Chomsky normal form, O(n3) units needed to parse inputs of length up to n.
NASA Astrophysics Data System (ADS)
Conway, John T.; Cohl, Howard S.
2010-06-01
A new method is presented for Fourier decomposition of the Helmholtz Green function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Green function are split into their half advanced + half retarded and half advanced-half retarded components, and closed form solutions for these components are then obtained in terms of a Horn function and a Kampé de Fériet function respectively. Series solutions for the Fourier coefficients are given in terms of associated Legendre functions, Bessel and Hankel functions and a hypergeometric function. These series are derived either from the closed form 2-dimensional hypergeometric solutions or from an integral representation, or from both. A simple closed form far-field solution for the general Fourier coefficient is derived from the Hankel series. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented. Fourth order ordinary differential equations for the Fourier coefficients are also given and discussed briefly.
Simple model dielectric functions for insulators
NASA Astrophysics Data System (ADS)
Vos, Maarten; Grande, Pedro L.
2017-05-01
The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.
Multifunctional thin film surface
Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.
2015-10-13
A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.
ERIC Educational Resources Information Center
Douvropoulos, Theodosios G.
2012-01-01
An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic…
Balkányi, László
2002-01-01
To develop information systems (IS) in the changing environment of the health sector, a simple but throughout model, avoiding the techno-jargon of informatics, might be useful for the top management. A platform neutral, extensible, transparent conceptual model should be established. Limitations of current methods lead to a simple, but comprehensive mapping, in the form of a three-dimensional cube. The three 'orthogonal' views are (a) organization functionality, (b) organizational structures and (c) information technology. Each of the cube-sides is described according to its nature. This approach enables to define any kind of an IS component as a certain point/layer/domain of the cube and enables also the management to label all IS components independently form any supplier(s) and/or any specific platform. The model handles changes in organization structure, business functionality and the serving info-system independently form each other. Practical application extends to (a) planning complex, new ISs, (b) guiding development of multi-vendor, multi-site ISs, (c) supporting large-scale public procurement procedures and the contracting, implementation phase by establishing a platform neutral reference, (d) keeping an exhaustive inventory of an existing large-scale system, that handles non-tangible aspects of the IS.
77 FR 76604 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... currently approved collection. Title: Form 5304-SIMPLE; Form 5305-SIMPLE; Notice 98-4. Abstract: Forms 5304-SIMPLE and 5035-SIMPLE are used by an employer to permit employees to make salary reduction contributions to a savings incentive match plan (SIMPLE IRA) described in Code section 408(p). These forms are not...
Sleigh, Alison; Lupson, Victoria; Thankamony, Ajay; Dunger, David B; Savage, David B; Carpenter, T Adrian; Kemp, Graham J
2016-01-11
The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
NASA Astrophysics Data System (ADS)
Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf
2017-09-01
There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.
Zonal and tesseral harmonic coefficients for the geopotential function, from zero to 18th order
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. C.
1976-01-01
Zonal and tesseral harmonic coefficients for the geopotential function are usually tabulated in normalized form to provide immediate information as to the relative significance of the coefficients in the gravity model. The normalized form of the geopotential coefficients cannot be used for computational purposes unless the gravity model has been modified to receive them. This modification is usually not done because the absolute or unnormalized form of the coefficients can be obtained from the simple mathematical relationship that relates the two forms. This computation can be quite tedious for hand calculation, especially for the higher order terms, and can be costly in terms of storage and execution time for machine computation. In this report, zonal and tesseral harmonic coefficients for the geopotential function are tabulated in absolute or unnormalized form. The report is designed to be used as a ready reference for both hand and machine calculation to save the user time and effort.
Correlation functions for Hermitian many-body systems: Necessary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E.B.
1994-02-01
Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at [ital t]=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2007-01-01
A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode
Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors
NASA Astrophysics Data System (ADS)
Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine
2013-03-01
The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.
Half-cell potentials of semiconductive simple binary sulphides in aqueous solution
Sato, M.
1966-01-01
Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.
A Selected Library of Transport Coefficients for Combustion and Plasma Physics Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cloutman, L.D.
2000-08-01
COYOTE and similar combustion programs based on the multicomponent Navier-Stokes equations require the mixture viscosity, thermal conductivity, and species transport coefficients as input. This report documents a model of these molecular transport coefficients that is simpler than the general theory, but which provides adequate accuracy for many purposes. This model leads to a computationally convenient, self-contained, and easy-to-use source of such data in a format suitable for use by such programs. We present the data for various neutral species in two forms. The first form is a simple functional fit to the transport coefficients. The second form is the usemore » of tabulated Lennard-Jones parameters in simple theoretical expressions for the gas-phase transport coefficients. The model then is extended to the case of a two-temperature plasma. Lennard-Jones parameters are given for a number of chemical species of interest in combustion research.« less
NASA Astrophysics Data System (ADS)
Yang, Yong; Zhang, Jingchao; Wang, Shitong; Xu, Xiaobin; Zhang, Zhicheng; Wang, Pengpeng; Tang, Zilong; Wang, Xun
2015-02-01
A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and energy storage. For example, N-doped carbon encapsulated Fe2O3 nanoboxes show a very high discharge capacity and outstanding cyclability, and the capacity still remained at 1086 mA h g-1 at a current density of 400 mA g-1 after 200 cycles. Our results described here provide a simple surface coating technique to design various functional nanostructures.A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and energy storage. For example, N-doped carbon encapsulated Fe2O3 nanoboxes show a very high discharge capacity and outstanding cyclability, and the capacity still remained at 1086 mA h g-1 at a current density of 400 mA g-1 after 200 cycles. Our results described here provide a simple surface coating technique to design various functional nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07181f
Micro to Nanoscale Engineering of Surface Precipitates Using Reconfigurable Contact Lines.
Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi
2018-02-06
Nanoscale engineering has traditionally adopted the chemical route of synthesis or optochemical techniques such as lithography requiring large process times, expensive equipment, and an inert environment. Directed self-assembly using evaporation of nanocolloidal droplet can be a potential low-cost alternative across various industries ranging from semiconductors to biomedical systems. It is relatively simple to scale and reorient the evaporation-driven internal flow field in an evaporating droplet which can direct dispersed matter into functional agglomerates. The resulting functional precipitates not only exhibit macroscopically discernible changes but also nanoscopic variations in the particulate assembly. Thus, the evaporating droplet forms an autonomous system for nanoscale engineering without the need for external resources. In this article, an indigenous technique of interfacial re-engineering, which is both simple and inexpensive to implement, is developed. Such re-engineering widens the horizon for surface patterning previously limited by the fixed nature of the droplet interface. It involves handprinting hydrophobic lines on a hydrophilic substrate to form a confinement of any selected geometry using a simple document stamp. Droplets cast into such confinements get modulated into a variety of shapes. The droplet shapes control the contact line behavior, evaporation dynamics, and complex internal flow pattern. By exploiting the dynamic interplay among these variables, we could control the deposit's macro- as well as nanoscale assembly not possible with simple circular droplets. We provide a detailed mechanism of the coupling at various length scales enabling a predictive capability in custom engineering, particularly useful in nanoscale applications such as photonic crystals.
Interactively Open Autonomy Unifies Two Approaches to Function
NASA Astrophysics Data System (ADS)
Collier, John
2004-08-01
Functionality is essential to any form of anticipation beyond simple directedness at an end. In the literature on function in biology, there are two distinct approaches. One, the etiological view, places the origin of function in selection, while the other, the organizational view, individuates function by organizational role. Both approaches have well-known advantages and disadvantages. I propose a reconciliation of the two approaches, based in an interactivist approach to the individuation and stability of organisms. The approach was suggested by Kant in the Critique of Judgment, but since it requires, on his account, the identification a new form of causation, it has not been accessible by analytical techniques. I proceed by construction of the required concept to fit certain design requirements. This construction builds on concepts introduced in my previous four talks to these meetings.
Futschik, K; Ammann, M; Bachmayer, S; Kenndler, E
1993-08-06
The ionic species that are formed during the microbial growth of Escherichia coli were determined by capillary isotachophoresis as a function of the time of cultivation. This formation was indicated by the change in a sum parameter, the impedance of the nutrient broth, measured by a special electrode system. Based on the determination of the individual ions formed under the given conditions (identified as acetate, lactate, alpha-ketoglutarate, fumarate, ammonium and probably a simple amine), the change in conductivity was calculated and compared with that obtained by the impedance measurement of the bulk medium. From the results it can be concluded that the change in the sum parameter as a function of time is originated by the ions determined.
Xie, Zong-Bo; Wang, Na; Wu, Wan-Xia; Le, Zhang-Gao; Yu, Xiao-Qi
2014-01-20
A simple, mild, one-pot tandem method catalyzed by trypsin was developed for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones by the Biginelli reaction of urea, β-dicarbonyl compounds, and in situ-formed acetaldehyde. Trypsin was found to display dual promiscuous functions to catalyze transesterification and the Biginelli reaction in sequence. Copyright © 2013 Elsevier B.V. All rights reserved.
Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms
NASA Technical Reports Server (NTRS)
Deyoung, J.
1980-01-01
A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-06-01
We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analytical solution for boundary heat fluxes from a radiating rectangular medium
NASA Technical Reports Server (NTRS)
Siegel, R.
1991-01-01
Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.
Vize, P D; Seufert, D W; Carroll, T J; Wallingford, J B
1997-08-15
Most vertebrate organs, once formed, continue to perform the function for which they were generated until the death of the organism. The kidney is a notable exception to this rule. Vertebrates, even those that do not undergo metamorphosis, utilize a progression of more complex kidneys as they grow and develop. This is presumably due to the changing conditions to which the organism must respond to retain what Homer Smith referred to as our physiological freedom. To quote, "Recognizing that we have the kind of blood we have because we have the kind of kidneys we have, we must acknowledge that our kidneys constitute the major foundation of our physiological freedom. Only because they work the way they do has it become possible for us to have bones, muscles, glands, and brains. Superficially, it might be said that the function of the kidneys is to make urine; but in a more considered view one can say that the kidneys make the stuff of philosophy itself" ("From Fish to Philosopher," Little, Brown and Co., Boston, 1953). Different kidneys are used to make the stuff of philosophy at different stages of development depending on the age and needs of the organism, rather than the usual approach of simply making embryonic organs larger as the animal grows. Although evolution has provided the higher vertebrates with complex adult kidneys, they continue to utilize simple kidneys in embryogenesis. In lower vertebrates with simple adult kidneys, even more simple versions are used during early developmental stages. In this review the anatomy, development, and gene expression patterns of the embryonic kidney, the pronephros, will be described and compared to the more complex kidney forms. Despite some differences in anatomy, similar developmental pathways seem to be responsible for the induction and the response to induction in both evanescent and permanent kidney forms. Gene expression patterns can, therefore, be added to the morphological and functional data indicating that all forms of the kidney are closely related structures. Given the similarities between the development of simple and complex kidneys, the embryonic kidneys may be an ideal model system in which to investigate the genesis of multicomponent organ systems.
Maslov indices, Poisson brackets, and singular differential forms
NASA Astrophysics Data System (ADS)
Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.
2014-06-01
Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
Inobe, Tomonao; Nukina, Nobuyuki
2016-07-01
Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya
2016-12-01
Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.
Falling head ponded infiltration in the nonlinear limit
NASA Astrophysics Data System (ADS)
Triadis, D.
2014-12-01
The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.
What's So Bad about Being Wet All Over: Investigating Leaf Surface Wetness.
ERIC Educational Resources Information Center
Brewer, Carol A.
1996-01-01
Presents investigations of leaf surface wetness that provide ideal opportunities for students to explore the relationships between leaf form and function, to study surface conditions of leaves and plant physiology, and to make predictions about plant adaptation in different environments. Describes simple procedures for exploring questions related…
Algebraic grid generation with corner singularities
NASA Technical Reports Server (NTRS)
Vinokur, M.; Lombard, C. K.
1983-01-01
A simple noniterative algebraic procedure is presented for generating smooth computational meshes on a quadrilateral topology. Coordinate distribution and normal derivative are provided on all boundaries, one of which may include a slope discontinuity. The boundary conditions are sufficient to guarantee continuity of global meshes formed of joined patches generated by the procedure. The method extends to 3-D. The procedure involves a synthesis of prior techniques stretching functions, cubic blending functions, and transfinite interpolation - to which is added the functional form of the corner solution. The procedure introduces the concept of generalized blending, which is implemented as an automatic scaling of the boundary derivatives for effective interpolation. Some implications of the treatment at boundaries for techniques solving elliptic PDE's are discussed in an Appendix.
Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Plumberg, Christopher
2018-01-01
We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.
A bio-physical basis of mathematics in synaptic function of the nervous system: a theory.
Dempsher, J
1980-01-01
The purpose of this paper is to present a bio-physical basis of mathematics. The essence of the theory is that function in the nervous system is mathematical. The mathematics arises as a result of the interaction of energy (a wave with a precise curvature in space and time) and matter (a molecular or ionic structure with a precise form in space and time). In this interaction, both energy and matter play an active role. That is, the interaction results in a change in form of both energy and matter. There are at least six mathematical operations in a simple synaptic region. It is believed the form of both energy and matter are specific, and their interaction is specific, that is, function in most of the 'mind' and placed where it belongs - in nature and the synaptic regions of the nervous system; it results in both places from a precise interaction between energy (in a precise form) and matter ( in a precise structure).
SIMPLE MODEL OF ICE SEGREGATION USING AN ANALYTIC FUNCTION TO MODEL HEAT AND SOIL-WATER FLOW.
Hromadka, T.V.; Guymon, G.L.
1984-01-01
This paper reports on the development of a simple two-dimensional model of coupled heat and soil-water flow in freezing or thawing soil. The model also estimates ice-segregation (frost-heave) evolution. Ice segregation in soil results from water drawn into a freezing zone by hydraulic gradients created by the freezing of soil-water. Thus, with a favorable balance between the rate of heat extraction and the rate of water transport to a freezing zone, segregated ice lenses may form.
Simple Automatic File Exchange (SAFE) to Support Low-Cost Spacecraft Operation via the Internet
NASA Technical Reports Server (NTRS)
Baker, Paul; Repaci, Max; Sames, David
1998-01-01
Various issues associated with Simple Automatic File Exchange (SAFE) are presented in viewgraph form. Specific topics include: 1) Packet telemetry, Internet IP networks and cost reduction; 2) Basic functions and technical features of SAFE; 3) Project goals, including low-cost satellite transmission to data centers to be distributed via an Internet; 4) Operations with a replicated file protocol; 5) File exchange operation; 6) Ground stations as gateways; 7) Lessons learned from demonstrations and tests with SAFE; and 8) Feedback and future initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.B. Jr.
Various methods for the calculation of lower bounds for eigenvalues are examined, including those of Weinstein, Temple, Bazley and Fox, Gay, and Miller. It is shown how all of these can be derived in a unified manner by the projection technique. The alternate forms obtained for the Gay formula show how a considerably improved method can be readily obtained. Applied to the ground state of the helium atom with a simple screened hydrogenic trial function, this new method gives a lower bound closer to the true energy than the best upper bound obtained with this form of trial function. Possiblemore » routes to further improved methods are suggested.« less
Functional-Group-Tolerant, Silver-Catalyzed N-N Bond Formation by Nitrene Transfer to Amines.
Maestre, Lourdes; Dorel, Ruth; Pablo, Óscar; Escofet, Imma; Sameera, W M C; Álvarez, Eleuterio; Maseras, Feliu; Díaz-Requejo, M Mar; Echavarren, Antonio M; Pérez, Pedro J
2017-02-15
Silver(I) promotes the highly chemoselective N-amidation of tertiary amines under catalytic conditions to form aminimides by nitrene transfer from PhI═NTs. Remarkably, this transformation proceeds in a selective manner in the presence of olefins and other functional groups without formation of the commonly observed aziridines or C-H insertion products. The methodology can be applied not only to rather simple tertiary amines but also to complex natural molecules such as brucine or quinine, where the products derived from N-N bond formation were exclusively formed. Theoretical mechanistic studies have shown that this selective N-amidation reaction proceeds through triplet silver nitrenes.
What's Next: Recruitment of a Grounded Predictive Body Model for Planning a Robot's Actions.
Schilling, Malte; Cruse, Holk
2012-01-01
Even comparatively simple, reactive systems are able to control complex motor tasks, such as hexapod walking on unpredictable substrate. The capability of such a controller can be improved by introducing internal models of the body and of parts of the environment. Such internal models can be applied as inverse models, as forward models or to solve the problem of sensor fusion. Usually, separate models are used for these functions. Furthermore, separate models are used to solve different tasks. Here we concentrate on internal models of the body as the brain considers its own body the most important part of the world. The model proposed is formed by a recurrent neural network with the property of pattern completion. The model shows a hierarchical structure but nonetheless comprises a holistic system. One and the same model can be used as a forward model, as an inverse model, for sensor fusion, and, with a simple expansion, as a model to internally simulate (new) behaviors to be used for prediction. The model embraces the geometrical constraints of a complex body with many redundant degrees of freedom, and allows finding geometrically possible solutions. To control behavior such as walking, climbing, or reaching, this body model is complemented by a number of simple reactive procedures together forming a procedural memory. In this article, we illustrate the functioning of this network. To this end we present examples for solutions of the forward function and the inverse function, and explain how the complete network might be used for predictive purposes. The model is assumed to be "innate," so learning the parameters of the model is not (yet) considered.
A new approach to global control of redundant manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
A new and simple approach to configuration control of redundant manipulators is presented. In this approach, the redundancy is utilized to control the manipulator configuration directly in task space, where the task will be performed. A number of kinematic functions are defined to reflect the desirable configuration that will be achieved for a given end-effector position. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. An adaptive scheme is then utilized to globally control the configuration variables so as to achieve tracking of some desired reference trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The control law is simple and computationally very fast, and does not require the complex manipulator dynamic model.
Deformations of super Riemann surfaces
NASA Astrophysics Data System (ADS)
Ninnemann, Holger
1992-11-01
Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.
Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin
2016-03-01
Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent.
Using Three-Dimensional Printing to Fabricate a Tubing Connector for Dilation and Evacuation.
Stitely, Michael L; Paterson, Helen
2016-02-01
This is a proof-of-concept study to show that simple instrumentation problems encountered in surgery can be solved by fabricating devices using a three-dimensional printer. The device used in the study is a simple tubing connector fashioned to connect two segments of suction tubing used in a surgical procedure where no commercially available product for this use is available through our usual suppliers in New Zealand. A cylindrical tubing connector was designed using three-dimensional printing design software. The tubing connector was fabricated using the Makerbot Replicator 2X three-dimensional printer. The connector was used in 15 second-trimester dilation and evacuation procedures. Data forms were completed by the primary operating surgeon. Descriptive statistics were used with the expectation that the device would function as intended in all cases. The three-dimensional printed tubing connector functioned as intended in all 15 instances. Commercially available three-dimensional printing technology can be used to overcome simple instrumentation problems encountered during gynecologic surgical procedures.
The Identities Hidden in the Matching Laws, and Their Uses
ERIC Educational Resources Information Center
Thorne, David R.
2010-01-01
Various theoretical equations have been proposed to predict response rate as a function of the rate of reinforcement. If both the rate and probability of reinforcement are considered, a simple identity, defining equation, or "law" holds. This identity places algebraic constraints on the allowable forms of our mathematical models and can help…
Raney Distributions and Random Matrix Theory
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Liu, Dang-Zheng
2015-03-01
Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.
Evaluation of geopotential and luni-solar perturbations by a recursive algorithm
NASA Technical Reports Server (NTRS)
Giacaglia, G. E. O.
1975-01-01
The disturbing functions due to the geopotential and Luni-solar attractions are linear and bilinear forms in spherical harmonics. Making use of recurrence relations for the solid spherical harmonics and their derivatives, recurrence formulas are obtained for high degree terms as function of lower degree for any term of those disturbing functions and their derivative with respect to any element. The equations obtained are effective when a numerical integration of the equations of motion is appropriate. In analytical theories, they provide a fast way of obtaining high degree terms starting from initial very simple functions.
Continuous versus discontinuous albedo representations in a simple diffusive climate model
NASA Astrophysics Data System (ADS)
Simmons, P. A.; Griffel, D. H.
1988-07-01
A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.
Conformational free energy of melts of ring-linear polymer blends.
Subramanian, Gopinath; Shanbhag, Sachin
2009-10-01
The conformational free energy of ring polymers in a blend of ring and linear polymers is investigated using the bond-fluctuation model. Previously established scaling relationships for the free energy of a ring polymer are shown to be valid only in the mean-field sense, and alternative functional forms are investigated. It is shown that it may be difficult to accurately express the total free energy of a ring polymer by a simple scaling argument, or in closed form.
A Representation for Fermionic Correlation Functions
NASA Astrophysics Data System (ADS)
Feldman, Joel; Knörrer, Horst; Trubowitz, Eugene
Let dμS(a) be a Gaussian measure on the finitely generated Grassmann algebra A. Given an even W(a)∈A, we construct an operator R on A such that
NASA Technical Reports Server (NTRS)
Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.
1990-01-01
Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.
3D Photonic Crystals Build Up By Self-Organization Of Nanospheres
2006-05-23
variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86
Matzen, Laura E.; Taylor, Eric G.; Benjamin, Aaron S.
2010-01-01
It has been suggested that both familiarity and recollection contribute to the recognition decision process. In this paper, we leverage the form of false alarm rate functions—in which false-alarm rates describe an inverted U-shaped function as the time between study and test increases—to assess how these processes support retention of semantic and surface form information from previously studied words. We directly compare the maxima of these functions for lures that are semantically related and lures that are related by surface form to previously studied material. This analysis reveals a more rapid loss of access to surface form than to semantic information. To separate the contributions of item familiarity and reminding-induced recollection rejection to this effect, we use a simple multinomial process model; this analysis reveals that this loss of access reflects both a more rapid loss of familiarity and lower rates of recollection for surface form information. PMID:21240745
Marshall, Nicholas; Locklin, Jason
2011-11-01
In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research.
Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo
Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal
2017-01-01
In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878
Design principles of hair-like structures as biological machines
2018-01-01
Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas. PMID:29848593
Simple robust control laws for robot manipulators. Part 2: Adaptive case
NASA Technical Reports Server (NTRS)
Bayard, D. S.; Wen, J. T.
1987-01-01
A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.
Closed-form summations of Dowker's and related trigonometric sums
NASA Astrophysics Data System (ADS)
Cvijović, Djurdje; Srivastava, H. M.
2012-09-01
Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095-101 1989 J. Math. Phys. 30 770-3 1992 J. Phys. A: Math. Gen. 25 2641-8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
An Empirical Mass Function Distribution
NASA Astrophysics Data System (ADS)
Murray, S. G.; Robotham, A. S. G.; Power, C.
2018-03-01
The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.
A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
Shi, Dangwei; Song, Chen; Jiang, Qiao; Wang, Zhen-Gang; Ding, Baoquan
2013-03-28
We report a simple, rapid and efficient strategy for modification of gold nanorods (AuNRs) with thiolated DNA at low solution pH and high salt concentration. DNA functionalized AuNRs were then used to assemble with DNA modified gold nanoparticles to form discrete satellite nanostructures.
Nanoscale simple-fluid behavior under steady shear.
Yong, Xin; Zhang, Lucy T
2012-05-01
In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.
NASA Astrophysics Data System (ADS)
Aryanpour, Karan
2003-03-01
We employ the Dynamical Mean Field Approximation (DMFA) to study the Janko-Zarand model [1] for the combination of large spin-orbit coupling and spatial disorder effects in GaAs doped with Mn. In this model the electronic dispersion and the spin-orbit coupling are simultaneously diagonalized and therefore, the Hamiltonian for the pure system takes a surprisingly simple form. The price for this simplicity is that the quantization axis for the spin must be rotated along the direction of momentum. This chiral basis greatly complicates the form of the hole-impurity interaction at a single site i. In the DMFA, since all the crossing Feynman diagrams for the hole-impurity interaction vanish, the problem simplifies to the local diagrams for the holes scattering off of a single Mn impurity site only. The diagrammatics for the self-energy reduces to the local Green functions and potentials in the non-chiral basis in which they have very simple forms. We first calculate the initial green function G(k) in the chiral basis and then rotate G(k) back into the non chiral basis and coarse grain it over all the k momenta. The hole-impurity interaction is greatly simplified in the non-chiral basis and can be averaged over all the spin configurations and orientations of the Mn atoms on the lattice.The self energy may be extracted from the averaged Green function, and used to recalculate the initial cluster Green function, etc. completing the DMFA self-consistent loop. We intend to calculate the spin and charge transport coefficients, and spectra such as the AC susceptibility and the ARPES which may be directly compared with experiment. [1] Phys. Rev. Lett.89,047201/1-4 (2002)
Spectral fluctuations of quantum graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluhař, Z.; Weidenmüller, H. A.
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.
NASA Technical Reports Server (NTRS)
Freilich, M. H.; Pawka, S. S.
1987-01-01
The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.
Dynamical density functional theory analysis of the laning instability in sheared soft matter.
Scacchi, A; Archer, A J; Brader, J M
2017-12-01
Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.
Neurosurgery: Functional regeneration after laser axotomy
NASA Astrophysics Data System (ADS)
Yanik, Mehmet Fatih; Cinar, Hulusi; Cinar, Hediye Nese; Chisholm, Andrew D.; Jin, Yishi; Ben-Yakar, Adela
2004-12-01
Understanding how nerves regenerate is an important step towards developing treatments for human neurological disease, but investigation has so far been limited to complex organisms (mouse and zebrafish) in the absence of precision techniques for severing axons (axotomy). Here we use femtosecond laser surgery for axotomy in the roundworm Caenorhabditis elegans and show that these axons functionally regenerate after the operation. Application of this precise surgical technique should enable nerve regeneration to be studied in vivo in its most evolutionarily simple form.
On the solution of integral equations with a generalized cauchy kernal
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
A certain class of singular integral equations that may arise from the mixed boundary value problems in nonhonogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernal has strong singularities of the form (t-x)(-2), x(n-2) (t+x)(n), (n is = or 2, 0 x, t b). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.
Aragón, Alfredo S; Kalberg, Wendy O; Buckley, David; Barela-Scott, Lindsey M; Tabachnick, Barbara G; May, Philip A
2008-12-01
Although a large body of literature exists on cognitive functioning in alcohol-exposed children, it is unclear if there is a signature neuropsychological profile in children with Fetal Alcohol Spectrum Disorders (FASD). This study assesses cognitive functioning in children with FASD from several American Indian reservations in the Northern Plains States, and it applies a hierarchical model of simple versus complex information processing to further examine cognitive function. We hypothesized that complex tests would discriminate between children with FASD and culturally similar controls, while children with FASD would perform similar to controls on relatively simple tests. Our sample includes 32 control children and 24 children with a form of FASD [fetal alcohol syndrome (FAS) = 10, partial fetal alcohol syndrome (PFAS) = 14]. The test battery measures general cognitive ability, verbal fluency, executive functioning, memory, and fine-motor skills. Many of the neuropsychological tests produced results consistent with a hierarchical model of simple versus complex processing. The complexity of the tests was determined "a priori" based on the number of cognitive processes involved in them. Multidimensional scaling was used to statistically analyze the accuracy of classifying the neurocognitive tests into a simple versus complex dichotomy. Hierarchical logistic regression models were then used to define the contribution made by complex versus simple tests in predicting the significant differences between children with FASD and controls. Complex test items discriminated better than simple test items. The tests that conformed well to the model were the Verbal Fluency, Progressive Planning Test (PPT), the Lhermitte memory tasks, and the Grooved Pegboard Test (GPT). The FASD-grouped children, when compared with controls, demonstrated impaired performance on letter fluency, while their performance was similar on category fluency. On the more complex PPT trials (problems 5 to 8), as well as the Lhermitte logical tasks, the FASD group performed the worst. The differential performance between children with FASD and controls was evident across various neuropsychological measures. The children with FASD performed significantly more poorly on the complex tasks than did the controls. The identification of a neurobehavioral profile in children with prenatal alcohol exposure will help clinicians identify and diagnose children with FASD.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
Virasoro constraints and polynomial recursion for the linear Hodge integrals
NASA Astrophysics Data System (ADS)
Guo, Shuai; Wang, Gehao
2017-04-01
The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.
A New Technique for Preserving the Form of Artificially Inflated Endophalli of Bees.
Dutra, A L; Oliveira, R
2017-04-01
We present a simple technique for keeping the form of artificially expanded endophalli in bees (Hymenoptera). Endophalli were inflated using the introduction of low melting-point agarose from a syringe inserted in the anterior opening of the metasoma. Under refrigeration, the endophalli kept their expanded shape for up to three days allowing the description of structure, morphometric analyses, and examination of the external sculpturing of the cuticle under scanning electron microscope. The technique provides new possibilities for the study of functional morphology, sexual selection, and reconstruction of bee phylogeny.
Receptor theory and biological constraints on value.
Berns, Gregory S; Capra, C Monica; Noussair, Charles
2007-05-01
Modern economic theories of value derive from expected utility theory. Behavioral evidence points strongly toward departures from linear value weighting, which has given rise to alternative formulations that include prospect theory and rank-dependent utility theory. Many of the nonlinear forms for value assumed by these theories can be derived from the assumption that value is signaled by neurotransmitters in the brain, which obey simple laws of molecular movement. From the laws of mass action and receptor occupancy, we show how behaviorally observed forms of nonlinear value functions can arise.
Patil, Pravinkumar G
2011-08-01
The presence of oral cancer can necessitate the surgical removal of all or part of the maxilla, leaving the patient with a defect compromising the oral cavity's integrity and function. The immediate postoperative restoration of esthetics, deglutition, and speech shortens recovery time in the hospital and expedites the patient's return to the community as a functioning member. This article describes a simple technique to fabricate an immediate surgical obturator by restoring the patient's original dentition and facial and palatal tissue form. An immediate obturator fabricated with this technique supports soft tissues after surgery and minimizes scar contracture and disfigurement and thus may have a positive effect on the patient's psychology. © 2011 by The American College of Prosthodontists.
ERIC Educational Resources Information Center
Rule, Audrey C.; Baldwin, Samantha; Schell, Robert
2009-01-01
This repeated measures study examined second graders' (n = 21) performance in creating inventions related to animal adaptations for simple products under two conditions that alternated each week for a six-week period. In the analogy condition, students used form and function analogy object boxes to learn about animal adaptations, applying these…
NASA Astrophysics Data System (ADS)
Pezzulo, Giovanni; Levin, Michael
2018-03-01
The free-energy principle (FEP) has been initially proposed as a theory of brain structure and function [1], but its scope is rapidly extending to explain biological phenomena at multiple levels of complexity, from simple life forms and their morphology [2] to complex societal and cultural dynamics [3].
Shi, Xiao-Wen; Qiu, Ling; Nie, Zhen; Xiao, Ling; Payne, Gregory F; Du, Yumin
2013-12-01
Many applications in proteomics and lab-on-chip analysis require methods that guide proteins to assemble at surfaces with high spatial and temporal control. Electrical inputs are particularly convenient to control, and there has been considerable effort to discover simple and generic mechanisms that allow electrical inputs to trigger protein assembly on-demand. Here, we report the electroaddressing of a protein to a patterned surface by coupling two generic electroaddressing mechanisms. First, we electrodeposit the stimuli-responsive film-forming aminopolysaccharide chitosan to form a hydrogel matrix at the electrode surface. After deposition, the matrix is chemically functionalized with alkyne groups. Second, we ''electro-click' an azide-tagged protein to the functionalized matrix using electrical signals to trigger conjugation by Huisgen 1,3-dipolar cycloadditions. Specifically, a cathodic potential is applied to the matrix-coated electrode to reduce Cu(II) to Cu(I) which is required for the click reaction. Using fluorescently-labeled bovine serum albumin as our model, we demonstrate that protein conjugation can be controlled spatially and temporally. We anticipate that the coupling of polysaccharide electrodeposition and electro-click chemistry will provide a simple and generic approach to electroaddress proteins within compatible hydrogel matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, William; Stubbs, Gerald
2014-05-01
Amyloids are filamentous protein aggregates that can be formed by many different proteins and are associated with both disease and biological functions. The pathogenicities or biological functions of amyloids are determined by their particular molecular structures, making accurate structural models a requirement for understanding their biological effects. One potential factor that can affect amyloid structures is hydration. Previous studies of simple stacked β-sheet amyloids have suggested that dehydration does not impact structure, but other studies indicated dehydration-related structural changes of a putative water-filled nanotube. Our results show that dehydration significantly affects the molecular structure of the fungal prion-forming domain HET-s(218–289),more » which forms a β-solenoid with no internal solvent-accessible regions. The dehydration-related structural deformation of HET-s(218–289) indicates that water can play a significant role in complex amyloid structures, even when no obvious water-accessible cavities are present.« less
Symmetrical polyhedra (simple crystal forms) as orbits of noncrystallographic point symmetry groups
NASA Astrophysics Data System (ADS)
Ovsetsina, T. I.; Chuprunov, E. V.
2017-09-01
Simple crystal forms are analyzed as the orbits of noncrystallographic point symmetry groups on a set of smooth or structured ("hatched") planes of crystal space. Polyhedra with symmetrically equivalent faces, obtained using noncrystallographic point symmetry groups, are considered. All possible versions of simple forms for all noncrystallographic groups are listed in a unified table.
Li, Wen-Chang; Cooke, Tom; Sautois, Bart; Soffe, Stephen R; Borisyuk, Roman; Roberts, Alan
2007-09-10
How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that detailed cellular recognition between spinal neuron types may not be necessary for the reliable formation of functional networks to generate early behaviour like swimming.
Molnets: An Artificial Chemistry Based on Neural Networks
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Luk, Johnny; Segovia-Juarez, Jose L.; Lohn, Jason; Clancy, Daniel (Technical Monitor)
2002-01-01
The fundamental problem in the evolution of matter is to understand how structure-function relationships are formed and increase in complexity from the molecular level all the way to a genetic system. We have created a system where structure-function relationships arise naturally and without the need of ad hoc function assignments to given structures. The idea was inspired by neural networks, where the structure of the net embodies specific computational properties. In this system networks interact with other networks to create connections between the inputs of one net and the outputs of another. The newly created net then recomputes its own synaptic weights, based on anti-hebbian rules. As a result some connections may be cut, and multiple nets can emerge as products of a 'reaction'. The idea is to study emergent reaction behaviors, based on simple rules that constitute a pseudophysics of the system. These simple rules are parameterized to produce behaviors that emulate chemical reactions. We find that these simple rules show a gradual increase in the size and complexity of molecules. We have been building a virtual artificial chemistry laboratory for discovering interesting reactions and for testing further ideas on the evolution of primitive molecules. Some of these ideas include the potential effect of membranes and selective diffusion according to molecular size.
Membrane-Based Functions in the Origin of Cellular Life
NASA Technical Reports Server (NTRS)
Wilson, Michael A.
2003-01-01
How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.
An alternative to the breeder's and Lande's equations.
Houchmandzadeh, Bahram
2014-01-10
The breeder's equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) - E(Z0) to the selection differential S = E(ZW) - E(Z0) through a simple proportionality relation R = h(2)S, where the heritability coefficient h(2) is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R' = j(2)S' can be derived, regardless of the parental genotype distribution. Here R' = E(Z1) - μ and S' = E(ZW) - μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j(2) is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande's equation Δ(z) = GP(-1)S. The linearity coefficient of the alternative equation are not changed by Gaussian selection.
Hitchin functionals are related to measures of entanglement
NASA Astrophysics Data System (ADS)
Lévay, Péter; Sárosi, Gábor
2012-11-01
According to the black hole/qubit correspondence (BHQC) certain black hole entropy formulas in supergravity can be related to multipartite entanglement measures of quantum information. Here we show that the origin of this correspondence is a connection between Hitchin functionals used as action functionals for form theories of gravity related to topological strings and entanglement measures for systems with a small number of constituents. The basic idea acting as a unifying agent in these seemingly unrelated fields is stability connected to the mathematical notion of special prehomogeneous vector spaces associated to Freudenthal systems coming from simple Jordan algebras. It is shown that the nonlinear function featuring these functionals and defining Calabi-Yau and generalized Calabi-Yau structures is the Freudenthal dual, a concept introduced recently in connection with the BHQC. We propose to use the Hitchin invariant for three-forms in seven dimensions as an entanglement measure playing a basic role in classifying three-fermion systems with seven modes. The representative of the class of maximal tripartite entanglement is the three-form used as a calibration for compactification on manifolds with G2 holonomy. The idea that entanglement measures are related to action functionals from which the usual correspondence of the BHQC follows at the tree level suggests that one can use the BHQC in a more general context.
Fluctuations and intermittent poloidal transport in a simple toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goud, T. S.; Ganesh, R.; Saxena, Y. C.
In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less
The Origin and Early Evolution of Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.
2005-01-01
Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.
On the solution of integral equations with a generalized cauchy kernel
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.
Electroformation of Janus and patchy capsules
NASA Astrophysics Data System (ADS)
Rozynek, Zbigniew; Mikkelsen, Alexander; Dommersnes, Paul; Fossum, Jon Otto
2014-05-01
Janus and patchy particles have designed heterogeneous surfaces that consist of two or several patches with different materials properties. These particles are emerging as building blocks for a new class of soft matter and functional materials. Here we introduce a route for forming heterogeneous capsules by producing highly ordered jammed colloidal shells of various shapes with domains of controlled size and composition. These structures combine the functionalities offered by Janus or patchy particles, and those given by permeable shells such as colloidosomes. The simple assembly route involves the synergetic action of electro-hydrodynamic flow and electro-coalescence. We demonstrate that the method is robust and straightforwardly extendable to production of multi-patchy capsules. This forms a starting point for producing patchy colloidosomes with domains of anisotropic chemical surface properties, permeability or mixed liquid-solid phase domains, which could be exploited to produce functional emulsions, light and hollow supra-colloidosome structures, or scaffolds.
[Quality assurance of the renal applications software].
del Real Núñez, R; Contreras Puertas, P I; Moreno Ortega, E; Mena Bares, L M; Maza Muret, F R; Latre Romero, J M
2007-01-01
The need for quality assurance of all technical aspects of nuclear medicine studies is widely recognised. However, little attention has been paid to the quality assurance of the applications software. Our work reported here aims at verifying the analysis software for processing of renal nuclear medicine studies (renograms). The software tools were used to build a synthetic dynamic model of renal system. The model consists of two phases: perfusion and function. The organs of interest (kidneys, bladder and aortic artery) were simple geometric forms. The uptake of the renal structures was described by mathematic functions. Curves corresponding to normal or pathological conditions were simulated for kidneys, bladder and aortic artery by appropriate selection of parameters. There was no difference between the parameters of the mathematic curves and the quantitative data produced by the renal analysis program. Our test procedure is simple to apply, reliable, reproducible and rapid to verify the renal applications software.
A general relaxation theory of simple liquids
NASA Technical Reports Server (NTRS)
Merilo, M.; Morgan, E. J.
1973-01-01
A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.
Universality classes of fluctuation dynamics in hierarchical complex systems
NASA Astrophysics Data System (ADS)
Macêdo, A. M. S.; González, Iván R. Roa; Salazar, D. S. P.; Vasconcelos, G. L.
2017-03-01
A unified approach is proposed to describe the statistics of the short-time dynamics of multiscale complex systems. The probability density function of the relevant time series (signal) is represented as a statistical superposition of a large time-scale distribution weighted by the distribution of certain internal variables that characterize the slowly changing background. The dynamics of the background is formulated as a hierarchical stochastic model whose form is derived from simple physical constraints, which in turn restrict the dynamics to only two possible classes. The probability distributions of both the signal and the background have simple representations in terms of Meijer G functions. The two universality classes for the background dynamics manifest themselves in the signal distribution as two types of tails: power law and stretched exponential, respectively. A detailed analysis of empirical data from classical turbulence and financial markets shows excellent agreement with the theory.
Stochastic analysis of three-dimensional flow in a bounded domain
Naff, R.L.; Vecchia, A.V.
1986-01-01
A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated spatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three- dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions. The resulting hydraulic head covariance function exhibits nonstationary effects resulting from the imposition of boundary conditions. Comparisons are made with existing infinite domain solutions.
If you take stand, how can you manage an ecosystem? The complex art of raising a forest.
Sally Duncan
2000-01-01
Managing whole ecosystem is a concept gaining considerable acceptance among forest managers throughout the Northwest, but it does not have a clear or simple definition. Terminology and definitions can be confusing. Forests are complex places, formed by complex processes, and the moment we try to simplify, we are likely to damage the healthy functioning of...
Free boundary skin current MHD (magnetohydrodynamic) equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, M.F.
1988-02-01
Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulae which generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo and Merkel is discussed. A numerical technique for the construction of solutions, based on one of the methods is presented. A study is made of the bifurcations of an equilibrium of general form. 28 refs., 9 figs.
Effective nucleon mass and the nuclear caloric curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, D. V.; Souliotis, G. A.; Galanopoulos, S.
2009-03-15
Assuming a schematic form of the nucleon effective mass as a function of nuclear excitation energy and mass, we provide a simple explanation for understanding the experimentally observed mass dependence of the nuclear caloric curve. It is observed that the excitation energy at which the caloric curve enters into a plateau region could be sensitive to the nuclear mass evolution of the effective nucleon mass.
Theoretical study of production of unique glasses in space
NASA Technical Reports Server (NTRS)
Larsen, D. C.
1974-01-01
Analytical functional relationships describing homogeneous nucleation and crystallization in various supercooled liquids were developed. The time and temperature dependent relationships of nucleation and crystallization (intrinsic properties) are being used to relate glass forming tendency to extrinsic parameters such as cooling rate through computer simulation. Single oxide systems are being studied initially to aid in developing workable kinetic models and to indicate the primary materials parameters affecting glass formation. The theory and analytical expressions developed for simple systems is then extended to complex oxide systems. A thorough understanding of nucleation and crystallization kinetics of glass forming systems provides a priori knowledge of the ability of a given system to form a glass.
Work-function calculations for a symmetrical total-charge-density profile at the metallic surface
NASA Astrophysics Data System (ADS)
Wojciechowski, K. F.; Sobańska-Nowotnik, M.
1983-07-01
It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.
Holographic non-Fermi-liquid fixed points.
Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2011-04-28
Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.
The necessity of feedback physics in setting the peak of the initial mass function
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Krumholz, Mark R.; Hopkins, Philip F.
2016-05-01
A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution dN/dM ∝ M-2 for the stellar IMF. We show that this problem can be alleviated by introducing additional physics that provides a termination scale for the cascade. Our candidate for such physics is a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.
Burroughs, Amelia; Wise, Andrew K.; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y.; Lang, Eric J.
2016-01-01
Key points Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes.Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets.The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear.We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number.This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Abstract Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. PMID:27265808
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Towards the simplest hydrodynamic lattice-gas model.
Boghosian, Bruce M; Love, Peter J; Meyer, David A
2002-03-15
It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Mass and Environment as Drivers of Galaxy Evolution: Simplicity and its Consequences
NASA Astrophysics Data System (ADS)
Peng, Yingjie
2012-01-01
The galaxy population appears to be composed of infinitely complex different types and properties at first sight, however, when large samples of galaxies are studied, it appears that the vast majority of galaxies just follow simple scaling relations and similar evolutional modes while the outliers represent some minority. The underlying simplicities of the interrelationships among stellar mass, star formation rate and environment are seen in SDSS and zCOSMOS. We demonstrate that the differential effects of mass and environment are completely separable to z 1, indicating that two distinct physical processes are operating, namely the "mass quenching" and "environment quenching". These two simple quenching processes, plus some additional quenching due to merging, then naturally produce the Schechter form of the galaxy stellar mass functions and make quantitative predictions for the inter-relationships between the Schechter parameters of star-forming and passive galaxies in different environments. All of these detailed quantitative relationships are indeed seen, to very high precision, in SDSS, lending strong support to our simple empirically-based model. The model also offers qualitative explanations for the "anti-hierarchical" age-mass relation and the alpha-enrichment patterns for passive galaxies and makes some other testable predictions such as the mass function of the population of transitory objects that are in the process of being quenched, the galaxy major- and minor-merger rates, the galaxy stellar mass assembly history, star formation history and etc. Although still purely phenomenological, the model makes clear what the evolutionary characteristics of the relevant physical processes must in fact be.
Method for estimating the morphological significance of simple forms of crystals from X-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treivus, E. B., E-mail: sbobr1@bk.ru
2010-09-15
When developing V.I. Mikheev and I.I. Shafranovskii's method for estimating the morphological significance of faces of different simple forms from X-ray reflection intensities, a way to approximately evaluate the morphological significance of simple forms on crystals from the structure amplitudes of the corresponding atomic planes is proposed. The potential for this approach is demonstrated by the examples of marcasite and zircon.
Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization.
Zeng, Yun; Liu, Wenyan; Wang, Zheyu; Singamaneni, Srikanth; Wang, Risheng
2018-04-03
Surface functionalization of nanodiamonds (NDs), which is of great interest in advanced material and therapeutic applications, requires the immobilization of functional species, such as nucleic acids, bioprobes, drugs, and metal nanoparticles, onto NDs' surfaces to form stable nanoconjugates. However, it is still challenging to modify the surface of NDs due to the complexity of their surface chemistry and the low density of each functional group on the surfaces of NDs. In this work, we demonstrate a general applicable surface functionalization approach for the preparation of ND-based core-shell nanoconjugates using dopamine polymerization. By taking advantage of the universal adhesion and versatile reactivity of polydopamine, we have effectively conjugated DNA and silver nanoparticles onto NDs. Moreover, the catalytic activity of ND-supported silver nanoparticle was characterized by the reduction of 4-nitrophenol, and the addressability of NDs was tested through DNA hybridization that formed satellite ND-gold nanorod conjugation. This simple and robust method we have presented may significantly improve the capability for attaching various functionalities onto NDs and open up new platforms for applications of NDs.
The Evolution of Globular Cluster Systems In Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Grillmair, Carl
1999-07-01
We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.
Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2003-01-01
Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4-7 helices. The helices could arrange themselves such that they formed pores capable of transporting ions and small molecules across membranes. Stability of transmembrane aggregates of simple proteins is often only marginal and, therefore, it can be regulated by environmental signals or small sequence modifications in the region of interhelical interactions. A key step in the earliest evolution of membrane proteins was the emergence of selectivity for specific substrates. Many channels could become selective if one or only a few properly chosen amino acids are properly placed along the channel, acting as filters or gates. This is a convenient evolutionary solution because it does not require imposing conditions on the whole sequence.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
1995-01-01
Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.
Simulation of ground motion using the stochastic method
Boore, D.M.
2003-01-01
A simple and powerful method for simulating ground motions is to combine parametric or functional descriptions of the ground motion's amplitude spectrum with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to the distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers (generally, f>0.1 Hz), and it is widely used to predict ground motions for regions of the world in which recordings of motion from potentially damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms. This provides a means by which the results of the rigorous studies reported in other papers in this volume can be incorporated into practical predictions of ground motion.
An Alternative to the Breeder’s and Lande’s Equations
Houchmandzadeh, Bahram
2013-01-01
The breeder’s equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) − E(Z0) to the selection differential S = E(ZW) − E(Z0) through a simple proportionality relation R = h2S, where the heritability coefficient h2 is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R′ = j2S′ can be derived, regardless of the parental genotype distribution. Here R′ = E(Z1) − μ and S′ = E(ZW) − μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j2 is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande’s equation Δz¯=GP−1S. The linearity coefficient of the alternative equation are not changed by Gaussian selection. PMID:24212080
SE Capstone Project: Building Systems Engineering Education and Workforce Capacity
2012-04-01
This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704
Alam, Rauful; Molander, Gary A
2018-05-04
The direct reductive amination of aromatic aldehydes has been realized using a photocatalyst under visible light irradiation. The single electron oxidation of an in situ formed aminal species generates the putative α-amino radical that eventually delivers the reductive amination product. This method is operationally simple, highly selective, and functional group tolerant, which allows the direct synthesis of benzylic amines by a unique mechanistic pathway.
Schrödinger and Dirac solutions to few-body problems
NASA Astrophysics Data System (ADS)
Muolo, Andrea; Reiher, Markus
We elaborate on the variational solution of the Schrödinger and Dirac equations for small atomic and molecular systems without relying on the Born-Oppenheimer approximation. The all-particle equations of motion are solved in a numerical procedure that relies on the variational principle, Cartesian coordinates and parametrized explicitly correlated Gaussians functions. A stochastic optimization of the variational parameters allows the calculation of accurate wave functions for ground and excited states. Expectation values such as the radial and angular distribution functions or the dipole moment can be calculated. We developed a simple strategy for the elimination of the global translation that allows to generally adopt laboratory-fixed cartesian coordinates. Simple expressions for the coordinates and operators are then preserved throughout the formalism. For relativistic calculations we devised a kinetic-balance condition for explicitly correlated basis functions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation between all components of the spinor of an N-fermion system. ETH Zürich, Laboratorium für Physikalische Chemie, CH-8093 Zürich, Switzerland.
A simple integrated assessment approach to global change simulation and evaluation
NASA Astrophysics Data System (ADS)
Ogutu, Keroboto; D'Andrea, Fabio; Ghil, Michael
2016-04-01
We formulate and study the Coupled Climate-Economy-Biosphere (CoCEB) model, which constitutes the basis of our idealized integrated assessment approach to simulating and evaluating global change. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. A biosphere model is likewise under study and will be coupled to the existing two modules. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via a control of the greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to make hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement, in particular by investing in low carbon technology, in deforestation reduction or in carbon capture and storage (CCS). The CoCEB model is very flexible and transparent, and it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way.
Universal scaling in the aging of the strong glass former SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmayr-Lee, Katharina, E-mail: kvollmay@bucknell.edu; Gorman, Christopher H.; Castillo, Horacio E.
We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO{sub 2} with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time t{sub w} measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ{sub 4} and the aging behavior of the probability distribution P(f{sub s,r}) of the local incoherent intermediatemore » scattering function f{sub s,r} can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(f{sub s,r}), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.« less
Recurrence relations in one-dimensional Ising models.
da Conceição, C M Silva; Maia, R N P
2017-09-01
The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.
A formulation of directivity for earthquake sources using isochrone theory
Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul
2004-01-01
A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less
Construction and manipulation of functional three-dimensional droplet networks.
Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha; Hill, Jamie; Bayley, Hagan; Sapra, K Tanuj
2014-01-28
Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues.
Optical depth in particle-laden turbulent flows
NASA Astrophysics Data System (ADS)
Frankel, A.; Iaccarino, G.; Mani, A.
2017-11-01
Turbulent clustering of particles causes an increase in the radiation transmission through gas-particle mixtures. Attempts to capture the ensemble-averaged transmission lead to a closure problem called the turbulence-radiation interaction. A simple closure model based on the particle radial distribution function is proposed to capture the effect of turbulent fluctuations in the concentration on radiation intensity. The model is validated against a set of particle-resolved ray tracing experiments through particle fields from direct numerical simulations of particle-laden turbulence. The form of the closure model is generalizable to arbitrary stochastic media with known two-point correlation functions.
Petruccelli, Jonathan C; Alonso, Miguel A
2007-09-01
We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
Shape Control in Multivariate Barycentric Rational Interpolation
NASA Astrophysics Data System (ADS)
Nguyen, Hoa Thang; Cuyt, Annie; Celis, Oliver Salazar
2010-09-01
The most stable formula for a rational interpolant for use on a finite interval is the barycentric form [1, 2]. A simple choice of the barycentric weights ensures the absence of (unwanted) poles on the real line [3]. In [4] we indicate that a more refined choice of the weights in barycentric rational interpolation can guarantee comonotonicity and coconvexity of the rational interpolant in addition to a polefree region of interest. In this presentation we generalize the above to the multivariate case. We use a product-like form of univariate barycentric rational interpolants and indicate how the location of the poles and the shape of the function can be controlled. This functionality is of importance in the construction of mathematical models that need to express a certain trend, such as in probability distributions, economics, population dynamics, tumor growth models etc.
On the alleged collisional origin of the Kirkwood Gaps. [in asteroid belt
NASA Technical Reports Server (NTRS)
Heppenheimer, T. A.
1975-01-01
This paper examines two proposed mechanisms whereby asteroidal collisions and close approaches may have given rise to the Kirkwood Gaps. The first hypothesis is that asteroids in near-resonant orbits have markedly increased collision probabilities and so are preferentially destroyed, or suffer decay in population density, within the resonance zones. A simple order-of-magnitude analysis shows that this hypothesis is untenable since it leads to conclusions which are either unrealistic or not in accord with present understanding of asteroidal physics. The second hypothesis is the Brouwer-Jefferys theory that collisions would smooth an asteroidal distribution function, as a function of Jacobi constant, thus forming resonance gaps. This hypothesis is examined by direct numerical integration of 50 asteroid orbits near the 2:1 resonance, with collisions simulated by random variables. No tendency to form a gap was observed.
... people experience while drifting off to sleep. These simple forms of myoclonus occur in normal, healthy persons ... people experience while drifting off to sleep. These simple forms of myoclonus occur in normal, healthy persons ...
NASA Astrophysics Data System (ADS)
Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong
2012-05-01
An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30318c
Many-body formulation of carriers capture time in quantum dots applicable in device simulation codes
NASA Astrophysics Data System (ADS)
Vallone, Marco
2010-03-01
We present an application of Green's functions formalism to calculate in a simplified but rigorous way electrons and holes capture time in quantum dots in closed form as function of carrier density, levels confinement potential, and temperature. Carrier-carrier (Auger) scattering and single LO-phonon emission are both addressed accounting for dynamic effects of the potential screening in the single plasmon pole approximation of the dielectric function. Regarding the LO-phonons interaction, the formulation evidences the role of the dynamic screening from wetting-layer carriers in comparison with its static limit, describes the interplay between screening and Fermi band filling, and offers simple expressions for capture time, suitable for modeling implementation.
Design and integration of an all-in-one biomicrofluidic chip
Liu, Liyu; Cao, Wenbin; Wu, Jingbo; Wen, Weijia; Chang, Donald Choy; Sheng, Ping
2008-01-01
We demonstrate a highly integrated microfluidic chip with the function of DNA amplification. The integrated chip combines giant electrorheological-fluid actuated micromixer and micropump with a microheater array, all formed using soft lithography. Internal functional components are based on polydimethylsiloxane (PDMS) and silver∕carbon black-PDMS composites. The system has the advantages of small size with a high degree of integration, high polymerase chain reaction efficiency, digital control and simple fabrication at low cost. This integration approach shows promise for a broad range of applications in chemical synthesis and biological sensing∕analysis, as different components can be combined to target desired functionalities, with flexible designs of different microchips easily realizable through soft lithography. PMID:19693370
On the analytic lunar and solar perturbations of a near earth satellite
NASA Technical Reports Server (NTRS)
Estes, R. H.
1972-01-01
The disturbing function of the moon (sun) is expanded as a sum of products of two harmonic functions, one depending on the position of the satellite and the other on the position of the moon (sun). The harmonic functions depending on the position of the perturbing body are developed into trigonometric series with the ecliptic elements l, l', F, D, and Gamma of the lunar theory which are nearly linear with respect to time. Perturbation of elements are in the form of trigonometric series with the ecliptic lunar elements and the equatorial elements omega and Omega of the satellite so that analytic integration is simple and the results accurate over a long period of time.
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward
1991-01-01
It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.
Form of the manifestly covariant Lagrangian
NASA Astrophysics Data System (ADS)
Johns, Oliver Davis
1985-10-01
The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.
How should spin-weighted spherical functions be defined?
NASA Astrophysics Data System (ADS)
Boyle, Michael
2016-09-01
Spin-weighted spherical functions provide a useful tool for analyzing tensor-valued functions on the sphere. A tensor field can be decomposed into complex-valued functions by taking contractions with tangent vectors on the sphere and the normal to the sphere. These component functions are usually presented as functions on the sphere itself, but this requires an implicit choice of distinguished tangent vectors with which to contract. Thus, we may more accurately say that spin-weighted spherical functions are functions of both a point on the sphere and a choice of frame in the tangent space at that point. The distinction becomes extremely important when transforming the coordinates in which these functions are expressed, because the implicit choice of frame will also transform. Here, it is proposed that spin-weighted spherical functions should be treated as functions on the spin or rotation groups, which simultaneously tracks the point on the sphere and the choice of tangent frame by rotating elements of an orthonormal basis. In practice, the functions simply take a quaternion argument and produce a complex value. This approach more cleanly reflects the geometry involved, and allows for a more elegant description of the behavior of spin-weighted functions. In this form, the spin-weighted spherical harmonics have simple expressions as elements of the Wigner 𝔇 representations, and transformations under rotation are simple. Two variants of the angular-momentum operator are defined directly in terms of the spin group; one is the standard angular-momentum operator L, while the other is shown to be related to the spin-raising operator ð.
Spatially resolved multicomponent gels
NASA Astrophysics Data System (ADS)
Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.
2015-10-01
Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.
Models of protocellular structures, functions and evolution
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; New, Michael H.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The central step in the origin of life was the emergence of organized structures from organic molecules available on the early earth. These predecessors to modern cells, called 'proto-cells,' were simple, membrane bounded structures able to maintain themselves, grow, divide, and evolve. Since there is no fossil record of these earliest of life forms, it is a scientific challenge to discover plausible mechanisms for how these entities formed and functioned. To meet this challenge, it is essential to create laboratory models of protocells that capture the main attributes associated with living systems, while remaining consistent with known, or inferred, protobiological conditions. This report provides an overview of a project which has focused on protocellular metabolism and the coupling of metabolism to energy transduction. We have assumed that the emergence of systems endowed with genomes and capable of Darwinian evolution was preceded by a pre-genomic phase, in which protocells functioned and evolved using mostly proteins, without self-replicating nucleic acids such as RNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evenson, Zach, E-mail: Zachary.Evenson@frm2.tum.de; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt; Yang, Fan
2016-03-21
We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of amore » very fragile liquid.« less
Journal of Naval Science. Volume 2, Number 1
1976-01-01
has defined a probability distribution function which fits this type of data and forms the basis for statistical analysis of test results (see...Conditions to Assess the Performance of Fire-Resistant Fluids’. Wear, 28 (1974) 29. J.N.S., Vol. 2, No. 1 APPENDIX A Analysis of Fatigue Test Data...used to produce the impulse response and the equipment required for the analysis is relatively simple. The methods that must be used to produce
Point-of-care instrument for monitoring tissue health during skin graft repair
NASA Astrophysics Data System (ADS)
Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.
2011-06-01
We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.
Holography and noncommutative yang-mills theory
Li; Wu
2000-03-06
In this Letter a recently proposed gravity dual of noncommutative Yang-Mills theory is derived from the relations between closed string moduli and open string moduli recently suggested by Seiberg and Witten. The only new input one needs is a simple form of the running string tension as a function of energy. This derivation provides convincing evidence that string theory integrates with the holographical principle and demonstrates a direct link between noncommutative Yang-Mills theory and holography.
Free boundary skin current magnetohydrodynamic equilibria
NASA Astrophysics Data System (ADS)
Reusch, Michael F.
1988-10-01
Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulas that generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo [Z. Angew. Math. Phys. 16, 279 (1965)] and Merkel (Ph.D. thesis, University of Munich, 1965) is discussed. A numerical technique for the construction of solutions, based on one of the methods, is presented. A study is made of the bifurcations of an equilibrium of general form.
On uniformly valid high-frequency far-field asymptotic solutions of the Helmholtz equation
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.
1986-01-01
An asymptotic, large wave number approximation for the Helmholtz equation is derived. The theory is an extension of the geometric acoustic theory, and provides corrections to that theory in the form of multiplicative functions which satisfy parabolic equations. A simple example is used both to illustrate failure of the geometric theory for large propagation distances, and to show the improvement obtained by use of the new theory.
Zhou, Ning; Zhao, Chuntian
2013-01-01
L-amino acid oxidase (LAAO) is attracting increasing attention due to its important functions. Diverse detection methods with their own properties have been developed for characterization of LAAO. In the present study, a simple, rapid, sensitive, cost-effective and reproducible method for quantitative in-gel determination of LAAO activity based on the visualization of Prussian blue-forming reaction is described. Coupled with SDS-PAGE, this Prussian blue agar assay can be directly used to determine the numbers and approximate molecular weights of LAAO in one step, allowing straightforward application for purification and sequence identification of LAAO from diverse samples. PMID:23383337
A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.
2018-04-01
Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
NASA Astrophysics Data System (ADS)
Barkeshli, Sina
A relatively simple and efficient closed form asymptotic representation of the microstrip dyadic surface Green's function is developed. The large parameter in this asymptotic development is proportional to the lateral separation between the source and field points along the planar microstrip configuration. Surprisingly, this asymptotic solution remains accurate even for very small (almost two tenths of a wavelength) lateral separation of the source and field points. The present asymptotic Green's function will thus allow a very efficient calculation of the currents excited on microstrip antenna patches/feed lines and monolithic millimeter and microwave integrated circuit (MIMIC) elements based on a moment method (MM) solution of an integral equation for these currents. The kernal of the latter integral equation is the present asymptotic form of the microstrip Green's function. It is noted that the conventional Sommerfeld integral representation of the microstrip surface Green's function is very poorly convergent when used in this MM formulation. In addition, an efficient exact steepest descent path integral form employing a radially propagating representation of the microstrip dyadic Green's function is also derived which exhibits a relatively faster convergence when compared to the conventional Sommerfeld integral representation. The same steepest descent form could also be obtained by deforming the integration contour of the conventional Sommerfeld representation; however, the radially propagating integral representation exhibits better convergence properties for laterally separated source and field points even before the steepest descent path of integration is used. Numerical results based on the efficient closed form asymptotic solution for the microstrip surface Green's function developed in this work are presented for the mutual coupling between a pair of dipoles on a single layer grounded dielectric slab. The accuracy of the latter calculations is confirmed by comparison with results based on an exact integral representation for that Green's function.
MHD Turbulence, div B = 0 and Lattice Boltzmann Simulations
NASA Astrophysics Data System (ADS)
Phillips, Nate; Keating, Brian; Vahala, George; Vahala, Linda
2006-10-01
The question of div B = 0 in MHD simulations is a crucial issue. Here we consider lattice Boltzmann simulations for MHD (LB-MHD). One introduces a scalar distribution function for the velocity field and a vector distribution function for the magnetic field. This asymmetry is due to the different symmetries in the tensors arising in the time evolution of these fields. The simple algorithm of streaming and local collisional relaxation is ideally parallelized and vectorized -- leading to the best sustained performance/PE of any code run on the Earth Simulator. By reformulating the BGK collision term, a simple implicit algorithm can be immediately transformed into an explicit algorithm that permits simulations at quite low viscosity and resistivity. However the div B is not an imposed constraint. Currently we are examining a new formulations of LB-MHD that impose the div B constraint -- either through an entropic like formulation or by introducing forcing terms into the momentum equations and permitting simpler forms of relaxation distributions.
Heterogeneity-induced large deviations in activity and (in some cases) entropy production
NASA Astrophysics Data System (ADS)
Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.
2014-10-01
We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.
Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule
NASA Astrophysics Data System (ADS)
He, Jun; Yang, Chen; Xu, Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin, Jianhua
2009-07-01
The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4DMBD) interacts with the increasingly harder metal ions of Cu +, Pb 2+ and Eu 3+ to form the coordination networks of Cu 6(DMBD) 3(en) 4(Hen) 6 ( 1), Pb 2(DMBD)(en) 2 ( 2) and Eu 2(H 2DMBD) 3(DEF) 4 ( 3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination.
NASA Astrophysics Data System (ADS)
Messica, A.
2016-10-01
The probability distribution function of a weighted sum of non-identical lognormal random variables is required in various fields of science and engineering and specifically in finance for portfolio management as well as exotic options valuation. Unfortunately, it has no known closed form and therefore has to be approximated. Most of the approximations presented to date are complex as well as complicated for implementation. This paper presents a simple, and easy to implement, approximation method via modified moments matching and a polynomial asymptotic series expansion correction for a central limit theorem of a finite sum. The method results in an intuitively-appealing and computation-efficient approximation for a finite sum of lognormals of at least ten summands and naturally improves as the number of summands increases. The accuracy of the method is tested against the results of Monte Carlo simulationsand also compared against the standard central limit theorem andthe commonly practiced Markowitz' portfolio equations.
Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.
Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio
2013-10-10
Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Quantifying wall turbulence via a symmetry approach: A Lie group theory
NASA Astrophysics Data System (ADS)
She, Zhen-Su; Chen, Xi; Hussain, Fazle
2017-11-01
We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
Functional equivalency inferred from "authoritative sources" in networks of homologous proteins.
Natarajan, Shreedhar; Jakobsson, Eric
2009-06-12
A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based on simple concepts from network theory. A key feature of our algorithm is utilization of the user's knowledge to assign high confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7 membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species. Based on that comparison, we believe that incorporation of user's knowledge as a key aspect of the technique adds value to purely statistical formal methods.
Functional Equivalency Inferred from “Authoritative Sources” in Networks of Homologous Proteins
Natarajan, Shreedhar; Jakobsson, Eric
2009-01-01
A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based on simple concepts from network theory. A key feature of our algorithm is utilization of the user's knowledge to assign high confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7 membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species. Based on that comparison, we believe that incorporation of user's knowledge as a key aspect of the technique adds value to purely statistical formal methods. PMID:19521530
Wang, Dongli; Coco, Matthew W.; Rose, Robert B.
2014-12-23
Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied in this paper the folding and stability of the DCoH homotetramer. Wemore » show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ½ ~2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a “kinetic hot spot” instead of a “thermodynamic hot spot.” Kinetic regulation allows PCD to adopt two distinct functions. Finally, mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.« less
Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L
2017-01-01
Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey
NASA Astrophysics Data System (ADS)
Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.
2007-12-01
The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.
Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J
2012-07-16
Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.
2018-02-01
Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.
Two-particle correlation function and dihadron correlation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vechernin, V. V., E-mail: v.vechernin@spbu.ru; Ivanov, K. O.; Neverov, D. I.
It is shown that, in the case of asymmetric nuclear interactions, the application of the traditional dihadron correlation approach to determining a two-particle correlation function C may lead to a form distorted in relation to the canonical pair correlation function {sub C}{sup 2}. This result was obtained both by means of exact analytic calculations of correlation functions within a simple string model for proton–nucleus and deuteron–nucleus collisions and by means of Monte Carlo simulations based on employing the HIJING event generator. It is also shown that the method based on studying multiplicity correlations in two narrow observation windows separated inmore » rapidity makes it possible to determine correctly the canonical pair correlation function C{sub 2} for all cases, including the case where the rapidity distribution of product particles is not uniform.« less
Simple, Flexible, Trigonometric Taper Equations
Charles E. Thomas; Bernard R. Parresol
1991-01-01
There have been numerous approaches to modeling stem form in recent decades. The majority have concentrated on the simpler coniferous bole form and have become increasingly complex mathematical expressions. Use of trigonometric equations provides a simple expression of taper that is flexible enough to fit both coniferous and hard-wood bole forms. As an illustration, we...
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Eckford, Paul D W; Sharom, Frances J
2005-07-15
The Pgp (P-glycoprotein) multidrug transporter, which is linked to multidrug resistance in human cancers, functions as an efflux pump for non-polar drugs, powered by the hydrolysis of ATP at its nucleotide binding domains. The drug binding sites of Pgp appear to be located within the cytoplasmic leaflet of the membrane bilayer, suggesting that Pgp may function as a 'flippase' for hydrophobic compounds. Pgp has been shown to translocate fluorescent phospholipids, and it has been suggested that it may also interact with GlcCer (glucosylceramide). Here we use a dithionite fluorescence quenching technique to show that reconstituted Pgp can flip several NBD (nitrobenzo-2-oxa-1,3-diazole)-labelled simple glycosphingolipids, including NBD-GlcCer, from one leaflet of the bilayer to the other in an ATP-dependent, vanadate-sensitive fashion. The rate of NBD-GlcCer flipping was similar to that observed for NBD-labelled PC (phosphatidylcholine). NBD-GlcCer flipping was inhibited in a concentration-dependent, saturable fashion by various Pgp substrates and modulators, and inhibition correlated well with the Kd for binding to the protein. The addition of a second sugar to the headgroup of the glycolipid to form NBD-lactosylceramide drastically reduced the rate of flipping compared with NBD-PC, probably because of the increased size and polarity contributed by the additional sugar residue. We conclude that Pgp functions as a broad-specificity outwardly-directed flippase for simple glycosphingolipids and membrane phospholipids.
Chromosome organizaton in simple and complex unicellular organisms.
O'Sullivan, Justin M
2011-01-01
The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.
More Than Just Monkey Business: What the Primate Microbiome Might Say About the Human One.
Berglund, Jennifer
2016-01-01
The science of the microbiome is arguably one of the hottest topics in medicine, and rightfully so. A deeper understanding of the ecology of the flora in our bodies is providing revolutionary insight beyond the simple form and function of our major parts. This new frontier is dauntingly complex, and most studies focus on details, failing to place these microbial ecosystems within the larger context of evolutionary time and environment.
Elokely, Khaled M; Eldawy, Mohamed A; Elkersh, Mohamed A; El-Moselhy, Tarek F
2011-01-01
A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing α-methylene sulfone/sulfonamide functional groups using N(1)-methylnicotinamide chloride (NMNCl) as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM) (1), tinidazole (2), rofecoxib (3), and nimesulide (4) in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 μg/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 μg/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods.
NASA Astrophysics Data System (ADS)
Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.
2017-01-01
The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.
... Solitary Kidney Your Kidneys & How They Work Simple Kidney Cysts What are simple kidney cysts? Simple kidney cysts are abnormal, fluid-filled ... that form in the kidneys. What are the kidneys and what do they do? The kidneys are ...
Emergence of collective propulsion through cell-cell adhesion.
Matsushita, Katsuyoshi
2018-04-01
The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.
Emergence of collective propulsion through cell-cell adhesion
NASA Astrophysics Data System (ADS)
Matsushita, Katsuyoshi
2018-04-01
The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.
Bounded extremum seeking with discontinuous dithers
Scheinker, Alexander; Scheinker, David
2016-03-21
The analysis of discontinuous extremum seeking (ES) controllers, e.g. those applicable to digital systems, has historically been more complicated than that of continuous controllers. We establish a simple and general extension of a recently developed bounded form of ES to a general class of oscillatory functions, including functions discontinuous with respect to time, such as triangle or square waves with dead time. We establish our main results by combining a novel idea for oscillatory control with an extension of functional analytic techniques originally utilized by Kurzweil, Jarnik, Sussmann, and Liu in the late 80s and early 90s and recently studiedmore » by Durr et al. Lastly, we demonstrate the value of the result with an application to inverter switching control.« less
Functional traits and root morphology of alpine plants
Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian
2011-01-01
Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278
Li, Fang; Ma, Wenjing; Liu, Jiachang; Wu, Xiang; Wang, Yan; He, Jianbo
2018-01-01
Luminol, horseradish peroxidase (HRP), and glucose oxidase (GOx) ternary functionalized graphene oxide (HRP/GOx-luminol-GO) with excellent chemiluminescence (CL) activity and specific enzymatic property was prepared via a simple and general strategy for the first time. In this approach, luminol functionalized GO (luminol-GO) was prepared by gently stirring GO with luminol. Then HRP and GOx were further co-immobilized onto the surface of luminol-GO by storing HRP and GOx with luminol-GO at 4 °C overnight, to form HRP/GOx-luminol-GO bionanocomposites. The synthesized HRP/GOx-luminol-GO could react with H 2 O 2 generated from GOx catalyzed glucose oxidization reaction, to produce strong CL emission in the presence of co-immobilized HRP. Thus, we developed an ultrasensitive, homogeneous, reagentless, selective, and simple CL sensing system for glucose detection. The resulting biosensors exhibited ultra-wide linear range from 5.0 nM to 5.0 mM, and an ultra-low detection limit of 1.2 nM, which was more than 3 orders of magnitude lower than previously reported methods. Furthermore, the sensing system was successfully applied for the detection of glucose in human blood samples.
Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability
NASA Astrophysics Data System (ADS)
Giombi, Simone; Komatsu, Shota
2018-05-01
We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton
2015-12-01
The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.
Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.
Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo
2018-06-12
Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.
Jordan frame supergravity and inflation in the NMSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrara, Sergio; INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati; Kallosh, Renata
2010-08-15
We present a complete explicit N=1, d=4 supergravity action in an arbitrary Jordan frame with nonminimal scalar-curvature coupling of the form {Phi}(z,z)R. The action is derived by suitably gauge fixing the superconformal action. The theory has a modified Kaehler geometry, and it exhibits a significant dependence on the frame function {Phi}(z,z) and its derivatives over scalars, in the bosonic as well as in the fermionic part of the action. Under certain simple conditions, the scalar kinetic terms in the Jordan frame have a canonical form. We consider an embedding of the next-to-minimal supersymmetric standard model (NMSSM) gauge theory into supergravity,more » clarifying the Higgs inflation model recently proposed by Einhorn and Jones. We find that the conditions for canonical kinetic terms are satisfied for the NMSSM scalars in the Jordan frame, which leads to a simple action. However, we find that the gauge singlet field experiences a strong tachyonic instability during inflation in this model. Thus, a modification of the model is required to support the Higgs-type inflation.« less
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
[Amplitude modulation in sound signals by mammals].
Nikol'skiĭ, A A
2012-01-01
Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.
An algorithm to identify functional groups in organic molecules.
Ertl, Peter
2017-06-07
The concept of functional groups forms a basis of organic chemistry, medicinal chemistry, toxicity assessment, spectroscopy and also chemical nomenclature. All current software systems to identify functional groups are based on a predefined list of substructures. We are not aware of any program that can identify all functional groups in a molecule automatically. The algorithm presented in this article is an attempt to solve this scientific challenge. An algorithm to identify functional groups in a molecule based on iterative marching through its atoms is described. The procedure is illustrated by extracting functional groups from the bioactive portion of the ChEMBL database, resulting in identification of 3080 unique functional groups. A new algorithm to identify all functional groups in organic molecules is presented. The algorithm is relatively simple and full details with examples are provided, therefore implementation in any cheminformatics toolkit should be relatively easy. The new method allows the analysis of functional groups in large chemical databases in a way that was not possible using previous approaches. Graphical abstract .
SL(2, C) group action on cohomological field theories
NASA Astrophysics Data System (ADS)
Basalaev, Alexey
2018-01-01
We introduce the S} (2,C) group action on a partition function of a cohomological field theory via a certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov-Ruan changing the primitive form (cf. Milanov and Ruan in Gromov-Witten theory of elliptic orbifold P1 and quasi-modular forms,
Synthesis of monolithic graphene – graphite integrated electronics
Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M.
2013-01-01
Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems1 with functions defined by synthesis2-6. Graphene7-12 has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication13-20. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically-integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous catalyst metals permits the selective growth of graphene and graphite, with controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from synthesis. These functional, all-carbon structures were transferrable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing, and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent a substantial progress towards encoding electronic functionality via chemical synthesis and suggest future promise for one-step integration of graphene-graphite based electronics. PMID:22101813
Synthesis of monolithic graphene-graphite integrated electronics.
Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M
2011-11-20
Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.
A simple exposure-time theory for all time-nonlocal transport formulations and beyond.
NASA Astrophysics Data System (ADS)
Ginn, T. R.; Schreyer, L. G.
2016-12-01
Anomalous transport or better put, anomalous non-transport, of solutes or flowing water or suspended colloids or bacteria etc. has been the subject of intense analyses with multiple formulations appearing in scientific literature from hydrology to geomorphology to chemical engineering, to environmental microbiology to mathematical physics. Primary focus has recently been on time-nonlocal mass conservation formulations such as multirate mass transfer, fractional-time advection-dispersion, continuous-time random walks, and dual porosity modeling approaches, that employ a convolution with a memory function to reflect respective conceptual models of delays in transport. These approaches are effective or "proxy" ones that do not always distinguish transport from immobilzation delays, are generally without connection to measurable physicochemical properties, and involve variously fractional calculus, inverse Laplace or Fourier transformations, and/or complex stochastic notions including assumptions of stationarity or ergodicity at the observation scale. Here we show a much simpler approach to time-nonlocal (non-)transport that is free of all these things, and is based on expressing the memory function in terms of a rate of mobilization of immobilized mass that is a function of the continguous time immobilized. Our approach treats mass transfer completely independently from the transport process, and it allows specification of actual immobilization mechanisms or delays. To our surprize we found that for all practical purposes any memory function can be expressed this way, including all of those associated with the multi-rate mass transfer approaches, original powerlaw, different truncated powerlaws, fractional-derivative, etc. More intriguing is the fact that the exposure-time approach can be used to construct heretofore unseen memory functions, e.g., forms that generate oscillating tails of breakthrough curves such as may occur in sediment transport, forms for delay-differential equations, and so on. Because the exposure-time approach is both simple and localized, it provides a promising platform for launching forays into non-Markovian and/or nonlinear processes and into upscaling age-dependent multicomponent reaction systems.
Unusual Features of Crystal Structures of Some Simple Copper Compounds
ERIC Educational Resources Information Center
Douglas, Bodie
2009-01-01
Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
NASA Astrophysics Data System (ADS)
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2016-03-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.
Reasons for Implementing Movement in Kinetic Architecture
NASA Astrophysics Data System (ADS)
Cudzik, Jan; Nyka, Lucyna
2017-10-01
The paper gives insights into different forms of movement in contemporary architecture and examines them based on the reasons for their implementation. The main objective of the paper is to determine: the degree to which the complexity of kinematic architecture results from functional and spatial needs and what other motivations there are. The method adopted to investigate these questions involves theoretical studies and comparative analyses of architectural objects with different forms of movement imbedded in their structure. Using both methods allowed delving into reasons that lie behind the implementation of movement in contemporary kinetic architecture. As research shows, there is a constantly growing range of applications with kinematic solutions inserted in buildings’ structures. The reasons for their implementation are manifold and encompass pursuits of functional qualities, environmental performance, spatial effects, social interactions and new aesthetics. In those early projects based on simple mechanisms, the main motives were focused on functional values and in later experiments - on improving buildings’ environmental performance. Additionally, in recent proposals, a significant quest could be detected toward kinematic solutions that are focused on factors related to alternative aesthetics and innovative spatial effects. Research reveals that the more complicated form of movement, the more often the reason for its implementation goes beyond the traditionally understood “function”. However, research also shows that the effects resulting from investigations on spatial qualities of architecture and new aesthetics often appear to provide creative insights into new functionalities in architecture.
Programming function into mechanical forms by directed assembly of silk bulk materials
Patel, Nereus; Duggan, Thomas; Perotto, Giovanni; Shirman, Elijah; Li, Chunmei; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats. PMID:28028213
Relating Time-Dependent Acceleration and Height Using an Elevator
NASA Astrophysics Data System (ADS)
Kinser, Jason M.
2015-04-01
A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time1, a(t), the velocity function and position functions are determined through integration as in v (t ) =∫ a (t ) d t (1) and x (t ) =∫ v (t ) dt. Mobile devices such as smartphones or tablets have accelerometers that capture slowly evolving acceleration with respect to time and can deliver those measurements as a CSV file. A recent example measured the oscillations of the elevator as it starts its motion.2 In the application presented here the mobile device is used to estimate the height of the elevator ride. By estimating the functional form of the acceleration of an elevator ride, it is possible to estimate the height of the ride through Eqs. (1) and (2).
Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary
Yoshida, Koki; Onoe, Hiroaki
2017-01-01
This study describes a novel microfluidic-based method for the synthesis of hydrogel microsprings that are capable of encapsulating various functional materials. A continuous flow of alginate pre-gel solution can spontaneously form a hydrogel microspring by anisotropic gelation around the bevel-tip of the capillary. This technique allows fabrication of hydrogel microsprings using only simple capillaries and syringe pumps, while their complex compartmentalization characterized by a laminar flow inside the capillary can contribute to the optimization of the microspring internal structure and functionality. Encapsulation of several functional materials including magnetic-responsive nanoparticles or cell dispersed collagen for tissue scaffold was demonstrated to functionalize the microsprings. Our core-shell hydrogel microsprings have immense potential for application in a number of fields, including biological/chemical microsensors, biocompatible soft robots/microactuators, drug release, self-assembly of 3D structures and tissue engineering. PMID:28378803
Eigenvectors of optimal color spectra.
Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku
2013-09-01
Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.
Proton-deuteron double scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1974-01-01
A simple but accurate form for the proton-deuteron elastic double scattering amplitude, which includes both projectile and target recoil motion and is applicable at all momentum transfer, is derived by taking advantage of the restricted range of Fermi momentum allowed by the deuteron wave function. This amplitude can be directly compared to approximations which have neglected target recoil or are limited to small momentum transfer; the target recoil and large momentum transfer effects are evaluated explicitly within the context of a Gaussian model.
NASA Astrophysics Data System (ADS)
Kanevskiĭ, M. F.; Stepanova, M. A.
1990-06-01
An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.
Mathematical model of the solar radiation force and torques acting on the components of a spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1971-01-01
General expressions for the solar radiation force and torques are derived in the vectorial form for any given reflecting surface, provided that the reflecting characteristics of the surface, as well as the value of the solar constant, are known. An appropriate choice of a spacecraft-fixed frame of reference leads to relatively simple expressions for the solar radiation forces and torques in terms of the functions of the sun-spacecraft-earth angle.
Tau lepton polarization in quasielastic neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Kuzmin, Konstantin S.; Lyubushkin, Vladimir V.; Naumov, Vadim A.
2005-02-01
We derive structure functions for the quasielastic production of octet baryons in νn and νp interactions and study the polarization of τ leptons produced in the ΔY=0 reactions. Possible impact of the charged second-class currents is investigated by adopting a simple phenomenological parametrization for the nonstandard scalar and tensor nucleon form factors. Our choice of the unknown parameters is made to satisfy the limits obtained in the (anti)neutrino scattering experiments and rigid restrictions derived from the nuclear structure studies.
Ion Thermal Conductivity and Ion Distribution Function in the Banana Regime
1988-04-01
approximate collision operator which is more general than the model operator derived by HIRSHMAN and SIGMAR is presented. By use of this collision...by HIRSHMAN and SIGMAR (1976). The finite aspect ratio correction is shown to increase the ion thermal conductivity by a factor of two in the...operator (12) is more general than that of Hirshman and Sigmar which can be derived by approximating Ct(1=0,1,2)in (12) by more simple forms. Let us
Gauge-independent decoherence models for solids in external fields
NASA Astrophysics Data System (ADS)
Wismer, Michael S.; Yakovlev, Vladislav S.
2018-04-01
We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.
The direct arylation of allylic sp3 C–H bonds via organocatalysis and photoredox catalysis
Cuthbertson, James D.; MacMillan, David W. C.
2015-01-01
The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts,1 the establishment of general and mild strategies for the engagement of sp3 C–H bonds in carbon–carbon bond forming reactions has proven difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene, and methine carbons in a catalytic manner is a priority. While protocols for direct allylic C–H oxidation and amination have become widely established,2,3 the engagement of allylic substrates in carbon–carbon bond-forming reactions has thus far required the use of pre-functionalized coupling partners.4 In particular, the direct arylation of non-functionalized allylic systems would enable chemists to rapidly access a series of known pharmacophores, though a general solution to this longstanding challenge remains elusive. We describe herein the use of both photoredox and organic catalysis to accomplish the first mild, broadly effective direct allylic C–H arylation. This new C–C bond-forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants and has been used in the direct arylation of benzylic C–H bonds. PMID:25739630
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1990-01-01
The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.
Transportable Maps Software. Volume I.
1982-07-01
being collected at the beginning or end of the routine. This allows the interaction to be followed sequentially through its steps by anyone reading the...flow is either simple sequential , simple conditional (the equivalent of ’if-then-else’), simple iteration (’DO-loop’), or the non-linear recursion...input raster images to be in the form of sequential binary files with a SEGMENTED record type. The advantage of this form is that large logical records
Application of a linked stress release model in Corinth Gulf and Central Ionian Islands (Greece)
NASA Astrophysics Data System (ADS)
Mangira, Ourania; Vasiliadis, Georgios; Papadimitriou, Eleftheria
2017-06-01
Spatio-temporal stress changes and interactions between adjacent fault segments consist of the most important component in seismic hazard assessment, as they can alter the occurrence probability of strong earthquake onto these segments. The investigation of the interactions between adjacent areas by means of the linked stress release model is attempted for moderate earthquakes ( M ≥ 5.2) in the Corinth Gulf and the Central Ionian Islands (Greece). The study areas were divided in two subareas, based on seismotectonic criteria. The seismicity of each subarea is investigated by means of a stochastic point process and its behavior is determined by the conditional intensity function, which usually gets an exponential form. A conditional intensity function of Weibull form is used for identifying the most appropriate among the models (simple, independent and linked stress release model) for the interpretation of the earthquake generation process. The appropriateness of the models was decided after evaluation via the Akaike information criterion. Despite the fact that the curves of the conditional intensity functions exhibit similar behavior, the use of the exponential-type conditional intensity function seems to fit better the data.
The mysterious age invariance of the planetary nebula luminosity function bright cut-off
NASA Astrophysics Data System (ADS)
Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.
2018-05-01
Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.
Continuous quantum measurements and the action uncertainty principle
NASA Astrophysics Data System (ADS)
Mensky, Michael B.
1992-09-01
The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.
On the adaptivity and complexity embedded into differential evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senkerik, Roman; Pluhacek, Michal; Jasek, Roman
2016-06-08
This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less
Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yufeng; Gu, Yuwei; Keeler, Eric G.
2016-12-05
We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three-component assembly strategy. The star polyMOC network is composed of tetra-arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer-bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of materialmore » properties including tunable moduli and relaxation dynamics.« less
Song, Wei; Kaufman, Dan S; Shen, Wei
2016-03-01
Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs), large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34, respectively, from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGFβ-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542 + hESC-ECs, SB431542 - hESC-ECs, and HUVECs showed similar permeability to 10,000 Da dextran, but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542 + hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542 - hESC-ECs and HUVECs responded differently to VEGF and bFGF, which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542 - hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 678-687, 2016. © 2015 Wiley Periodicals, Inc.
77 FR 63925 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
..., Savings Incentive Match Plan for Employees of Small Employers (SIMPLE)--Not for Use With a Designated Financial Institution; Form 5305-SIMPLE, Savings Incentive Match Plan for Employees of Small Employers (SIMPLE)--for Use With a Designated Financial Institution; Notice 98-4, Simple IRA Plan Guidance. DATES...
NASA Astrophysics Data System (ADS)
Butler, S. L.
2017-08-01
It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular to the array, the rms thickness is shown to be very similar to the mean distance. For the direction parallel to the array, the rms thickness is shown to be proportional to the array length and similar to the array length divided by 2 for many arrays. I expect that these formulas will provide useful rules of thumb for estimating the centres and extents of regions influencing apparent resistivity measurements for survey planning and for education.
Some aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty
1990-01-01
An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. This and other forms of the dissipation function are used to identify simple flows, such as incompressible channel flow, the potential vortex with rotational core, and incompressible, irrotational flow as minimally dissipative distributions. A comparison of the hydrodynamic and thermodynamic stability characteristics of a parallel shear flow suggests that an association exists between flow stability and the variation of net dissipation with disturbance amplitude, and that nonlinear effects, such as bounded disturbance amplitude, may be examined from a thermodynamic basis.
STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calzetti, D.; Liu, G.; Koda, J., E-mail: calzetti@astro.umass.edu
Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scattermore » of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to {approx}unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.« less
NASA Astrophysics Data System (ADS)
Peng, Ying-jie; Lilly, Simon J.; Kovač, Katarina; Bolzonella, Micol; Pozzetti, Lucia; Renzini, Alvio; Zamorani, Gianni; Ilbert, Olivier; Knobel, Christian; Iovino, Angela; Maier, Christian; Cucciati, Olga; Tasca, Lidia; Carollo, C. Marcella; Silverman, John; Kampczyk, Pawel; de Ravel, Loic; Sanders, David; Scoville, Nicholas; Contini, Thierry; Mainieri, Vincenzo; Scodeggio, Marco; Kneib, Jean-Paul; Le Fèvre, Olivier; Bardelli, Sandro; Bongiorno, Angela; Caputi, Karina; Coppa, Graziano; de la Torre, Sylvain; Franzetti, Paolo; Garilli, Bianca; Lamareille, Fabrice; Le Borgne, Jean-Francois; Le Brun, Vincent; Mignoli, Marco; Perez Montero, Enrique; Pello, Roser; Ricciardelli, Elena; Tanaka, Masayuki; Tresse, Laurence; Vergani, Daniela; Welikala, Niraj; Zucca, Elena; Oesch, Pascal; Abbas, Ummi; Barnes, Luke; Bordoloi, Rongmon; Bottini, Dario; Cappi, Alberto; Cassata, Paolo; Cimatti, Andrea; Fumana, Marco; Hasinger, Gunther; Koekemoer, Anton; Leauthaud, Alexei; Maccagni, Dario; Marinoni, Christian; McCracken, Henry; Memeo, Pierdomenico; Meneux, Baptiste; Nair, Preethi; Porciani, Cristiano; Presotto, Valentina; Scaramella, Roberto
2010-09-01
We explore the simple inter-relationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys. We take a purely empirical approach in identifying those features of galaxy evolution that are demanded by the data and then explore the analytic consequences of these. We show that the differential effects of mass and environment are completely separable to z ~ 1, leading to the idea of two distinct processes of "mass quenching" and "environment quenching." The effect of environment quenching, at fixed over-density, evidently does not change with epoch to z ~ 1 in zCOSMOS, suggesting that the environment quenching occurs as large-scale structure develops in the universe, probably through the cessation of star formation in 30%-70% of satellite galaxies. In contrast, mass quenching appears to be a more dynamic process, governed by a quenching rate. We show that the observed constancy of the Schechter M* and αs for star-forming galaxies demands that the quenching of galaxies around and above M* must follow a rate that is statistically proportional to their star formation rates (or closely mimic such a dependence). We then postulate that this simple mass-quenching law in fact holds over a much broader range of stellar mass (2 dex) and cosmic time. We show that the combination of these two quenching processes, plus some additional quenching due to merging naturally produces (1) a quasi-static single Schechter mass function for star-forming galaxies with an exponential cutoff at a value M* that is set uniquely by the constant of proportionality between the star formation and mass quenching rates and (2) a double Schechter function for passive galaxies with two components. The dominant component (at high masses) is produced by mass quenching and has exactly the same M* as the star-forming galaxies but a faint end slope that differs by Δαs ~ 1. The other component is produced by environment effects and has the same M* and αs as the star-forming galaxies but an amplitude that is strongly dependent on environment. Subsequent merging of quenched galaxies will modify these predictions somewhat in the denser environments, mildly increasing M* and making αs slightly more negative. All of these detailed quantitative inter-relationships between the Schechter parameters of the star-forming and passive galaxies, across a broad range of environments, are indeed seen to high accuracy in the SDSS, lending strong support to our simple empirically based model. We find that the amount of post-quenching "dry merging" that could have occurred is quite constrained. Our model gives a prediction for the mass function of the population of transitory objects that are in the process of being quenched. Our simple empirical laws for the cessation of star formation in galaxies also naturally produce the "anti-hierarchical" run of mean age with mass for passive galaxies, as well as the qualitative variation of formation timescale indicated by the relative α-element abundances. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839. Also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, operated by AURA Inc., under NASA contract NAS 5-26555, with the Subaru Telescope, operated by the National Astronomical Observatory of Japan, with the telescopes of the National Optical Astronomy Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation, and with the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Howard, W M; Fried, L E
2001-08-08
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less
Model of Pressure Distribution in Vortex Flow Controls
NASA Astrophysics Data System (ADS)
Mielczarek, Szymon; Sawicki, Jerzy M.
2015-06-01
Vortex valves belong to the category of hydrodynamic flow controls. They are important and theoretically interesting devices, so complex from hydraulic point of view, that probably for this reason none rational concept of their operation has been proposed so far. In consequence, functioning of vortex valves is described by CFD-methods (computer-aided simulation of technical objects) or by means of simple empirical relations (using discharge coefficient or hydraulic loss coefficient). Such rational model of the considered device is proposed in the paper. It has a simple algebraic form, but is well grounded physically. The basic quantitative relationship, which describes the valve operation, i.e. dependence between the flow discharge and the circumferential pressure head, caused by the rotation, has been verified empirically. Conformity between calculated and measured parameters of the device allows for acceptation of the proposed concept.
Predicting boundary shear stress and sediment transport over bed forms
McLean, S.R.; Wolfe, S.R.; Nelson, J.M.
1999-01-01
To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.
Wissmann, F; Reginatto, M; Möller, T
2010-09-01
The problem of finding a simple, generally applicable description of worldwide measured ambient dose equivalent rates at aviation altitudes between 8 and 12 km is difficult to solve due to the large variety of functional forms and parametrisations that are possible. We present an approach that uses Bayesian statistics and Monte Carlo methods to fit mathematical models to a large set of data and to compare the different models. About 2500 data points measured in the periods 1997-1999 and 2003-2006 were used. Since the data cover wide ranges of barometric altitude, vertical cut-off rigidity and phases in the solar cycle 23, we developed functions which depend on these three variables. Whereas the dependence on the vertical cut-off rigidity is described by an exponential, the dependences on barometric altitude and solar activity may be approximated by linear functions in the ranges under consideration. Therefore, a simple Taylor expansion was used to define different models and to investigate the relevance of the different expansion coefficients. With the method presented here, it is possible to obtain probability distributions for each expansion coefficient and thus to extract reliable uncertainties even for the dose rate evaluated. The resulting function agrees well with new measurements made at fixed geographic positions and during long haul flights covering a wide range of latitudes.
NASA Astrophysics Data System (ADS)
Muguerza, N.; Díez, I.; Quintano, E.; Bustamante, M.; Gorostiaga, J. M.
2017-12-01
This study assesses changes in the taxonomic and functional structure and in the diversity of the shallow (3-9 m) subtidal vegetation off the southeastern coast of the Bay of Biscay by studying 19 locations between 1991 and 2013. Results provide evidence that the three-dimensional assemblages of shallow subtidal bottoms in the study area may be shifting towards less structurally complex communities. Canopy-forming algae are declining whereas simple thallus turfs composed of a combination of filamentous, polysiphonated and foliose non-corticated algae are becoming abundant along with articulated corallines and crustose species. Moreover, a significant increase in taxa richness and diversity was found, mainly due to the development of opportunistic and morphologically simple forms with warm-water affinity. The potential ecological consequences of canopy loss for coastal ecosystems are discussed. Given that changes in climate conditions are predicted to intensify, the prevalence of the new turfing space occupiers in the study area here considered seems to be realistic on the basis of their ability to compete for space and resist disturbance. Consequently, major implications for the functioning and diversity of the ecosystem and for ecosystem services may be expected. bJ. rubens and J. Longifurca. cM. alternans and M. expansum. dP. harveyana and P. squamaria. eP. cartilagineum and P. raphelisianum. fP. ardreana, P. parasitica and P. pennata. gU. dangeardii, U. pseudocurvata and U. rigida.
Entropy and charge in molecular evolution--the case of phosphate
NASA Technical Reports Server (NTRS)
Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)
1997-01-01
Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.
Simple Köhler homogenizers for image-forming solar concentrators
NASA Astrophysics Data System (ADS)
Zhang, Weiya; Winston, Roland
2010-08-01
By adding simple Köhler homogenizers in the form of aspheric lenses generated with an optimization approach, we solve the problems of non-uniform irradiance distribution and non-square irradiance pattern existing in some image-forming solar concentrators. The homogenizers do not require optical bonding to the solar cells or total internal reflection surface. Two examples are shown including a Fresnel lens based concentrator and a two-mirror aplanatic system.
Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben
2015-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.
Self-energy functional theory with symmetry breaking for disordered lattice bosons
NASA Astrophysics Data System (ADS)
Hügel, Dario; Strand, Hugo U. R.; Pollet, Lode
2018-07-01
We extend the self-energy functional theory to the case of interacting lattice bosons in the presence of symmetry breaking and quenched disorder. The self-energy functional we derive depends only on the self-energies of the disorder-averaged propagators, allowing for the construction of general non-perturbative approximations. Using a simple single-site reference system with only three variational parameters, we are able to reproduce numerically exact quantum Monte Carlo (QMC) results on local observables of the Bose–Hubbard model with box disorder with high accuracy. At strong interactions, the phase boundaries are reproduced qualitatively but shifted with respect to the ones observed with QMC due to the extremely low condensate fraction in the superfluid phase. Deep in the strongly-disordered weakly-interacting regime, the simple reference system employed is insufficient and no stationary solutions can be found within its restricted variational subspace. By systematically analyzing thermodynamical observables and the spectral function, we find that the strongly interacting Bose glass is characterized by different regimes, depending on which local occupations are activated as a function of the disorder strength. We find that the particles delocalize into isolated superfluid lakes over a strongly localized background around maximally-occupied sites whenever these sites are particularly rare. Our results indicate that the transition from the Bose glass to the superfluid phase around unit filling at strong interactions is driven by the percolation of superfluid lakes which form around doubly occupied sites.
Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients.
Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2011-05-01
Cocos nucifera (coconut) oil, oil from the dried coconut fruit, is composed of 90% saturated triglycerides. It may function as a fragrance ingredient, hair conditioning agent, or skin-conditioning agent and is reported in 626 cosmetics at concentrations from 0.0001% to 70%. The related ingredients covered in this assessment are fatty acids, and their hydrogenated forms, corresponding fatty alcohols, simple esters, and inorganic and sulfated salts of coconut oil. The salts and esters are expected to have similar toxicological profiles as the oil, its hydrogenated forms, and its constituent fatty acids. Coconut oil and related ingredients are safe as cosmetic ingredients in the practices of use and concentration described in this safety assessment.
Segundo, J P; Vibert, J F; Stiber, M
1998-11-01
Codings involving spike trains at synapses with inhibitory postsynaptic potentials on pacemakers were examined in crayfish stretch receptor organs by modulating presynaptic instantaneous rates periodically (triangles or sines; frequencies, slopes and depths under, respectively, 5.0 Hz, 40.0/s/s and 25.0/s). Timings were described by interspike and cross-intervals ("phases"); patterns (dispersions, sequences) and forms (timing classes) were identified using pooled graphs (instant along the cycle when a spike occurs vs preceding interval) and return maps (plots of successive intervals). A remarkable heterogeneity of postsynaptic intervals and phases characterizes each modulation. All cycles separate into the same portions: each contains a particular form and switches abruptly to the next. Forms differ in irregularity and predictability: they are (see text) "p:q alternations", "intermittent", "phase walk-throughs", "messy erratic" and "messy stammering". Postsynaptic cycles are asymmetric (hysteresis). This contrasts with the presynaptic homogeneity, smoothness and symmetry. All control parameters are, individually and jointly, strongly influential. Presynaptic slopes, say, act through a postsynaptic sensitivity to their magnitude and sign; when increasing, hysteresis augments and forms change or disappear. Appropriate noise attenuates between-train contrasts, providing modulations are under 0.5 Hz. Postsynaptic natural intervals impose critical time bases, separating presynaptic intervals (around, above or below them) with dissimilar consequences. Coding rules are numerous and have restricted domains; generalizations are misleading. Modulation-driven forms are trendy pacemaker-driven forms. However, dissimilarities, slight when patterns are almost pacemaker, increase as inhibition departs from pacemaker and incorporate unpredictable features. Physiological significance-(1) Pacemaker-driven forms, simple and ubiquitous, appear to be elementary building blocks of synaptic codings, present always but in each case distorted typically. (2) Synapses are prototype: similar behaviours should be widespread, and networks simulations benefit by nonlinear units generating all forms. (3) Relevant to periodic functions are that few variables need be involved in form selection, that distortions are susceptible to noise levels and, if periods are heterogeneous, that simple input cycles impose heterogeneous outputs. (4) Slow Na inactivations are necessary for obtaining complex forms and hysteresis. Formal significance--(1) Pacemaker-driven forms and presumably their modulation-driven counterparts, pertain to universal periodic, intermittent, quasiperiodic and chaotic categories whose formal properties carry physiological connotations. (2) Only relatively elaborate, nonlinear geometric models show all forms; simpler ones, show only alternations and walk-throughs. (3) Bifurcations resemble those of simple maps that can provide useful guidelines. (4) Heterogeneity poses the unanswered question of whether or not the entire cycle and all portions have the same behaviours: therefore, whether trajectories are continuous or have discontinuities and/or singular points.
NASA Astrophysics Data System (ADS)
Mejia-Rodriguez, Daniel; Trickey, S. B.
2017-11-01
We explore the simplification of widely used meta-generalized-gradient approximation (mGGA) exchange-correlation functionals to the Laplacian level of refinement by use of approximate kinetic-energy density functionals (KEDFs). Such deorbitalization is motivated by the prospect of reducing computational cost while recovering a strictly Kohn-Sham local potential framework (rather than the usual generalized Kohn-Sham treatment of mGGAs). A KEDF that has been rather successful in solid simulations proves to be inadequate for deorbitalization, but we produce other forms which, with parametrization to Kohn-Sham results (not experimental data) on a small training set, yield rather good results on standard molecular test sets when used to deorbitalize the meta-GGA made very simple, Tao-Perdew-Staroverov-Scuseria, and strongly constrained and appropriately normed functionals. We also study the difference between high-fidelity and best-performing deorbitalizations and discuss possible implications for use in ab initio molecular dynamics simulations of complicated condensed phase systems.
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
NASA Astrophysics Data System (ADS)
Lu, Yi; Haverkort, Maurits W.
2017-12-01
We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.
Analytical model for the radio-frequency sheath
NASA Astrophysics Data System (ADS)
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
Analytical model for the radio-frequency sheath.
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
NASA Astrophysics Data System (ADS)
Nakagawa, Satoshi; Kurniawan, Isman; Kodama, Koichi; Arwansyah, Muhammad Saleh; Kawaguchi, Kazutomo; Nagao, Hidemi
2018-03-01
We present a simple coarse-grained model with the molecular crowding effect in solvent to investigate the structure and dynamics of protein complexes including association and/or dissociation processes and investigate some physical properties such as the structure and the reaction rate from the viewpoint of the hydrophobic intermolecular interactions of protein complex. In the present coarse-grained model, a function depending upon the density of hydrophobic amino acid residues in a binding area of the complex is introduced, and the function involves the molecular crowding effect for the intermolecular interactions of hydrophobic amino acid residues between proteins. We propose a hydrophobic intermolecular potential energy between proteins by using the density-dependent function. The present coarse-grained model is applied to the complex of cytochrome f and plastocyanin by using the Langevin dynamics simulation to investigate some physical properties such as the complex structure, the electron transfer reaction rate constant from plastocyanin to cytochrome f and so on. We find that for proceeding the electron transfer reaction, the distance between metals in their active sites is necessary within about 18 Å. We discuss some typical complex structures formed in the present simulation in relation to the molecular crowding effect on hydrophobic interactions.
Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea.
Barclay, David R; Buckingham, Michael J
2013-01-01
In 2009, as part of PhilSea09, the instrument platform known as Deep Sound was deployed in the Philippine Sea, descending under gravity to a depth of 6000 m, where it released a drop weight, allowing buoyancy to return it to the surface. On the descent and ascent, at a speed of 0.6 m/s, Deep Sound continuously recorded broadband ambient noise on two vertically aligned hydrophones separated by 0.5 m. For frequencies between 1 and 10 kHz, essentially all the noise was found to be downward traveling, exhibiting a depth-independent directional density function having the simple form cos θ, where θ ≤ 90° is the polar angle measured from the zenith. The spatial coherence and cross-spectral density of the noise show no change in character in the vicinity of the critical depth, consistent with a local, wind-driven surface-source distribution. The coherence function accurately matches that predicted by a simple model of deep-water, wind-generated noise, provided that the theoretical coherence is evaluated using the local sound speed. A straightforward inversion procedure is introduced for recovering the sound speed profile from the cross-correlation function of the noise, returning sound speeds with a root-mean-square error relative to an independently measured profile of 8.2 m/s.
Designing and maintaining an effective chargemaster.
Abbey, D C
2001-03-01
The chargemaster is the central repository of charges and associated coding information used to develop claims. But this simple description belies the chargemaster's true complexity. The chargemaster's role in the coding process differs from department to department, and not all codes provided on a claim form are necessarily included in the chargemaster, as codes for complex services may need to be developed and reviewed by coding staff. In addition, with the rise of managed care, the chargemaster increasingly is being used to track utilization of supplies and services. To ensure that the chargemaster performs all of its functions effectively, hospitals should appoint a chargemaster coordinator, supported by a chargemaster review team, to oversee the design and maintenance of the chargemaster. Important design issues that should be considered include the principle of "form follows function," static versus dynamic coding, how modifiers should be treated, how charges should be developed, how to incorporate physician fee schedules into the chargemaster, the interface between the chargemaster and cost reports, and how to include statistical information for tracking utilization.
The skewed weak lensing likelihood: why biases arise, despite data and theory being sound
NASA Astrophysics Data System (ADS)
Sellentin, Elena; Heymans, Catherine; Harnois-Déraps, Joachim
2018-07-01
We derive the essentials of the skewed weak lensing likelihood via a simple hierarchical forward model. Our likelihood passes four objective and cosmology-independent tests which a standard Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased low, since they are drawn from a skewed distribution. This occurs already in the framework of Lambda cold dark matter. Mathematically, the biases arise because noisy two-point functions follow skewed distributions. This form of bias is already known from cosmic microwave background analyses, where the low multipoles have asymmetric error bars. Weak lensing is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to 30 per cent of the standard deviation per data point, dependent on the properties of the weak lensing survey and the employed filter function. Our likelihood provides a versatile framework with which to address this bias in future weak lensing analyses.
The skewed weak lensing likelihood: why biases arise, despite data and theory being sound.
NASA Astrophysics Data System (ADS)
Sellentin, Elena; Heymans, Catherine; Harnois-Déraps, Joachim
2018-04-01
We derive the essentials of the skewed weak lensing likelihood via a simple Hierarchical Forward Model. Our likelihood passes four objective and cosmology-independent tests which a standard Gaussian likelihood fails. We demonstrate that sound weak lensing data are naturally biased low, since they are drawn from a skewed distribution. This occurs already in the framework of ΛCDM. Mathematically, the biases arise because noisy two-point functions follow skewed distributions. This form of bias is already known from CMB analyses, where the low multipoles have asymmetric error bars. Weak lensing is more strongly affected by this asymmetry as galaxies form a discrete set of shear tracer particles, in contrast to a smooth shear field. We demonstrate that the biases can be up to 30% of the standard deviation per data point, dependent on the properties of the weak lensing survey and the employed filter function. Our likelihood provides a versatile framework with which to address this bias in future weak lensing analyses.
Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2012-01-01
Two properties are particularly germane to the transition from chemistry to biology. One is the emergence of complex molecules (polymers) capable of performing non-trivial functions, such as catalysis, energy transduction or transport across cell walls. The other is the ability of several functions to work in concert to provide reproductive advantage to systems hosting these functions. Biological systems exhibit these properties at remarkable levels of efficiency and accuracy in a way that appears effortless. However, dissection of these properties reveals great complexities that are involved. This opens a question: how a simple, ancestral system could have acquired the required properties? Other questions follow. What are the chances that a functional polymer emerges at random? What is the minimum structural complexity of a polymer to carry out a function at a reasonable level of efficiency? Can we identify concrete, protobiologically plausible mechanisms that yield advantageous coupling between different functions? These and similar questions are at the core of the main topic of this session: how soulless chemistry became life? Clearly, we do not have complete answers to any of these questions. However, in recent years a number of new and sometimes unexpected clues have been brought to light. Of particular interest are proteins because they are the main functional polymers in contemporary cells. The emergence of protein functions is a puzzle. It is widely accepted that a well ]defined, compact structure (fold) is a prerequisite for function. It is equally widely accepted that compact folds are rare among random amino acid polymers. Then, how did protein functionality start? According to one hypothesis well folded were preceded by their poorly folded, yet still functional ancestors. Only recently, however, experimental evidence supporting this hypothesis has been presented. In particular, a small enzyme capable of ligating two RNA fragments with the rate of 106 above background was evolved in vitro. This enzyme does not look like any contemporary protein. It is very flexible and its structure is kept together just by a single salt bridge between a charged residue and a coordinating zinc. A similar picture emerges from studies of simple transmembrane channels that mimic those in ancestral cells. Again, they are extremely flexible and do not form a conventional pore. Yet, they efficiently mediate ion transport. Studies on simple proteins that are on-going in several laboratories hold promise of revealing crucial links between chemical and biological catalysis and other ubiquitous cell functions. Interaction between composition, growth and division of protobiologically relevant vesicles and metabolic reactions that they encapsulate is an example of coupling between simple functions that promotes reproduction and evolution. Recent studies have demonstrated possible mechanisms by which vesicles might have evolved their composition from fatty acids to phospholipids, thus facilitating a number of new cellular functions. Conversely, it has been also demonstrated that an encapsulated metabolism might drive vesicle division. These are, again, examples of processes that might have driven the transition from chemistry to biology.
On the context-dependent scaling of consumer feeding rates.
Barrios-O'Neill, Daniel; Kelly, Ruth; Dick, Jaimie T A; Ricciardi, Anthony; MacIsaac, Hugh J; Emmerson, Mark C
2016-06-01
The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology. © The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Simple Deterministically Constructed Recurrent Neural Networks
NASA Astrophysics Data System (ADS)
Rodan, Ali; Tiňo, Peter
A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.
NASA Technical Reports Server (NTRS)
Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)
2000-01-01
Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Investigating a hybrid perturbation-Galerkin technique using computer algebra
NASA Technical Reports Server (NTRS)
Andersen, Carl M.; Geer, James F.
1988-01-01
A two-step hybrid perturbation-Galerkin method is presented for the solution of a variety of differential equations type problems which involve a scalar parameter. The resulting (approximate) solution has the form of a sum where each term consists of the product of two functions. The first function is a function of the independent field variable(s) x, and the second is a function of the parameter lambda. In step one the functions of x are determined by forming a perturbation expansion in lambda. In step two the functions of lambda are determined through the use of the classical Bubnov-Gelerkin method. The resulting hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Bubnov-Galerkin methods applied separately, while combining some of the good features of each. In particular, the results can be useful well beyond the radius of convergence associated with the perturbation expansion. The hybrid method is applied with the aid of computer algebra to a simple two-point boundary value problem where the radius of convergence is finite and to a quantum eigenvalue problem where the radius of convergence is zero. For both problems the hybrid method apparently converges for an infinite range of the parameter lambda. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.
2018-01-01
Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles. PMID:29518071
Holland, David O; Johnson, Margaret E
2018-03-01
Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles.
Butz, Markus; van Ooyen, Arjen
2013-01-01
Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke. PMID:24130472
Oxidation mechanism of diethyl ether: a complex process for a simple molecule.
Di Tommaso, Stefania; Rotureau, Patricia; Crescenzi, Orlando; Adamo, Carlo
2011-08-28
A large number of organic compounds, such as ethers, spontaneously form unstable peroxides through a self-propagating process of autoxidation (peroxidation). Although the hazards of organic peroxides are well known, the oxidation mechanisms of peroxidizable compounds like ethers reported in the literature are vague and often based on old experiments, carried out in very different conditions (e.g. atmospheric, combustion). With the aim to (partially) fill the lack of information, in this paper we present an extensive Density Functional Theory (DFT) study of autoxidation reaction of diethyl ether (DEE), a chemical that is largely used as solvent in laboratories, and which is considered to be responsible for various accidents. The aim of the work is to investigate the most probable reaction paths involved in the autoxidation process and to identify all potential hazardous intermediates, such as peroxides. Beyond the determination of a complex oxidation mechanism for such a simple molecule, our results suggest that the two main reaction channels open in solution are the direct decomposition (β-scission) of DEE radical issued of the initiation step and the isomerization of the peroxy radical formed upon oxygen attack (DEEOO˙). A simple kinetic evaluation of these two competing reaction channels hints that radical isomerization may play an unexpectedly important role in the global DEE oxidation process. Finally industrial hazards could be related to the hydroperoxide formation and accumulation during the chain propagation step. The resulting information may contribute to the understanding of the accidental risks associated with the use of diethyl ether.
About the Shape of the Melting Line as a Possible Precursor of a Liquid-Liquid Phase Transition
NASA Astrophysics Data System (ADS)
Imre, Attila R.; Rzoska, Sylwester J.
Several simple, non-mesogenic liquids can exists in two or more different liquid forms. When the liquid-liquid line, separating two liquid forms, meets the melting line, one can expect some kind of break on the melting line, caused by the different freezing/melting behaviour of the two liquid forms. Unfortunately recently several researchers are using this vein of thinking in reverse; seeing some irregularity on the melting line, they will expect a break and the appearance of a liquid-liquid line. In this short paper, we are going to show, that in the case of the high-pressure nitrogen studied recently by Mukherjee and Boehler, the high-pressure data can be easily described by a smooth, break-free function, the modified Simon-Glatzel equation. In this way, the break, suggested by them and consequently the suggested appearance of a new liquid phase of the nitrogen might be artefacts.
NASA Astrophysics Data System (ADS)
Patil, S. H.; Tang, K. T.; Toennies, J. P.
1999-10-01
Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.
A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.
Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul
2015-11-18
We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.
Biology Inspired Approach for Communal Behavior in Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2006-01-01
Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control.
Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong
2012-05-21
An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.
Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro
2015-01-01
Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647
Corrigendum: New Form of Kane's Equations of Motion for Constrained Systems
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Bajodah, Abdulrahman H.; Hodges, Dewey H.; Chen, Ye-Hwa
2007-01-01
A correction to the previously published article "New Form of Kane's Equations of Motion for Constrained Systems" is presented. Misuse of the transformation matrix between time rates of change of the generalized coordinates and generalized speeds (sometimes called motion variables) resulted in a false conclusion concerning the symmetry of the generalized inertia matrix. The generalized inertia matrix (sometimes referred to as the mass matrix) is in fact symmetric and usually positive definite when one forms nonminimal Kane's equations for holonomic or simple nonholonomic systems, systems subject to nonlinear nonholonomic constraints, and holonomic or simple nonholonomic systems subject to impulsive constraints according to Refs. 1, 2, and 3, respectively. The mass matrix is of course symmetric when one forms minimal equations for holonomic or simple nonholonomic systems using Kane s method as set forth in Ref. 4.
de Bello, Francesco; Carmona, Carlos P; Lepš, Jan; Szava-Kovats, Robert; Pärtel, Meelis
2016-04-01
While an increasing number of indices for estimating the functional trait diversity of biological communities are being proposed, there is a growing demand by ecologists to clarify their actual implications and simplify index selection. Several key indices relate to mean trait dissimilarity between species within biological communities. Among them, the most widely used include (a) the mean species pairwise dissimilarity (MPD) and (b) the Rao quadratic entropy (and related indices). These indices are often regarded as redundant and promote the unsubstantiated yet widely held view that Rao is a form of MPD. Worryingly, existing R functions also do not always simplify the use and differentiation of these indices. In this paper, we show various distinctions between these two indices that warrant mathematical and biological consideration. We start by showing an existing form of MPD that considers species abundances and is different from Rao both mathematically and conceptually. We then show that the mathematical relationship between MPD and Rao can be presented simply as Rao = MPD × Simpson, where the Simpson diversity index is defined as 1 - dominance. We further show that this relationship is maintained for both species abundances and presence/absence. This evidence dismantles the paradigm that the Rao diversity is an abundance-weighted form of MPD and indicates that both indices can differ substantially at low species diversities. We discuss the different interpretations of trait diversity patterns in biological communities provided by Rao and MPD and then provide a simple R function, called "melodic," which avoids the unintended results that arise from existing mainstream functions.
The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis
NASA Astrophysics Data System (ADS)
Cuthbertson, James D.; MacMillan, David W. C.
2015-03-01
The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.
The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.
Cuthbertson, James D; MacMillan, David W C
2015-03-05
The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.
Functional, Responsive Materials Assembled from Recombinant Oleosin
NASA Astrophysics Data System (ADS)
Hammer, Daniel
Biological cells are surrounded by a plasma membrane made primarily of phospholipids that form a bilayer. This membrane is permselective and compartmentalizes the cell. A simple form of artificial cell is the vesicle, in which a phospholipid bilayer membrane surrounds an aqueous solution. However, there is no a priori reason why a membrane needs to be made of phospholipids. It could be made of any surfactant that forms a bilayer. We have assembled membranes and other structures from the recombinant plant protein oleosin. The ability to assemble from a recombinant protein means that every molecule is identical, we have complete control over the sequence, and hence can build in designer functionality with high fidelity, including adhesion and enzymatic activity. Such incorporation is trivial using the tools of molecular biology. We find that while many variants of oleosin make membranes, others make micelles and sheets. We show how the type of supramolecular structure can be altered by the conditions of solvent, such as ionic strength, and the architecture of the surfactant itself. We show that protease cleavable domains can be incorporated within oleosin, and be engineered to protect other functional domains such as adhesive motifs, to make responsive materials whose activity and shape depend on the action of proteases. We will also present the idea of making ``Franken''-oleosins, where large domains of native oleosin are replaced with domains from other functional proteins, to make hybrids conferred by the donor protein. Thus, we can view oleosin as a template upon which a vast array of designer functionalities can be imparted..
Techniques for Accelerating Iterative Methods for the Solution of Mathematical Problems
1989-07-01
m, we can find a solu ion to the problem by using generalized inverses. Hence, ;= Ih.i = GAi = G - where G is of the form (18). A simple choice for V...have understood why I was not available for many of their activities and not home many of the nights. Their love is forever. I have saved the best for...Xk) Extrapolation applied to terms xP through Xk F Operator on x G Iteration function Ik Identity matrix of rank k Solution of the problem or the limit
Harmony of spinning conformal blocks
NASA Astrophysics Data System (ADS)
Schomerus, Volker; Sobko, Evgeny; Isachenkov, Mikhail
2017-03-01
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Topological geons with self-gravitating phantom scalar field
NASA Astrophysics Data System (ADS)
Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.
2017-12-01
A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.
Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.
1997-06-17
A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7, 10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.
Passive long range acousto-optic sensor
NASA Astrophysics Data System (ADS)
Slater, Dan
2006-08-01
Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).
Ocular Changes and Approaches of Ophthalmopathy in Basedow – Graves- Parry- Flajani Disease
SARACI, George; TRETA, Anamaria
2011-01-01
ABSTRACT Basedow-Graves disease is an autoimmune condition with multiple local and systemic aspects. Among these, oculopathy has a major impact on patient's life from both functional and esthetic point of view. Basedow-Graves oculopathy requires an appropriate positive and differential diagnosis using clinical and imagistic approaches. Treatment is always required in moderate or severe forms and it begins with simple general points and continues with medical and surgical therapies. Current article stresses upon the most characteristic clinical signs of thyroidian ophthalmopathy and the required current therapeutic approaches. PMID:22205899
Probing features in the primordial perturbation spectrum with large-scale structure data
NASA Astrophysics Data System (ADS)
L'Huillier, Benjamin; Shafieloo, Arman; Hazra, Dhiraj Kumar; Smoot, George F.; Starobinsky, Alexei A.
2018-06-01
The form of the primordial power spectrum (PPS) of cosmological scalar (matter density) perturbations is not yet constrained satisfactorily in spite of the tremendous amount of information from the Cosmic Microwave Background (CMB) data. While a smooth power-law-like form of the PPS is consistent with the CMB data, some PPSs with small non-smooth features at large scales can also fit the CMB temperature and polarization data with similar statistical evidence. Future CMB surveys cannot help distinguish all such models due to the cosmic variance at large angular scales. In this paper, we study how well we can differentiate between such featured forms of the PPS not otherwise distinguishable using CMB data. We ran 15 N-body DESI-like simulations of these models to explore this approach. Showing that statistics such as the halo mass function and the two-point correlation function are not able to distinguish these models in a DESI-like survey, we advocate to avoid reducing the dimensionality of the problem by demonstrating that the use of a simple three-dimensional count-in-cell density field can be much more effective for the purpose of model distinction.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Hamed, Maher M.; Zaki, Nadia G.; Abdou, Mohamed M.; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad
2017-07-01
A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100 μg mL- 1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase.
Mohamed, Gehad G; Hamed, Maher M; Zaki, Nadia G; Abdou, Mohamed M; Mohamed, Marwa El-Badry; Abdallah, Abanoub Mosaad
2017-07-05
A simple, accurate and fast spectrophotometric method for the quantitative determination of melatonin (ML) drug in its pure and pharmaceutical forms was developed based on the formation of its charge transfer complex with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electron acceptor. The different conditions for this method were optimized accurately. The Lambert-Beer's law was found to be valid over the concentration range of 4-100μgmL -1 ML. The solid form of the CT complex was structurally characterized by means of different spectral methods. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were carried out. The different quantum chemical parameters of the CT complex were calculated. Thermal properties of the CT complex and its kinetic thermodynamic parameters were studied, as well as its antimicrobial and antifungal activities were investigated. Molecular docking studies were performed to predict the binding modes of the CT complex components towards E. coli bacterial RNA and the receptor of breast cancer mutant oxidoreductase. Copyright © 2017 Elsevier B.V. All rights reserved.
Solving differential equations with unknown constitutive relations as recurrent neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.
We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less
Comment on the asymptotics of a distribution-free goodness of fit test statistic.
Browne, Michael W; Shapiro, Alexander
2015-03-01
In a recent article Jennrich and Satorra (Psychometrika 78: 545-552, 2013) showed that a proof by Browne (British Journal of Mathematical and Statistical Psychology 37: 62-83, 1984) of the asymptotic distribution of a goodness of fit test statistic is incomplete because it fails to prove that the orthogonal component function employed is continuous. Jennrich and Satorra (Psychometrika 78: 545-552, 2013) showed how Browne's proof can be completed satisfactorily but this required the development of an extensive and mathematically sophisticated framework for continuous orthogonal component functions. This short note provides a simple proof of the asymptotic distribution of Browne's (British Journal of Mathematical and Statistical Psychology 37: 62-83, 1984) test statistic by using an equivalent form of the statistic that does not involve orthogonal component functions and consequently avoids all complicating issues associated with them.
A two phase Mach number description of the equilibrium flow of nitrogen in ducts
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.; Adcock, J. B.
1979-01-01
Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.
Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov
We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less
Nonlinear Modeling by Assembling Piecewise Linear Models
NASA Technical Reports Server (NTRS)
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
NASA Astrophysics Data System (ADS)
Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.
2002-07-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
SCEW: a Microsoft Excel add-in for easy creation of survival curves.
Khan, Haseeb Ahmad
2006-07-01
Survival curves are frequently used for reporting survival or mortality outcomes of experimental pharmacological/toxicological studies and of clinical trials. Microsoft Excel is a simple and widely used tool for creation of numerous types of graphic presentations however it is difficult to create step-wise survival curves in Excel. Considering the familiarity of clinicians and biomedical scientists with Excel, an algorithm survival curves in Excel worksheet (SCEW) has been developed for easy creation of survival curves directly in Excel worksheets. The algorithm has been integrated in the form of Excel add-in for easy installation and usage. The program is based on modification of frequency data for binary break-up using the spreadsheet formula functions whereas a macro subroutine automates the creation of survival curves. The advantages of this program are simple data input, minimal procedural steps and the creation of survival curves in the familiar confines of Excel.
Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.
Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F
2018-04-23
We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.
Efficient Jacobian inversion for the control of simple robot manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1988-01-01
Symbolic inversion of the Jacobian matrix for spherical wrist arms is investigated. It is shown that, taking advantage of the simple geometry of these arms, the closed-form solution of the system Q = J-1X, representing a transformation from task space to joint space, can be obtained very efficiently. The solutions for PUMA, Stanford, and a six-revolute-joint coplanar arm, along with all singular points, are presented. The solution for each joint variable is found as an explicit function of the singular points which provides a better insight into the effect of different singular points on the motion and force exertion of each individual joint. For the above arms, the computation cost of the solution is on the same order as the cost of forward kinematic solution and it is significantly reduced if forward kinematic solution is already obtained. A comparison with previous methods shows that this method is the most efficient to date.
Hydrogels in a historical perspective: from simple networks to smart materials.
Buwalda, Sytze J; Boere, Kristel W M; Dijkstra, Pieter J; Feijen, Jan; Vermonden, Tina; Hennink, Wim E
2014-09-28
Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge in polymer chemistry and increased understanding of biological processes resulted in the design of versatile materials and minimally invasive therapies. Hydrogel matrices comprise a wide range of natural and synthetic polymers held together by a variety of physical or chemical crosslinks. With their capacity to embed pharmaceutical agents in their hydrophilic crosslinked network, hydrogels form promising materials for controlled drug release and tissue engineering. Despite all their beneficial properties, there are still several challenges to overcome for clinical translation. In this review, we provide a historical overview of the developments in hydrogel research from simple networks to smart materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Phase and vacancy behaviour of hard "slanted" cubes
NASA Astrophysics Data System (ADS)
van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.
2017-09-01
We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
Functional and Structural Optimality in Plant Growth: A Crop Modelling Case Study
NASA Astrophysics Data System (ADS)
Caldararu, S.; Purves, D. W.; Smith, M. J.
2014-12-01
Simple mechanistic models of vegetation processes are essential both to our understanding of plant behaviour and to our ability to predict future changes in vegetation. One concept that can take us closer to such models is that of plant optimality, the hypothesis that plants aim to achieve an optimal state. Conceptually, plant optimality can be either structural or functional optimality. A structural constraint would mean that plants aim to achieve a certain structural characteristic such as an allometric relationship or nutrient content that allows optimal function. A functional condition refers to plants achieving optimal functionality, in most cases by maximising carbon gain. Functional optimality conditions are applied on shorter time scales and lead to higher plasticity, making plants more adaptable to changes in their environment. In contrast, structural constraints are optimal given the specific environmental conditions that plants are adapted to and offer less flexibility. We exemplify these concepts using a simple model of crop growth. The model represents annual cycles of growth from sowing date to harvest, including both vegetative and reproductive growth and phenology. Structural constraints to growth are represented as an optimal C:N ratio in all plant organs, which drives allocation throughout the vegetative growing stage. Reproductive phenology - i.e. the onset of flowering and grain filling - is determined by a functional optimality condition in the form of maximising final seed mass, so that vegetative growth stops when the plant reaches maximum nitrogen or carbon uptake. We investigate the plants' response to variations in environmental conditions within these two optimality constraints and show that final yield is most affected by changes during vegetative growth which affect the structural constraint.
Lurie, Yoav; Ron, Efrat; Santo, Moshe; Reif, Shimon; Elashvili, Irma; Bar, Lana; Lederkremer, Gerardo Z.
2011-01-01
Background and Aim The human asialoglycoprotein receptor is a membrane heterooligomer expressed exclusively in hepatocytes. A soluble secreted form, sH2a, arises, not by shedding at the cell surface, but by intracellular cleavage of its membrane-bound precursor, which is encoded by an alternatively spliced form of the receptor H2 subunit. Here we determined and report that sH2a, present at constant levels in serum from healthy individuals is altered upon liver fibrosis, reflecting the status of hepatocyte function. Methods We measured sH2a levels in serum using a monoclonal antibody and an ELISA assay that we developed, comparing with routine liver function markers. We compared blindly pretreatment serum samples from a cohort of 44 hepatitis C patients, which had METAVIR-scored biopsies, with 28 healthy individuals. Results sH2a levels varied minimally for the healthy individuals (150±21 ng/ml), whereas the levels deviated from this normal range increasingly in correlation with fibrosis stage. A simple algorithm combining sH2a levels with those of alanine aminotransferase allowed prediction of fibrosis stage, with a very high area under the ROC curve of 0.86. Conclusions sH2a has the potential to be a uniquely sensitive and specific novel marker for liver fibrosis and function. PMID:22096539
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
NASA Astrophysics Data System (ADS)
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
NASA Astrophysics Data System (ADS)
Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian
2017-08-01
In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.
NASA Astrophysics Data System (ADS)
Chicurel-Uziel, Enrique
2007-08-01
A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.
Revised state diagram of Laponite dispersions.
Mongondry, Philippe; Tassin, Jean François; Nicolai, Taco
2005-03-15
We propose a state diagram of charged disk-like mineral particle (Laponite) dispersions as a function of the Laponite concentration (C) and the concentration of added salt (C(s)), based on simple observation and light-scattering measurements. At low C or high C(s) the dispersions separate into two domains due to sedimentation of Laponite aggregates, while at high C and low C(s) they form homogeneous gels that do not flow upon tube reversal. The aggregation rate and the structure factor of the Laponite dispersions is determined with light scattering as a function of C and C(s). We discuss in detail the controversy on the origin of gelation of Laponite dispersions in the absence of added salt. We argue that aggregation rather than glass formation causes gelation.
Eaton, T; Young, P; Fergusson, W; Garrett, J E; Kolbe, J
2005-04-01
The negative impact of chronic obstructive pulmonary disease (COPD) on health-related quality of life (HRQL) is substantial. Measurement of HRQL is increasingly advocated in clinical practice; traditional outcome measures such as lung function are poorly responsive. However many HRQL tools are not user-friendly in the clinic setting. Hence HRQL is often neglected. The Dartmouth Cooperative Functional Assessment Charts (COOP) have the requisite attributes of a tool suitable for routine clinical practice: they are simple, reliable, quick and easy to perform and score and well accepted. We aimed to determine the reliability, validity and responsiveness of the COOP in patients with significant COPD. HRQL was assessed during a prospective, randomised, placebo-controlled, double-blind, 12 week cross-over interventional study of ambulatory oxygen in patients (n = 50) with COPD. Test-retest reliability of the COOP domains was only modest however it was measured over a 2 month period. Significant correlations ranging between 0.4 and 0.8 were observed between all comparable domains of the COOP and the Medical Outcomes Study 36-item Short-form Health Survey, Chronic Respiratory Questionnaire (CRQ) and Hospital Anxiety and Depression (HAD) scale. Following ambulatory oxygen significant improvements were noted in all CRQ and HAD domains. Several domains of the generic SF-36 (role emotional, social functioning, role-physical) showed significant improvements. Comparable domains of the COOP (social activities, feelings) also showed significant improvements. The COOP change in health domain improved very significantly. The COOP is a simple, reliable HRQL tool which proved valid and responsive in our study population of COPD patients and may have a valuable role in routine clinical practice.
Why are the seed cones of conifers so diverse at pollination?
Losada, Juan M; Leslie, Andrew B
2018-06-08
Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.
Computer Modeling of Protocellular Functions: Peptide Insertion in Membranes
NASA Technical Reports Server (NTRS)
Rodriquez-Gomez, D.; Darve, E.; Pohorille, A.
2006-01-01
Lipid vesicles became the precursors to protocells by acquiring the capabilities needed to survive and reproduce. These include transport of ions, nutrients and waste products across cell walls and capture of energy and its conversion into a chemically usable form. In modem organisms these functions are carried out by membrane-bound proteins (about 30% of the genome codes for this kind of proteins). A number of properties of alpha-helical peptides suggest that their associations are excellent candidates for protobiological precursors of proteins. In particular, some simple a-helical peptides can aggregate spontaneously and form functional channels. This process can be described conceptually by a three-step thermodynamic cycle: 1 - folding of helices at the water-membrane interface, 2 - helix insertion into the lipid bilayer and 3 - specific interactions of these helices that result in functional tertiary structures. Although a crucial step, helix insertion has not been adequately studied because of the insolubility and aggregation of hydrophobic peptides. In this work, we use computer simulation methods (Molecular Dynamics) to characterize the energetics of helix insertion and we discuss its importance in an evolutionary context. Specifically, helices could self-assemble only if their interactions were sufficiently strong to compensate the unfavorable Free Energy of insertion of individual helices into membranes, providing a selection mechanism for protobiological evolution.
Moussaoui, Ahmed; Bouziane, Touria
2016-01-01
The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.
2017-07-01
In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.
Milroy, B C; Sackelariou, R P; Lendvay, P G; Baldwin, M R; McGlynn, M
1991-01-01
This paper describes a simple method of classification and evaluation of the functional results of replanted and revascularized parts in the hand. The results are presented in graphic form and have been analyzed to correlate various factors: injured part, cause, and zone (level) of injury. The type of injury, ischemic time and age have been studied in more detail to determine their influence of the final functional result. The series contains 187 amputated and devascularized parts of the hand in 119 patients who have undergone surgery at the Prince of Wales Hospital from 1984 through 1988. The length of cold or warm ischemic times, up to 16 hours in this series, while not affecting survival of the amputated part, does adversely affect the functional result. The survival rate of replanted parts in children was significantly less favorable than in adults, but the functional results were uniformly superior.
Scrunching: a novel escape gait in planarians
NASA Astrophysics Data System (ADS)
Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.
2015-10-01
The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.
Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben
2015-01-01
Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763
TET Explorers: Pushing back the frontiers of Science
NASA Astrophysics Data System (ADS)
Curtis, S. A.; Clark, P. E.; Garvin, J. B.; Rilee, M. L.; Dorband, J. E.; Cheung, C. Y.; Sams, J. E.
2005-12-01
We are in the process of developing Tetrahedral Explorer Technologies (TETs) for the extreme mobility needed to explore remote, rugged terrain. TET architecture is based on the tetrahedron as building block, acting singly or interconnected, where apices act as nodes from which struts reversibly deploy. Conformable tetrahedra are the simplest space-filling form the way triangles are the simplest plane-filling facets. The tetrahedral framework acts as a simple skeletal muscular structure. Reconfigurable architecture is essential in exploration because reaching features of the greatest potential interest requires crossing a wide range of terrains. Thus, areas of interest are relatively inaccessible to permanently appendaged vehicles. For example, morphology and geochemistry of interior basins, walls, and ejecta blankets of impact structures must all be studied to understand the nature of an impact event. The crater floor might be relatively flat and navigable, while typical crater walls are variably sloping, and dominated by unconsolidated debris. To be totally functional, structures must form pseudo-appendages varying in size, rate, and manner of deployment (gait). We have already prototyped a simple robotic walker from a single reconfigurable tetrahedron capable of tumbling and are simulating and building a prototype of the more evolved 12Tetrahedral Walker (Autonomous Lunar Investigator) which has interior nodes for payload, more continuous motion, and is commandable through a user friendly interface. Our current applications consist of a more differentiated architecture to form detachable, reconfigurable, reshapable linearly extendable bodies (Class W or Worm), ranging from arms terminating in opposable digits (Class S or Spider) to act as manual assistant subsystems on rovers, to autonomous pseudo-hominid clamberers (Class M or Mammal), with extensions terminating in a wider range of sensors. We are now simulating Class W and Class S gaits and will be building a prototype rover arm. Ultimately, complex continuous n-tetrahedral structures, more advanced versions of Class A, will have deployable outer skin, and even higher degrees of freedom. Combined high and low level intelligence through an extended neural interface will allow `shape shifting' for required function, from surface-conformable lander to amorphous rover to concave surface formation for antenna function. Such architecture will consist of reusable, reconfigurable, mobile, and self-repairing structures, capable of acting as a multi-functional infrastructure. TET systems will act as robotic adjuncts to human explorers, enabling access to otherwise inaccessible resources essential to sustaining human presence.
Yusakul, Gorawit; Nuntawong, Poomraphie; Sakamoto, Seiichi; Ratnatilaka Na Bhuket, Pahweenvaj; Kohno, Toshitaka; Kikkawa, Nao; Rojsitthisak, Pornchai; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi
2017-01-01
Due to the highly specific binding between an antibody and its target, superior analytical performances was obtained by immunoassays for phytochemical analysis over conventional chromatographic techniques. Here, we describe a simple method for producing a functional single-chain variable fragment (scFv) antibody against ganoderic acid A (GAA), a pharmacologically active metabolite from Ganoderma lingzhi. The Escherichia coli BL21(DE3) strain produced a large amount of anti-GAA scFv. However, in vitro refolding steps, which partially recovered the reactivity of the scFv, were required. Interestingly, the functional scFv was expressed as a soluble and active form in the cytoplasm of an engineered E. coli SHuffle ® strain. Purified anti-GAA scFv, which yielded 2.56 mg from 1 L of culture medium, was obtained from simple and inexpensive procedures for expression and purification. The anti-GAA scFv-based indirect competitive enzyme-linked immunosorbent assay (icELISA) exhibited high sensitivity (linearity: 0.078-1.25 µg/mL) with precision (CV: ≤6.20%) and reliability (recovery: 100.1-101.8%) for GAA determination. In summary, the approach described here is an inexpensive, simple, and efficient expression system that extends the application of anti-GAA scFv-based immunoassays. In addition, when in vitro refolding steps can be skipped, the cost and complexity of scFv antibody production can be minimized.
Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven
2011-12-23
The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sefcik, Jan
1998-05-01
Reaction equilibrium can be mathematically described by the equilibrium equation and the reaction equilibrium composition can be calculated by solving this equation. It can be proved by non-elementary thermodynamic arguments that for a generic system with given initial composition, temperature and pressure there is a unique stable equilibrium state corresponding to the global minimum of the Gibbs free energy function. However, when the concept of equilibrium is introduced in undergraduate chemistry and chemical engineering courses, such arguments are generally not accessible. When there is a single reaction equilibrium among mixture components and the components form an ideal mixture, it has been demonstrated by a simple, elegant mathematical argument that there is a unique composition satisfying the equilibrium equation. It has been also suggested that this particular argument extends to non-ideal mixtures by simply incorporating activity coefficients. We show that the argument extension to non-ideal systems is not generally valid. Increasing non-ideality can result in non-monotonicity of the function crucial for the simple uniqueness argument, and only later it leads to non-uniqueness and hence phase separation. The main feature responsible for this is a composition dependence of activity coefficients in non-ideal mixtures.
Shen, Jian; Hua, Baozhen
2013-08-01
Male adults of Panorpidae possess a special sperm pump, through which the males transfer liquid sperm to the females. However, the structures of the sperm pump and the transfer mechanism have not been satisfactorily elucidated hitherto. In this paper the structures of the ejaculatory sac and sperm pump of the scorpionfly Panorpa liui Hua were investigated using light microscopy and scanning electron microscopy. The ejaculatory sac is located between the basal end of the paired vasa deferentia and the aedeagus, comprising a small anterior part and a large posterior part. The anterior part is simple and functions only as a channel for sperm transfer. The epithelial cells of the large posterior part likely have secretory functions. The sperm pump is formed by the posterior region of the ejaculatory sac and derivates of the genital field, which enclose the pumping chamber, a piston and the associated muscles. The orifice of the ejaculatory duct lies ventrad of the piston. The piston of the sperm pump is heavily sclerotized and controlled by two antagonistic muscle pairs. A pair of simple tubular accessory glands opens to the pumping chamber. Two well-developed sex pheromone glands are located on the ventral side of the ejaculatory sac, and are composed of two fan-shaped lamellae. The epithelium of the sex pheromone glands is single-layered, and forms densely filamentous processes. The ejaculation mechanism is briefly discussed based on the morphology of ejaculatory sac and sperm pump. Copyright © 2013 Elsevier Ltd. All rights reserved.
Membrane peptides and their role in protobiological evolution
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Chipot, Christophe
2003-01-01
How simple membrane peptides performed such essential protocellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we explain how these peptides fold at water-membrane interfaces, insert into membranes, self-assemble into higher-order structures and acquire functions. We have investigated the interfacial behavior and folding of several peptides built of leucine and glutamine residues and have demonstrated that many of them tend to adopt ordered structures. Further, we have studied the insertion of an alpha-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)3 into a model membrane. The transmembrane state is metastable, and approximately 15 kcal mol(-1) is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)3 and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self-assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to re-engineer the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.
Health-Related Benefits of Attaining the 8-Hr Ozone Standard
Hubbell, Bryan J.; Hallberg, Aaron; McCubbin, Donald R.; Post, Ellen
2005-01-01
During the 2000–2002 time period, between 36 and 56% of ozone monitors each year in the United States failed to meet the current ozone standard of 80 ppb for the fourth highest maximum 8-hr ozone concentration. We estimated the health benefits of attaining the ozone standard at these monitors using the U.S. Environmental Protection Agency’s Environmental Benefits Mapping and Analysis Program. We used health impact functions based on published epidemiologic studies, and valuation functions derived from the economics literature. The estimated health benefits for 2000 and 2001 are similar in magnitude, whereas the results for 2002 are roughly twice that of each of the prior 2 years. The simple average of health impacts across the 3 years includes reductions of 800 premature deaths, 4,500 hospital and emergency department admissions, 900,000 school absences, and > 1 million minor restricted activity days. The simple average of benefits (including premature mortality) across the 3 years is $5.7 billion [90% confidence interval (CI), 0.6–15.0] for the quadratic rollback simulation method and $4.9 billion (90% CI, 0.5–14.0) for the proportional rollback simulation method. Results are sensitive to the form of the standard and to assumptions about background ozone levels. If the form of the standard is based on the first highest maximum 8-hr concentration, impacts are increased by a factor of 2–3. Increasing the assumed hourly background from zero to 40 ppb reduced impacts by 30 and 60% for the proportional and quadratic attainment simulation methods, respectively. PMID:15626651
Catalytic activation of carbon-carbon bonds in cyclopentanones.
Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin
2016-11-24
In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.
Structure and functions of simple membrane-water interfaces. [Abstract only
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1994-01-01
The structure and functions of the earliest ancestors of contemporary cells are focal points in studies of the origin of life. Probably the first cell-like structures were vesicles - closed, spheroidal structures with aqueous medium trapped inside. The membranous walls of vesicles were most likely bilayers composed of simple amphiphilic material available on early earth. The membrane studied was composed of glycerol 1-monooleate (GMO). Glycerol forms the polar head group and the oily tail contains 18 carbon atoms. All head groups have been found to be located in two narrow regions at the interfaces with water. The membrane interior, formed by the hydrophobic tails, is quite fluid with chain disorder increasing towards the center of the bilayer. These results are in agreement with x-ray and neutron scattering data from related bilayers. The width of the membrane is not constant, but fluctuates in time and space. Occasional thinning defects in the membrane, observed during the course of the simulations, may have a significant influence on rates of passive transport of small molecules across membranes. It has been found that water penetrates the head group region but not the oily interior of the membrane. Water molecules near the interface are oriented by dipoles of the head groups. The resulting electrostatic potential across the interface, determined in our simulations, has been found to be markedly larger than across the water-oil interface. This quantity has been implicated as the source of selectivity, with respect to the sign of the charge, as an ion approaches the interface and during transport of hydrophobic ions across membranes.
The impact of a low cost wheelchair on the quality of life of the disabled in the developing world.
Shore, Susan; Juillerat, Stephanie
2012-09-01
People with disabilities in the developing world do not have equal and adequate access to education, employment, or medical care. Their physical or mental condition, compounded by a lack of financial and technological resources, imposes a burden on both the family and the State. A wheelchair is a form of assistive technology which eases that burden for many. This study examines the impact of a simple, donated chair on the health, quality of life, and function of a subject population. Surveys were administered to 519 disabled recipients of a semi-rigid depot style wheelchair in 3 different countries at the time they received their chair and again after 12 months of use. Surveys evaluated physical and emotional health, functional independence, and lifestyle. On initial reports, 46.6% of subjects said they never left home, 52.3% were hospitalized one or more days/month, 70.3% reported daily pain, and 48.7% reported a negative mood state. Following 12 months of using the wheelchair, both the reported overall health rating and mood state increased by 20%; pain was significantly diminished. Although some areas in the ICF function measure improved more than others, the overall reported level of independence rose by 11%. A representative sample of the disabled in 3 countries of the world is socially isolated, in poor health, and with limited function. Receipt of a simple, depot style wheelchair significantly improved their quality of life, health indicators, and the ICF function measure following 12 months of use.
Gaussian windows: A tool for exploring multivariate data
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1990-01-01
Presented here is a method for interactively exploring a large set of quantitative multivariate data, in order to estimate the shape of the underlying density function. It is assumed that the density function is more or less smooth, but no other specific assumptions are made concerning its structure. The local structure of the data in a given region may be examined by viewing the data through a Gaussian window, whose location and shape are chosen by the user. A Gaussian window is defined by giving each data point a weight based on a multivariate Gaussian function. The weighted sample mean and sample covariance matrix are then computed, using the weights attached to the data points. These quantities are used to compute an estimate of the shape of the density function in the window region. The local structure of the data is described by a method similar to the method of principal components. By taking many such local views of the data, we can form an idea of the structure of the data set. The method is applicable in any number of dimensions. The method can be used to find and describe simple structural features such as peaks, valleys, and saddle points in the density function, and also extended structures in higher dimensions. With some practice, we can apply our geometrical intuition to these structural features in any number of dimensions, so that we can think about and describe the structure of the data. Since the computations involved are relatively simple, the method can easily be implemented on a small computer.
Wang, Zhenhong
2017-01-01
The current rates of biodiversity loss have exceeded the rates observed during the earth’s major extinction events, which spurs the studies of the ecological relationships between biodiversity and ecosystem functions, stability, and services to determine the consequences of biodiversity loss. Plant species richness-productivity relationship (SRPR) is crucial to the understanding of these relationships in plants. Most ecologists have reached a widespread consensus that the loss of plant diversity undoubtedly impairs ecosystem functions, and have proposed many processes to explain the SRPR. However, none of the available studies has satisfactorily described the forms and mechanisms clarifying the SRPR. Observed results of the SRPR forms are inconsistent, and studies have long debated the ecological processes explaining the SRPR. Here, I have developed a simple model that combines the positive and/or negative effects of sixteen ecological processes on the SRPR and models that describe the dynamics of complementary-selection effect, density effect, and the interspecific competitive stress influenced by other ecological processes. I can regulate the strengths of the effects of these ecological processes to derive the asymptotic, positive, humped, negative, and irregular forms of the SRPR, and verify these forms using the observed data. The results demonstrated that the different strengths of the ecological processes determine the forms of the SRPR. The forms of the SRPR can change with variations in the strengths of the ecological processes. The dynamic characteristics of the complementary-selection effect, density effect, and the interspecific competitive stress on the SRPR are diverse, and are dependent on the strengths and variation of the ecological processes. This report explains the diverse forms of the SRPR, clarifies the integrative effects of the different ecological processes on the SRPR, and deepens our understanding of the interactions that occur among these ecological processes. PMID:29140995
Tajiri, Shinichiro; Kanamaru, Taro; Kamada, Makoto; Makoto, Kamada; Konno, Tsutomu; Nakagami, Hiroaki
2010-01-04
The objective of the present work is to develop an extended-release dosage form of cevimeline. Two types of extended-release tablets (simple matrix tablets and press-coated tablets) were prepared and their potential as extended-release dosage forms were assessed. Simple matrix tablets have a large amount of hydroxypropylcellulose as a rate-controlling polymer and the matrix is homogeneous throughout the tablet. The press-coated tablets consisted of a matrix core tablet, which was completely surrounded by an outer shell containing a large amount of hydroxypropylcellulose. The simple matrix tablets could not sustain the release of cevimeline effectively. In contrast, the press-coated tablets showed a slower dissolution rate compared with simple matrix tablets and the release curve was nearly linear. The dissolution of cevimeline from the press-coated tablets was not markedly affected by the pH of the dissolution medium or by a paddle rotating speed over the range of 50-200 rpm. Furthermore, cevimeline was constantly released from the press-coated tablets in the gastrointestinal tract and the steady-state plasma drug levels were maintained in beagle dogs. These results suggested that the designed PC tablets have a potential for extended-release dosage forms.
Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin
2016-01-01
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435
A simple model for indentation creep
NASA Astrophysics Data System (ADS)
Ginder, Ryan S.; Nix, William D.; Pharr, George M.
2018-03-01
A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.
The action uncertainty principle and quantum gravity
NASA Astrophysics Data System (ADS)
Mensky, Michael B.
1992-02-01
Results of the path-integral approach to the quantum theory of continuous measurements have been formulated in a preceding paper in the form of an inequality of the type of the uncertainty principle. The new inequality was called the action uncertainty principle, AUP. It was shown that the AUP allows one to find in a simple what outputs of the continuous measurements will occur with high probability. Here a more simple form of the AUP will be formulated, δ S≳ħ. When applied to quantum gravity, it leads in a very simple way to the Rosenfeld inequality for measurability of the average curvature.
Persistent homology of time-dependent functional networks constructed from coupled time series
NASA Astrophysics Data System (ADS)
Stolz, Bernadette J.; Harrington, Heather A.; Porter, Mason A.
2017-04-01
We use topological data analysis to study "functional networks" that we construct from time-series data from both experimental and synthetic sources. We use persistent homology with a weight rank clique filtration to gain insights into these functional networks, and we use persistence landscapes to interpret our results. Our first example uses time-series output from networks of coupled Kuramoto oscillators. Our second example consists of biological data in the form of functional magnetic resonance imaging data that were acquired from human subjects during a simple motor-learning task in which subjects were monitored for three days during a five-day period. With these examples, we demonstrate that (1) using persistent homology to study functional networks provides fascinating insights into their properties and (2) the position of the features in a filtration can sometimes play a more vital role than persistence in the interpretation of topological features, even though conventionally the latter is used to distinguish between signal and noise. We find that persistent homology can detect differences in synchronization patterns in our data sets over time, giving insight both on changes in community structure in the networks and on increased synchronization between brain regions that form loops in a functional network during motor learning. For the motor-learning data, persistence landscapes also reveal that on average the majority of changes in the network loops take place on the second of the three days of the learning process.
A data-driven model for influenza transmission incorporating media effects.
Mitchell, Lewis; Ross, Joshua V
2016-10-01
Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of 'big data' coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.
Synaptic scaffold evolution generated components of vertebrate cognitive complexity
Nithianantharajah, J.; Komiyama, N.H.; McKechanie, A.; Johnstone, M.; Blackwood, D. H.; St Clair, D.; Emes, R.D.; van de Lagemaat, L. N.; Saksida, L.M.; Bussey, T.J.; Grant, S.G.N.
2014-01-01
The origins and evolution of higher cognitive functions including complex forms of learning, attention and executive functions are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 My ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in all four Dlg paralogs show simple associative learning required Dlg4, while Dlg2 and Dlg3 diversified to play opposing roles in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed Dlg2’s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 My. Dlg family mutations underlie psychiatric disorders suggesting genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness. PMID:23201973
NASA Technical Reports Server (NTRS)
Tobak, Murray
1954-01-01
The concept of indicial aerodynamic functions is applied to the analysis of the short-period pitching mode of aircraft. By the use of simple physical relationships associated with the indicial-function relationships concept, quantitative studies are made of the separate effects on the damping in pitch of changes in Mach number, aspect ratio, plan-form shape, and frequency. The concept is further shown to be of value in depicting physically the induced effects on a tail surface which follows in the wake of a starting forward surface. Considerable effort is devoted to the development of theoretical techniques whereby the transient response in lift at the tail to the wing wake may be estimated. Numerical results for several representative cases are presented, and these are analyzed to reassess the importance of the contribution to the rotary damping moment of the interference lift at the tail.
Constructing a polynomial whose nodal set is the three-twist knot 52
NASA Astrophysics Data System (ADS)
Dennis, Mark R.; Bode, Benjamin
2017-06-01
We describe a procedure that creates an explicit complex-valued polynomial function of three-dimensional space, whose nodal lines are the three-twist knot 52. The construction generalizes a similar approach for lemniscate knots: a braid representation is engineered from finite Fourier series and then considered as the nodal set of a certain complex polynomial which depends on an additional parameter. For sufficiently small values of this parameter, the nodal lines form the three-twist knot. Further mathematical properties of this map are explored, including the relationship of the phase critical points with the Morse-Novikov number, which is nonzero as this knot is not fibred. We also find analogous functions for other simple knots and links. The particular function we find, and the general procedure, should be useful for designing knotted fields of particular knot types in various physical systems.
Quantum integrability and functional equations
NASA Astrophysics Data System (ADS)
Volin, Dmytro
2010-03-01
In this thesis a general procedure to represent the integral Bethe Ansatz equations in the form of the Reimann-Hilbert problem is given. This allows us to study in simple way integrable spin chains in the thermodynamic limit. Based on the functional equations we give the procedure that allows finding the subleading orders in the solution of various integral equations solved to the leading order by the Wiener-Hopf technics. The integral equations are studied in the context of the AdS/CFT correspondence, where their solution allows verification of the integrability conjecture up to two loops of the strong coupling expansion. In the context of the two-dimensional sigma models we analyze the large-order behavior of the asymptotic perturbative expansion. Obtained experience with the functional representation of the integral equations allowed us also to solve explicitly the crossing equations that appear in the AdS/CFT spectral problem.
Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.
Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M
2010-08-17
We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.
NASA Astrophysics Data System (ADS)
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
NASA Astrophysics Data System (ADS)
Sawant, V. J.; Bamane, S. R.; Shejwal, R. V.; Patil, S. B.
2016-11-01
The functionalization and surface engineering of CoFe2O4 and ZnFe2O4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV-vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids.
A limit for large R-charge correlators in N = 2 theories
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.
2018-05-01
Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.
A strategy for reducing gross errors in the generalized Born models of implicit solvation
Onufriev, Alexey V.; Sigalov, Grigori
2011-01-01
The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947
Dispersive Raman spectroscopy allows the identification and quantification of melanin types
Galván, Ismael; Jorge, Alberto
2015-01-01
Melanins are the most prevalent pigments in animals and are involved in visual communication by producing colored traits that often evolve as intraspecific signals of quality. Identifying and quantifying melanins are therefore essential to understand the function and evolution of melanin-based signals. However, the analysis of melanins is difficult due to their insolubility and the lack of simple methods that allow the identification of their chemical forms. We recently proposed the use of Raman spectroscopy as a simple, noninvasive technique that can be used to identify and quantify melanins in feathers and hairs. Contrarily, other authors later stated that melanins are characterized by a lack of defined Raman signals. Here, we use confocal Raman microscopy to confirm previous analyses showing that the two main chemical forms of melanins (eumelanin and pheomelanin) exhibit distinct Raman signal and compare different excitation wavelengths to analyze synthetic pheomelanin and natural melanins in feathers of different species of birds. Our analyses indicate that only laser excitation wavelengths below 1064 nm are useful for the analysis of melanins by Raman spectroscopy, and only 780-nm laser in the case of melanins in feathers. These findings show that the capacity of Raman spectroscopy to distinguish different chemical forms of melanins depends on laser power and integration time. As a consequence, Raman spectroscopy should be applied after preliminar analyses using a range of these parameters, especially in fragile biological tissues such as feathers. PMID:25897382
Molecular Diffusion through Cyanobacterial Septal Junctions.
Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique
2017-01-03
Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions, although their molecular components appear unrelated. Like metazoan gap junctions, the septal junctions of cyanobacteria allow the rapid intercellular exchange of small molecules, without stringent selectivity. Our finding expands the repertoire of mechanisms for molecular transfer across the plasma membrane in prokaryotes. Copyright © 2017 Nieves-Morión et al.
NASA Astrophysics Data System (ADS)
Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.
2017-09-01
We present the results of a study investigating the dust attenuation law at z ≃ 5, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N = 498 galaxies drawn from the First Billion Years (FiBY) simulation project. The simulated galaxies at z ≃ 5, which have M1500 ≤ -18.0 and 7.5 ≤ log(M/M}_{⊙}) ≤ 10.2, display a mass-dependent α-enhancement, with a median value of [α /{Fe}]_{z=5} ˜eq 4 × [α /{Fe}]_{Z_{⊙}}. The median Fe/H ratio of the simulated galaxies is 0.14 ± 0.05 which produces steep intrinsic ultraviolet (UV) continuum slopes; 〈βI〉 = -2.4 ± 0.05. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form A(λ) ∝ λn, we explore the parameter values which best reproduce the observed z = 5 luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass (A1500 = 0.5 × log(M/M⊙) - 3.3), and the dust attenuation slope (n) is within the range -0.7 ≤ n ≤ -0.3, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model assumptions, including the effects of massive binaries. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV (n = -0.55). In contrast, curves as steep as the Small Magellanic Cloud extinction curve (n = -1.24) are formally ruled out. Finally, we show that our models are consistent with recent 1.3 mm Atacama Large Millimeter Array observations of the Hubble Ultra Deep Field, and predict the form of the z ≃ 5 infrared excess (IRX)-β relation.
A novel method of the image processing on irregular triangular meshes
NASA Astrophysics Data System (ADS)
Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta
2018-04-01
The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).
General method of solving the Schroedinger equation of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsuji, Hiroshi
2005-12-15
We propose a general method of solving the Schroedinger equation of atoms and molecules. We first construct the wave function having the exact structure, using the ICI (iterative configuration or complement interaction) method and then optimize the variables involved by the variational principle. Based on the scaled Schroedinger equation and related principles, we can avoid the singularity problem of atoms and molecules and formulate a general method of calculating the exact wave functions in an analytical expansion form. We choose initial function {psi}{sub 0} and scaling g function, and then the ICI method automatically generates the wave function that hasmore » the exact structure by using the Hamiltonian of the system. The Hamiltonian contains all the information of the system. The free ICI method provides a flexible and variationally favorable procedure of constructing the exact wave function. We explain the computational procedure of the analytical ICI method routinely performed in our laboratory. Simple examples are given using hydrogen atom for the nuclear singularity case, the Hooke's atom for the electron singularity case, and the helium atom for both cases.« less
Bubble nucleation in simple and molecular liquids via the largest spherical cavity method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.
2015-04-21
In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less
Judicious distribution of laser emitters to shape the desired far-field patterns
NASA Astrophysics Data System (ADS)
Valagiannopoulos, Constantinos A.; Kovanis, Vassilios
2017-06-01
The far-field pattern of a simple one-dimensional laser array of emitters radiating into free space is considered. In the course of investigating the inverse problem for their near fields leading to a target beam form, surprisingly, we found that the result is successful when the matrix of the corresponding linear system is not well scaled. The essence of our numerical observations is captured by an elegant inequality defining the functional range of the optical distance between two neighboring emitters. Our finding can restrict substantially the parametric space of integrated photonic systems and simplify significantly the subsequent optimizations.
Photoinduced Miyaura Borylation by a Rare Earth Photoreductant: the Hexachlorocerate(III) Anion.
Qiao, Yusen; Yang, Qiaomu; Schelter, Eric
2018-05-12
The first photoinduced sp2 carbon-heteroatom bond forming reaction by a rare earth photoreductant, a Miyaura borylation, has been achieved. This simple, scalable, and novel borylation method that makes use of the hexachlorocerate(III) anion, [CeIIICl6]3-, has a broad substrate scope and functional group tolerance and can be conducted at room temperature. Combined with Suzuki-Miyaura cross-coupling, the methodology is applicable to the synthesis of various biaryl products, including through the use of aryl chloride substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.
1995-06-27
A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.
Cluster kinetics model of particle separation in vibrated granular media.
McCoy, Benjamin J; Madras, Giridhar
2006-01-01
We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime.
Symposium on Information Processing in Organizations.
1982-04-01
components of the equation for V are of the form: J+l 14 Ij+l flj (V1. Uj + l , e) , (2) j+1 i i Y J+l f2j (Y¥ Z e, ej) . (3) Furthermore, it will...given by , wj~ ( -m -u I , - q , (8) J P tD -ii+ l wj4 I -mI -1jot where q; Is the pdf of the standard normal distribution and mj =0 or x according as U...function of frequency of mention, but also the linguistic qualifiers employed ! td the structure of the overall explanation. Still, a simple count of the
Developing the Polynomial Expressions for Fields in the ITER Tokamak
NASA Astrophysics Data System (ADS)
Sharma, Stephen
2017-10-01
The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomena are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.
Expressions for Fields in the ITER Tokamak
NASA Astrophysics Data System (ADS)
Sharma, Stephen
2017-10-01
The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomenon are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.
Nano-functionalization of protein microspheres
NASA Astrophysics Data System (ADS)
Yoon, Sungkwon; Nichols, William T.
2014-08-01
Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.
A Functional Data Model Realized: LaTiS Deployments
NASA Astrophysics Data System (ADS)
Baltzer, T.; Lindholm, D. M.; Wilson, A.; Putnam, B.; Christofferson, R.; Flores, N.; Roughton, S.
2016-12-01
At prior AGU annual meetings, members of the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) Web Team have described work being done on a functional data model and the software framework called LaTis, that implements it. This presentation describes the evolution of LaTiS and presents several instances of LaTiS in operation today that demonstrate its various capabilities. With LaTiS, serving a new dataset can be a simple as adding a small descriptor file. From providing access to spacecraft telemetry data in a variety of forms for the LASP missions operation group, to providing access to scientific data for the MMS and MAVEN science teams, to server-side functionality such as fusing satellite visible and infrared data along with forecast model data into a Geotiff image for situational awareness purposes, LaTiS has demonstrated itself as a highly flexible, standards-based framework that provides easy data access, dynamic reformatting, and customizable server side functionality.
On defense strategies for system of systems using aggregated correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Imam, Neena; Ma, Chris Y. T.
2017-04-01
We consider a System of Systems (SoS) wherein each system Si, i = 1; 2; ... ;N, is composed of discrete cyber and physical components which can be attacked and reinforced. We characterize the disruptions using aggregate failure correlation functions given by the conditional failure probability of SoS given the failure of an individual system. We formulate the problem of ensuring the survival of SoS as a game between an attacker and a provider, each with a utility function composed of asurvival probability term and a cost term, both expressed in terms of the number of components attacked and reinforced.more » The survival probabilities of systems satisfy simple product-form, first-order differential conditions, which simplify the Nash Equilibrium (NE) conditions. We derive the sensitivity functions that highlight the dependence of SoS survival probability at NE on cost terms, correlation functions, and individual system survival probabilities.We apply these results to a simplified model of distributed cloud computing infrastructure.« less
B-spline tight frame based force matching method
NASA Astrophysics Data System (ADS)
Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei
2018-06-01
In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.
NASA Astrophysics Data System (ADS)
Ochoa, Diego Alejandro; García, Jose Eduardo
2016-04-01
The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.
The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles
Azulay, Aharon; Zaslaver, Alon
2016-01-01
A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available. PMID:27606684
Self-assembled diatom substrates with plasmonic functionality
NASA Astrophysics Data System (ADS)
Kwon, Sun Yong; Park, Sehyun; Nichols, William T.
2014-04-01
Marine diatoms have an exquisitely complex exoskeleton that is promising for engineered surfaces such as sensors and catalysts. For such applications, creating uniform arrays of diatom frustules across centimeter scales will be necessary. Here, we present a simple, low-cost floating interface technique to self-assemble the diatom frustules. We show that well-prepared diatoms form floating hexagonal close-packed arrays at the air-water interface that can be transferred directly to a substrate. We functionalize the assembled diatom surfaces with gold and characterize the plasmonic functionality by using surface enhanced Raman scattering (SERS). Thin gold films conform to the complex, hierarchical diatom structure and produce a SERS enhancement factor of 2 × 104. Small gold nanoparticles attached to the diatom's surface produce a higher enhancement of 7 × 104 due to stronger localization of the surface plasmons. Taken together, the large-scale assembly and plasmonic functionalization represent a promising platform to control the energy and the material flows at a complex surface for applications such as sensors and plasmonic enhanced catalysts.
NASA Astrophysics Data System (ADS)
Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.
2008-10-01
Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.
A new mouthstick prosthesis for handicapped patients.
Lutwak, E
1977-01-01
Most mouthstick prostheses previously described in the literature have severely limited application or availability. They are either highly specific and sophisticated and difficult to fabricate or very crude and unifunctional. Most do not conform to basic functional and physiologic criteria as outlined, nor are they sufficiently flexible to meet the various needs and physical capabilities of of a wide spectrum of patients. The prosthesis described is adaptable, and with the basic bite-stick and the friction-grip lock, the patient can change the form and function of the device to perform various tasks independently. The prosthesis is simple, inexpensive, and easy to fabricate and repair, and it needs no specialized or sophisticated parts. It enables handicapped patients to attain a greater degree of self-sufficiency than was previously possible, which improves their mental outlook.
Time-frequency analysis of acoustic scattering from elastic objects
NASA Astrophysics Data System (ADS)
Yen, Nai-Chyuan; Dragonette, Louis R.; Numrich, Susan K.
1990-06-01
A time-frequency analysis of acoustic scattering from elastic objects was carried out using the time-frequency representation based on a modified version of the Wigner distribution function (WDF) algorithm. A simple and efficient processing algorithm was developed, which provides meaningful interpretation of the scattering physics. The time and frequency representation derived from the WDF algorithm was further reduced to a display which is a skeleton plot, called a vein diagram, that depicts the essential features of the form function. The physical parameters of the scatterer are then extracted from this diagram with the proper interpretation of the scattering phenomena. Several examples, based on data obtained from numerically simulated models and laboratory measurements for elastic spheres and shells, are used to illustrate the capability and proficiency of the algorithm.
Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans
Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; ...
2016-10-19
One important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water). This disrupts surfactant function and requires extensive use of undesirable and expensive chelating additives. We show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel–Crafts acylation within single layer (SPP) zeolite catalysts. Finally, these alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less
Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura
2016-11-23
An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less
Miller, Kai J; Honey, Christopher J; Hermes, Dora; Rao, Rajesh PN; denNijs, Marcel; Ojemann, Jeffrey G
2013-01-01
We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naïve decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20–50ms, they provide a powerful and widely applicable experimental tool. PMID:24018305
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl
2013-01-01
Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949
NASA Astrophysics Data System (ADS)
Fu, Han; Liu, Hong; Shen, Wenzhong
2014-11-01
Fabricating functional compounds on substrates with complicated morphology has been an important topic in material science and technology, which remains a challenging issue to simultaneously achieve a high growth rate for a complex nanostructure with simple controlling factors. Here, we present a novel simple and successive method based on chemical reactions in an open reaction system manipulated by an electric field. A uniform CdS/TiO2 composite tubular structure has been fabricated in highly ordered TiO2 nanotube arrays in a very short time period (~90 s) under room temperature (RT). The content of CdS in the resultant and its crystalline structure was tuned by the form and magnitude of external voltage. The as-formed structure has shown a quite broad and bulk-like light absorption spectrum with the absorption of photon energy even below that of the bulk CdS. The as-fabricated-sensitized solar cell based on this composite structure has achieved an efficiency of 1.43% without any chemical doping or co-sensitizing, 210% higher than quantum dot-sensitized solar cell (QDSSC) under a similar condition. Hopefully, this method can also easily grow nanostructures based on a wide range of compound materials for energy science and electronic technologies, especially for fast-deploying devices.
Reputation management promotes strategic adjustment of service quality in cleaner wrasse.
Binning, Sandra A; Rey, Olivia; Wismer, Sharon; Triki, Zegni; Glauser, Gaétan; Soares, Marta C; Bshary, Redouan
2017-08-21
Adjusting one's behaviour in response to eavesdropping bystanders is considered a sophisticated social strategy, yet the underlying mechanisms are not well studied. Cleaner wrasse, Labroides dimidiatus, cooperate by eating ectoparasites off "client" fishes, or cheat (i.e. bite) and eat client mucus. Image scoring by bystander clients generally causes cleaners from socially-complex (i.e. high cleaner and client abundance; high client species richness) habitats to increase levels of cooperation. However, some individuals may periodically provide tactile stimulation to small resident clients, which attract bystanders close that are bitten, a form of tactical deception. Cortisol injection can reproduce this pattern. Here, we tested whether cleaners from socially-complex versus simple habitats respond differently to cortisol injections in terms of their cleaning interactions with clients. We found that only cleaners from the socially-complex habitat respond to cortisol injection with strategies functioning as tactical deception: i.e. increased tactile stimulation to small clients and increased cheating of large clients relative to small ones. At the socially-simple site, where reputation management is less important, cortisol-treated fish increased their overall levels of cheating, especially of small clients. Thus, strategic adjustments to cooperative behaviour and tactical deception are likely context-dependent, forming part of general reputation management abilities in cleaner wrasse.
Peptides at Membrane Surfaces and their Role in Prebiotic Evolution
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Chipot, Christophe; Fonda, Mark (Technical Monitor)
2002-01-01
Protocells had to transport ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilize energy and transduce environmental signals. In a series of detailed, molecular-level computer simulations we show how these peptides in contact with membranes can acquire ordered structures and functions. We have investigated the stability of a simple alpha-helical peptide containing Leucine (L) and Serine (S) of the form (LSLLLSL)3 in a model membrane system. The parallel in-plane state is the most stable configuration. The transmembrane state is metastable, and about 15 kcal/mol is required to insert the peptide into the membrane. We investigated dimes of both (LSLLLSL)3 and glycophorin A, and show how the free energy of helix association can, at least partially, offset the free energy of insertion. We have also investigated the transmembrane pore of the influenza M2 protein. This aggregate of four identical alpha-helices, each built of 25 amino acids, forms an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism, which can involve strands of hydrogen-bonded water through the pore or proton transfer through tautomerization of protein residues. The channel can be re-engineered to act as a simple proton pump.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Osterhoudt, Curtis F.
2003-04-01
Sound scattered by some objects in water exhibits isolated narrow resonances that are sufficiently large in amplitude to dominate the low-frequency scattering. Examples include the quadrupole mode of thin spherical shells and of solid plastic spheres [B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 107, 1930-1936 (2000)] and organ-pipe modes of water-filled pipes [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. This presentation concerns simple methods for approximating the scattering. In the case of spheres, ray theory for the backscattering reduces to a simple form for high-Q modes: Eq. (58) of Marston [J. Acoust. Soc. Am. 83, 25-37 (1988)]. This result gives the backscattering form function at resonance (in the usual normalization) to have the magnitude 2(2n+1)/ka. Here n is the partial wave index associated with the mode of the sphere and ka is the product of the wave number and the sphere radius. This result may also be derived directly from energy conservation and the optical theorem. Scattering amplitudes associated with high-Q organ pipe resonances of open cylindrical pipes are also derived here by a related method using the energy conservation, reciprocity, symmetry, and the optical theorem.
Babaei, Behzad; Abramowitch, Steven D.; Elson, Elliot L.; Thomopoulos, Stavros; Genin, Guy M.
2015-01-01
The viscoelastic behaviour of a biological material is central to its functioning and is an indicator of its health. The Fung quasi-linear viscoelastic (QLV) model, a standard tool for characterizing biological materials, provides excellent fits to most stress–relaxation data by imposing a simple form upon a material's temporal relaxation spectrum. However, model identification is challenging because the Fung QLV model's ‘box’-shaped relaxation spectrum, predominant in biomechanics applications, can provide an excellent fit even when it is not a reasonable representation of a material's relaxation spectrum. Here, we present a robust and simple discrete approach for identifying a material's temporal relaxation spectrum from stress–relaxation data in an unbiased way. Our ‘discrete QLV’ (DQLV) approach identifies ranges of time constants over which the Fung QLV model's typical box spectrum provides an accurate representation of a particular material's temporal relaxation spectrum, and is effective at providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete time constants are more suitable than a box spectrum. After validating the approach against idealized and noisy data, we applied the methods to analyse medial collateral ligament stress–relaxation data and identify the strengths and weaknesses of an optimal Fung QLV fit. PMID:26609064
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.
2014-06-01
Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.
Recent advances in biomimetic sensing technologies.
Johnson, E A C; Bonser, R H C; Jeronimidis, G
2009-04-28
The importance of biological materials has long been recognized from the molecular level to higher levels of organization. Whereas, in traditional engineering, hardness and stiffness are considered desirable properties in a material, biology makes considerable and advantageous use of softer, more pliable resources. The development, structure and mechanics of these materials are well documented and will not be covered here. The purpose of this paper is, however, to demonstrate the importance of such materials and, in particular, the functional structures they form. Using only a few simple building blocks, nature is able to develop a plethora of diverse materials, each with a very different set of mechanical properties and from which a seemingly impossibly large number of assorted structures are formed. There is little doubt that this is made possible by the fact that the majority of biological 'materials' or 'structures' are based on fibres and that these fibres provide opportunities for functional hierarchies. We show how these structures have inspired a new generation of innovative technologies in the science and engineering community. Particular attention is given to the use of insects as models for biomimetically inspired innovations.
[Learning and memory in Drosophila: physiologic and genetic bases].
Zhuravlev, A V; Nikitina, E A; Savvateeva-Popova, E V
2015-01-01
Elucidation of molecular mechanisms of cognitive functions is one of the major achievements in neurobiology. At most, this is due to the studies on the simple nervous systems, such as the CNS in Drosophila melanogaster. Many of its functional characteristics are pretty similar to higher vertebrates. Among these are: 1) evolutionary conservation of genes and molecular systems involved in the regulation of learning acquisition and memory formation; 2) presence of highly specialized and differentiated sensory, associative and motor centers; 3) utilization of similar modes of informational coding and analysis; 4) availability of major learning forms including non-associative, as well as associative learning; 5) diversity of different memories, including short-term- and protein synthesis- dependent long-term memory; 6) presence of aminergic reinforcement systems in the brain; 7) feed-back loops of circadian clocks, current organism experience and individual organism characters affecting cognitive process per se. In this review the main attention is paid to the two mostly studied Drosophila learning forms, namely to olfactory Iearning and courtship suppression conditioning (CCS). A separate consideration is given to the impacts of kynurenins and metabolite of actin remodeling signal cascade.
A two-step initial mass function:. Consequences of clustered star formation for binary properties
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.
2001-06-01
If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.
Dito, L
2002-01-01
Constipation is a common disease in paediatric age, with an incidence ranging from 0.3 to 8% in paediatric patients, and from 10 to 25% among paediatric gastroenterological patients. In 90-95% of cases constipation is a functional, and often due to an exclusively milky diet or, in advanced age, to an inadequate fibres intake. Among the organic forms causing constipation, especially in new-born age, Hirshsprung disease, anorectal malformations, intestinal atresiae and stenosis are frequent. Moreover, recent studies have shown that constipation is often the symptom of a cow's milk proteins intolerance, that leadis to colorectal mucosa inflammation, with peristalsis decrease and fecal slackness. In these patients a milk's proteins free diet recovers constipation. In most persistent forms, total intestinal transit time (TITT), anorectal manometry, sphynteric muscles electromyografy and defecofraphy are useful to the diagnosis. In more than 90% of cases simple diet revisions, fecal softening, evacuative suppositories and enemas recovers constipation, some times a psychological approach is useful. Furthermore, excellent results can be obtained by giving low doses of polietiltnglycol (PEG), which has been recently introduced for the treatment of functional chronic constipation.
Design of fuzzy systems using neurofuzzy networks.
Figueiredo, M; Gomide, F
1999-01-01
This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.
2011-02-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R.
2009-12-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
The structure of protoplanetary discs around evolving young stars
NASA Astrophysics Data System (ADS)
Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro
2015-03-01
The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required. Appendix A is available in electronic form at http://www.aanda.org
Wang, Yuguo; Tang, Rentao; Tao, Jin; Gao, Gui; Wang, Xiaonan; Mu, Ying; Feng, Yan
2011-09-01
For the efficient degradation and bioconversion of cellulosic biomass, it is important to efficiently disrupt and convert crystalline regions of cellulose into easily hydrolyzable regions than to simply hydrolyze cellulose. Expansin-like proteins such as swollenins have disruptive functions on lignocellulose, including crystalline cellulose, via non-hydrolytic mechanisms. In this work, we produced the swollenin from Trichoderma asperellum in Escherichia coli. The recombinant protein was then refolded into the bioactive form with simultaneous purification via a novel cellulose-assisted process. We devised a novel, simple, and efficient method to quantitatively determine the non-hydrolytic disruptive activity of swollenin on crystalline cellulose. This method is based on the synergism of the swollenin and the endoglucanase FnCel5A from Fervidobacterium nodosum. The change from crystalline regions into easily hydrolyzable forms, due to non-hydrolytic disruption, might be slight and not easily be observed. However, disrupted regions of cellulose could be hydrolyzed by FnCel5A, and reducing sugars were formed by the synergism. The disruptive function of the swollenin was quantitatively characterized by measuring the release of reducing sugars. These methods and processes will be useful for further research on non-hydrolytic disruptive bioactivities and provide novel approaches for the efficient and economical bioconversion of cellulosic biomass.
Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.
Seville, Rachel A; Nijjar, Sarbjit; Barnett, Mark W; Massé, Karine; Jones, Elizabeth A
2002-04-01
Vertebrate kidney organogenesis is characterised by the successive formation of the pronephros, the mesonephros and the metanephros. The pronephros is the first to form and is the functional embryonic kidney of lower vertebrates; although it is vestigial in higher vertebrates, it is a necessary precursor for the other kidney types. The Xenopus pronephros is a simple paired organ; each nephron consists of a single large glomus, one set of tubules and a single duct. The simple organisation of the pronephros and the amenability of Xenopus laevis embryos to manipulation make the Xenopus pronephros an attractive system in which to study organogenesis. It has been shown that pronephric tubules can be induced to form in presumptive ectodermal tissue by treatment with RA and activin. We have used this system in a subtractive hybridisation screen that resulted in the cloning of Xenopus laevis annexin IV (Xanx-4). Xanx-4 transcripts are specifically located to the developing pronephric tubules, and the protein to the luminal surface of these tubules. Temporal expression shows zygotic transcription is upregulated at the time of pronephric tubule specification and persists throughout pronephric development. The temporal and spatial expression pattern of Xanx-4 suggests it may have a role in pronephric tubule development. Overexpression of Xanx-4 yields no apparent phenotype, but Xanx-4 depletion, using morpholinos, produces a shortened, enlarged tubule phenotype. The phenotype observed can be rescued by co-injection of Xanx-4 mRNA. Although the function of annexins is not yet clear, studies have suggested a role for annexins in a number of cellular processes. Annexin IV has been shown to have an inhibitory role in the regulation of epithelial calcium-activated chloride ion conductance. The enlarged pronephric tubule phenotype observed may be attributed to incorrect modulation of exocytosis, membrane plasticity or ion channels and/or water homeostasis. In this study, we demonstrate an in vivo role for annexin IV in the development of the pronephric tubules in Xenopus laevis.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
NASA Technical Reports Server (NTRS)
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin
1989-01-01
A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.
Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng
2012-07-02
The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.
Programmable polyproteams built using twin peptide superglues
Veggiani, Gianluca; Nakamura, Tomohiko; Brenner, Michael D.; Yan, Jun; Robinson, Carol V.; Howarth, Mark
2016-01-01
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable “polyproteams” should enable exploration of a new area of biological space. PMID:26787909
Chemically programmed self-sorting of gelator networks.
Morris, Kyle L; Chen, Lin; Raeburn, Jaclyn; Sellick, Owen R; Cotanda, Pepa; Paul, Alison; Griffiths, Peter C; King, Stephen M; O'Reilly, Rachel K; Serpell, Louise C; Adams, Dave J
2013-01-01
Controlling the order and spatial distribution of self-assembly in multicomponent supramolecular systems could underpin exciting new functional materials, but it is extremely challenging. When a solution of different components self-assembles, the molecules can either coassemble, or self-sort, where a preference for like-like intermolecular interactions results in coexisting, homomolecular assemblies. A challenge is to produce generic and controlled 'one-pot' fabrication methods to form separate ordered assemblies from 'cocktails' of two or more self-assembling species, which might have relatively similar molecular structures and chemistry. Self-sorting in supramolecular gel phases is hence rare. Here we report the first example of the pH-controlled self-sorting of gelators to form self-assembled networks in water. Uniquely, the order of assembly can be predefined. The assembly of each component is preprogrammed by the pK(a) of the gelator. This pH-programming method will enable higher level, complex structures to be formed that cannot be accessed by simple thermal gelation.
Programmable polyproteams built using twin peptide superglues.
Veggiani, Gianluca; Nakamura, Tomohiko; Brenner, Michael D; Gayet, Raphaël V; Yan, Jun; Robinson, Carol V; Howarth, Mark
2016-02-02
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable "polyproteams" should enable exploration of a new area of biological space.
Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.
Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra
2016-01-01
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.
2009-06-01
Spectroscopists have long attempted to summarize what they know about small molecules in terms of a knowledge of potential energy curves or surfaces. For most of the past century, this involved deducing polynomial-expansion force-field coefficients from energy level expressions fitted to experimental data, or for diatomic molecules, by generating tables of many-digit RKR turning points from such expressions. In recent years, however, it has become increasingly common either to use high-level ab initio calculations to compute the desired potentials, or to determine parametrized global analytic potential functions from direct fits to spectroscopic data. In the former case, this invoked a need for robust, flexible, compact, and `portable' analytic potentials for summarizing the information contained in the (sometimes very large numbers of) ab initio points, and making them `user friendly'. In the latter case, the same properties are required for potentials used in the least-squares fitting procedure. In both cases, there is also a cardinal need for potential function forms that extrapolate sensibly, beyond the range of the experimental data or ab initio points. This talk will describe some recent developments in this area, and make a case for what is arguably the `best' general-purpose analytic potential function form now available. Applications to both diatomic molecules and simple polyatomic molecules will be discussed. footnote
Foundations of Swarm Intelligence: From Principles to Practice
2003-01-01
through the use of chemical substances known as pheromones which have a scent that decays over time through the process of evaporation [6, p. 26...These pheromones form the basis of what amounts to a clever, and apparently simple, communications and information storage and retrieval system. Since... pheromone strength or intensity decays over time, it also provides a very simple information processing mechanism that can implement forms of positive
A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets
ERIC Educational Resources Information Center
Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar
2014-01-01
A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…
Fragility correlates thermodynamic and kinetic properties of glass forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, C.Narayana; Viswanatha, R.; Chethana, B.K.
2015-03-15
Graphical abstract: The suggested new fragility parameter correlates viscosity and configurational entropy. - Highlights: • A new fragility function, F=ΔT/ΔC{sub p}×C{sub p}{sup l}/T{sub g} has been proposed. • A three parameter viscosity function using the new F reproduces Angell fragility plot. • A new ΔC{sub p} function is derived which directly relates Adam–Gibbs function with the fragility based viscosity function. - Abstract: In our earlier communication we proposed a simple fragility determining function, ([NBO]/V{sub m}{sup 3}T{sub g}), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, ΔC{sub p}/C{submore » p}{sup l}, introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both ΔC{sub p} and ΔT and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters ΔC{sub p}, C{sub p}{sup l}, T{sub g} and T{sub m}. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam–Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the ΔC{sub p} versus ln(T{sub r}) curves and hence the configurational entropy.« less
Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Macorini, Guido
2016-07-01
We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Zubir, Osama; Xia, Sijing; Ducker, Robert E.
We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, itmore » is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.« less
El Zubir, Osama; Xia, Sijing; Ducker, Robert E.; ...
2017-05-27
We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, itmore » is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.« less
Design of efficient and simple interface testing equipment for opto-electric tracking system
NASA Astrophysics Data System (ADS)
Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao
2016-10-01
Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.
D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen
2013-01-01
Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856
Simple method for experimentally testing any form of quantum contextuality
NASA Astrophysics Data System (ADS)
Cabello, Adán
2016-03-01
Contextuality provides a unifying paradigm for nonclassical aspects of quantum probabilities and resources of quantum information. Unfortunately, most forms of quantum contextuality remain experimentally unexplored due to the difficulty of performing sequences of projective measurements on individual quantum systems. Here we show that two-point correlations between binary compatible observables are sufficient to reveal any form of contextuality. This allows us to design simple experiments that are more robust against imperfections and easier to analyze, thus opening the door for observing interesting forms of contextuality, including those requiring quantum systems of high dimensions. In addition, it allows us to connect contextuality to communication complexity scenarios and reformulate a recent result relating contextuality and quantum computation.
Exorcising the Ghost in the Machine: Synthetic Spectral Data Cubes for Assessing Big Data Algorithms
NASA Astrophysics Data System (ADS)
Araya, M.; Solar, M.; Mardones, D.; Hochfärber, T.
2015-09-01
The size and quantity of the data that is being generated by large astronomical projects like ALMA, requires a paradigm change in astronomical data analysis. Complex data, such as highly sensitive spectroscopic data in the form of large data cubes, are not only difficult to manage, transfer and visualize, but they make traditional data analysis techniques unfeasible. Consequently, the attention has been placed on machine learning and artificial intelligence techniques, to develop approximate and adaptive methods for astronomical data analysis within a reasonable computational time. Unfortunately, these techniques are usually sub optimal, stochastic and strongly dependent of the parameters, which could easily turn into “a ghost in the machine” for astronomers and practitioners. Therefore, a proper assessment of these methods is not only desirable but mandatory for trusting them in large-scale usage. The problem is that positively verifiable results are scarce in astronomy, and moreover, science using bleeding-edge instrumentation naturally lacks of reference values. We propose an Astronomical SYnthetic Data Observations (ASYDO), a virtual service that generates synthetic spectroscopic data in the form of data cubes. The objective of the tool is not to produce accurate astrophysical simulations, but to generate a large number of labelled synthetic data, to assess advanced computing algorithms for astronomy and to develop novel Big Data algorithms. The synthetic data is generated using a set of spectral lines, template functions for spatial and spectral distributions, and simple models that produce reasonable synthetic observations. Emission lines are obtained automatically using IVOA's SLAP protocol (or from a relational database) and their spectral profiles correspond to distributions in the exponential family. The spatial distributions correspond to simple functions (e.g., 2D Gaussian), or to scalable template objects. The intensity, broadening and radial velocity of each line is given by very simple and naive physical models, yet ASYDO's generic implementation supports new user-made models, which potentially allows adding more realistic simulations. The resulting data cube is saved as a FITS file, also including all the tables and images used for generating the cube. We expect to implement ASYDO as a virtual observatory service in the near future.
Complex Autocatalysis in Simple Chemistries.
Virgo, Nathaniel; Ikegami, Takashi; McGregor, Simon
2016-01-01
Life on Earth must originally have arisen from abiotic chemistry. Since the details of this chemistry are unknown, we wish to understand, in general, which types of chemistry can lead to complex, lifelike behavior. Here we show that even very simple chemistries in the thermodynamically reversible regime can self-organize to form complex autocatalytic cycles, with the catalytic effects emerging from the network structure. We demonstrate this with a very simple but thermodynamically reasonable artificial chemistry model. By suppressing the direct reaction from reactants to products, we obtain the simplest kind of autocatalytic cycle, resulting in exponential growth. When these simple first-order cycles are prevented from forming, the system achieves superexponential growth through more complex, higher-order autocatalytic cycles. This leads to nonlinear phenomena such as oscillations and bistability, the latter of which is of particular interest regarding the origins of life.
Generalized recursive solutions to Ornstein-Zernike integral equations
NASA Astrophysics Data System (ADS)
Rossky, Peter J.; Dale, William D. T.
1980-09-01
Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.
NASA Astrophysics Data System (ADS)
Sultana, Tahmina; Takagi, Hiroaki; Morimatsu, Miki; Teramoto, Hiroshi; Li, Chun-Biu; Sako, Yasushi; Komatsuzaki, Tamiki
2013-12-01
We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule time series. The multiscale SSN is a type of hidden Markov model that takes into account both multiple states buried in the measurement and memory effects in the process of the observable whenever they exist. Most biological systems function in a nonstationary manner across multiple timescales. Combined with a recently established nonlinear time series analysis based on information theory, a simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete time series. We derived an explicit analytical expression of the autocorrelation function in terms of the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We found that our formula successfully reproduces their autocorrelation function for a wide range of timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the SSN at the longer timescales (0.1 s to ˜3 s) becomes rather complex in order to capture multiscale nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form of the EGFR-Grb2 system approximately resets all information of history or memory of the process.
Parry, A O; Rascón, C; Willis, G; Evans, R
2014-09-03
We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).
Catalytic activation of carbon–carbon bonds in cyclopentanones
Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin
2017-01-01
In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds1–13. The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds6,14. The most common tactic starts with a three- or four-membered carbon-ring system9–13, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate. PMID:27806379
Healy, Richard W.; Scanlon, Bridget R.
2010-01-01
Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.
Stefanić, I; Ljubić, I; Bonifacić, M; Sabljić, A; Asmus, K-D; Armstrong, D A
2009-04-07
A pulse radiolysis study was carried out of the reaction rate constants and kinetic isotope effects of hydroxyl-radical-induced H/D abstraction from the most-simple alpha-amino acid glycine in its anionic form in water. The rate constants and yields of three predominantly formed radical products, glycyl (NH2-*CH-CO2-), aminomethyl (NH2-*CH2), and aminyl (*NH-CH2-CO2-) radicals, as well as of their partially or fully deuterated analogs, were found to be of comparable magnitude. The primary, secondary, and primary/secondary H/D kinetic isotope effects on the rate constants were determined with respect to each of the three radicals. The unusual variety of products for such an elementary reaction between two small and simple species indicates a complex mechanism with several reactions taking place simultaneously. Thus, a theoretical modeling of the reaction mechanism and kinetics in the gas- and aqueous phase was performed by using the unrestricted density functional theory with the BB1K functional (employing the polarizable continuum model for the aqueous phase), unrestricted coupled cluster UCCSD(T) method, and improved canonical variational theory. Several hydrogen-bonded prereaction complexes and transition states were detected. In particular, the calculations pointed to a significant mechanistic role of the three-electron two-orbital (sigma/sigma* N therefore O) hemibonded prereaction complexes in the aqueous phase. A good agreement with the experimental rate constants and kinetic isotope effects was achieved by downshifting the calculated reaction barriers by 3 kcal mol(-1) and damping the NH(D) stretching frequency by a factor of 0.86.
Convoluted Quasi Sturmian basis for the two-electron continuum
NASA Astrophysics Data System (ADS)
Ancarani, Lorenzo Ugo; Zaytsev, A. S.; Zaytsev, S. A.
2016-09-01
In the construction of solutions for the Coulomb three-body scattering problem one encounters a series of mathematical and numerical difficulties, one of which are the cumbersome boundary conditions the wave function should obey. We propose to describe a Coulomb three-body system continuum with a set of two-particle functions, named Convoluted Quasi Sturmian (CQS) in. They are built using recently introduced Quasi Sturmian (QS) functions which have the merit of possessing a closed form. Unlike a simple product of two one-particle functions, by construction, the CQS functions look asymptotically like a six-dimensional outgoing spherical wave. The proposed CQS basis is tested through the study of the double ionization of helium by high-energy electron impact in the framework of the Temkin-Poet model. An adequate logarithmic-like phase factor is further included in order to take into account the Coulomb interelectronic interaction and formally build the correct asymptotic behavior when all interparticle distances are large. With such a phase-factor (that can be easily extended to take into account higher partial waves) rapid convergence of the expansion can be obtained.
Game-Theoretic strategies for systems of components using product-form utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.
Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1986-01-01
The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.
Analytically derived switching functions for exact H2+ eigenstates
NASA Astrophysics Data System (ADS)
Thorson, W. R.; Kimura, M.; Choi, J. H.; Knudson, S. K.
1981-10-01
Electron translation factors (ETF's) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical "two-center decomposition" of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the "angle variable" of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-ɛR22, where ɛ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic "optimization" scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV.
Lee, Seokho; Shin, Hyejin; Lee, Sang Han
2016-12-01
Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD-CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed-form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI. © 2016, The International Biometric Society.
2014-01-01
The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615
NASA Astrophysics Data System (ADS)
Sartori, G.; Valente, G.
2003-02-01
Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space Bbb Rn, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.
Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar
Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.
Convergence to Diagonal Form of Block Jacobi-type Processes
NASA Astrophysics Data System (ADS)
Hari, Vjeran
2008-09-01
The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.
NASA Astrophysics Data System (ADS)
Yang, Wanliang; Li, Baoshan
2014-01-01
A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods.A novel liquid template corrosion (LTC) method has been developed for the synthesis of layered silica materials with a variety of morphologies, including hollow nanospheres, trilobite-like nanoparticles, spherical particles and a film resembling the van Gogh painting `Starry Night'. Lamellar micelles and microemulsion droplets are first formed in an oil-water (O/W) mixture of ethyl acetate (EA), cetyltrimethylammonium bromide (CTAB) and water. After adding aqueous ammonia the EA becomes hydrolyzed, which results in corrosion of microemulsion droplets. These droplets subsequently act as templates for the synthesis of silica formed by hydrolysis of tetraethyl orthosilicate. The morphological evolution of silica can be tuned by varying the concentration of aqueous ammonia which controls the degree of corrosion of the microemulsion droplet templates. A possible mechanism is proposed to explain why the LTC approach affords layered silica nanostructured materials with various morphologies and nanolayer thickness (2.6-4.5 nm), rather than the usual ordered mesostructures formed in the absence of EA. Our method provides a simple way to fabricate a variety of building blocks for assembling nanomaterials with novel structures and functionality, which are not available using conventional template methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04733d
ERIC Educational Resources Information Center
Tatsumi, Tomoko; Ambridge, Ben; Pine, Julian M.
2018-01-01
This study aims to disentangle the often-confounded effects of input frequency and morphophonological complexity in the acquisition of inflection, by focusing on simple and complex verb forms in Japanese. Study 1 tested 28 children aged 3;3-4;3 on stative (complex) and simple past forms, and Study 2 tested 30 children aged 3;5-5;3 on completive…
NASA Astrophysics Data System (ADS)
Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng
2015-03-01
The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b
Interfacial mechanisms for stability of surfactant-laden films
Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.
2017-01-01
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734
Tailoring band structure and band filling in a simple cubic (IV, III)-VI superconductor
NASA Astrophysics Data System (ADS)
Kriener, M.; Kamitani, M.; Koretsune, T.; Arita, R.; Taguchi, Y.; Tokura, Y.
2018-04-01
Superconductivity and its underlying mechanisms are one of the most active research fields in condensed-matter physics. An important question is how to enhance the transition temperature Tc of a superconductor. In this respect, the possibly positive role of valence-skipping elements in the pairing mechanism has been attracting considerable interest. Here we follow this pathway and successfully enhance Tc up to almost 6 K in the simple chalcogenide SnTe known as a topological crystalline insulator by doping the valence-skipping element In substitutionally for the Sn site and codoping Se for the Te site. A high-pressure synthesis method enabled us to form single-phase solid solutions Sn1 -xInxTe1 -ySey over a wide composition range while keeping the cubic structure necessary for the superconductivity. Our experimental results are supported by density-functional theory calculations which suggest that even higher Tc values would be possible if the required doping range was experimentally accessible.
Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation
NASA Astrophysics Data System (ADS)
Podmaniczky, Frigyes; Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Gránásy, László
2017-01-01
We review recent advances made in modeling heteroepitaxy, two-step nucleation, and nucleation at the growth front within the framework of a simple dynamical density functional theory, the Phase-Field Crystal (PFC) model. The crystalline substrate is represented by spatially confined periodic potentials. We investigate the misfit dependence of the critical thickness in the StranskiKrastanov growth mode in isothermal studies. Apparently, the simulation results for stress release via the misfit dislocations fit better to the PeopleBean model than to the one by Matthews and Blakeslee. Next, we investigate structural aspects of two-step crystal nucleation at high undercoolings, where an amorphous precursor forms in the first stage. Finally, we present results for the formation of new grains at the solid-liquid interface at high supersaturations/supercoolings, a phenomenon termed Growth Front Nucleation (GFN). Results obtained with diffusive dynamics (applicable to colloids) and with a hydrodynamic extension of the PFC theory (HPFC, developed for simple liquids) will be compared. The HPFC simulations indicate two possible mechanisms for GFN.
Programmable disorder in random DNA tilings
NASA Astrophysics Data System (ADS)
Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu
2017-03-01
Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures.
Mak, D O; Webb, W W
1997-03-01
A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.
NASA Astrophysics Data System (ADS)
Czerwiński, Andrzej; Łuczko, Jan
2018-01-01
The paper summarises the experimental investigations and numerical simulations of non-planar parametric vibrations of a statically deformed pipe. Underpinning the theoretical analysis is a 3D dynamic model of curved pipe. The pipe motion is governed by four non-linear partial differential equations with periodically varying coefficients. The Galerkin method was applied, the shape function being that governing the beam's natural vibrations. Experiments were conducted in the range of simple and combination parametric resonances, evidencing the possibility of in-plane and out-of-plane vibrations as well as fully non-planar vibrations in the combination resonance range. It is demonstrated that sub-harmonic and quasi-periodic vibrations are likely to be excited. The method suggested allows the spatial modes to be determined basing on results registered at selected points in the pipe. Results are summarised in the form of time histories, phase trajectory plots and spectral diagrams. Dedicated video materials give us a better insight into the investigated phenomena.
Analytical observations on the aerodynamics of a delta wing with leading edge flaps
NASA Technical Reports Server (NTRS)
Oh, S.; Tavella, D.
1986-01-01
The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
Evaluation of wind field statistics near and inside clouds using a coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Lottman, Brian Todd
1998-09-01
This work proposes advanced techniques for measuring the spatial wind field statistics near and inside clouds using a vertically pointing solid state coherent Doppler lidar on a fixed ground based platform. The coherent Doppler lidar is an ideal instrument for high spatial and temporal resolution velocity estimates. The basic parameters of lidar are discussed, including a complete statistical description of the Doppler lidar signal. This description is extended to cases with simple functional forms for aerosol backscatter and velocity. An estimate for the mean velocity over a sensing volume is produced by estimating the mean spectra. There are many traditional spectral estimators, which are useful for conditions with slowly varying velocity and backscatter. A new class of estimators (novel) is introduced that produces reliable velocity estimates for conditions with large variations in aerosol backscatter and velocity with range, such as cloud conditions. Performance of traditional and novel estimators is computed for a variety of deterministic atmospheric conditions using computer simulated data. Wind field statistics are produced for actual data for a cloud deck, and for multi- layer clouds. Unique results include detection of possible spectral signatures for rain, estimates for the structure function inside a cloud deck, reliable velocity estimation techniques near and inside thin clouds, and estimates for simple wind field statistics between cloud layers.
Analyzing inflammatory response as excitable media
NASA Astrophysics Data System (ADS)
Yde, Pernille; Høgh Jensen, Mogens; Trusina, Ala
2011-11-01
The regulatory system of the transcription factor NF-κB plays a great role in many cell functions, including inflammatory response. Interestingly, the NF-κB system is known to up-regulate production of its own triggering signal—namely, inflammatory cytokines such as TNF, IL-1, and IL-6. In this paper we investigate a previously presented model of the NF-κB, which includes both spatial effects and the positive feedback from cytokines. The model exhibits the properties of an excitable medium and has the ability to propagate waves of high cytokine concentration. These waves represent an optimal way of sending an inflammatory signal through the tissue as they create a chemotactic signal able to recruit neutrophils to the site of infection. The simple model displays three qualitatively different states; low stimuli leads to no or very little response. Intermediate stimuli leads to reoccurring waves of high cytokine concentration. Finally, high stimuli leads to a sustained high cytokine concentration, a scenario which is toxic for the tissue cells and corresponds to chronic inflammation. Due to the few variables of the simple model, we are able to perform a phase-space analysis leading to a detailed understanding of the functional form of the model and its limitations. The spatial effects of the model contribute to the robustness of the cytokine wave formation and propagation.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.
Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P
2014-05-15
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. Copyright © 2014. Published by Elsevier Inc.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures
Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.
2014-01-01
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941
NASA Technical Reports Server (NTRS)
Madnia, C. K.; Frankel, S. H.; Givi, P.
1992-01-01
Closed form analytical expressions are obtained for predicting the limited rate of reactant conversion in a binary reaction of the type F + rO yields (1 + r) Product in unpremixed homogeneous turbulence. These relations are obtained by means of a single point Probability Density Function (PDF) method based on the Amplitude Mapping Closure. It is demonstrated that with this model, the maximum rate of the reactants' decay can be conveniently expressed in terms of definite integrals of the Parabolic Cylinder Functions. For the cases with complete initial segregation, it is shown that the results agree very closely with those predicted by employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the final results can also be expressed in terms of closed form analytical expressions which are based on the Incomplete Beta Functions. With both models, the dependence of the results on the stoichiometric coefficient and the equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture, the analytical results simplify significantly. In the mapping closure, these results are expressed in terms of simple trigonometric functions. For the Beta density model, they are in the form of Gamma Functions. In all the cases considered, the results are shown to agree well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these expressions and because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta Functions, these models are recommended for estimating the limiting rate of reactant conversion in homogeneous reacting flows. These results also provide useful insights in assessing the extent of validity of turbulence closures in the modeling of unpremixed reacting flows. Some discussions are provided on the extension of the model for treating more complicated reacting systems including realistic kinetics schemes and multi-scalar mixing with finite rate chemical reactions in more complex configurations.
Imaging with hypertelescopes: a simple modal approach
NASA Astrophysics Data System (ADS)
Aime, C.
2008-05-01
Aims: We give a simple analysis of imaging with hypertelescopes, a technique proposed by Labeyrie to produce snapshot images using arrays of telescopes. The approach is modal: we describe the transformations induced by the densification onto a sinusoidal decomposition of the focal image instead of the usual point spread function approach. Methods: We first express the image formed at the focus of a diluted array of apertures as the product R_0(α) X_F(α) of the diffraction pattern of the elementary apertures R_0(α) by the object-dependent interference term X_F(α) between all apertures. The interference term, which can be written in the form of a Fourier Series for an extremely diluted array, produces replications of the object, which makes observing the image difficult. We express the focal image after the densification using the approach of Tallon and Tallon-Bosc. Results: The result is very simple for an extremely diluted array. We show that the focal image in a periscopic densification of the array can be written as R_0(α) X_F(α/γ), where γ is the factor of densification. There is a dilatation of the interference term while the diffraction term is unchanged. After de-zooming, the image can be written as γ2 X_F(α)R_0(γ α), an expression which clearly indicates that the final image corresponds to the center of the Fizeau image intensified by γ2. The imaging limitations of hypertelescopes are therefore those of the original configuration. The effect of the suppression of image replications is illustrated in a numerical simulation for a fully redundant configuration and a non-redundant one.
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
ERIC Educational Resources Information Center
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars withmore » [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.« less
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
NASA Astrophysics Data System (ADS)
Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro
2017-08-01
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.
Evolution of natural agents: preservation, advance, and emergence of functional information.
Sharov, Alexei A
2016-04-01
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents.
Evolution of natural agents: preservation, advance, and emergence of functional information
Sharov, Alexei A.
2016-01-01
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents. PMID:27525048
Snow, David P.
2016-01-01
This study investigates infants’ transition from nonverbal to verbal communication using evidence from regression patterns. As an example of regressions, prelinguistic infants learning American Sign Language (ASL) use pointing gestures to communicate. At the onset of single signs, however, these gestures disappear. Petitto (1987) attributed the regression to the children’s discovery that pointing has two functions, namely, deixis and linguistic pronouns. The 1:2 relation (1 form, 2 functions) violates the simple 1:1 pattern that infants are believed to expect. This kind of conflict, Petitto argued, explains the regression. Based on the additional observation that the regression coincided with the boundary between prelinguistic and linguistic communication, Petitto concluded that the prelinguistic and linguistic periods are autonomous. The purpose of the present study was to evaluate the 1:1 model and to determine whether it explains a previously reported regression of intonation in English. Background research showed that gestures and intonation have different forms but the same pragmatic meanings, a 2:1 form-function pattern that plausibly precipitates the regression. The hypothesis of the study was that gestures and intonation are closely related. Moreover, because gestures and intonation change in the opposite direction, the negative correlation between them indicates a robust inverse relationship. To test this prediction, speech samples of 29 infants (8 to 16 months) were analyzed acoustically and compared to parent-report data on several verbal and gestural scales. In support of the hypothesis, gestures alone were inversely correlated with intonation. In addition, the regression model explains nonlinearities stemming from different form-function configurations. However, the results failed to support the claim that regressions linked to early words or signs reflect autonomy. The discussion ends with a focus on the special role of intonation in children’s transition from “prelinguistic” communication to language. PMID:28729753
NATARAJAN, ANUPAMA; CHUN, CHANGJU; HICKMAN, JAMES J.; MOLNAR, PETER
2010-01-01
Biodegradable scaffolds such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) are commonly used materials in tissue engineering. The chemical composition of these scaffolds changes during degradation which provides a changing environment for the seeded cells. In this study we have developed a simple and relatively high-throughput method in order to test the physiological effects of this varying chemical environment on rat embryonic cardiac myocytes. In order to model the different degradation stages of the scaffold, glass coverslips were functionalized with 11-mercaptoundecanoic acid (MUA) and 11-mercapto-1-undecanol (MUL) as carboxyl- and hydroxyl-group presenting surfaces and also with trimethoxysilylpropyldiethylenetriamine (DETA) and (3-aminopropyl)triethoxysilane (APTES) as controls. Embryonic cardiac myocytes formed beating islands on all tested surfaces but the number of attached cells and beating patches was significantly lower on MUL compared to any of the other functionalized surfaces. Moreover, whole cell patch clamp experiments showed that the average length of action potentials generated by the beating cardiac myocytes were significantly longer on MUL compared to the other surfaces. Our results, using our simple test system, are in agreement with earlier observations that utilized the complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. PMID:18854125
A distance constrained synaptic plasticity model of C. elegans neuronal network
NASA Astrophysics Data System (ADS)
Badhwar, Rahul; Bagler, Ganesh
2017-03-01
Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.
The DIMA web resource--exploring the protein domain network.
Pagel, Philipp; Oesterheld, Matthias; Stümpflen, Volker; Frishman, Dmitrij
2006-04-15
Conserved domains represent essential building blocks of most known proteins. Owing to their role as modular components carrying out specific functions they form a network based both on functional relations and direct physical interactions. We have previously shown that domain interaction networks provide substantially novel information with respect to networks built on full-length protein chains. In this work we present a comprehensive web resource for exploring the Domain Interaction MAp (DIMA), interactively. The tool aims at integration of multiple data sources and prediction techniques, two of which have been implemented so far: domain phylogenetic profiling and experimentally demonstrated domain contacts from known three-dimensional structures. A powerful yet simple user interface enables the user to compute, visualize, navigate and download domain networks based on specific search criteria. http://mips.gsf.de/genre/proj/dima
Phillips, Daniel J; Congdon, Thomas R; Gibson, Matthew I
2016-03-07
Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity - a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-terminated poly(vinyl alcohol) was synthesised by RAFT polymerization. Upon addition of Fe 3+ , larger supramolecular star polymers form by assembly with two or three catechols. This increase in molecular weight effectively 'switches on' the IRI activity and is the first example of external control over the function of AFP mimetics. This provides a simple but elegant solution to the challenge of external control of AFP-mimetic function.
New optimization scheme to obtain interaction potentials for oxide glasses
NASA Astrophysics Data System (ADS)
Sundararaman, Siddharth; Huang, Liping; Ispas, Simona; Kob, Walter
2018-05-01
We propose a new scheme to parameterize effective potentials that can be used to simulate atomic systems such as oxide glasses. As input data for the optimization, we use the radial distribution functions of the liquid and the vibrational density of state of the glass, both obtained from ab initio simulations, as well as experimental data on the pressure dependence of the density of the glass. For the case of silica, we find that this new scheme facilitates finding pair potentials that are significantly more accurate than the previous ones even if the functional form is the same, thus demonstrating that even simple two-body potentials can be superior to more complex three-body potentials. We have tested the new potential by calculating the pressure dependence of the elastic moduli and found a good agreement with the corresponding experimental data.
NASA Technical Reports Server (NTRS)
Atluri, Satya N.; Shen, Shengping
2002-01-01
In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.
Verification of floating-point software
NASA Technical Reports Server (NTRS)
Hoover, Doug N.
1990-01-01
Floating point computation presents a number of problems for formal verification. Should one treat the actual details of floating point operations, or accept them as imprecisely defined, or should one ignore round-off error altogether and behave as if floating point operations are perfectly accurate. There is the further problem that a numerical algorithm usually only approximately computes some mathematical function, and we often do not know just how good the approximation is, even in the absence of round-off error. ORA has developed a theory of asymptotic correctness which allows one to verify floating point software with a minimum entanglement in these problems. This theory and its implementation in the Ariel C verification system are described. The theory is illustrated using a simple program which finds a zero of a given function by bisection. This paper is presented in viewgraph form.
NASA Astrophysics Data System (ADS)
Herbani, Y.; Nakamura, T.; Sato, S.
2017-04-01
This paper reports the synthesis of silver colloids by femtosecond laser ablation of ammonia-containing AgNO3 solution. Effect of ammonia concentration in solution on the production of Ag nanoparticles was discussed. It is found that ammonia rules out significantly to the formation of Ag nanoparticles at which no Ag nanoparticle were formed in the solution without ammonia. Using the solution with the optimum ratio of ammonia to Ag+ ions, we further investigate the growth process of Ag nanoparticle by monitoring the evolution of its absorption spectra at 402 nm as a function of irradiation time. The result showed that the growth process was fit to the simple exponential function, and confirmed that the addition of ammonia alone to the metal ion system can boost the particle production by femtosecond laser.
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
Palma Orozco, Rosaura
2018-01-01
Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310
Differential calculus on quantized simple lie groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.
Some simple solutions of Schrödinger's equation for a free particle or for an oscillator
NASA Astrophysics Data System (ADS)
Andrews, Mark
2018-05-01
For a non-relativistic free particle, we show that the evolution of some simple initial wave functions made up of linear segments can be expressed in terms of Fresnel integrals. Examples include the square wave function and the triangular wave function. The method is then extended to wave functions made from quadratic elements. The evolution of all these initial wave functions can also be found for the harmonic oscillator by a transformation of the free evolutions.
Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis
Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik
2017-01-01
One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply ‘pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production. PMID:28497791
Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis
NASA Astrophysics Data System (ADS)
Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik
2017-05-01
One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply `pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production.
State-constrained booster trajectory solutions via finite elements and shooting
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.; Seywald, Hans
1993-01-01
This paper presents an extension of a FEM formulation based on variational principles. A general formulation for handling internal boundary conditions and discontinuities in the state equations is presented, and the general formulation is modified for optimal control problems subject to state-variable inequality constraints. Solutions which only touch the state constraint and solutions which have a boundary arc of finite length are considered. Suitable shape and test functions are chosen for a FEM discretization. All element quadrature (equivalent to one-point Gaussian quadrature over each element) may be done in closed form. The final form of the algebraic equations is then derived. A simple state-constrained problem is solved. Then, for a practical application of the use of the FEM formulation, a launch vehicle subject to a dynamic pressure constraint (a first-order state inequality constraint) is solved. The results presented for the launch-vehicle trajectory have some interesting features, including a touch-point solution.
Chemical fabrication of heterometallic nanogaps for molecular transport junctions.
Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B; Schatz, George C; Ratner, Mark A; Mirkin, Chad A
2009-12-01
We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
He, Guangli; Hu, Weihua; Li, Chang Ming
2015-11-01
We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrostatic Debye layer formed at a plasma-liquid interface
NASA Astrophysics Data System (ADS)
Rumbach, Paul; Clarke, Jean Pierre; Go, David B.
2017-05-01
We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.
Dicentric chromosome formation and epigenetics of centromere formation in plants.
Fu, Shulan; Gao, Zhi; Birchler, James; Han, Fangpu
2012-03-20
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation. Copyright © 2012. Published by Elsevier Ltd.
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.
Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael
2009-09-24
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
An information measure for class discrimination. [in remote sensing of crop observation
NASA Technical Reports Server (NTRS)
Shen, S. S.; Badhwar, G. D.
1986-01-01
This article describes a separability measure for class discrimination. This measure is based on the Fisher information measure for estimating the mixing proportion of two classes. The Fisher information measure not only provides a means to assess quantitatively the information content in the features for separating classes, but also gives the lower bound for the variance of any unbiased estimate of the mixing proportion based on observations of the features. Unlike most commonly used separability measures, this measure is not dependent on the form of the probability distribution of the features and does not imply a specific estimation procedure. This is important because the probability distribution function that describes the data for a given class does not have simple analytic forms, such as a Gaussian. Results of applying this measure to compare the information content provided by three Landsat-derived feature vectors for the purpose of separating small grains from other crops are presented.
Special-case closed form of the Baker-Campbell-Hausdorff formula
NASA Astrophysics Data System (ADS)
Van-Brunt, Alexander; Visser, Matt
2015-06-01
The Baker-Campbell-Hausdorff formula is a general result for the quantity Z(X,Y)=ln ({{e}X}{{e}Y}), where X and Y are not necessarily commuting. For completely general commutation relations between X and Y, (the free Lie algebra), the general result is somewhat unwieldy. However in specific physics applications the commutator [X,Y], while non-zero, might often be relatively simple, which sometimes leads to explicit closed form results. We consider the special case [X,Y]=uX+vY+cI, and show that in this case the general result reduces to Furthermore we explicitly evaluate the symmetric function f(u,v)=f(v,u), demonstrating that and relate this to previously known results. For instance this result includes, but is considerably more general than, results obtained from either the Heisenberg commutator [P,Q]=-i\\hbar I or the creation-destruction commutator [a,{{a}\\dagger }]=I.
BK channels are required for multisensory plasticity in the oculomotor system
Nelson, Alexandra; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha
2017-01-01
SUMMARY Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually-evoked eye movements rapidly restore oculomotor function in wildtype mice but are profoundly impaired in BK channel null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. PMID:27989457
Bicyclic Baird-type aromaticity
NASA Astrophysics Data System (ADS)
Cha, Won-Young; Kim, Taeyeon; Ghosh, Arindam; Zhang, Zhan; Ke, Xian-Sheng; Ali, Rashid; Lynch, Vincent M.; Jung, Jieun; Kim, Woojae; Lee, Sangsu; Fukuzumi, Shunichi; Park, Jung Su; Sessler, Jonathan L.; Chandrashekar, Tavarekere K.; Kim, Dongho
2017-12-01
Classic formulations of aromaticity have long been associated with topologically planar conjugated macrocyclic systems. The theoretical possibility of so-called bicycloaromaticity was noted early on. However, it has yet to be demonstrated by experiment in a simple synthetic organic molecule. Conjugated organic systems are attractive for studying the effect of structure on electronic features. This is because, in principle, they can be modified readily through dedicated synthesis. As such, they can provide useful frameworks for testing by experiment with fundamental insights provided by theory. Here we detail the synthesis and characterization of two purely organic non-planar dithienothiophene-bridged [34]octaphyrins that permit access to two different aromatic forms as a function of the oxidation state. In their neutral forms, these congeneric systems contain competing 26 and 34 π-electronic circuits. When subject to two-electron oxidation, electronically mixed [4n+1]/[4n+1] triplet biradical species in the ground state are obtained that display global aromaticity in accord with Baird's rule.
Gomes, Janaina F; Garcia, Amanda C; Ferreira, Eduardo B; Pires, Cleiton; Oliveira, Vanessa L; Tremiliosi-Filho, Germano; Gasparotto, Luiz H S
2015-09-07
In this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides. Our results strongly suggest that alkoxides, formed from any molecule containing a hydroxyl or a functional group capable of generating them in alkaline medium, are the actual and universal reducing agent of silver and gold ions, in opposition to the currently accepted mechanisms. The universality of the reaction mechanism proposed in this work may impact on the production of noble nanoparticles with simple chemicals normally found in standard laboratories.
A mean spherical model for soft potentials: The hard core revealed as a perturbation
NASA Technical Reports Server (NTRS)
Rosenfeld, Y.; Ashcroft, N. W.
1978-01-01
The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.
NASA Technical Reports Server (NTRS)
Murray, N. D.
1985-01-01
Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.
NASA Technical Reports Server (NTRS)
Botez, D.
1982-01-01
A highly accurate analytical expression for the effective refractive index in In GaAsP/InP DH lasers emitting in the 1.2-1.6 micron range is presented. This closed-form expression is used to derive simple wavelength-independent expressions for the first-order mode cutoff conditions of various lateral waveguides. The effective refractive index is a function of emission wavelength and active layer thickness, and the mode cutoff conditions are compared to experimental data from mode-stabilized 1.3 and 1.55 micron DH lasers.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
Stochastic treatment of electron multiplication without scattering in dielectrics
NASA Technical Reports Server (NTRS)
Lin, D. L.; Beers, B. L.
1981-01-01
By treating the emission of optical phonons as a Markov process, a simple analytic method is developed for calculating the electronic ionization rate per unit length for dielectrics. The effects of scattering from acoustic and optical phonons are neglected. The treatment obtains universal functions in recursive form, the theory depending on only two dimensionless energy ratios. A comparison of the present work with other numerical approaches indicates that the effect of scattering becomes important only when the electric potential energy drop in a mean free path for optical-phonon emission is less than about 25% of the ionization potential. A comparison with Monte Carlo results is also given for Teflon.
Sóñora, Cecilia; Arbildi, Paula; Miraballes-Martínez, Iris; Hernández, Ana
2018-01-01
Phagocytosis is a fundamental process for removal of pathogens and for clearance of apoptotic cells. The objective of this work was the preparation of fluorescent microspheres by a simple method and the evaluation of its applicability in phagocytosis assays by using different human derived cells, differentiated THP-1 cell line and blood monocytes, with flow cytometry measurements for functionality assays. Our results show that microparticles are efficiently internalised in a non-opsonised form and in dose-dependent manner by both cellular types. Concerning mechanism we determined that tTG-β3 integrin signaling could be involved in the uptake of these particles.
Mease, R.C.; Mausner, L.F.; Srivastava, S.C.
1997-06-17
A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.
Passalacqua, Thais Gaban; Dutra, Luiz Antonio; de Almeida, Letícia; Velásquez, Angela Maria Arenas; Torres, Fabio Aurelio Esteves; Yamasaki, Paulo Renato; dos Santos, Mariana Bastos; Regasini, Luis Octavio; Michels, Paul A M; Bolzani, Vanderlan da Silva; Graminha, Marcia A S
2015-08-15
Chalcones form a class of compounds that belong to the flavonoid family and are widely distributed in plants. Their simple structure and the ease of preparation make chalcones attractive scaffolds for the synthesis of a large number of derivatives enabling the evaluation of the effects of different functional groups on biological activities. In this Letter, we report the successful synthesis of a series of novel prenylated chalcones via Claisen-Schmidt condensation and the evaluation of their effect on the viability of the Trypanosomatidae parasites Leishmania amazonensis, Leishmania infantum and Trypanosoma cruzi. Copyright © 2015 Elsevier Ltd. All rights reserved.
Under-reported data analysis with INAR-hidden Markov chains.
Fernández-Fontelo, Amanda; Cabaña, Alejandra; Puig, Pedro; Moriña, David
2016-11-20
In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Assay of the Martian Regolith with Neutrons
NASA Technical Reports Server (NTRS)
Drake, Darrell M.; Reedy, R.; Jakowsky, B.; Clark, B.; Squyres, S.
1998-01-01
Different aspects of assaying Martian regolith using neutrons have been investigated. The epithermal portion of moderated neutrons spectra is dramatically effected by the presence of hydrogen (usually in the form of water). A simple analytic formula has been derived to describe the amplitude of this portion of the neutron spectrum as a function of water concentration. Several demonstration experiments have been performed and modeled with a Monte Carlo code. Results of these experiments generally agreed with the calculations to within 20%. In addition to He-3 detectors, lithium-glass scintillators and U-238 fission ion chambers were investigated to determine their applicability to space experiments.
Disk in a groove with friction: An analysis of static equilibrium and indeterminacy
NASA Astrophysics Data System (ADS)
Donolato, Cesare
2018-05-01
This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.