Sample records for simple high-cell density

  1. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  2. High-Throughput Density Measurement Using Magnetic Levitation.

    PubMed

    Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M

    2018-06-20

    This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.

  3. High cell density suppresses BMP4-induced differentiation of human pluripotent stem cells to produce macroscopic spatial patterning in a unidirectional perfusion culture chamber.

    PubMed

    Tashiro, Shota; Le, Minh Nguyen Tuyet; Kusama, Yuta; Nakatani, Eri; Suga, Mika; Furue, Miho K; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi

    2018-04-19

    Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Electrical enhancement of direct methanol fuel cells by metal-plasma ion implantation Pt-Ru/C multilayer catalysts.

    PubMed

    Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan

    2009-02-01

    Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.

  5. Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration

    Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.

  6. Bragg-cell receiver study

    NASA Technical Reports Server (NTRS)

    Wilson, Lonnie A.

    1987-01-01

    Bragg-cell receivers are employed in specialized Electronic Warfare (EW) applications for the measurement of frequency. Bragg-cell receiver characteristics are fully characterized for simple RF emitter signals. This receiver is early in its development cycle when compared to the IFM receiver. Functional mathematical models are derived and presented in this report for the Bragg-cell receiver. Theoretical analysis is presented and digital computer signal processing results are presented for the Bragg-cell receiver. Probability density function analysis are performed for output frequency. Probability density function distributions are observed to depart from assumed distributions for wideband and complex RF signals. This analysis is significant for high resolution and fine grain EW Bragg-cell receiver systems.

  7. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    PubMed

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  8. Enhancing light absorption within the carrier transport length in quantum junction solar cells.

    PubMed

    Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene

    2015-09-10

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31  mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.

  9. Production of interferon-alpha in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins.

    PubMed

    Babu, K R; Swaminathan, S; Marten, S; Khanna, N; Rinas, U

    2000-06-01

    Escherichia coli TG1 transformed with a temperature-regulated interferon-alpha expression vector was grown to high cell density in defined medium containing glucose as the sole carbon and energy source, utilizing a simple fed-batch process. Feeding was carried out to achieve an exponential increase in biomass at growth rates which minimized acetate production. Thermal induction of such high cell density cultures resulted in the production of approximately 4 g interferon-alpha/l culture broth. Interferon-alpha was produced exclusively in the form of insoluble inclusion bodies and was solubilized under denaturing conditions, refolded in the presence of arginine and purified to near homogeneity, utilizing single-step ion-exchange chromatography on Q-Sepharose. The yield of purified interferon-alpha was approximately 300 mg/l with respect to the original high cell density culture broth (overall yield of approximately 7.5% active interferon-alpha). The purified recombinant interferon-alpha was found by different criteria to be predominantly monomeric and possessed a specific bioactivity of approximately 2.5 x 10(8) IU/mg based on viral cytopathic assay.

  10. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.

    PubMed

    Hiller, Gregory W; Ovalle, Ana Maria; Gagnon, Matthew P; Curran, Meredith L; Wang, Wenge

    2017-07-01

    A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Sequential establishment of stripe patterns in an expanding cell population.

    PubMed

    Liu, Chenli; Fu, Xiongfei; Liu, Lizhong; Ren, Xiaojing; Chau, Carlos K L; Li, Sihong; Xiang, Lu; Zeng, Hualing; Chen, Guanhua; Tang, Lei-Han; Lenz, Peter; Cui, Xiaodong; Huang, Wei; Hwa, Terence; Huang, Jian-Dong

    2011-10-14

    Periodic stripe patterns are ubiquitous in living organisms, yet the underlying developmental processes are complex and difficult to disentangle. We describe a synthetic genetic circuit that couples cell density and motility. This system enabled programmed Escherichia coli cells to form periodic stripes of high and low cell densities sequentially and autonomously. Theoretical and experimental analyses reveal that the spatial structure arises from a recurrent aggregation process at the front of the continuously expanding cell population. The number of stripes formed could be tuned by modulating the basal expression of a single gene. The results establish motility control as a simple route to establishing recurrent structures without requiring an extrinsic pacemaker.

  12. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.

    PubMed

    Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E

    2017-12-01

    Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.

  13. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  14. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    PubMed

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Emergence of collective propulsion through cell-cell adhesion.

    PubMed

    Matsushita, Katsuyoshi

    2018-04-01

    The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.

  16. Emergence of collective propulsion through cell-cell adhesion

    NASA Astrophysics Data System (ADS)

    Matsushita, Katsuyoshi

    2018-04-01

    The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.

  17. The Influence of Neuronal Density and Maturation on Network Activity of Hippocampal Cell Cultures: A Methodological Study

    PubMed Central

    Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs). We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures) or by a decrease phase (for high dense neuronal cultures). Moreover, 900 cells/mm2 cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments) while 1800 cells/mm2 cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules). Finally, cell cultures at 3600 cells/mm2 are more appropriate for experiments in which time saving is relevant (e.g. drug screenings). These results are intended to be a reference for the planning of in vitro neurophysiological and neuropharmacological experiments with MEAs. PMID:24386305

  18. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study.

    PubMed

    Biffi, Emilia; Regalia, Giulia; Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs). We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures) or by a decrease phase (for high dense neuronal cultures). Moreover, 900 cells/mm(2) cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments) while 1800 cells/mm(2) cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules). Finally, cell cultures at 3600 cells/mm(2) are more appropriate for experiments in which time saving is relevant (e.g. drug screenings). These results are intended to be a reference for the planning of in vitro neurophysiological and neuropharmacological experiments with MEAs.

  19. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.

  20. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less

  1. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    DOE PAGES

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; ...

    2016-04-08

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less

  2. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro.

    PubMed

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-12

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  3. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna

    2013-02-01

    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.

  4. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film.

    PubMed

    Raj, C Justin; Kim, Byung Chul; Cho, Won-Je; Lee, Won-gil; Jung, Sang-Don; Kim, Yong Hee; Park, Sang Yeop; Yu, Kook Hyun

    2015-06-24

    Flexible supercapacitor electrodes have been fabricated by simple fabrication technique using graphite nanoflakes on polymer lapping films as flexible substrate. An additional thin layer of conducting polymer polypyrrole over the electrode improved the surface conductivity and exhibited excellent electrochemical performances. Such capacitor films showed better energy density and power density with a maximum capacitance value of 37 mF cm(-2) in a half cell configuration using 1 M H2SO4 electrolyte, 23 mF cm(-2) in full cell, and 6 mF cm(-2) as planar cell configuration using poly(vinyl alcohol) (PVA)/phosphoric acid (H3PO4) solid state electrolyte. Moreover, the graphite nanoflakes/polypyrrole over polymer lapping film demonstrated good flexibility and cyclic stability.

  5. Dense simple plasmas as high-temperature liquid simple metals

    NASA Technical Reports Server (NTRS)

    Perrot, F.

    1990-01-01

    The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.

  6. On strain and stress in living cells

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Smith, David W.

    2014-11-01

    Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known in detail. However, estimates can be inferred from the known relative velocities of the cells' centers of mass. When averaged over a volume comparable to the cell size, representative values of the strain are, to order of magnitude, ɛ0≈0.1 and γ0≈0.1. The shape distortions of cells seen, for example, in Fig. 1c, imply peak strains in minor segments of a cell of magnitude unity, ɛ0≈1 and γ0≈1; these values represent the upper bound of plausible values and are included for discussion of the extremes of attainable strain energy rates.Given the strain magnitudes, the strain rates follow from the fact that a cell switches from one contacting neighbor in the adjacent row to the next in approximately 0.25 d, during which motion the strains might vary from zero to their maximum values and back again. Thus the most probable shear strain rate is inferred to be γ˙0=10-6 s-1 and the most probable tensile strain rate is inferred to be ɛ˙0≈10-6 s-1, with high bounds γ˙0=10-5 s-1 and ɛ˙0=10-5 s-1.

  7. GPER and ERα expression in abnormal endometrial proliferations.

    PubMed

    Tica, Andrei Adrian; Tica, Oana Sorina; Georgescu, Claudia Valentina; Pirici, Daniel; Bogdan, Maria; Ciurea, Tudorel; Mogoantă, Stelian ŞtefăniŢă; Georgescu, Corneliu Cristian; Comănescu, Alexandru Cristian; Bălşeanu, Tudor Adrian; Ciurea, Raluca Niculina; Osiac, Eugen; Buga, Ana Maria; Ciurea, Marius Eugen

    2016-01-01

    G-protein coupled estrogen receptor 1 (GPER), a particular extranuclear estrogen receptor (ER), seems not to be significantly involved in normal female phenotype development but especially associated with severe genital malignancies. This study investigated the GPER expression in different types of normal and abnormal proliferative endometrium, and the correlation with the presence of ERα. GPER was much highly expressed in cytoplasm (than onto cell membrane), contrary to ERα, which was almost exclusively located in the nucleus. Both ERs' densities were higher in columnar epithelial then in stromal cells, according with higher estrogen-sensitivity of epithelial cells. GPER and ERα density decreased as follows: complex endometrial hyperplasia (CEH) > simple endometrial hyperplasia (SHE) > normal proliferative endometrium (NPE) > atypical endometrial hyperplasia (AEH), ERα' density being constantly higher. In endometrial adenocarcinomas, both ERs were significant lower expressed, and widely varied, but GPER÷ERα ratio was significantly increased in high-grade lesions. The nuclear ERα is responsible for the genomic (the most important) mechanism of action of estrogens, involved in cell growth and multiplication. In normal and benign proliferations, ERα expression is increased as an evidence of its effects on cells with conserved architecture, in atypical and especially in malignant cells ERα's (and GPER's) density being much lower. Cytoplasmic GPER probably interfere with different tyrosine÷protein kinases signaling pathways, also involved in cell growth and proliferation. In benign endometrial lesions, GPER's presence is, at least partially, the result of an inductor effect of ERα on GPER gene transcription. In high-grade lesions, GPER÷ERα ratio was increased, demonstrating that GPER is involved per se in malignant endometrial proliferations.

  8. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation

    PubMed Central

    Lan, Rong; Tao, Shanwen

    2016-01-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  9. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    PubMed

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency.

  10. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    PubMed

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C.

  11. Production of the short peptide surfactant DAMP4 from glucose or sucrose in high cell density cultures of Escherichia coli BL21(DE3).

    PubMed

    Bruschi, Michele; Krömer, Jens O; Steen, Jennifer A; Nielsen, Lars K

    2014-08-19

    Peptides are increasingly used in industry as highly functional materials. Bacterial production of recombinant peptides has the potential to provide large amounts of renewable and low cost peptides, however, achieving high product titers from Chemically Defined Media (CDM) supplemented with simple sugars remains challenging. In this work, the short peptide surfactant, DAMP4, was used as a model peptide to investigate production in Escherichia coli BL21(DE3), a classical strain used for protein production. Under the same fermentation conditions, switching production of DAMP4 from rich complex media to CDM resulted in a reduction in yield that could be attributed to the reduction in final cell density more so than a significant reduction in specific productivity. To maximize product titer, cell density at induction was maximized using a fed-batch approach. In fed-batch DAMP4 product titer increased 9-fold compared to batch, while maintaining 60% specific productivity. Under the fed-batch conditions, the final product titer of DAMP4 reached more than 7 g/L which is the highest titer of DAMP4 reported to date. To investigate production from sucrose, sucrose metabolism was engineered into BL21(DE3) using a simple plasmid approach. Using this strain, growth and DAMP4 production characteristics obtained from CDM supplemented with sucrose were similar to those obtained when culturing the parent strain on CDM supplemented with glucose. Production of a model peptide was increased to several grams per liter using a CDM medium with either glucose or sucrose feedstock. It is hoped that this work will contribute cost reduction for production of designer peptide surfactants to facilitate their commercial application.

  12. Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks.

    PubMed

    Meuwly, F; Loviat, F; Ruffieux, P-A; Bernard, A R; Kadouri, A; von Stockar, U

    2006-03-05

    Packed-bed bioreactors (PBR) have proven to be efficient systems to culture mammalian cells at very high cell density in perfusion mode, thus leading to very high volumetric productivity. However, the immobilized cells must be continuously supplied with all nutrients in sufficient quantities to remain viable and productive over the full duration of the perfusion culture. Among all nutrients, oxygen is the most critical since it is present at very low concentration due to its low solubility in cell culture medium. This work presents the development of a model for oxygenation in a packed-bed bioreactor system. The experimental system used to develop the model was a packed-bed of Fibra-Cel disk carriers used to cultivate Chinese Hamster Ovary cells at high density ( approximately 6.1 x 10(7) cell/mL) in perfusion mode. With the help of this model, it was possible to identify if a PBR system is operated in optimal or sub-optimal conditions. Using the model, two options were proposed, which could improve the performance of the basal system by about twofold, that is, by increasing the density of immobilized cells per carrier volume from 6.1 x 10(7) to 1.2 x 10(8) cell/mL, or by increasing the packed-bed height from 0.2 to 0.4 m. Both strategies would be rather simple to test and implement in the packed-bed bioreactor system used for this study. As a result, it would be possible to achieve a substantial improvement of about twofold higher productivity as compared with the basal conditions.

  13. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor

    PubMed Central

    2010-01-01

    Background Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production. Results Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor. Conclusions Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities. PMID:20509968

  14. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    PubMed

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  15. How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments.

    PubMed

    Demory, David; Combe, Charlotte; Hartmann, Philipp; Talec, Amélie; Pruvost, Eric; Hamouda, Raouf; Souillé, Fabien; Lamare, Pierre-Olivier; Bristeau, Marie-Odile; Sainte-Marie, Jacques; Rabouille, Sophie; Mairet, Francis; Sciandra, Antoine; Bernard, Olivier

    2018-05-01

    Hydrodynamics in a high-rate production reactor for microalgae cultivation affects the light history perceived by cells. The interplay between cell movement and medium turbidity leads to a complex light pattern, whose forcing effects on photosynthesis and photoacclimation dynamics are non-trivial. Hydrodynamics of high density algal ponds mixed by a paddle wheel has been studied recently, although the focus has never been on describing its impact on photosynthetic growth efficiency. In this multidisciplinary downscaling study, we first reconstructed single cell trajectories in an open raceway using an original hydrodynamical model offering a powerful discretization of the Navier-Stokes equations tailored to systems with free surfaces. The trajectory of a particular cell was selected and the associated high-frequency light pattern was computed. This light pattern was then experimentally reproduced in an Arduino-driven computer controlled cultivation system with a low density Dunaliella salina culture. The effect on growth and pigment content was recorded for various frequencies of the light pattern, by setting different paddle wheel velocities. Results show that the frequency of this realistic signal plays a decisive role in the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared to that recorded under the on/off signals usually used in the literature. Indeed, the light received by a single cell contains signals from low to high frequencies that nonlinearly interact with the photosynthesis process and differentially stimulate the various time scales associated with photoacclimation and energy dissipation. This study highlights the need for experiments with more realistic light stimuli to better understand microalgal growth at high cell densities. An experimental protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations.

  16. How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments

    PubMed Central

    Demory, David; Combe, Charlotte; Hartmann, Philipp; Talec, Amélie; Pruvost, Eric; Hamouda, Raouf; Souillé, Fabien; Lamare, Pierre-Olivier; Bristeau, Marie-Odile; Sainte-Marie, Jacques; Rabouille, Sophie; Mairet, Francis; Sciandra, Antoine

    2018-01-01

    Hydrodynamics in a high-rate production reactor for microalgae cultivation affects the light history perceived by cells. The interplay between cell movement and medium turbidity leads to a complex light pattern, whose forcing effects on photosynthesis and photoacclimation dynamics are non-trivial. Hydrodynamics of high density algal ponds mixed by a paddle wheel has been studied recently, although the focus has never been on describing its impact on photosynthetic growth efficiency. In this multidisciplinary downscaling study, we first reconstructed single cell trajectories in an open raceway using an original hydrodynamical model offering a powerful discretization of the Navier–Stokes equations tailored to systems with free surfaces. The trajectory of a particular cell was selected and the associated high-frequency light pattern was computed. This light pattern was then experimentally reproduced in an Arduino-driven computer controlled cultivation system with a low density Dunaliella salina culture. The effect on growth and pigment content was recorded for various frequencies of the light pattern, by setting different paddle wheel velocities. Results show that the frequency of this realistic signal plays a decisive role in the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared to that recorded under the on/off signals usually used in the literature. Indeed, the light received by a single cell contains signals from low to high frequencies that nonlinearly interact with the photosynthesis process and differentially stimulate the various time scales associated with photoacclimation and energy dissipation. This study highlights the need for experiments with more realistic light stimuli to better understand microalgal growth at high cell densities. An experimental protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations. PMID:29892466

  17. A low-density culture method of cerebellar granule neurons with paracrine support applicable for the study of neuronal morphogenesis.

    PubMed

    Kubota, Kenta; Seno, Takeshi; Konishi, Yoshiyuki

    2013-11-20

    Cerebellar granule neuronal cultures have been used to study the molecular mechanisms underlying neuronal functions, including neuronal morphogenesis. However, a limitation of this system is the difficulty to analyze isolated neurons because these are required to be maintained at a high density. Therefore, in the present study, we aimed to develop a simple and cost-effective method for culturing low-density cerebellar granule neurons. Cerebellar granule cells at two different densities (low- and high-density) were co-cultivated in order for the low-density culture to be supported by the paracrine signals from the high-density culture. This method enabled morphology analysis of isolated cerebellar granule neurons without astrocytic feeder cultures or supplements such as B27. Using this method, we investigated the function of a polarity factor. Studies using hippocampal neurons suggested that glycogen synthase kinase-3 (GSK-3) is an essential regulator of neuronal polarity, and inhibition of GSK-3 results in the formation of multiple axons. Pharmacological inhibitors for GSK-3 (6-bromoindirubin-3'-oxime and lithium chloride) did not cause the formation of multiple axons of cerebellar granule neurons but significantly reduced their length. Consistent results were obtained by introducing kinase-dead form of GSK-3 beta (K85A). These results indicated that GSK-3 is not directly involved in the control of neuronal polarity in cerebellar granule neurons. Overall, this study provides a simple method for culturing low-density cerebellar granule neurons and insights in to the neuronal-type dependent function of GSK-3 in neuronal morphogenesis. © 2013 Elsevier B.V. All rights reserved.

  18. Planar n-Si/PEDOT:PSS hybrid heterojunction solar cells utilizing functionalized carbon nanoparticles synthesized via simple pyrolysis route

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Kim, Dong-Hyung; Shinde, Sambhaji S.; Song, Jae-Won; Park, Min-Joon; Yu, Jin-Young; Lee, Jung-Ho

    2017-11-01

    Herein, we present a facile and simple strategy for in situ synthesis of functionalized carbon nanoparticles (CNPs) via direct pyrolysis of ethylenediaminetetraacetic acid (EDTA) on silicon surface. The CNPs were incorporated in hybrid planar n-Si and poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells to improve device performance. We demonstrate that the CNPs-incorporated devices showed increased electrical conductivity (reduced series resistance) and minority carrier lifetime (better charge carrier collection) than those of the cells without CNPs due to the existence of electrically conductive sp 2-hybridized carbon at the heterojunction interfaces. With an optimal concentration of CNPs, the hybrid solar cells exhibited power conversion efficiency up to 11.95%, with an open-circuit voltage of 614 mV, short-circuit current density of 26.34 mA cm-2, and fill factor of 73.93%. These results indicate that our approach is promising for the development of highly efficient organic-inorganic hybrid solar cells.

  19. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture

    PubMed Central

    Freund, Nathaniel W.; Croughan, Matthew S.

    2018-01-01

    Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production—termed Lactate Supplementation and Adaptation (LSA) technology—through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications. PMID:29382079

  20. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture.

    PubMed

    Freund, Nathaniel W; Croughan, Matthew S

    2018-01-28

    Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production-termed Lactate Supplementation and Adaptation (LSA) technology-through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications.

  1. Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture

    PubMed Central

    Kolnik, Martin; Tsimring, Lev S; Hasty, Je

    2012-01-01

    Microfluidic perfusion cultures for mammalian cells provide a novel means for probing single-cell behavior but require the management of culture parameters such as flow-induced shear stress. Methods to eliminate shear stress generally focus on capturing cells in regions with high resistance to fluid flow. Here, we present a novel trapping design to easily and reliably load a high density of cells into culture chambers that are extremely isolated from potentially damaging flow effects. We utilize a transient on-chip vacuum to remove air from the culture chambers and rapidly replace the volume with a liquid cell suspension. We demonstrate the ability of this simple and robust method to load and culture three commonly used cell lines. We show how the incorporation of an on-chip function generator can be used for dynamic stimulation of cells during long-term continuous perfusion culture. PMID:22961584

  2. The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells.

    PubMed

    Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan

    2018-01-26

    The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate Fe II -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N 4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm -2 at 0.6 V and the highest power density of 1.14 W cm -2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N 4 active moieties on the small and uniform catalyst nanoparticles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Huanhuan; Li, Jinyu; Gu, Cheng; Yao, Mingming; Yang, Bing; Lu, Ping; Ma, Yuguang

    2016-11-01

    The relatively low energy density is now a central issue hindering the development of supercapacitors as energy storage devices. Various approaches are thus developed to enhance the energy density, mainly centering on the fabrication of electrode materials or optimization of cell configurations. Compared with these approaches, modifications in electrolytes are much simple and versatile. Herein, we integrate the wide voltages endowed by organic electrolytes and the additional capacitances brought by redox mediators, to fabricate high energy density supercapacitors. On the basis of this idea, supercapacitors with poly(3,4-ethylenedioxythiophene) (PEDOT) as electrode material exhibit extended operating voltage of 1.5 V, extraordinary capacitance of 363 F g-1 and high energy density of 27.4 Wh kg-1. The redox mediators reported here, ferrocene and 4-oxo-2,2,6,6-tetramethylpiperidinooxy, are the first time being applied in supercapacitors, especially in the gel state. While providing additional faradaic capacitances, they also exhibit synergistic interaction with PEDOT and improve the cycling stability of supercapacitors.

  4. Predicting Fish Densities in Lotic Systems: a Simple Modeling Approach

    EPA Science Inventory

    Fish density models are essential tools for fish ecologists and fisheries managers. However, applying these models can be difficult because of high levels of model complexity and the large number of parameters that must be estimated. We designed a simple fish density model and te...

  5. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  6. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE PAGES

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan; ...

    2017-09-08

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  7. High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro

    A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.

  8. Application of porous silicon in solar cell

    NASA Astrophysics Data System (ADS)

    Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.

    2018-05-01

    Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.

  9. Correlation between the physical parameters of the i-nc-Si absorber layer grown by 27.12 MHz plasma with the nc-Si solar cell parameters

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Mondal, Praloy

    2017-09-01

    Growth of highly conducting nanocrystalline silicon (nc-Si) thin films of optimum crystalline volume fraction, involving dominant <220> crystallographic preferred orientation with simultaneous low fraction of microstructures at a low substrate temperature and high growth rate, is a challenging task for its promising utilization in nc-Si solar cells. Utilizing enhanced electron density and superior ion flux densities of the high frequency (∼27.12 MHz) SiH4 plasma, improved nc-Si films have been produced by simple optimization of H2-dilution, controlling the ion damage and enhancing supply of atomic-hydrogen onto the growing surface. Single junction nc-Si p-i-n solar cells have been prepared with i-nc-Si absorber layer and optimized. The physical parameters of the absorber layer have been systematically correlated to variations of the solar cell parameters. The preferred <220> alignment of crystallites, its contribution to the low recombination losses for conduction of charge carriers along the vertical direction, its spectroscopic correlation with the dominant growth of ultra-nanocrystalline silicon (unc-Si) component and corresponding longer wavelength absorption, especially in the neighborhood of i/n-interface region recognize scientific and technological key issues that pave the ground for imminent advancement of multi-junction silicon solar cells.

  10. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    PubMed

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    PubMed

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less

  13. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  14. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    NASA Astrophysics Data System (ADS)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.; Gómez-Gualdrón, Diego A.; Howarth, Ashlee J.; Mehdi, B. Layla; Dohnalkova, Alice; Browning, Nigel D.; O'Keeffe, Michael; Farha, Omar K.

    2017-05-01

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.

  15. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    PubMed

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam

    A simple electrolyte consisting of NaPF 6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na +), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density atmore » moderate power. The conductivity of NaPF 6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.« less

  17. High-performance mesoporous LiFePO₄ from Baker's yeast.

    PubMed

    Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong

    2013-03-01

    Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    NASA Astrophysics Data System (ADS)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  19. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  20. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    PubMed

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  1. PDADMAC flocculation of Chinese hamster ovary cells: Enabling a centrifuge-less harvest process for monoclonal antibodies

    PubMed Central

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650

  2. Kaon condensation in dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Heiselberg, H.; Pandharipande, V. R.

    The kaon energy in neutron matter is calculated analytically with the Klein-Gordon equation, by making a Wigner-Seitz cell approximation and employing a K{sup -}N square well potential. The transition from the low density Lenz potential, proportional to scattering length, to the high density Hartree potential is found to begin at fairly low densities. Exact nonrelativistic calculations of the kaon energy in a simple cubic crystal of neutrons are used to test the Wigner-Seitz and the Ericson-Ericson approximation methods. In this case the frequently used Erickson-Erickson approximation is found to be fairly accurate up to twice nuclear matter density. All themore » calculations indicate that by {approx}4 times nuclear matter density the Hartree limit is reached. We also show that in the Hartree limit the energy of zero momentum kaons does not have relativistic energy dependent factors present in the low density expansions. The results indicate that the density for kaon condensation is higher than previously estimated.« less

  3. Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Xu, Qian; Chong, Junjie; Li, Huaming; Sita, Cordellia; Pasupathi, Sivakumar

    2017-02-01

    In this work, we report a simple strategy to improve the performance of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) by eliminating the micro-porous layer (MPL) from its gas diffusion electrodes (GDEs). Due to the absence of liquid water and the general use of high amount of catalyst, the MPL in a HT-PEMFC system works limitedly. Contrarily, the elimination of the MPL leads to an interlaced micropore/macropore composited structure in the catalyst layer (CL), which favors gas transport and catalyst utilization, resulting in a greatly improved single cell performance. At the normal working voltage (0.6 V), the current density of the GDE eliminated MPL reaches 0.29 A cm-2, and a maximum power density of 0.54 W cm-2 at 0.36 V is obtained, which are comparable to the best results yet reported for the HT-PEMFCs with similar Pt loading and operated using air. Furthermore, the MPL-free GDE maintains an excellent durability during a preliminary 1400 h HT-PEMFC operation, owing to its structure advantages, indicating the feasibility of this electrode for practical applications.

  4. Cell growth, division, and death in cohesive tissues: A thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Marcq, Philippe

    2017-08-01

    Cell growth, division, and death are defining features of biological tissues that contribute to morphogenesis. In hydrodynamic descriptions of cohesive tissues, their occurrence implies a nonzero rate of variation of cell density. We show how linear nonequilibrium thermodynamics allows us to express this rate as a combination of relevant thermodynamic forces: chemical potential, velocity divergence, and activity. We illustrate the resulting effects of the nonconservation of cell density on simple examples inspired by recent experiments on cell monolayers, considering first the velocity of a spreading front, and second an instability leading to mechanical waves.

  5. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode.

    PubMed

    Zhu, Feng; Wang, Wancheng; Zhang, Xiaoyan; Tao, Guanhong

    2011-08-01

    A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m(2). Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.

    2005-05-01

    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  7. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling

    PubMed Central

    Shi, Xinjian; Jeong, Hokyeong; Oh, Seung Jae; Ma, Ming; Zhang, Kan; Kwon, Jeong; Choi, In Taek; Choi, Il Yong; Kim, Hwan Kyu; Kim, Jong Kyu; Park, Jong Hyeok

    2016-01-01

    Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method to overcome this contradiction by incorporating a hybrid conductive distributed Bragg reflector on the back side of the transparent conducting substrate for the front photoelectrochemical electrode, which functions as both an optical filter and a conductive counter-electrode of the rear dye-sensitized solar cell. The hybrid conductive distributed Bragg reflectors were designed to be transparent to the long-wavelength part of the incident solar spectrum (λ>500 nm) for the rear solar cell, while reflecting the short-wavelength photons (λ<500 nm) which can then be absorbed by the front photoelectrochemical electrode for enhanced photocurrent generation. PMID:27324578

  8. Constraint Programming to Solve Maximal Density Still Life

    NASA Astrophysics Data System (ADS)

    Chu, Geoffrey; Petrie, Karen Elizabeth; Yorke-Smith, Neil

    The Maximum Density Still Life problem fills a finite Game of Life board with a stable pattern of cells that has as many live cells as possible. Although simple to state, this problem is computationally challenging for any but the smallest sizes of board. Especially difficult is to prove that the maximum number of live cells has been found. Various approaches have been employed. The most successful are approaches based on Constraint Programming (CP). We describe the Maximum Density Still Life problem, introduce the concept of constraint programming, give an overview on how the problem can be modelled and solved with CP, and report on best-known results for the problem.

  9. Stable electrolyte for high voltage electrochemical double-layer capacitors

    DOE PAGES

    Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam; ...

    2016-12-28

    A simple electrolyte consisting of NaPF 6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na +), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density atmore » moderate power. The conductivity of NaPF 6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.« less

  10. WHEAT GERM CELL-FREE TRANSLATION, PURIFICATION, AND ASSEMBLY OF A FUNCTIONAL HUMAN STEAROYL-COA DESATURASE COMPLEX

    PubMed Central

    Goren, Michael A.; Fox, Brian G.

    2008-01-01

    A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b5 led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed. PMID:18765284

  11. Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex.

    PubMed

    Goren, Michael A; Fox, Brian G

    2008-12-01

    A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b(5) led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed.

  12. Plasmid fermentation process for DNA immunization applications.

    PubMed

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  13. Analysis of cellular adhesion on superhydrophobic and superhydrophilic vertically aligned carbon nanotube scaffolds.

    PubMed

    Machado, M M; Lobo, A O; Marciano, F R; Corat, E J; Corat, M A F

    2015-03-01

    We analyzed GFP cells after 24h cultivated on superhydrophilic vertically aligned carbon nanotube scaffolds. We produced two different densities of VACNT scaffolds on Ti using Ni or Fe catalysts. A simple and fast oxygen plasma treatment promoted the superhydrophilicity of them. We used five different substrates, such as: as-grown VACNT produced using Ni as catalyst (Ni), as-grown VACNT produced using Fe as catalyst (Fe), VACNT-O produced using Ni as catalyst (NiO), VACNT-O produced using Fe as catalyst (FeO) and Ti (control). The 4',6-diamidino-2-phenylindole reagent nuclei stained the adherent cells cultivated on five different analyzed scaffolds. We used fluorescence microscopy for image collect, ImageJ® to count adhered cell and GraphPad Prism 5® for statistical analysis. We demonstrated in crescent order: Fe, Ni, NiO, FeO and Ti scaffolds that had an improved cellular adhesion. Oxygen treatment associated to high VACNT density (group FeO) presented significantly superior cell adhesion up to 24h. However, they do not show significant differences compared with Ti substrates (control). We demonstrated that all the analyzed substrates were nontoxic. Also, we proposed that the density and hydrophilicity influenced the cell adhesion behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Generation of genome-modified Drosophila cell lines using SwAP.

    PubMed

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  15. Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell

    NASA Astrophysics Data System (ADS)

    Chung, Minsoo; Nguyen, Tuan Loi; Tran, Thao Quynh Ngan; Yoon, Hyon Hee; Kim, Il Tae; Kim, Moon Il

    2018-01-01

    We have developed a mediatorless glucose biofuel cell based on hybrid nanoflowers incorporating enzymes including glucose oxidase (GOx), laccase, or catalase with copper phosphate, which were further mixed and compressed with conductive multi-walled carbon nanotube (CNT). The nanoflowers were simply synthesized within 5 min at room temperature using sonication method but yielded greatly improved stability as well as highly retained activity by the proper incorporation of enzyme molecules inside the flower-like structure. With glucose as biofuel, GOx and laccase nanoflowers were applied to form enzyme anode and cathode, respectively, and catalase nanoflowers were additionally employed to catalyze the decomposition of hydrogen peroxide, which may be deleterious for GOx, into oxygen and water. Using the enzyme nanoflowers-based biofuel cell system without any involved mediator, a high power density up to 200 μW cm-2 were obtained, which was approximately 80% to that from the biofuel cell system prepared with the corresponding free enzymes. Importantly, the enzyme nanoflowers-based biofuel cell maintained their initial power density over 90% during storage for two months at 4 °C, while most of the glucose biofuel cells in the literature present meaningful stability only in the range of one or two weeks. Based on this result, we expect that this simple but efficient strategy to prepare highly stable glucose biofuel cell using the rapidly-synthesized enzyme-inorganic hybrid nanoflowers can be readily extended to diverse applications in medical and environmental chemistry.

  16. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    PubMed Central

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  17. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation ofmore » colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.« less

  18. Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli

    PubMed Central

    2013-01-01

    Background Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. Results We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. Conclusion A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification. PMID:23638724

  19. Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli.

    PubMed

    Pandey, Neeraj; Sachan, Annapurna; Chen, Qi; Ruebling-Jass, Kristin; Bhalla, Ritu; Panguluri, Kiran Kumar; Rouviere, Pierre E; Cheng, Qiong

    2013-05-02

    Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification.

  20. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    NASA Astrophysics Data System (ADS)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  1. A unified wall function for compressible turbulence modelling

    NASA Astrophysics Data System (ADS)

    Ong, K. C.; Chan, A.

    2018-05-01

    Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.

  2. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  3. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    PubMed

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  4. Development of planar solid oxide fuel cells for power generation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less

  5. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C

    1977-01-01

    BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774

  6. Intracellular signal propagation in a two-dimensional autocatalytic reaction model.

    PubMed

    Castiglione, F; Bernaschi, M; Succi, S; Heinrich, R; Kirschner, M W

    2002-09-01

    We study a simple reaction scheme in a two-dimensional lattice of particles or molecules with a refractory state. We analyze the dynamics of the propagating front as a function of physical-chemical properties of the host medium. The anisotropy of the medium significantly affects the smoothness of the wave front. Similarly, if particles or molecules may diffuse slowly to neighboring sites, then the front wave is more likely to be irregular. Both situations affect the ability of the whole system to relax to the original state, which is a required feature in the biological cells. Attempts to map this simple reaction scheme to reactions involved in the intracellular pathways suggest that, in some cases, signal transduction might take both connotation of a random walk and a propagating wave, depending on the local density of the medium. In particular, a sufficient condition for the appearance of waves in high-density regions of the media, is the existence of at least one autocatalytic reaction in the chain of reactions characterizing the pathway.

  7. Detonation Product EOS Studies: Using ISLS to Refine Cheetah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaug, J M; Howard, W M; Fried, L E

    2001-08-08

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less

  8. Study of CdTe/CdS solar cell at low power density for low-illumination applications

    NASA Astrophysics Data System (ADS)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2016-05-01

    In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.

  9. Human Induced Hepatic Lineage-Oriented Stem Cells: Autonomous Specification of Human iPS Cells toward Hepatocyte-Like Cells without Any Exogenous Differentiation Factors

    PubMed Central

    Yanagi, Satoshi; Kato, Chika; Takashima, Ryokichi; Kobayashi, Eiji; Hagiwara, Keitaro; Ochiya, Takahiro

    2015-01-01

    Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs) using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs) were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs) and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG), conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5), transporters (SULT2A1, SLC13A5, and SLCO2B1), and urea cycle-related enzymes (ARG1 and CPS1). In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density) in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the necessity of optimizing culture conditions to generate other specific lineage-oriented hiPSCs, allowing for a very simple differentiation. PMID:25875613

  10. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates

    PubMed Central

    Kang, Zhiwen; Chen, Jiajie; Wu, Shu-Yuen; Chen, Kun; Kong, Siu-Kai; Yong, Ken-Tye; Ho, Ho-Pui

    2015-01-01

    We experimentally demonstrated the use of random plasmonic nano-islands for optical trapping and assembling of particles and live cells into highly organized pattern with low power density. The observed trapping effect is attributed to the net contribution due to near-field optical trapping force and long-range thermophoretic force, which overcomes the axial convective drag force, while the lateral convection pushes the target objects into the trapping zone. Our work provides a simple platform for on-chip optical manipulation of nano- and micro-sized objects, and may find applications in physical and life sciences. PMID:25928045

  11. Comparison of 74-MHz interplanetary scintillation and IMP 7 observations of the solar wind during 1973

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Harmon, J. K.; Lazarus, A. J.; Sullivan, J. D.

    1978-01-01

    Solar wind velocities measured by earth-orbiting spacecraft are compared with velocities determined from interplanetary scintillation (IPS) observations for 1973, a period when high-velocity streams were prevalent. The spacecraft and IPS velocities agree well in the mean and are highly correlated. No simple model for the distribution of enhanced turbulence within streams is sufficient to explain the velocity comparison results for the entire year. Although a simple proportionality between density fluctuation level and bulk density is consistent with IPS velocities for some periods, some streams appear to have enhanced turbulence in the high-velocity region, where the density is low.

  12. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer

    NASA Astrophysics Data System (ADS)

    Qi, Jiabin; Xiong, Hao; Wang, Gang; Xie, Huaqing; Jia, Wei; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2018-02-01

    Crystallization and interface engineering of perovskite are the most important factors in achieving high-performance perovskite solar cells (PSCs). Herein, we construct an ultrathin CdSe quantum dots (QDs) underlayer via a solution-processable method, which acts as a seed-mediated layer for perfect perovskite film, with both uniform morphology and better absorption capacity. In addition, CdSe QDs and perovskites form a fully crystalline heterojunction, which is beneficial to minimizing the defect and trap densities. Then, an Ostwald ripening process is adopted to fabricate large-grain, pinhole-free perovskite thin film, by a simple methylammonium bromide treatment. Besides, the first principle is applied in calculating organic/inorganic hybrid perovskite, confirming that electrons can move even quicker and more effectively, as a result of our work. Due to these treatments, representing a very simple method to simultaneously control perovskite crystallization and optimize the interfaces in PSCs, a maximum power conversion efficiency of 15.68% is achieved, 35% higher than the PSC both without CdSe and MABr treatment (11.57%), indicating better performance.

  13. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  14. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector

    DOE PAGES

    Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...

    2017-05-30

    Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less

  15. Cell-Free Translation of Integral Membrane Proteins into Unilamelar Liposomes

    PubMed Central

    Goren, Michael A.; Nozawa, Akira; Makino, Shin-ichi; Wrobel, Russell L.; Fox, Brian G.

    2018-01-01

    Wheat germ cell-free translation is shown to be an effective method to produce integral membrane proteins in the presence of unilamelar liposomes. In this chapter, we describe the expression vectors, preparation of mRNA, two types of cell-free translation reactions performed in the presence of liposomes, a simple and highly efficient purification of intact proteoliposomes using density gradient ultracentrifugation, and some of the types of characterization studies that are facilitated by this facile preparative approach. The in vitro transfer of newly translated, membrane proteins into liposomes compatible with direct measurements of their catalytic function is contrasted with existing approaches to extract membrane proteins from biological membranes using detergents and subsequently transfer them back to liposomes for functional studies. PMID:19892197

  16. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    NASA Astrophysics Data System (ADS)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  17. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device where energy is storedmore » in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible. In order to address the second challenge of reducing cost of the RFCs, we plan to use iron (Fe) metal as it regularly occupies multiple oxidation states and is the second most abundant metal in the earth’s crust that makes it an ideal metal for improved energy densities, higher potentials, and numbers of electrons per molecule while maintaining potential cost competitiveness. Density functional theory calculations considering solvation effects will be performed to yield accurate predictions of redox potentials.« less

  18. A simple combined floating and anchored collagen gel for enhancing mechanical strength of culture system.

    PubMed

    Harada, Ichiro; Kim, Sung-Gon; Cho, Chong Su; Kurosawa, Hisashi; Akaike, Toshihiro

    2007-01-01

    In this study, a simple combined method consisting of floating and anchored collagen gel in a ligament or tendon equivalent culture system was used to produce the oriented fibrils in fibroblast-populated collagen matrices (FPCMs) during the remodeling and contraction of the collagen gel. Orientation of the collagen fibrils along single axis occurred over the whole area of the floating section and most of the fibroblasts were elongated and aligned along the oriented collagen fibrils, whereas no significant orientation of fibrils was observed in normally contracted FPCMs by the floating method. Higher elasticity and enhanced mechanical strength were obtained using our simple method compared with normally contracted floating FPCMs. The Young's modulus and the breaking point of the FPCMs were dependent on the initial cell densities. This simple method will be applied as a convenient bioreactor to study cellular processes of the fibroblasts in the tissues with highly oriented fibrils such as ligaments or tendons. (c) 2006 Wiley Periodicals, Inc.

  19. Use of a Tea Infuser to Submerge Low-Density Dry Ice

    ERIC Educational Resources Information Center

    Fictorie, Carl P.; Vitz, Ed

    2004-01-01

    A simple tea infuser is obtained and been used as a container for the dry ice to simulate the effect from high-density dry ice. The tea infuser is a simple, low cost device to allow instructors with access to dry ice makers to effectively use the interesting demonstration.

  20. ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors.

    PubMed

    Radhamani, A V; Shareef, K M; Rao, M S Ramachandra

    2016-11-09

    Asymmetric supercapacitors (ASCs) with aqueous electrolyte medium have recently become the focus of increasing research. For high performance ASCs, selection of cathode materials play a crucial role, and core-shell nanostructures are found to be a good choice. We successfully synthesized, ZnO@MnO 2 core-shell nanofibers (NFs) by modification of high-aspect-ratio-electrospun ZnO NFs hydrothermally with MnO 2 nanoflakes. High conductivity of the ZnO NFs and the exceptionally high pseudocapacitive nature of MnO 2 nanoflakes coating delivered a specific capacitance of 907 Fg -1 at 0.6 Ag -1 for the core-shell NFs. A simple and cost-effective ASC construction was demonstrated with ZnO@MnO 2 NFs as a battery-type cathode material and a commercial-quality activated carbon as a capacitor-type anode material. The fabricated device functioned very well in a voltage window of 0-2.0 V, and a red-LED was illuminated using a single-celled fabricated ASC device. It was found to deliver a maximum energy density of 17 Whkg -1 and a power density of 6.5 kWkg -1 with capacitance retention of 94% and Coulombic efficiency of 100%. The novel architecture of the ZnO@MnO 2 core-shell nanofibrous material implies the importance of using simple design of fiber-based electrode material by mere changes of core and shell counterparts.

  1. Lightweight Solar Power for Small Satellites

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  2. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  3. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  4. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.

    PubMed

    Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung

    2014-11-21

    The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.

  5. Infused polymers for cell sheet release

    NASA Astrophysics Data System (ADS)

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-05-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  6. Infused polymers for cell sheet release

    PubMed Central

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-01-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419

  7. Infused polymers for cell sheet release.

    PubMed

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L; Lin, Jennifer J; Sutton, Amy; Aizenberg, Joanna

    2016-05-18

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  8. Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries

    PubMed Central

    Wang, Wei; Favors, Zachary; Li, Changling; Liu, Chueh; Ye, Rachel; Fu, Chengyin; Bozhilov, Krassimir; Guo, Juchen; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2017-01-01

    Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g−1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L−1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications. PMID:28322285

  9. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal.

    PubMed

    Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S

    2018-05-09

    Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Detonation product EOS studies: Using ISLS to refine CHEETAH

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Fried, Larry; Hansen, Donald

    2001-06-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  11. Detonation Product EOS Studies: Using ISLS to Refine Cheetah

    NASA Astrophysics Data System (ADS)

    Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.

    2002-07-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  12. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation.

    PubMed

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-05-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 10 6 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.

  13. A Simple Method for Determination of the Density of Granular Materials

    ERIC Educational Resources Information Center

    Tsutsumanova, G. G.; Kirilov, K. M.; Russev, S. C.

    2012-01-01

    A simple experiment using low cost equipment for the determination of the density of granular materials, without immersing them in a liquid, is presented. It is based only on the ideal gas state equation, so it is a good experimental task for undergraduate and high school students. (Contains 2 tables and 5 figures.)

  14. Study of CdTe/CdS solar cell at low power density for low-illumination applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Nisha, E-mail: nishatanwer1989@gmail.com; Aziz, Anver, E-mail: aaziz@jmi.ac.in; Datta, Shouvik

    In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cellmore » at very low incident power, which gives good efficiency.« less

  15. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koohbor, Behrad; Kidane, Addis; Lu, Wei -Yang

    Dynamic stress–strain response of rigid closed-cell polymeric foams is investigated in this work by subjecting high toughness polyurethane foam specimens to direct impact with different projectile velocities and quantifying their deformation response with high speed stereo-photography together with 3D digital image correlation. The measured transient displacement field developed in the specimens during high stain rate loading is used to calculate the transient axial acceleration field throughout the specimen. A simple mathematical formulation based on conservation of mass is also proposed to determine the local change of density in the specimen during deformation. By obtaining the full-field acceleration and density distributions,more » the inertia stresses at each point in the specimen are determined through a non-parametric analysis and superimposed on the stress magnitudes measured at specimen ends to obtain the full-field stress distribution. Furthermore, the process outlined above overcomes a major challenge in high strain rate experiments with low impedance polymeric foam specimens, i.e. the delayed equilibrium conditions can be quantified.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of the first year of this study was the investigation of two new classes of complex sulfide materials of potential value for ambient and high temperature, high energy rechargeable batteries with lithium anodes. The two new classes were the sulfospinels and simple and mixed layered disulfides of transitional metals of groups IVB and VB. In addition, three simple sulfides, CoS, CoS/sub 2/ and FeS/sub 2/ were also investigated. Studies of the synthesis methods have resulted in the development of the two-zone quartz furnace capable of firing temperatures up to 1000/sup 0/C with controllable sulfur vapor pressures. Optimum synthesismore » methods for preparation of TiS/sub 2/ and substituted disulfides of the type M/sub x/Ti/sub 1-x/S/sub 2/ (M = Co, Cr, Mo, V) as well as for sulfospinels have been established. In the area of mixed disulfides, compounds with 5 mole % molybdenum and 25 mole % chromium or vanadium were found to be superior in electrochemical cell performance to TiS/sub 2/. The higher electrical conductivity of these compounds compared to that of TiS/sub 2/ is the probable reason. The preparation of the Co-substituted disulfide was not successful and resulted in a sulfospinel structure of CoTi/sub 2/S/sub 4/. Among the sulfospinels studied CoCo/sub 2/S/sub 4/ = (Co/sub 3/S/sub 4/) and CoFe/sub 2/S/sub 4/, high capacity densities up to 605 mAH/g have been found with the former showing more electrochemical reversibility. The initial findings in organic electrolyte cells have been confirmed in high temperature tests conducted at Argonne National Laboratory in molten salt cell tests. The simple sulfides have been found to perform in organic electrolyte cells with CoS/sub 2/ showing lower polarization than FeS/sub 2/ or CoS.« less

  18. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    PubMed

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  19. Liquid-liquid critical point in a simple analytical model of water.

    PubMed

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  20. Liquid-liquid critical point in a simple analytical model of water

    NASA Astrophysics Data System (ADS)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  1. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.

    PubMed

    Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C

    2015-05-01

    Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers were increased to 1 g/L by extending the culture to 16 days. We also present two case studies comparing product quality of material generated by transient HEK293, transient CHO K1SV GS-KO, and stable CHO K1SV KO pool. Protein from transient CHO was more representative of stable CHO protein compared to protein produced from HEK293. © 2014 Wiley Periodicals, Inc.

  2. Dislocation-induced stress in polycrystalline materials: mesoscopic simulations in the dislocation density formalism

    NASA Astrophysics Data System (ADS)

    Berkov, D. V.; Gorn, N. L.

    2018-06-01

    In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.

  3. Ex vivo detection of apoptotic trophoblast cells applying flow cytofluorometry and immunocytochemistry using M30 antibody directed to the cytokeratin 18 neo-epitope.

    PubMed

    Krol, Janna; Mengele, Karin; Ottl-Mantchenko, Irina; Welk, Anita; Wasilewitsch, Irina; von Steinburg, Stephanie Pildner; Schneider, Karl-Theodor M; Schmitt, Manfred

    2005-09-01

    Apoptosis of placental trophoblast cells has become the subject of intensive research. Recently, a monoclonal antibody (M30) directed against a neo-epitope of cytokeratin 18, that is formed after cleavage of this cytoskeletal protein by caspases, was shown to be of advantage over other tests for the detection of trophoblast cell apoptosis. In the present study, we describe a method for the enrichment of highly pure villous trophoblast cells based on the proteolytic digestion of placental tissue, density gradient separation of dissected cells, and immunoelimination of contaminating, non-trophoblast cells employing an antibody to the HLA class I antigen. The high purity (94-99%) of the trophoblast cell preparation was shown by antibody staining for cytokeratin 7 and absence of vimentin. Furthermore, we demonstrate that after a simple permeabilization and fixation step with 90% methanol and using the M30 CytoDeath, FITC-conjugated antibody, apoptotic trophoblast cells could be distinguished from non-apoptotic cells by flow cytofluorometry in a highly quantitative and sensitive fashion. Our protocol is an improvement over previously used methods such as immunocytochemistry as it allows to differentiate rapidly between competent and apoptotic trophoblast cells by the quantitative method of flow cytofluorometry.

  4. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain

    NASA Astrophysics Data System (ADS)

    Newland, B.; Aied, A.; Pinoncely, A. V.; Zheng, Y.; Zhao, T.; Zhang, H.; Niemeier, R.; Dowd, E.; Pandit, A.; Wang, W.

    2014-06-01

    The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies.The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies. Electronic supplementary information (ESI) available: 1H NMR spectroscopy data and gel permeation chromatography data. See DOI: 10.1039/c3nr06737h

  5. Non Volatile Flash Memory Radiation Tests

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  6. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    NASA Astrophysics Data System (ADS)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  7. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.

    PubMed

    Inoue, Ippei; Watanabe, Kiyoshi; Yamauchi, Hirofumi; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2014-10-01

    We designed and mass-produced a versatile protein supramolecule that can be used to manufacture a highly efficient dye-sensitized solar cell (DSSC). Twelve single-walled carbon-nanotube (SWNT)-binding and titanium-mineralizing peptides were genetically integrated on a cage-shaped dodecamer protein (CDT1). A process involving simple mixing of highly conductive SWNTs with CDT1 followed by TiO2 biomineralization produces a high surface-area/weight TiO2 -(anatase)-coated intact SWNT nanocomposite under environmentally friendly conditions. A DSSC with a TiO2 photoelectrode containing 0.2 wt % of the SWNT-TiO2 nanocomposite shows a current density improvement by 80% and a doubling of the photoelectric conversion efficiency. The SWNT-TiO2 nanocomposite transfers photon-generated electrons from dye molecules adsorbed on the TiO2 to the anode electrode swiftly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A simple method to obtain low density marrow cells for human marrow transplantation.

    PubMed

    de Witte, T; Plas, A; Vet, J; Koekman, E; Preyers, F; Wessels, J

    1987-01-01

    Removal of more than 99% of the erythrocytes and 74% of the nucleated cells from marrow grafts was achieved by density floatation separation in Percoll gradients with a density of 1.070 g/ml in eight 250-ml tubes, containing up to 3 X 10(9) nucleated cells per gradient. More than 90% of the myeloid and erythroid progenitor cells were recovered in the low density fraction. It appeared mandatory to use a centrifuge with the possibility of a gradual acceleration and deceleration. Twenty-five patients received a marrow graft from a histocompatible sibling after additional lymphocyte depletion by counterflow centrifugation, and 5 patients with T lymphoblastic malignancies received an autograft after in vitro purging with immunotoxins. All evaluable patients engrafted within normal limits, except 1 patient with an autoimmune pancytopenia who responded to steroids and 1 patient with a CMV infection. Four patients died too early for complete evaluation. The described separation method is easy, cheap and requires only 2 h for the complete processing of a marrow graft.

  9. Communication: Simple liquids' high-density viscosity

    NASA Astrophysics Data System (ADS)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  10. Collective and single cell behavior in epithelial contact inhibition.

    PubMed

    Puliafito, Alberto; Hufnagel, Lars; Neveu, Pierre; Streichan, Sebastian; Sigal, Alex; Fygenson, D Kuchnir; Shraiman, Boris I

    2012-01-17

    Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing, and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as "contact inhibition." The study presented here provides a quantitative characterization of contact inhibition dynamics on tissue-wide and single cell levels. Using long-term tracking of cultured Madin-Darby canine kidney cells we demonstrate that inhibition of cell division in a confluent monolayer follows inhibition of cell motility and sets in when mechanical constraint on local expansion causes divisions to reduce cell area. We quantify cell motility and cell cycle statistics in the low density confluent regime and their change across the transition to epithelial morphology which occurs with increasing cell density. We then study the dynamics of cell area distribution arising through reductive division, determine the average mitotic rate as a function of cell size, and demonstrate that complete arrest of mitosis occurs when cell area falls below a critical value. We also present a simple computational model of growth mechanics which captures all aspects of the observed behavior. Our measurements and analysis show that contact inhibition is a consequence of mechanical interaction and constraint rather than interfacial contact alone, and define quantitative phenotypes that can guide future studies of molecular mechanisms underlying contact inhibition.

  11. Metabolic active-high density VERO cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding.

    PubMed

    Mendonça, Ronaldo Z; Arrózio, Sara J; Antoniazzi, Marta M; Ferreira, Jorge M C; Pereira, Carlos A

    2002-07-17

    The control of cell death occurring in high density cultures performed in bioreactors is an important factor in production processes. In this work, medium nutrient removal or feeding was used to determine at which extension apoptosis could be, respectively, involved or prevented in VERO cell cultures on microcarriers. Glutamine and galactose present in the VERO cell culture medium was consumed after, respectively, 6 and 12 days of culture. Kinetics studies showed that fresh medium replacement and, to some extent, galactose or glutamine depleted-fresh medium replacement provided a nutritional environment, allowing the VERO cell cultures to attain high densities. Galactose was shown to be a more critical nutrient when cultures reached a high density. In agreement with that, VERO cell cultures supplemented with galactose and/or glutamine were shown to confirm previous findings and, again at high densities, galactose was shown to be a critical nutrient for VERO cell growth. These observations also indicated that in VERO cell cultures, for feeding purposes, the glutamine could be replaced by galactose. The inverse was not true and led, at high densities, to a decrease of cell viability. In the absence of glutamine and galactose, apoptosis was observed in VERO cell cultures by cytofluorometry, Acridine orange staining or light and electron microscopy, reaching high levels when compared to cultures performed with complete medium. VERO cells apoptosis process could be prevented by the galactose and/or glutamine feeding and, at high densities, galactose was more efficient in protecting the cultures. These cultures, prevented from apoptosis, were shown to synthesize high levels of measles virus following infection. Our data show that apoptosis prevention by glutamine/galactose feeding, led to high productive and metabolic active VERO cell cultures, as indicated by the high cell density obtained and the virus multiplication leading to higher virus titers.

  12. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  13. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    PubMed Central

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-01-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629

  14. CD3+/CD8+ T-cell density and tumoral PD-L1 predict survival irrespective of rituximab treatment in Chinese diffuse large B-cell lymphoma patients.

    PubMed

    Shi, Yunfei; Deng, Lijuan; Song, Yuqin; Lin, Dongmei; Lai, Yumei; Zhou, LiXin; Yang, Lei; Li, Xianghong

    2018-05-10

    To investigate the prognostic value of tumor-infiltrating T-cell density and programmed cell death ligand-1 (PD-L1) expression in diffuse large B cell lymphoma (DLBCL). One-hundred-twenty-five Chinese DLBCL patients were enrolled in our study and provided samples; 76 of all cases were treated with rituximab (R). Tumor tissues were immunostained and analyzed for CD3+ and CD8+ tumor-infiltrating T-cell density, tumoral PD-L1, and microenvironmental PD-L1 (mPD-L1). The density of CD3 was rated as high in 33.6% cases, while 64.0% of DLBCLs were classified as high CD8 density. Of all cases, 16.8% were PD-L1+. Of the remaining PD-L1-DLBCLs, 29.8% positively expressed mPD-L1. Both CD3 high density and CD8 high density were associated with mPD-L1 positivity (P = 0.001 and P = 0.0001). In multivariate analysis, independently, high CD3 density predicted better OS (P = 0.023), while CD8 high density and PD-L1 positivity were both associated with prolonged PFS (P = 0.013 and P = 0.036, respectively). Even in the subgroup treated with R, univariate analyses indicated that high CD3 density and PD-L1 positivity were associated with better OS (P = 0.041) and PFS (P = 0.033), respectively. The infiltrating densities of CD3+ T-cells, CD8+ T-cells, and PD-L1 expression are predictive of survival in DLBCLs, irrespective of R usage.

  15. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors

    PubMed Central

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2014-01-01

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications. PMID:24663242

  16. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Guo, S.; Lee, I.

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecturemore » for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.« less

  17. Simple gain probability functions for large reflector antennas of JPL/NASA

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.

    2003-01-01

    Simple models for the patterns as well as their cumulative gain probability and probability density functions of the Deep Space Network antennas are developed. These are needed for the study and evaluation of interference from unwanted sources such as the emerging terrestrial system, High Density Fixed Service, with the Ka-band receiving antenna systems in Goldstone Station of the Deep Space Network.

  18. PGC1α is required for the induction of contact inhibition by suppressing ROS.

    PubMed

    Yang, Seungyeon; Hwang, Sunsook; Jang, Jiho; Kim, Minjoong; Gwak, Jihye; Jeong, Seung Min

    2018-05-16

    Contact inhibition (CI) is an important tumor-suppressive mechanism that arrests cell cycle when cells reach high density. Indeed, CI is aberrantly absent in cancer cells and the dysregulation of this can contribute to tumorigenesis. Previously, it has been shown that reactive oxygen species (ROS) levels are repressed at high cell density, which is required for CI, but no molecular mechanism of this ROS regulation has been reported. Here, we show that PGC1α regulates cell density-dependent CI. PGC1α is markedly induced in response to high cell density and suppresses ROS production. Although cellular ROS levels are progressively decreased with increasing cell density, knockdown of PGC1α results in a defect of density-dependent ROS suppression. Importantly, PGC1α knockdown cells become less sensitive to high cell density and exhibit loss of CI. Mechanistically, PGC1α represses ROS production by inducing mitochondrial SIRT3, and thus SIRT3 overexpression rescues the defects of CI by PGC1α knockdown. These results demonstrate that mitochondrial ROS production is a crucial regulator of cell proliferation and identify a new role of PGC1α in CI. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance.

    PubMed

    Liu, Yao; Yang, Bingchang; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2017-12-22

    Lithium-ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low-temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li 3 V 2 (PO 4 ) 3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li + extraction from Li 3 V 2 (PO 4 ) 3 is used to prelithiate the hard carbon. Then, the self-formed Li 2 V 2 (PO 4 ) 3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg -1 , a maximum power density of 8291 W kg -1 and a long life of 2000 cycles. When operated at -40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Numerical modelling of CIGS/CdS solar cell

    NASA Astrophysics Data System (ADS)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2018-05-01

    In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.

  1. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  2. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes

    NASA Astrophysics Data System (ADS)

    Nam, Young Jin; Oh, Dae Yang; Jung, Sung Hoo; Jung, Yoon Seok

    2018-01-01

    Owing to their potential for greater safety, higher energy density, and scalable fabrication, bulk-type all-solid-state lithium-ion batteries (ASLBs) employing deformable sulfide superionic conductors are considered highly promising for applications in battery electric vehicles. While fabrication of sheet-type electrodes is imperative from the practical point of view, reports on relevant research are scarce. This might be attributable to issues that complicate the slurry-based fabrication process and/or issues with ionic contacts and percolation. In this work, we systematically investigate the electrochemical performance of conventional dry-mixed electrodes and wet-slurry fabricated electrodes for ASLBs, by varying the different fractions of solid electrolytes and the mass loading. This information calls for a need to develop well-designed electrodes with better ionic contacts and to improve the ionic conductivity of solid electrolytes. As a scalable proof-of-concept to achieve better ionic contacts, a premixing process for active materials and solid electrolytes is demonstrated to significantly improve electrochemical performance. Pouch-type 80 × 60 mm2 all-solid-state LiNi0·6Co0·2Mn0·2O2/graphite full-cells fabricated by the slurry process show high cell-based energy density (184 W h kg-1 and 432 W h L-1). For the first time, their excellent safety is also demonstrated by simple tests (cutting with scissors and heating at 110 °C).

  3. Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input

    PubMed Central

    Tahon, Koen; Wijnants, Mike; De Schutter, Erik

    2011-01-01

    The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303

  4. Effect of solar-cell junction geometry on open-circuit voltage

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  5. Cancerous tumor: the high frequency of a rare event.

    PubMed

    Galam, S; Radomski, J P

    2001-05-01

    A simple model for cancer growth is presented using cellular automata. Cells diffuse randomly on a two-dimensional square lattice. Individual cells can turn cancerous at a very low rate. During each diffusive step, local fights may occur between healthy and cancerous cells. Associated outcomes depend on some biased local rules, which are independent of the overall cancerous cell density. The models unique ingredients are the frequency of local fights and the bias amplitude. While each isolated cancerous cell is eventually destroyed, an initial two-cell tumor cluster is found to have a nonzero probabilty to spread over the whole system. The associated phase diagram for survival or death is obtained as a function of both the rate of fight and the bias distribution. Within the model, although the occurrence of a killing cluster is a very rare event, it turns out to happen almost systematically over long periods of time, e.g., on the order of an adults life span. Thus, after some age, survival from tumorous cancer becomes random.

  6. The effect of patterning options on embedded memory cells in logic technologies at iN10 and iN7

    NASA Astrophysics Data System (ADS)

    Appeltans, Raf; Weckx, Pieter; Raghavan, Praveen; Kim, Ryoung-Han; Kar, Gouri Sankar; Furnémont, Arnaud; Van der Perre, Liesbet; Dehaene, Wim

    2017-03-01

    Static Random Access Memory (SRAM) cells are used together with logic standard cells as the benchmark to develop the process flow for new logic technologies. In order to achieve successful integration of Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) as area efficient higher level embedded cache, it also needs to be included as a benchmark. The simple cell structure of STT-MRAM brings extra patterning challenges to achieve high density. The two memory types are compared in terms of minimum area and critical design rules in both the iN10 and iN7 node, with an extra focus on patterning options in iN7. Both the use of Self-Aligned Quadruple Patterning (SAQP) mandrel and spacer engineering, as well as multi-level via's are explored. These patterning options result in large area gains for the STT-MRAM cell and moreover determine which cell variant is the smallest.

  7. Performance and stability of a liquid anode high-temperature metal-air battery

    NASA Astrophysics Data System (ADS)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  8. Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing

    PubMed Central

    Basan, Markus; Elgeti, Jens; Hannezo, Edouard; Rappel, Wouter-Jan; Levine, Herbert

    2013-01-01

    Recent experiments have shown that spreading epithelial sheets exhibit a long-range coordination of motility forces that leads to a buildup of tension in the tissue, which may enhance cell division and the speed of wound healing. Furthermore, the edges of these epithelial sheets commonly show finger-like protrusions whereas the bulk often displays spontaneous swirls of motile cells. To explain these experimental observations, we propose a simple flocking-type mechanism, in which cells tend to align their motility forces with their velocity. Implementing this idea in a mechanical tissue simulation, the proposed model gives rise to efficient spreading and can explain the experimentally observed long-range alignment of motility forces in highly disordered patterns, as well as the buildup of tensile stress throughout the tissue. Our model also qualitatively reproduces the dependence of swirl size and swirl velocity on cell density reported in experiments and exhibits an undulation instability at the edge of the spreading tissue commonly observed in vivo. Finally, we study the dependence of colony spreading speed on important physical and biological parameters and derive simple scaling relations that show that coordination of motility forces leads to an improvement of the wound healing process for realistic tissue parameters. PMID:23345440

  9. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.

    PubMed

    Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G

    2017-09-04

    Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.

  10. Prospective of employing high porosity open-cell metal foams in passive cryogenic radiators for space applications

    NASA Astrophysics Data System (ADS)

    Tisha, Dixit; Indranil, Ghosh

    2017-02-01

    Passive cryogenic radiators work on the principle of dissipating heat to the outer space purely by radiation. High porosity open-cell metal foams are a relatively new class of extended surfaces. These possess the advantages of high surface area density and low weight, characteristics which the space industry looks for. In case of radiative heat transfer, the porous nature of metal foams permits a deeper penetration of the incident radiation. Consequently, the heat transfer area participating in radiative heat exchange increases thereby enhancing the heat transfer rate. However, effective heat conduction in between the foam struts reduces as a result of the void spaces. These two conflicting phenomenon for radiation heat transfer in metal foams have been studied in this work. Similar to the foam conduction-convection heat transfer analysis, a conduction-radiation heat transfer model has been developed for metal foams in analogy with the conventional solid fin theory. Metal foams have been theoretically represented as simple cubic structures. A comparison of the radiative heat transfer through metal foams and solid fins attached to a surface having constant temperature has been presented. Effect of changes in foam characteristic properties such as porosity and pore density have also been studied.

  11. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  12. Phenotypic variability and selection of lipid-producing microalgae in a microfluidic centrifuge

    NASA Astrophysics Data System (ADS)

    Estévez-Torres, André.; Mestler, Troy; Austin, Robert H.

    2010-03-01

    Isogenic cells are known to display various expression levels that may result in different phenotypes within a population. Here we focus on the phenotypic variability of a species of unicellular algae that produce neutral lipids. Lipid-producing algae are one of the most promising sources of biofuel. We have implemented a simple microfluidic method to assess lipid-production variability in a population of algae that relays on density differences. We will discuss the reasons of this variability and address the promising avenues of this technique for directing the evolution of algae towards high lipid productivity.

  13. Analysis of population structures of the microalga Acutodesmus obliquus during lipid production using multi-dimensional single-cell analysis.

    PubMed

    Sandmann, Michael; Schafberg, Michaela; Lippold, Martin; Rohn, Sascha

    2018-04-19

    Microalgae bear a great potential to produce lipids for biodiesel, feed, or even food applications. To understand the still not well-known single-cell dynamics during lipid production in microalgae, a novel single-cell analytical technology was applied to study a well-established model experiment. Multidimensional single-cell dynamics were investigated with a non-supervised image analysis technique that utilizes data from epi-fluorescence microscopy. Reliability of this technique was successfully proven via reference analysis. The technique developed was used to determine cell size, chlorophyll amount, neutral lipid amount, and deriving properties on a single-cellular level in cultures of the biotechnologically promising alga Acutodesmus obliquus. The results illustrated a high correlation between cell size and chlorophyll amount, but a very low and dynamic correlation between cell size, lipid amount, and lipid density. During growth conditions under nitrogen starvation, cells with low chlorophyll content tend to start the lipid production first and the cell suspension differentiated in two subpopulations with significantly different lipid contents. Such quantitative characterization of single-cell dynamics of lipid synthesizing algae was done for the first time and the potential of such simple technology is highly relevant to other biotechnological applications and to deeper investigate the process of microalgal lipid accumulation.

  14. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  15. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    PubMed

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L -1 , giving a total energy density of 38 Wh L -1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm -2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of the dynamic stress–strain response of compressible polymeric foam using a non-parametric analysis

    DOE PAGES

    Koohbor, Behrad; Kidane, Addis; Lu, Wei -Yang; ...

    2016-01-25

    Dynamic stress–strain response of rigid closed-cell polymeric foams is investigated in this work by subjecting high toughness polyurethane foam specimens to direct impact with different projectile velocities and quantifying their deformation response with high speed stereo-photography together with 3D digital image correlation. The measured transient displacement field developed in the specimens during high stain rate loading is used to calculate the transient axial acceleration field throughout the specimen. A simple mathematical formulation based on conservation of mass is also proposed to determine the local change of density in the specimen during deformation. By obtaining the full-field acceleration and density distributions,more » the inertia stresses at each point in the specimen are determined through a non-parametric analysis and superimposed on the stress magnitudes measured at specimen ends to obtain the full-field stress distribution. Furthermore, the process outlined above overcomes a major challenge in high strain rate experiments with low impedance polymeric foam specimens, i.e. the delayed equilibrium conditions can be quantified.« less

  17. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode

    PubMed Central

    Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai

    2010-01-01

    High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470

  18. Anomalous evolution of Ar metastable density with electron density in high density Ar discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min; Chang, Hong-Young; You, Shin-Jae

    2011-10-15

    Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. Onmore » the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.« less

  19. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  20. Macro to Nano: A Simple Method for Transporting Cultured Cells from Milliliter Scale to Nanoliter Scale

    PubMed Central

    Seale, Kevin T.; Faley, Shannon L.; Chamberlain, Jeff; Wikswo, John P.

    2013-01-01

    Microfluidic devices are well suited for the study of metabolism and paracrine and autocrine signaling because they allow steady or intermittent perfusion of biological cells at cell densities that approach those in living tissue. They also enable the study of small populations of rare cells. However, it can be difficult to introduce the cells into a microfluidic device to achieve and control such densities without damaging or clumping the cells. We describe simple procedures that address the problem of efficient introduction of cells and cell culture media into microfluidic devices using small bore polyetheretherketone (PEEK) tubing and Hamilton gastight syringes. Suspension or adherent cells grown in cell culture flasks are centrifuged and extracted directly from the centrifuge pellet into the end of the PEEK tubing by aspiration. The tube end is then coupled to pre-punched channels in the polydimethylsiloxane (PDMS) microfluidic device by friction fitting. Controlled depression of the syringe plunger expels the cells into the microfluidic device only seconds following aspiration. The gastight syringes and PEEK tubing with PEEK fittings provide a noncompliant source of pressure and suction with a rapid response time that is well suited for short-term intra-microfluidic cellular studies. The benefits of this method are its simplicity, modest expense, the short preparation time required for loading appropriate numbers of cells, and the applicability of the technique to small quantities of rare or expensive cells. This should in turn lead to new applications of microfludic devices to biology and medicine. PMID:20511682

  1. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency.

    PubMed

    Kan, Bin; Li, Miaomiao; Zhang, Qian; Liu, Feng; Wan, Xiangjian; Wang, Yunchuang; Ni, Wang; Long, Guankui; Yang, Xuan; Feng, Huanran; Zuo, Yi; Zhang, Mingtao; Huang, Fei; Cao, Yong; Russell, Thomas P; Chen, Yongsheng

    2015-03-25

    A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based on DRCN5T, DRCN7T, and DRCN9T with axisymmetric chemical structures exhibit much higher short-circuit current densities than those based on DRCN6T and DRCN8T with centrosymmetric chemical structures, which is attributed to their well-developed fibrillar network with a feature size less than 20 nm. The devices based on DRCN5T/PC71BM showed a notable certified power conversion efficiency (PCE) of 10.10% under AM 1.5G irradiation (100 mW cm(-2)) using a simple solution spin-coating fabrication process. This is the highest PCE for single-junction small-molecule-based organic photovoltaics (OPVs) reported to date. DRCN5T is a rather simpler molecule compared with all of the other high-performance molecules in OPVs to date, and this might highlight its advantage in the future possible commercialization of OPVs. These results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.

  2. Improvement of inverted organic solar cells using acetic acid as an additive for ZnO layer processing

    NASA Astrophysics Data System (ADS)

    Li, Yang; Liu, Yawen; Liu, Zhihai; Xie, Xiaoyin; Lee, Eun-Cheol

    2018-02-01

    In this work, we used acetic acid as an additive for the preparation of ZnO layers and improved the performance of poly{4,8-bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b'] dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene- 4,6-diyl} (PTB7)-based inverted organic solar cells. The addition of acetic acid to the ZnO precursor solution improved the transparency and conductivity of the sol-gel-synthesized ZnO film, by increasing the grain size of the film. Accordingly, the power conversion efficiency (PCE) of the organic solar cells was improved from 6.42% to 7.55%, which was mainly caused by the enhanced current density and fill factor. The best sample demonstrated a high PCE of 7.85% with negligible hysteresis and good stability. Our results indicate that using acetic acid as an additive for the preparation of ZnO is a simple and effective way of fabricating high-performance inverted organic solar cells.

  3. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  4. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    PubMed

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  5. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm –2more » at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h –1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h –1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  6. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...

    2017-01-04

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm –2more » at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h –1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h –1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  7. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.

    PubMed

    Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguirre-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J

    2016-11-01

    Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  9. Current leakage for low altitude satellites - Modeling applications. [simulation of high voltage solar cell array in ionospheric plasma environment

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Mccoy, J. E.; Garriott, O. K.

    1979-01-01

    To simulate the behavior of a high voltage solar cell array in the ionospheric plasma environment, the large (90 ft x 55 ft diameter) vacuum chamber was used to measure the high-voltage plasma interactions of a 3 ft x 30 ft conductive panel. The chamber was filled with Nitrogen and Argon plasma at electron densities of up to 1,000,000 per cu cm. Measurements of current flow to the plasma were made in three configurations: (a) with one end of the panel grounded, (b) with the whole panel floating while a high bias was applied between the ends of the panel, and (c) with the whole panel at high negative voltage with respect to the chamber walls. The results indicate that a simple model with a constant panel conductivity and plasma resistance can adequately describe the voltage distribution along the panel and the plasma current flow. As expected, when a high potential difference is applied to the panel ends more than 95% of the panel floats negative with respect to the plasma.

  10. Engineering muscle cell alignment through 3D bioprinting.

    PubMed

    Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele; Trombetta, Marcella; Rainer, Alberto

    2017-09-01

    Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic ® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017. © 2017 Wiley Periodicals, Inc.

  11. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  12. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells.

    PubMed

    Hassen, Diab; El-Safty, Sherif A; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed A; Sakai, Masaru

    2016-04-14

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  13. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  14. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    PubMed Central

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  15. Access to Barrier Perches Improves Behavior Repertoire in Broilers

    PubMed Central

    Ventura, Beth A.; Siewerdt, Frank; Estevez, Inma

    2012-01-01

    Restriction of behavioral opportunities and uneven use of space are considerable welfare concerns in modern broiler production, particularly when birds are kept at high densities. We hypothesized that increased environmental complexity by provision of barrier perches would help address these issues by encouraging perching and enhancing use of the pen space across a range of stocking densities. 2,088 day-old broiler chicks were randomly assigned to one of the following barrier and density treatment combinations over four replications: simple barrier, complex barrier, or control (no barrier) and low (8 birds/m2), moderate (13 birds/m2), or high (18 birds/m2) density. Data were collected on focal birds via instantaneous scan sampling from 2 to 6 weeks of age. Mean estimates per pen for percent of observations seen performing each behavior, as well as percent of observations in the pen periphery vs. center, were quantified and submitted to an analysis of variance with week as the repeated measure. Barrier perches, density and age affected the behavioral time budget of broilers. Both simple and complex barrier perches effectively stimulated high perching rates. Aggression and disturbances were lower in both barrier treatments compared to controls (P<0.05). Increasing density to 18 birds/m2 compared to the lower densities suppressed activity levels, with lower foraging (P<0.005), decreased perching (P<0.0001) and increased sitting (P = 0.001) earlier in the rearing period. Disturbances also increased at higher densities (P<0.05). Use of the central pen area was higher in simple barrier pens compared to controls (P<0.001), while increasing density above 8 birds/m2 suppressed use of the central space (P<0.05). This work confirms some negative effects of increasing density and suggests that barrier perches have the potential to improve broiler welfare by encouraging activity (notably by providing accessible opportunities to perch), decreasing aggression and disturbances, and promoting more even distribution of birds throughout the pen space. PMID:22299026

  16. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, Bryan M.; Bishop, Sean; Gore, Colin

    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and themore » lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large format cells as large as 10 cm by 10 cm when operated at ~600 °C. The project culminated in the demonstration of a 12-cell stack using the porous anode-based SOFC technology.« less

  17. Facile and rapid synthesis of Pd nanodendrites for electrocatalysis and surface-enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Kannan, Palanisamy; Dolinska, Joanna; Maiyalagan, Thandavarayan; Opallo, Marcin

    2014-09-01

    Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02896a

  18. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  19. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  20. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance

    NASA Astrophysics Data System (ADS)

    Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong

    2018-05-01

    In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.

  1. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  2. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis.

    PubMed

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Zhou, Li; Guo, Junling; Hu, Xu; Xiao, Guoping; Zhou, Zhemin

    2015-09-21

    Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression system that has an expression pattern that is split between cell-growth and over-expression, leading to an increase in cell density and elevating the overall expression levels of heterologously expressed proteins. The broad applicability of this system and inducer-free expression property in B. subtilis facilitate the industrial scale-up and medical applications for the over-production of a variety of desired proteins.

  3. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dan; Department of Physics and Institute of Solid-state electronics physical, Ningbo University, Ningbo 315211; Sheng, Jiang, E-mail: shengjiang@nimte.ac.cn

    2016-07-25

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (J{sub sc}). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electricmore » field of the solar cell, enhancing the open circuit voltage (V{sub oc}). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.« less

  4. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  5. High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer.

    PubMed

    Meng, Tianyu; Liu, Chang; Wang, Kai; He, Tianda; Zhu, Yu; Al-Enizi, Abdullah; Elzatahry, Ahmed; Gong, Xiong

    2016-01-27

    Perovskite hybrid solar cells (pero-HSCs) have drawn great attention in the last 5 years. The efficiencies of pero-HSCs have been boosted from 3.8% to over 20%. However, one of the bottlenecks for commercialization of pero-HSCs is to make a high electrical conductive TiOx electron extraction layer (EEL). In this study, we report high performance pero-HSCs with TiOx EEL, where the TiOx EEL is fabricated by electron beam (e-beam) evaporation, which has been proved to be a well-developed manufacturing process. The resistance of the e-beam evaporated TiOx EEL is smaller than that of sol-gel processed TiOx EEL. Moreover, the dark current densities and interfacial charge carrier recombination of pero-HSCs incorporated with e-beam processed TiOx EEL is also smaller than that of pero-HSCs incorporated with sol-gel processed TiOx EEL. All these result in efficient pero-HSCs with high reproducibility. These results demonstrate that our method provides a simple and facile way to approach high performance pero-HSCs.

  6. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  7. A Novel High Energy Density Rechargeable Hybrid Sodium-Air Cell with Acidic Electrolyte.

    PubMed

    Kang, Yao; Su, Fengmei; Zhang, Qingkai; Liang, Feng; Adair, Keegan R; Chen, Kunfeng; Xue, Dongfeng; Hayashi, Katsuro; Cao, Shan Cecilia; Yadegari, Hossein; Sun, Xueliang

    2018-06-22

    Low cost, high energy density and highly efficient devices for energy storage have long been desired in our society. Herein, a novel high energy density hybrid sodium-air cell was fabricated successfully based on acidic catholytes. Such a hybrid sodium-air cell possess a high theoretical voltage of 3.94 V, capacity of 1121 mAh g-1, and energy density of 4418 Wh kg-1. Firstly, the buffering effect of an acidic solution was demonstrated, which provides relatively long and stable cell discharge behaviours. Secondly, the catholyte of hybrid sodium-air cells were optimized systematically from the solutions of 0.1 M H3PO4 + 0.1 M Na2SO4 to 0.1 M HAc + 0.1 M NaAc, and it was found that the cells with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed maximum power density of 34.9 mW cm-2. The cell with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed higher discharge capacity of 896 mAh g-1. Moreover, the fabricated acidic hybrid sodium-air cells exhibited stable cycling performance in ambient air, and they delivered a low voltage gap around 0.3 V when the current density is 0.13 mA cm-2, leading to a high energy efficiency up to 90%. Therefore, the present study provides new opportunities to develop highly cost-effective energy storage technologies.

  8. Noise-induced effects on multicellular biopacemaker spontaneous activity: Differences between weak and strong pacemaker cells

    NASA Astrophysics Data System (ADS)

    Aghighi, Alireza; Comtois, Philippe

    2017-09-01

    Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.

  9. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    PubMed

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  10. SiN sub x passivation of silicon surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1986-01-01

    The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.

  11. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  12. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  13. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, David E.; Logan, B. Grant

    1981-01-01

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.

  14. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  15. Quantification of cell response to polymeric composites using a two-dimensional gradient platform.

    PubMed

    Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng

    2009-07-01

    A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.

  16. High-Performance Field Emission from a Carbonized Cork.

    PubMed

    Lee, Jeong Seok; Lee, Hak Jun; Yoo, Jae Man; Kim, Taewoo; Kim, Yong Hyup

    2017-12-20

    To broaden the range of application of electron beams, low-power field emitters are needed that are miniature and light. Here, we introduce carbonized cork as a material for field emitters. The light natural cork becomes a graphitic honeycomb upon carbonization, with the honeycomb cell walls 100-200 nm thick and the aspect ratio larger than 100, providing an ideal structure for the field electron emission. Compared to nanocarbon field emitters, the cork emitter produces a high current density and long-term stability with a low turn-on field. The nature of the cork material makes it quite simple to fabricate the emitter. Furthermore, any desired shape of the emitter tailored for the final application can easily be prepared for point, line, or planar emission.

  17. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  18. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE PAGES

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...

    2018-05-29

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  19. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  20. Fundamentals of fuel cell system integration

    NASA Astrophysics Data System (ADS)

    Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.

    1994-04-01

    Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.

  1. Sensing magnetic flux density of artificial neurons with a MEMS device.

    PubMed

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  2. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-03-01

    The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b

  3. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities

    PubMed Central

    Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.

    2018-01-01

    Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134

  4. High resolution simulations of energy absorption in dynamically loaded cellular structures

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  5. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.

    PubMed

    Khurelbaatar, Zagarzusem; Hyung, Jung-Hwan; Kim, Gil-Sung; Park, No-Won; Shim, Kyu-Hwan; Lee, Sang-Kwon

    2014-06-01

    We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.

  6. Low cost iodine intercalated graphene for fuel cells electrodes

    NASA Astrophysics Data System (ADS)

    Marinoiu, Adriana; Raceanu, Mircea; Carcadea, Elena; Varlam, Mihai; Stefanescu, Ioan

    2017-12-01

    On the theoretical predictions, we report the synthesis of iodine intercalated graphene for proton exchange membrane fuel cells (PEMFCs) applications. The structure and morphology of the samples were characterized by X-ray photoelectron spectroscopy (XPS) analysis, specific surface area by BET method, Raman investigations. The presence of elemental iodine in the form of triiodide and pentaiodide was validated, suggesting that iodine was trapped between graphene layers, leading to interactions with C atoms. The electrochemical performances of iodinated graphenes were tested and compared with a typical PEMFC configuration, containing different Pt/C loading (0.4 and 0.2 mg cm-2). If iodinated graphene is included as microporous layer, the electrochemical performances of the fuel cell are higher in terms of power density than the typical fuel cell. Iodine-doped graphenes have been successfully obtained by simple and cost effective synthetic strategy and demonstrated new insights for designing of a high performance metal-free ORR catalyst by a scalable technique.

  7. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  8. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  9. Simple and Inexpensive Paper-Based Astrocyte Co-culture to Improve Survival of Low-Density Neuronal Networks

    PubMed Central

    Aebersold, Mathias J.; Thompson-Steckel, Greta; Joutang, Adriane; Schneider, Moritz; Burchert, Conrad; Forró, Csaba; Weydert, Serge; Han, Hana; Vörös, János

    2018-01-01

    Bottom-up neuroscience aims to engineer well-defined networks of neurons to investigate the functions of the brain. By reducing the complexity of the brain to achievable target questions, such in vitro bioassays better control experimental variables and can serve as a versatile tool for fundamental and pharmacological research. Astrocytes are a cell type critical to neuronal function, and the addition of astrocytes to neuron cultures can improve the quality of in vitro assays. Here, we present cellulose as an astrocyte culture substrate. Astrocytes cultured on the cellulose fiber matrix thrived and formed a dense 3D network. We devised a novel co-culture platform by suspending the easy-to-handle astrocytic paper cultures above neuronal networks of low densities typically needed for bottom-up neuroscience. There was significant improvement in neuronal viability after 5 days in vitro at densities ranging from 50,000 cells/cm2 down to isolated cells at 1,000 cells/cm2. Cultures exhibited spontaneous spiking even at the very low densities, with a significantly greater spike frequency per cell compared to control mono-cultures. Applying the co-culture platform to an engineered network of neurons on a patterned substrate resulted in significantly improved viability and almost doubled the density of live cells. Lastly, the shape of the cellulose substrate can easily be customized to a wide range of culture vessels, making the platform versatile for different applications that will further enable research in bottom-up neuroscience and drug development. PMID:29535595

  10. Fuel Cells for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Fuel cell technology has been receiving more attention recently as a possible alternative to the internal combustion engine for our automobile. Improvements in fuel cell designs as well as improvements in lightweight high-pressure gas storage tank technology make fuel cell technology worth a look to see if fuel cells can play a more expanded role in space missions. This study looks at the specific weight density and specific volume density of potential fuel cell systems as an alternative to primary and secondary batteries that have traditionally been used for space missions. This preliminary study indicates that fuel cell systems have the potential for energy densities of greater than 500 W-hr/kg, greater than 500W/kg and greater than 400 W-hr/liter, greater than 200 W/liter. This level of performance makes fuel cells attractive as high-power density, high-energy density sources for space science probes, planetary rovers and other payloads. The power requirements for these space missions are, in general, much lower than the power levels where fuel cells have been used in the past. Adaptation of fuel cells for space science missions will require down-sizing the fuel cell stack and making the fuel cell operate without significant amounts of ancillary equipment.

  11. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  12. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  13. Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.

    PubMed

    Li, Yiwei; Feng, Xiaojun; Wang, Yachao; Du, Wei; Chen, Peng; Liu, Chao; Liu, Bi-Feng

    2015-08-07

    Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.

  14. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    NASA Astrophysics Data System (ADS)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an attractive tool that may be implemented for general tissue engineering and neuroscience research.

  15. Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manuel, James; Kim, Miso; Fapyane, Deby

    2014-10-15

    Highlights: • Nanofibrous structured polyaniline (PANI) was prepared by simple ultrasonication. • PANI nanofibers prepared at 5 °C are uniform with an average diameter of 50 nm. • The conductivity is increased by 2 × 10{sup 8} times after doping with LiClO{sub 4}. • The cell with PANI-LiClO{sub 4} shows good cycle performance at high current densities. - Abstract: Polyaniline nanofibers have been successfully prepared by applying ultrasonic irradiation during oxidative polymerization of aniline in dilute hydrochloric acid and evaluated for suitability in lithium cells after doping with lithium perchlorate salt. Polyaniline nanofibers are confirmed by Fourier transform infrared spectroscopy,more » Fourier transform Raman spectroscopy, and transmission electron microscopy, and the efficiency of doping is confirmed by DC conductivity measurements at different temperatures. Electrochemical properties of nanofibers are evaluated, of which a remarkable increase in cycle stability is achieved when compared to polyaniline prepared by simple oxidative polymerization of aniline. The cell with nanofibrous polyaniline doped with LiClO{sub 4} delivers an initial discharge capacity value of 86 mA h g{sup −1} at 1 C-rate which is about 60% of theoretical capacity, and the capacity is slightly lowered during cycle and reaches 50% of theoretical capacity after 40 cycles. The cell delivers a stable and higher discharge capacity even at 2 C-rate compared to that of the cell prepared with bulk polyaniline doped with LiClO{sub 4}.« less

  16. High CD4(+) T-cell surface CXCR4 density as a risk factor for R5 to X4 switch in the course of HIV-1 infection.

    PubMed

    Fiser, Anne-Laure; Vincent, Thierry; Brieu, Natalie; Lin, Yea-Lih; Portalès, Pierre; Mettling, Clément; Reynes, Jacques; Corbeau, Pierre

    2010-12-15

    For unclear reasons, about 50% of HIV-infected subjects harbour CXCR4-using (X4) viral strains in addition of CCR5-using (R5) viral strains at late stages of the disease. One hypothesis is that a low CD4(+) T-cell surface CCR5 density could facilitate the emergence of X4 strains. Alternatively, one could argue that a high CD4(+) T-cell surface CXCR4 density that is observed in individuals presenting with X4 strains, could favour R5 to X4 switch. Here, we tested both hypotheses. In vivo, we observed by quantitative flow cytometry no difference in CD4(+) T-cell surface CCR5 densities between patients with or without X4 strains. In the course of an in vitro R5 infection, the delay of emergence of X4 mutants was similar between cells expressing 2 distinct cell surface CCR5 densities, but shorter (12 ± 0 days and 21 ± 0 days, respectively, P = 0.01) in cells expressing a high surface CXCR4 density as compared with cells with a low surface CXCR4 density. These data argue for a role of CXCR4 density, but not of CCR5 density, in the emergence of X4 strains. They are reassuring concerning the risk of inducing an R5 to X4 switch using CCR5 antagonists to treat HIV infection.

  17. Standard cell electrical and physical variability analysis based on automatic physical measurement for design-for-manufacturing purposes

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel

    2011-04-01

    A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).

  18. Response of Simple, Model Systems to Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO 2, GeO 2, CeO 2, TiO 2, HfO 2, SnO 2, ZnO and ZrO 2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphizationmore » of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.« less

  19. High volumetric power density, non-enzymatic, glucose fuel cells.

    PubMed

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  20. High volumetric power density, non-enzymatic, glucose fuel cells

    PubMed Central

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576

  1. Density dependence in demography and dispersal generates fluctuating invasion speeds

    PubMed Central

    Li, Bingtuan; Miller, Tom E. X.

    2017-01-01

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569

  2. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device (Fig. 1), where energymore » is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Several of these systems have been commercialized although current technologies, such as vanadium (V) and zinc-bromine (Zn-Br 2) RFCs, for grid level energy storage, suffer from a number of drawbacks, i.e. expensive and resource-limited active materials (vanadium RFCc), and low current performance (Zn-Br 2 RFCs due to Zn dendrite formation). Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. Approach: To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible.« less

  3. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOEpatents

    Mamantov, Gleb

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  4. From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes

    PubMed Central

    2018-01-01

    Dense layers of semiconducting single-walled carbon nanotubes (SWNTs) serve as electrochromic (EC) materials in the near-infrared with high optical density and high conductivity. EC cells with tunable notch filter properties instead of broadband absorption are created via highly selective dispersion of specific semiconducting SWNTs through polymer-wrapping followed by deposition of thick films by aerosol-jet printing. A simple planar geometry with spray-coated mixed SWNTs as the counter electrode renders transparent metal oxides redundant and facilitates complete bleaching within a few seconds through iongel electrolytes with high ionic conductivities. Monochiral (6,5) SWNT films as working electrodes exhibit a narrow absorption band at 997 nm (full width at half-maximum of 55–73 nm) with voltage-dependent optical densities between 0.2 and 4.5 and a modulation depth of up to 43 dB. These (6,5) SWNT notch filters can retain more than 95% of maximum bleaching for several hours under open-circuit conditions. In addition, different levels of transmission can be set by applying constant low voltage (1.5 V) pulses with modulated width or by a given number of fixed short pulses. PMID:29521086

  5. Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Chi; Lu, Yi-Ting; Chien, Yu-An; Wang, Jeng-An; Chen, Po-Yu; Ma, Chen-Chi M.; Hu, Chi-Chang

    2018-07-01

    The sodium-pre-intercalated δ-MnO2 is in-situ grown on carbon nanofiber via a simple, one-step method for the application of asymmetric supercapacitors. The pre-intercalation of Na ions into the layered structure of δ-MnO2 reduces the crystallinity, beneficial to Na+ diffusion into/out the interlayer structure and pseudocapacitive utilization of MnO2. This NaxMnO2@CNF nanocomposite with desirable pseudo-capacitance from δ-NaxMnO2 and high electric conductivity from CNF network shows a high specific capacitance of 321 F g-1 at 1 A g-1 with ca. 75.2% capacitance retention from 1 to 32 A g-1. An ASC cell consisting of this nanocomposite and activated carbon as the positive and negative electrodes can be reversibly charged and discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 21 Wh kg-1 and 1 kW kg-1, respectively. This ASC also shows excellent cell capacitance retention (7% decay) in the 2 V, 10,000-cycle stability test, revealing superior performance.

  6. Mathematical model for determining the effects of intracytoplasmic inclusions on volume and density of microorganisms.

    PubMed Central

    Mas, J; Pedrós-Alió, C; Guerrero, R

    1985-01-01

    Procaryotic microorganisms accumulate several polymers in the form of intracellular inclusions as a strategy to increase survival in a changing environment. Such inclusions avoid osmotic pressure increases by tightly packaging certain macromolecules into the inclusion. In the present paper, a model describing changes in volume and density of the microbial cell as a function of the weight of the macromolecule forming the inclusion is derived from simple theoretical principles. The model is then tested by linear regression with experimental data from glycogen accumulation in Escherichia coli, poly-beta-hydroxybutyrate accumulation in Alcaligenes eutrophus, and sulfur accumulation in Chromatium spp. The model predicts a certain degree of hydration of the polymer in the inclusion and explains both the linear relationship between volume of the cell and weight of the polymer and the hyperbolic relationship between density of the cell and weight of the polymer. Other implications of the model are also discussed. PMID:3902798

  7. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2014-08-01

    We for the first time demonstrate a simple and green approach to heteroatom (N and S) co-doped hierarchically porous carbons (N-S-HC) with high surface area by using one organic ionic liquid as nitrogen, sulfur and carbon sources and the eutectic salt as templating. The resultant dual-doped N-S-HC catalysts exhibit significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to commercial Pt/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the synergistic effects, which includes more catalytic sites for ORR provided by N-S heteroatom doping and high electron transfer rate provided by hierarchically porous structure. The DFT calculations reveal that the dual doping of S and N atoms lead to the redistribution of spin and charge densities, which may be responsible for the formation of a large number of carbon atom active sites. This newly developed approach may supply an efficient platform for the synthesis of a series of heteroatom doped carbon materials for fuel cells and other applications.

  8. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density.

    PubMed

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2017-02-01

    The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  10. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor

    PubMed Central

    Jeon, Ji Hoon; Joo, Ho-Young; Kim, Young-Min; Lee, Duk Hyun; Kim, Jin-Soo; Kim, Yeon Soo; Choi, Taekjib; Park, Bae Ho

    2016-01-01

    Highly nonlinear bistable current-voltage (I–V) characteristics are necessary in order to realize high density resistive random access memory (ReRAM) devices that are compatible with cross-point stack structures. Up to now, such I–V characteristics have been achieved by introducing complex device structures consisting of selection elements (selectors) and memory elements which are connected in series. In this study, we report bipolar resistive switching (RS) behaviours of nano-crystalline BiFeO3 (BFO) nano-islands grown on Nb-doped SrTiO3 substrates, with large ON/OFF ratio of 4,420. In addition, the BFO nano-islands exhibit asymmetric I–V characteristics with high nonlinearity factor of 1,100 in a low resistance state. Such selector-free RS behaviours are enabled by the mosaic structures and pinned downward ferroelectric polarization in the BFO nano-islands. The high resistance ratio and nonlinearity factor suggest that our BFO nano-islands can be extended to an N × N array of N = 3,740 corresponding to ~107 bits. Therefore, our BFO nano-island showing both high resistance ratio and nonlinearity factor offers a simple and promising building block of high density ReRAM. PMID:27001415

  11. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival

    PubMed Central

    De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil

    2015-01-01

    Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773

  12. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    PubMed

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  13. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    PubMed

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  14. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    PubMed

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial cells. Sub-optimal seeding density results in a decrease in cell saturation density, as well as a loss in their proliferative potential. As such, we propose a seeding density of not less than 10,000 cells per cm2 for regular passage of primary human corneal endothelial cells.

  15. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery

    PubMed Central

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-01-01

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm−2. At 1.0 V of cell voltage, a current density of 324 mA cm−2 is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm−2, and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte. PMID:27646032

  16. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    PubMed

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-20

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  17. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    PubMed

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  18. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  19. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    PubMed Central

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-01-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936

  20. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  1. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hongxu; Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Guo, Likun

    2009-04-10

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10{sup 3} to 3 x 10{sup 4} cells/cm{sup 2} was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed thatmore » adipogenesis marker genes encoding peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.« less

  2. Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study

    PubMed Central

    Bornschein, Jörg; Henniges, Marc; Lücke, Jörg

    2013-01-01

    Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938

  3. High-density carbon nanotube buckypapers with superior transport and mechanical properties.

    PubMed

    Zhang, Ling; Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2012-09-12

    High-density buckypapers were obtained by using well-aligned carbon nanotube arrays. The density of the buckypapers was as high as 1.39 g cm(-3), which is close to the ultimate density of ideal buckypapers. Then we measured the transport and mechanical properties of the buckypapers. Our results demonstrated that its electrical and thermal conductivities could be almost linearly improved by increasing its density. In particular, its superior thermal conductivity is nearly twice that of common metals, which enables it a lightweight and more efficient heat-transfer materials. The Young's modulus of the buckypapers could reach a magnitude over 2 GPa, which is greatly improved compared with previous reported results. In view of this, our work provided a simple and convenient method to prepare high-density buckypapers with excellent transport and mechanical properties.

  4. Tracking flow of leukocytes in blood for drug analysis

    NASA Astrophysics Data System (ADS)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  5. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    PubMed

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  6. Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure.

    PubMed

    Luo, Yufeng; Luo, Shu; Wu, Hengcai; Li, Mengya; Wang, Ke; Yan, Lingjia; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Wang, Jiaping

    2017-07-01

    A novel and simple strategy is developed to construct ultralight and 3D pure carbon nanotube (CNT) aerogels by the spontaneous expansion of superaligned CNT films soaked in a piranha (mixed H 2 SO 4 and H 2 O 2 ) solution, followed by cryodesiccation. The macroscopic CNT aerogels have an extremely low apparent density (0.12 mg cm -3 ), ultrahigh porosity (99.95%), high specific surface area (298 m 2 g -1 ), and a hierarchical cellular structure with giant and ultrathin CNT sheets as cell walls. The pure CNT aerogels show high adsorption abilities for various kinds of solvents, and have great potential in widespread applications such as energy storage, catalysis, and bioengineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F

    2015-03-04

    The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles.

  8. Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells.

    PubMed

    Gharibzadeh, Saba; Nejand, Bahram Abdollahi; Moshaii, Ahmad; Mohammadian, Nasim; Alizadeh, Amir Hossein; Mohammadpour, Rahele; Ahmadi, Vahid; Alizadeh, Abdolali

    2016-08-09

    A simple and practical approach is introduced for the deposition of CuI as an inexpensive inorganic hole-transport material (HTM) for the fabrication of low cost perovskite solar cells (PSCs) by gas-solid phase transformation of Cu to CuI. The method provides a uniform and well-controlled CuI layer with large grains and good compactness that prevents the direct connection between the contact electrodes. Solar cells prepared with CuI as the HTM with Au electrodes displays an exceptionally high short-circuit current density of 32 mA cm(-2) , owing to an interfacial species formed between the perovskite and the Cu resulting in a long wavelength contribution to the incident photon-to-electron conversion efficiency (IPCE), and an overall power conversion efficiency (PCE) of 7.4 %. The growth of crystalline and uniform CuI on a low roughness perovskite layer leads to remarkably high charge extraction in the cells, which originates from the high hole mobility of CuI in addition to a large number of contact points between CuI and the perovskite layer. In addition, the solvent-free method has no damaging side effect on the perovskite layer, which makes it an appropriate method for large scale applications of CuI in perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cylinders out of a top hat: counts-in-cells for projected densities

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Pichon, Christophe; Codis, Sandrine; L'Huillier, Benjamin; Kim, Juhan; Bernardeau, Francis; Park, Changbom; Prunet, Simon

    2018-06-01

    Large deviation statistics is implemented to predict the statistics of cosmic densities in cylinders applicable to photometric surveys. It yields few per cent accurate analytical predictions for the one-point probability distribution function (PDF) of densities in concentric or compensated cylinders; and also captures the density dependence of their angular clustering (cylinder bias). All predictions are found to be in excellent agreement with the cosmological simulation Horizon Run 4 in the quasi-linear regime where standard perturbation theory normally breaks down. These results are combined with a simple local bias model that relates dark matter and tracer densities in cylinders and validated on simulated halo catalogues. This formalism can be used to probe cosmology with existing and upcoming photometric surveys like DES, Euclid or WFIRST containing billions of galaxies.

  10. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  11. Experiment and mathematical model for the heat transfer in water around 4 °C

    NASA Astrophysics Data System (ADS)

    Ogawa, Naohisa; Kaneko, Fumitoshi

    2017-03-01

    Water, which is the habitat for a variety of living creatures, has a maximum density at 4.0 °C. This crucial property is considered to play a very important role in the biology of a lake and also has a close relationship with the areas of environmentology and geoscience. It would be desirable for students to confirm this important property of water themselves by carrying out simple experiments. However, it is not easy to detect the maximum density at 4.0 °C because the temperature dependence of the water density is very small close to its freezing point. For example, the density of water is 0.999 975 g cm-3 at 4.0 °C and 0.999 850 g cm-3 at 0.1 °C. The aim in this manuscript is to demonstrate a simple experiment to detect 4.0 °C as the temperature of maximum density, in which the time dependence of the water temperature is measured at several different depths by chilling the water surface. This is a simple experiment that can also be performed by high school students. We also present a mathematical model that can explain the results of this experiment.

  12. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyoti, Divya, E-mail: divyabathla17@gmail.com; Mohan, Devendra

    2016-05-06

    Dye-Sensitized solar cells based on TiO{sub 2} nanocrystal and TiO{sub 2} nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  13. Fabrication of cross-shaped Cu-nanowire resistive memory devices using a rapid, scalable, and designable inorganic-nanowire-digital-alignment technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo

    2016-09-01

    Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.

  14. Processive movement of single kinesins on crowded microtubules visualized using quantum dots

    PubMed Central

    Seitz, Arne; Surrey, Thomas

    2006-01-01

    Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single quantum dot-labelled kinesins on crowded microtubules under steady-state conditions and to measure the degree of crowding on a microtubule at steady-state. We find that the runs of kinesins are little affected by high kinesin densities on a microtubule. However, the presence of high densities of a mutant kinesin that is not able to step efficiently reduces the average speed of wild-type kinesin, while hardly changing its processivity. This indicates that kinesin waits in a strongly bound state on the microtubule when encountering an obstacle until the obstacle unbinds and frees the binding site for kinesin's next step. A simple kinetic model can explain quantitatively the behaviour of kinesin under both crowding conditions. PMID:16407972

  15. Reaction chemistry in rechargeable Li-O2 batteries.

    PubMed

    Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon; Park, Hyeokjun; Ko, Youngmin; Kim, Haegyeom; Kim, Jinsoo; Kang, Kisuk

    2017-05-22

    The seemingly simple reaction of Li-O 2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O 2 batteries has proven difficult. The reaction paths leading to the final Li 2 O 2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O 2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O 2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O 2 batteries.

  16. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    NASA Astrophysics Data System (ADS)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  17. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  18. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes.

    PubMed

    Schroeder, M; Zouboulis, C C

    2007-02-01

    Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged and steroid-damaged skin.

  19. Quinoline containing acetyl hydrazone: An easily accessible switch-on optical chemosensor for Zn2 +

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Na; Mao, Pan-Dong; Wang, Yuan; Zhao, Xiao-Lei; Xu, Zhou-Qing; Xu, Zhi-Hong; Xue, Yuan

    2018-01-01

    A simple chemosensor, namely, N-((quinolin-8-yl)methylene)acetohydrazide (1) was synthesized and used as an off-on fluorescence sensor, which exhibits high selectivity toward Zn2 + in aqueous media. The probe has large Stokes shift of > 200 nm, and its detection limit for Zn2 + is 89.3 nM. The binding process was confirmed through UV-vis absorption analysis, fluorescence measurements, mass spectroscopy study, 1H NMR spectra and density functional theory calculation. The crystal structures of Zn2 +, Ni2 +, and Cu2 + complexes based on 1 were determined through X-ray crystallographic analysis. The fluorescent probe was then applied to monitor intracellular Zn2 + in HeLa cells.

  20. NASA redox storage system development project, calendar year 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Development was continued for iron-chromium battery operation at 65 C. Membranes that were adequate at 25 C were shown to be unacceptable at 65 C with regard to selectivity. This led to the elevated-temperature, mixed-reactant mode of operation, in which each reactant solution, when discharged, contains both ferrous and chromic chlorides. This operating mode allows the use of very low-resistivity membranes, resulting in high energy efficiencies at current densities. It also allows the use of very simple techniques to correct for solvent or reactant transfer through cell membranes. Screening of candidate catalysts for the chromium electrode led to the development of a bismuth-lead candidate having several attractive characteristics.

  1. Three-dimensional imaging for large LArTPCs

    NASA Astrophysics Data System (ADS)

    Qian, X.; Zhang, C.; Viren, B.; Diwan, M.

    2018-05-01

    High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel-type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. The resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables the true power of 3D tracking calorimetry in LArTPCs.

  2. Friction on the Bond and the Vibrational Relaxation in Simple Liquids.

    NASA Astrophysics Data System (ADS)

    Mishra, Bimalendu Kumar

    In chapter 1, the energy relaxation of a stiff Morse oscillator dissolved in a simple LJ fluid is calculated using a reversible integrator (r-RESPA) in molecular dynamics generated from the Trotter factorization of the classical propagator. We compare the "real" relaxation from full MD simulations with that predicted by the Generalized Langevin Equation (GLE) with memory friction determined from the full Molecular Dynamics for a series of fluid densities. It is found that the GLE gives very good agreement with MD for the vibrational energy relaxation for this nonlinear oscillator far from equilibrium only for high density fluids, but reduced densities rho < 0.5 the energy relaxation from the MD simulation becomes considered slower than that from the GLE. An analysis of the statistical properties of the random force shows that as the density is lowered the non-Gaussian behavior of the random force becomes more prominent. This behavior is consistent with a simple model in which the oscillator undergoes generalized Langevin dynamics between strong binary collisions with solvent atoms. In chapter 2, molecular hydrodynamics is used to calculate the memory friction on the intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a simple liquid. The predicted memory friction is then compared to recent computer experiments. Agreement with the experimental memory functions is obtained when the linearized hydrodynamics is modified to include gaussian viscoelasticity and compressibility. The hydrodynamic friction on the bond appears to agree qualitatively very well, although quantitative agreement is not found at high frequencies. Various limits of the hydrodynamic friction are discussed.

  3. Use of a spread sheet to calculate the current-density distribution produced in human and rat models by low-frequency electric fields.

    PubMed

    Hart, F X

    1990-01-01

    The current-density distribution produced inside irregularly shaped, homogeneous human and rat models by low-frequency electric fields is obtained by a two-stage finite-difference procedure. In the first stage the model is assumed to be equipotential. Laplace's equation is solved by iteration in the external region to obtain the capacitive-current densities at the model's surface elements. These values then provide the boundary conditions for the second-stage relaxation solution, which yields the internal current-density distribution. Calculations were performed with the Excel spread-sheet program on a Macintosh-II microcomputer. A spread sheet is a two-dimensional array of cells. Each cell of the sheet can represent a square element of space. Equations relating the values of the cells can represent the relationships between the potentials in the corresponding spatial elements. Extension to three dimensions is readily made. Good agreement was obtained with current densities measured on human models with both, one, or no legs grounded and on rat models in four different grounding configurations. The results also compared well with predictions of more sophisticated numerical analyses. Spread sheets can provide an inexpensive and relatively simple means to perform good, approximate dosimetric calculations on irregularly shaped objects.

  4. Reduction of I(Ca,L) and I(to1) density in hypertrophied right ventricular cells by simulated high altitude in adult rats.

    PubMed

    Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R

    1997-01-01

    The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.

  5. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  6. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  7. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    PubMed

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.

  8. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture.

    PubMed

    Yoon, D S; Kim, Y H; Jung, H S; Paik, S; Lee, J W

    2011-10-01

    This study has aimed to repopulate 'primitive' cells from late-passage mesenchymal stem cells (MSCs) of poor multipotentiality and low cell proliferation rate, by simply altering plating density. Effects of low density culture compared t high density culture on late-passage bone marrow (BM)-derived MSCs and pluripotency markers of multipotentiality were investigated. Cell proliferation, gene expression, RNA interference and differentiation potential were assayed. We repopulated 'primitive' cells by replating late-passage MSCs at low density (17 cells/cm(2) ) regardless of donor age. Repopulated MSCs from low-density culture were smaller cells with spindle shaped morphology compared to MSCs from high-density culture. The latter had enhanced colony-forming ability, proliferation rate, and adipogenic and chondrogenic potential. Strong expression of osteogenic-related genes (Cbfa1, Dlx5, alkaline phosphatase and type Ι collagen) in late-passage MSCs was reduced by replating at low density, whereas expression of three pluripotency markers (Sox2, Nanog and Oct-4), Osterix and Msx2 reverted to levels of early-passage MSCs. Knockdown of Sox2 and Msx2 but not Nanog, using RNA interference, showed significant decrease in colony-forming ability. Specifically, knockdown of Sox2 significantly inhibited multipotentiality and cell proliferation. Our data suggest that plating density should be considered to be a critical factor for enrichment of 'primitive' cells from heterogeneous BM and that replicative senescence and multipotentiality of MSCs during in vitro expansion may be predominantly regulated through Sox2. © 2011 Blackwell Publishing Ltd.

  9. Symmetric supercapacitor: Sulphurized graphene and ionic liquid.

    PubMed

    Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S

    2018-10-01

    Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  11. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  12. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further investigate the sensitivity differences for low and low high doses, we performed chronic low dose-rate irradiation, and have begun studies with ATM and Nibrin inhibitors and siRNA knockout of these proteins. Results support the conclusion that for the endpoint of simple chromosomal aberrations (translocation or dicentrics), the increased radiation sensitivity of AT cells found at high doses (>1 Gy) does not carry over to low doses or doserates, while NBS cells show increased sensitivity for both high and low dose exposures.

  13. Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution.

    PubMed

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Birk, Udo J; Dobrucki, Jurek W; Cremer, Christoph

    2016-05-01

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. Copyright © 2016. Published by Elsevier Inc.

  14. Crystal structure of simple metals at high pressures

    NASA Astrophysics Data System (ADS)

    Degtyareva, Olga

    2010-09-01

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  15. Possible Circuit Architectures for Molecular Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Likharev, Konstantin

    2003-03-01

    Chemically-directed self-assembly of molecular devices is apparently the only feasible way to continue the fast progress of microelectronics after its Moore-Laws-based development runs into the wall of physical and economic limitations [1]. The architectures of VLSI circuits using such devices should be substantially fault-tolerant and accommodate other their features including low transconductance. The most significant feature of all promising suggested architectures is the hybridization of three technologies: advanced CMOS, simple nanowire arrays, and molecular devices self-assembling on these wires. Molecular memory arrays may have a simple structure, and their simple prototypes have already been implemented experimentally [2]. In contrast, the logic circuit development is just starting. I will describe a family of neuromorphic networks based on so-called CrossNet arrays [3] that look promising for advanced information processing, starting from fast image recognition and beyond. This architecture may combine very high density (above 10^12 functions per cm^2) and relatively high speed (100-ns-scale latency of cell-to-cell communications) at acceptable power consumption. In future, these features may allow to put an artificial analog of the human cerebral cortex, capable of processing information and (hopefully) self-evolution at 4 to 5 orders of magnitude faster than its biological prototype, on a 20x20 cm^2 silicon wafer. [1] K. Likharev, "Electronics Below 20-nm", see http://rsfq1.physics.sunysb.edu/ likharev/nano/ForMorkoc.pdf. [2] See, e.g, http://nanotechweb.org/articles/news/1/9/8/1. [3] O. Turel and K. Likharev, Int. J. of Circuit Theory and Applications 31, No.1 (2003); see http://rsfq1.physics.sunysb.edu/ likharev/nano/Preprint070102.pdf.

  16. A High Performance H2-Cl2 Fuel Cell for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Everett B.; Taylor, E. Jennings; Wilemski, Gerald; Gelb, Alan

    1993-01-01

    NASA has numerous airborne/spaceborne applications for which high power and energy density power sources are needed. The proton exchange membrane fuel cell (PEMFC) is an attractive candidate for such a power source. PEMFC's offer many advantages for airborne/spaceborne applications. They have high power and energy densities, convert fuel to electrical power with high efficiency at both part and full load, and can rapidly startup and shutdown. In addition, PEMFC's are lightweight and operate silently. A significant impediment to the attainment of very high power and energy densities by PEMFC's is their current exclusive reliance on oxygen as the oxidant. Conventional PEMFC's oxidize hydrogen at the anode and reduce oxygen at the cathode. The electrode kinetics of oxygen reduction are known to be highly irreversible, incurring large overpotential losses. In addition, the modest open circuit potential of 1.2V for the H2-O2 fuel cell is unattainable due to mixed potential effects at the oxygen electrode. Because of the high overpotential losses, cells using H2 and O2 are capable of achieving high current densities only at very low cell voltages, greatly curtailing their power output. Based on experimental work on chlorine reduction in a gas diffusion electrode, we believe significant increases in both the energy and power densities of PEMFC systems can be achieved by employing chlorine as an alternative oxidant.

  17. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer.

    PubMed

    Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun; Maldonado, Laneisha; Reitz, Logan; Barber, John R; De Marzo, Angelo M; Tosoian, Jeffrey J; Tomlins, Scott A; Schaeffer, Edward M; Joshu, Corinne E; Sfanos, Karen S; Lotan, Tamara L

    2018-05-30

    The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm 2 ; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm 2 ; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is associated with specific molecular subclasses of prostate cancer, we did not find an association of T-cell density with racial ancestry.

  18. Magnetic Levitation Coupled with Portable Imaging and Analysis for Disease Diagnostics.

    PubMed

    Knowlton, Stephanie M; Yenilmez, Bekir; Amin, Reza; Tasoglu, Savas

    2017-02-19

    Currently, many clinical diagnostic procedures are complex, costly, inefficient, and inaccessible to a large population in the world. The requirements for specialized equipment and trained personnel require that many diagnostic tests be performed at remote, centralized clinical laboratories. Magnetic levitation is a simple yet powerful technique and can be applied to levitate cells, which are suspended in a paramagnetic solution and placed in a magnetic field, at a position determined by equilibrium between a magnetic force and a buoyancy force. Here, we present a versatile platform technology designed for point-of-care diagnostics which uses magnetic levitation coupled to microscopic imaging and automated analysis to determine the density distribution of a patient's cells as a useful diagnostic indicator. We present two platforms operating on this principle: (i) a smartphone-compatible version of the technology, where the built-in smartphone camera is used to image cells in the magnetic field and a smartphone application processes the images and to measures the density distribution of the cells and (ii) a self-contained version where a camera board is used to capture images and an embedded processing unit with attached thin-film-transistor (TFT) screen measures and displays the results. Demonstrated applications include: (i) measuring the altered distribution of a cell population with a disease phenotype compared to a healthy phenotype, which is applied to sickle cell disease diagnosis, and (ii) separation of different cell types based on their characteristic densities, which is applied to separate white blood cells from red blood cells for white blood cell cytometry. These applications, as well as future extensions of the essential density-based measurements enabled by this portable, user-friendly platform technology, will significantly enhance disease diagnostic capabilities at the point of care.

  19. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2010

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.

    2010-01-01

    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) and multi-level cell (MLC) NAND flash memories manufactured by Micron Technology.

  20. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

    DOE PAGES

    Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan; ...

    2018-01-15

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less

  1. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less

  2. ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell

    PubMed Central

    Liu, Huan; Zhang, Gengmin; Sun, Wentao; Shen, Ziyong; Shi, Mingji

    2015-01-01

    A hierarchical array of ZnO nanocones covered with ZnO nanospikes was hydrothermally fabricated and employed as the photoanode in a CdS quantum dot-sensitized solar cell (QDSSC). This QDSSC outperformed the QDSSC based on a simple ZnO nanocone photoanode in all the four principal photovoltaic parameters. Using the hierarchical photoanode dramatically increased the short circuit current density and also slightly raised the open circuit voltage and the fill factor. As a result, the conversion efficiency of the QDSSC based on the hierarchical photoanode was more than twice that of the QDSSC based on the simple ZnO nanocone photoanode. This improvement is attributable to both the enlarged specific area of the photoanode and the reduction in the recombination of the photoexcited electrons. PMID:26379268

  3. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes

    PubMed Central

    Burroughs, Amelia; Wise, Andrew K.; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y.; Lang, Eric J.

    2016-01-01

    Key points Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes.Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets.The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear.We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number.This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Abstract Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. PMID:27265808

  4. From Lévy to Brownian: a computational model based on biological fluctuation.

    PubMed

    Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-02-03

    Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  5. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John

    1989-01-01

    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  6. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    PubMed

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Apoptotic death in cerebral hemisphere cells is density dependent and modulated by transient oxygen and glucose deprivation.

    PubMed

    Yavin, E; Billia, D M

    1997-03-01

    Flow cytometry, light and fluorescence microscopy, and designated biochemical techniques were used to examine the type of death which occurs in cerebral cortex cells when grown under crowded vs. sparse conditions or after brief anoxia/hypoglycemia. A 4 hr episode of anoxia combined with glucose deprivation enhanced apoptotic cell death as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining and reduced neutral red eye uptake. An additional form of cell death involving exclusion of the nucleus was recorded by time lapse cinematography and DAPI stain. The presence of the endonuclease inhibitor aurintricarboxylic acid (0.1 mM) reduced cell death by 56.6%, while the protein and RNA synthesis inhibitors actinomycin D and cycloheximide (each at 5 micrograms/ml) effectively decreased cell death by 83.3% and 90.6%, respectively. In contrast, 5 mM glutamate had no effect on cell death in accord with the immature state of the cells. Growth of cells under crowded conditions improved cell survival; after 2 h or 4 days in culture, cells seeded at high density (34 microgram cellular DNA/cm2) showed a nearly 3-fold decline in the amount of cell death in comparison to cells seeded at low density (5 micrograms cellular DNA/cm2). At high cell density, anoxic episodes enhanced cell death most likely by preventing a cell density-mediated rescue. Neutral red dye uptake, an index for cell viability, was enhanced with increasing cell density and in vitro maturation, but was reduced in dense cultures exposed to anoxic/hypoglycemic conditions. The data suggest that cell density may play a critical role in brain organogenesis and that anoxic stress is more deleterious in dense than sparse cell assemblies.

  8. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Critical electron density in a self-contained copper vapour laser in the restricted pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Yakovlenko, Sergei I.

    2000-06-01

    One of the mechanisms of the inversion breaking in copper vapour lasers caused by a high prepulse electron density is considered. Inversion breaking occurs at a critical electron density Ne cr. If the prepulse electron density exceeds Ne cr, the electron temperature Te cr cannot reach, during a plasma heating pulse, the temperature of ~2eV required for lasing. A simple estimate of Ne cr is made.

  9. Nanostructured magnesium increases bone cell density.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  10. Radiation Tests of Highly scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories--Update 2011

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.

    2011-01-01

    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) 32Gb and multi-level cell (MLC) 64Gb NAND flash memories manufactured by Micron Technology.

  11. Focal high cell density generates a gradient of patterns in self-organizing vascular mesenchymal cells.

    PubMed

    Cheng, Henry; Reddy, Aneela; Sage, Andrew; Lu, Jinxiu; Garfinkel, Alan; Tintut, Yin; Demer, Linda L

    2012-01-01

    In embryogenesis, structural patterns, such as vascular branching, may form via a reaction-diffusion mechanism in which activator and inhibitor morphogens guide cells into periodic aggregates. We previously found that vascular mesenchymal cells (VMCs) spontaneously aggregate into nodular structures and that morphogen pairs regulate the aggregation into patterns of spots and stripes. To test the effect of a focal change in activator morphogen on VMC pattern formation, we created a focal zone of high cell density by plating a second VMC layer within a cloning ring over a confluent monolayer. After 24 h, the ring was removed and pattern formation monitored by phase-contrast microscopy. At days 2-8, the patterns progressed from uniform distributions to swirl, labyrinthine and spot patterns. Within the focal high-density zone (HDZ) and a narrow halo zone, cells aggregated into spot patterns, whilst in the outermost zone of the plate, cells formed a labyrinthine pattern. The area occupied by aggregates was significantly greater in the outermost zone than in the HDZ or halo. The rate of pattern progression within the HDZ increased as a function of its plating density. Thus, focal differences in cell density may drive pattern formation gradients in tissue architecture, such as vascular branching. Copyright © 2012 S. Karger AG, Basel.

  12. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  13. Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production.

    PubMed

    Ren, Yilin; Ling, Chen; Hajnal, Ivan; Wu, Qiong; Chen, Guo-Qiang

    2018-05-01

    High-cell-density cultivation is an effective way to improve the productivity of microbial fermentations and in turn reduce the cost of the final products, especially in the case of intracellular products. Halomonas bluephagenesis TD01 is a halophilic platform bacterium for the next generation of industrial biotechnology with a native PHA synthetic pathway, able to grow under non-sterile continuous fermentation conditions. A selection strategy for mutant strains that can grow to a high cell density was developed. Based on an error-prone DNA polymerase III ε subunit, a genome-wide random mutagenesis system was established and used in conjunction with an artificial high cell density culture environment during the selection process. A high-cell-density H. bluephagenesis TDHCD-R3 obtained after 3 rounds of selection showed an obvious enhancement of resistance to toxic metabolites including acetate, formate, lactate and ethanol compared to wild-type. H. bluephagenesis TDHCD-R3-8-3 constructed from H. bluephagenesis TDHCD-R3 by overexpressing an optimized phaCAB operon was able to grow to 15 g/L cell dry weight (CDW) containing 94% PHA in shake flask studies. H. bluephagenesis TDHCD-R3-8-3 was grown to more than 90 g/L CDW containing 79% PHA compared with only 81 g/L with 70% PHA by the wild type when incubated in a 7-L fermentor under the same conditions.

  14. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.

    PubMed

    Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. (c) 2010 American Institute of Chemical Engineers

  15. Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture

    PubMed Central

    Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172

  16. Liquid oscillations in a U-tube

    NASA Astrophysics Data System (ADS)

    Munguía Aguilar, Horacio; Maldonado, Rigoberto Franco; Barba Navarro, Luis

    2018-01-01

    In hydrostatics, pressure measurement with U-gauges and their relationship to density is a well-known experiment. Very little is studied or experimented with the dynamics of the movement of a liquid in a U-tube probably due to its theoretical complexity but, after all, it is a simple damped oscillating system. In this paper we present a relatively simple experiment that allows studying in some detail the dynamics of the movement of a liquid in a U-tube when an initial pressure gradient is applied. In order to record the information of the column displacement as a function of time we have developed a position sensor system based on a solar cell that allows the recording of the experiment using a simple data acquisition system.

  17. Affinity ranking of antibodies using flow cytometry: application in antibody phage display-based target discovery.

    PubMed

    Geuijen, Cecilia A W; Clijsters-van der Horst, Marieke; Cox, Freek; Rood, Pauline M L; Throsby, Mark; Jongeneelen, Mandy A C; Backus, Harold H J; van Deventer, Els; Kruisbeek, Ada M; Goudsmit, Jaap; de Kruif, John

    2005-07-01

    Application of antibody phage display to the identification of cell surface antigens with restricted expression patterns is often complicated by the inability to demonstrate specific binding to a certain cell type. The specificity of an antibody can only be properly assessed when the antibody is of sufficient high affinity to detect low-density antigens on cell surfaces. Therefore, a robust and simple assay for the prediction of relative antibody affinities was developed and compared to data obtained using surface plasmon resonance (SPR) technology. A panel of eight anti-CD46 antibody fragments with different affinities was selected from phage display libraries and reformatted into complete human IgG1 molecules. SPR was used to determine K(D) values for these antibodies. The association and dissociation of the antibodies for binding to CD46 expressed on cell surfaces were analysed using FACS-based assays. We show that ranking of the antibodies based on FACS data correlates well with ranking based on K(D) values as measured by SPR and can therefore be used to discriminate between high- and low-affinity antibodies. Finally, we show that a low-affinity antibody may only detect high expression levels of a surface marker while failing to detect lower expression levels of this molecule, which may lead to a false interpretation of antibody specificity.

  18. Platelet density per monocyte predicts adverse events in patients after percutaneous coronary intervention.

    PubMed

    Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E

    2016-01-01

    Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.

  19. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.

    PubMed

    Zhang, Ye; Stobbe, Per; Silvander, Christian Orrego; Chotteau, Véronique

    2015-11-10

    Recombinant Chinese Hamster Ovary (CHO) cells producing IgG monoclonal antibody were cultivated in a novel perfusion culture system CellTank, integrating the bioreactor and the cell retention function. In this system, the cells were harbored in a non-woven polyester matrix perfused by the culture medium and immersed in a reservoir. Although adapted to suspension, the CHO cells stayed entrapped in the matrix. The cell-free medium was efficiently circulated from the reservoir into- and through the matrix by a centrifugal pump placed at the bottom of the bioreactor resulting in highly homogenous concentrations of the nutrients and metabolites in the whole system as confirmed by measurements from different sampling locations. A real-time biomass sensor using the dielectric properties of living cells was used to measure the cell density. The performances of the CellTank were studied in three perfusion runs. A very high cell density measured as 200 pF/cm (where 1 pF/cm is equivalent to 1 × 10(6)viable cells/mL) was achieved at a perfusion rate of 10 reactor volumes per day (RV/day) in the first run. In the second run, the effect of cell growth arrest by hypothermia at temperatures lowered gradually from 37 °C to 29 °C was studied during 13 days at cell densities above 100 pF/cm. Finally a production run was performed at high cell densities, where a temperature shift to 31 °C was applied at cell density 100 pF/cm during a production period of 14 days in minimized feeding conditions. The IgG concentrations were comparable in the matrix and in the harvest line in all the runs, indicating no retention of the product of interest. The cell specific productivity was comparable or higher than in Erlenmeyer flask batch culture. During the production run, the final harvested IgG production was 35 times higher in the CellTank compared to a repeated batch culture in the same vessel volume during the same time period. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Stroke and the Cell Therapy Saga: Towards a Safe, Swift and Efficient Utilization of cells.

    PubMed

    Kubis, Nathalie

    2017-01-01

    The first clinical trials of cell therapy in stroke were first published in the 2000s and consisted of neural stems cells transplanted via the intracerebral pathway. Since mesenchymal stem cells showed similar capacities to differentiate into neural cells and allowed autologous cell transplantation, they were then preferentially studied, including diabetes and hypertension. More recently, bone marrow derived mononuclear cells were successfully transplanted in stroke with no need of culture processing, and simple collection by density gradient centrifugation rendering them immediately ready for use. They improve post-stroke neurological deficit in rodents and clinical trials have shown the feasibility of intra-arterial or intravenous administration. The underlying mechanisms are not yet understood. We investigated the therapeutic potential of peripheral blood derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+). We showed that intravenously injected PB-MNC+ after cerebral ischemia reduced infarct volume at day 3, increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglial cell density, and upregulated TGF-β expression. At D14, microvessel density was increased and functional recovery enhanced, whereas plasma levels of BDNF were increased in treated mice. Ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation and angiogenesis, as confirmed by adhesion and Matrigel assays. PB-MNC+ transplantation in stroke is a promising approach and should be investigated for the development of rapid, non-invasive bedside cell therapy strategies in stroke.(Presented at the 1944th Meeting, July 19, 2017).

  1. Modeling and optimal designs for dislocation and radiation tolerant single and multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2011-02-01

    Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.

  2. A DSMC Study of Low Pressure Argon Discharge

    NASA Astrophysics Data System (ADS)

    Hash, David; Meyyappan, M.

    1997-10-01

    Work toward a self-consistent plasma simulation using the DSMC method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due the availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar^+, Ar^*, Ar_2, and e where Ar^* is a metastable.

  3. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  4. Estimation of energy density of Li-S batteries with liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.

    2016-09-01

    With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.

  5. Identifying mechanisms for superdiffusive dynamics in cell trajectories

    NASA Astrophysics Data System (ADS)

    Passucci, Giuseppe; Brasch, Megan; Henderson, James; Manning, M. Lisa

    Self-propelled particle (SPP) models have been used to explore features of active matter such as motility-induced phase separation, jamming, and flocking, and are often used to model biological cells. However, many cells exhibit super-diffusive trajectories, where displacements scale faster than t 1 / 2 in all directions, and these are not captured by traditional SPP models. We extract cell trajectories from image stacks of mouse fibroblast cells moving on 2D substrates and find super-diffusive mean-squared displacements in all directions across varying densities. Two SPP model modifications have been proposed to capture super-diffusive dynamics: Levy walks and heterogeneous motility parameters. In mouse fibroblast cells displacement probability distributions collapse when time is rescaled by a power greater than 1/2, which is consistent with Levy walks. We show that a simple SPP model with heterogeneous rotational noise can also generate a similar collapse. Furthermore, a close examination of statistics extracted directly from cell trajectories is consistent with a heterogeneous mobility SPP model and inconsistent with a Levy walk model. Our work demonstrates that a simple set of analyses can distinguish between mechanisms for anomalous diffusion in active matter.

  6. Steady state and transient simulation of anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  7. Artificially Constructed Quorum-Sensing Circuits Are Used for Subtle Control of Bacterial Population Density

    PubMed Central

    Wang, Zhaoshou; Wu, Xin; Peng, Jianghai; Hu, Yidan; Fang, Baishan; Huang, Shiyang

    2014-01-01

    Vibrio fischeri is a typical quorum-sensing bacterium for which lux box, luxR, and luxI have been identified as the key elements involved in quorum sensing. To decode the quorum-sensing mechanism, an artificially constructed cell–cell communication system has been built. In brief, the system expresses several programmed cell-death BioBricks and quorum-sensing genes driven by the promoters lux pR and PlacO-1 in Escherichia coli cells. Their transformation and expression was confirmed by gel electrophoresis and sequencing. To evaluate its performance, viable cell numbers at various time periods were investigated. Our results showed that bacteria expressing killer proteins corresponding to ribosome binding site efficiency of 0.07, 0.3, 0.6, or 1.0 successfully sensed each other in a population-dependent manner and communicated with each other to subtly control their population density. This was also validated using a proposed simple mathematical model. PMID:25119347

  8. Low temperature perovskite solar cells with an evaporated TiO 2 compact layer for perovskite silicon tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina

    Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less

  9. Low temperature perovskite solar cells with an evaporated TiO 2 compact layer for perovskite silicon tandem solar cells

    DOE PAGES

    Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina; ...

    2017-09-21

    Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less

  10. Hydrodynamic effects on microcapillary motility and chemotaxis assays of Methylosinus trichosporium OB3b.

    PubMed Central

    Shonnard, D R; Taylor, R T; Tompson, A; Knapp, R B

    1992-01-01

    A study of the random motility and chemotaxis of Methylosinus trichosporium OB3b was conducted by using Palleroni-chamber microcapillary assay procedures. Under the growth conditions employed, this methanotroph was observed qualitatively with a microscope to be either slightly motile or essentially nonmotile. However, the cells did not not respond in the microcapillary assays in the manner expected for nonmotile Brownian particles. As a consequence, several hydrodynamic effects on these Palleroni microcapillary assays were uncovered. In the random-motility microcapillary assay, nondiffusive cell accumulations occurred that were strongly dependent upon cell concentration. An apparent minimal random-motility coefficient (mu) for this bacterial cell of 1.0 x 10(-7) cm2/s was estimated from microcapillary assays. A simple alternative spectrophotometric assay, based upon gravitational settling, was developed and shown to be an improvement over the Palleroni microcapillary motility assay for M. trichosporium OB3b in that it yielded a more-accurate threefold-lower random-motility coefficient. In addition, it provided a calculation of the gravitational-settling velocity. In the chemotaxis microcapillary assay, the apparent chemotactic responses were strongest for the highest test-chemical concentrations in the microcapillaries, were correlated with microcapillary fluid density, and were strongly dependent upon the microcapillary volume. A simple method to establish the maximal concentration of a chemical that can be tested and to quantify any contributions of abiotic convection is described. Investigators should be aware of the potential problems due to density-driven convection when using these commonly employed microcapillary assays for studying cells which have low motilities. PMID:1444383

  11. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    PubMed

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  13. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    PubMed

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Crystal structure of simple metals at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyareva, Olga

    2010-10-22

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less

  15. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    PubMed

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  16. Cell orientation gradients on an inverse opal substrate.

    PubMed

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  17. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  18. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  19. A simple model of hohlraum power balance and mitigation of SRS

    DOE PAGES

    Albright, Brian J.; Montgomery, David S.; Yin, Lin; ...

    2016-04-01

    A simple energy balance model has been obtained for laser-plasma heating in indirect drive hohlraum plasma that allows rapid temperature scaling and evolution with parameters such as plasma density and composition. Furthermore, this model enables assessment of the effects on plasma temperature of, e.g., adding high-Z dopant to the gas fill or magnetic fields.

  20. A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1.

    PubMed

    Nakouti, Ismini; Hobbs, Glyn; Teethaisong, Yothin; Phipps, David

    2017-01-01

    Stress, caused by exposure to microwaves (2.45 GHz) at constant temperature (37 ± 0.5°C), alters the growth profile of Pseudomonas aeruginosa PAO1. In the absence of microwave treatment a simple, highly reproducible growth curve was observed over 24 h or more. Microwave treatment caused no reduction in growth during the first 6 h, but at a later stage (>12 h) the growth was markedly different to the controls. Secondary growth, typical of the presence of persisters clearly became apparent, as judged by both the dissolved oxygen and the cell density profiles. These treated cells showed distinct morphological changes, but on regrowth these cells reverted to normal. The microwave induced persisters were subject to antibiotic challenge (tobramycin) and showed increased sensitivity when compared to the unstressed planktonic cells. This is in marked contrast to antibiotic induced persisters which show increased resistance. This provides evidence for both a nonthermal effect of microwaves and a previously undescribed route to a novel form of antibiotic susceptible persister cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:37-44, 2017. © 2016 American Institute of Chemical Engineers.

  1. Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.

    2002-01-01

    Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.

  2. Gold glyconanoparticles: synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies.

    PubMed

    Barrientos, Africa G; de la Fuente, Jesús M; Rojas, Teresa C; Fernández, Asunción; Penadés, Soledad

    2003-05-09

    A simple and versatile methodology is described for tailoring sugar-functionalised gold nanoclusters (glyconanoparticles) that have 3D polyvalent carbohydrate display and globular shapes. This methodology allows the preparation of glyconanoparticles with biologically significant oligosaccharides as well as with differing carbohydrate density. Fluorescent glyconanoparticles have been also prepared for labelling cells in biological tests. The materials are water soluble, stable under physiological conditions and present an exceptional small core size. All of them have been characterised by (1)H NMR, UV and IR spectroscopy, TEM and elemental analysis. Their highly polyvalent network can mimic glycosphingolipid clustering and interactions at the plasma membrane, providing an controlled system for glycobiological studies. Furthermore, they are useful building blocks for the design of nanomaterials.

  3. Three-dimensional imaging for large LArTPCs

    DOE PAGES

    Qian, X.; Zhang, Chao; Viren, B.; ...

    2018-05-29

    High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel- type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. Furthermore, the resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables themore » true power of 3D tracking calorimetry in LArTPCs.« less

  4. Three-dimensional imaging for large LArTPCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, X.; Zhang, Chao; Viren, B.

    High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel- type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. Furthermore, the resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables themore » true power of 3D tracking calorimetry in LArTPCs.« less

  5. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.

    PubMed

    Hu, Ming; Giapis, Konstantinos P; Goicochea, Javier V; Zhang, Xiaoliang; Poulikakos, Dimos

    2011-02-09

    We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.

  6. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  7. Do rational numbers play a role in selection for stochasticity?

    PubMed

    Sinclair, Robert

    2014-01-01

    When a given tissue must, to be able to perform its various functions, consist of different cell types, each fairly evenly distributed and with specific probabilities, then there are at least two quite different developmental mechanisms which might achieve the desired result. Let us begin with the case of two cell types, and first imagine that the proportion of numbers of cells of these types should be 1:3. Clearly, a regular structure composed of repeating units of four cells, three of which are of the dominant type, will easily satisfy the requirements, and a deterministic mechanism may lend itself to the task. What if, however, the proportion should be 10:33? The same simple, deterministic approach would now require a structure of repeating units of 43 cells, and this certainly seems to require a far more complex and potentially prohibitive deterministic developmental program. Stochastic development, replacing regular units with random distributions of given densities, might not be evolutionarily competitive in comparison with the deterministic program when the proportions should be 1:3, but it has the property that, whatever developmental mechanism underlies it, its complexity does not need to depend very much upon target cell densities at all. We are immediately led to speculate that proportions which correspond to fractions with large denominators (such as the 33 of 10/33) may be more easily achieved by stochastic developmental programs than by deterministic ones, and this is the core of our thesis: that stochastic development may tend to occur more often in cases involving rational numbers with large denominators. To be imprecise: that simple rationality and determinism belong together, as do irrationality and randomness.

  8. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Enayatullah, Mohammad; Appleby, A. John

    1989-01-01

    High power density fuel cell systems for defense and civilian applications are being developed. Taking into consideration the main causes for efficiency losses (activation, mass transport and ohmic overpotentials) the only fuel cell systems capable of achieving high power densities are the ones with alkaline and solid polymer electrolyte. High power densities (0.8 W/sq cm at 0.8 V and 1 A/sq cm with H2 and O2 as reactants), were already used in NASA's Apollo and Space Shuttle flights as auxiliary power sources. Even higher power densities (4 W/sq cm - i.e., 8 A sq cm at 0.5 V) were reported by the USAF/International Fuel Cells in advanced versions of the alkaline system. High power densities (approximately 1 watt/sq cm) in solid polymer electrolyte fuel cells with ten times lower platinum loading in the electrodes (i.e., 0.4 mg/sq cm) were attained. It is now possible to reach a cell potential of 0.620 V at a current density of 2 A/sq cm and at a temperature of 95 C and pressure of 4/5 atm with H2/O2 as reactants. The slope of the linear region of the potential-current density plot for this case is 0.15 ohm-sq cm. With H2/air as reactants and under the same operating conditions, mass transport limitations are encountered at current densities above 1.4 A/sq cm. Thus, the cell potential at 1 A/sq cm with H2/air as reactants is less than that with H2/O2 as reactants by 40 mV, which is the expected value based on electrode kinetics of the oxygen reduction reaction, and at 2 A/sq cm with H2/air as reactant is less than the corresponding value with H2/O2 as reactants by 250 mV, which is due to the considerably greater mass transport limitations in the former case.

  9. Coccolithophore ecology at the HOT station ALOHA, Hawaii

    NASA Astrophysics Data System (ADS)

    Cortés, Mara Y.; Bollmann, Jörg; Thierstein, Hans R.

    Cell densities of total coccolithophores and dominant taxa were determined in 183 samples from the upper 200 m of the water column at about monthly intervals between January 1994 and August 1996 at the HOT station ALOHA, Hawaii. High cell densities were observed twice a year, in March (up to 41×10 3 cells l -1) and in September/October (up to 52×10 3 cells l -1). In the intervening months, cell densities were extremely low (0-20×10 3 cells l -1), reflecting a strong seasonality. The main production of coccolithophores took place in the middle photic zone between 50 and 100 m water depth. In total 125 coccolithophore species were identified but only five constituted on average more than 30% of the community: Emiliania huxleyi, Umbellosphaera irregularis, U. tenuis, Florisphaera profunda and Gephyrocapsa ericsonii. The generally low, but seasonally dynamic coccolithophore cell density variability is compared with in situ measurements of environmental parameters. Correlation analyses between cell density variability of the dominant taxa and potentially controlling environmental parameters show significant correlation coefficients when the data set was separated into upper and lower photic zone. Cell densities of all dominant taxa are most highly correlated with temperature variability. U. irregularis is positively correlated in the upper photic zone, whereas E. huxleyi and G. ericsonii are negatively correlated. In the lower photic zone, F. profunda cell densities are positively correlated with light, which corresponds to the maximum bottom-up control (i.e. by physical forcing) of any species encountered. The surprisingly low correlations of cell densities with nitrate and phosphate may be caused by insufficient sampling resolution, nutrient levels close to detection limits, or both.

  10. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  11. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.

    PubMed

    Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan

    2018-02-01

    Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Zero-Kelvin Compression Isotherms of the Elements 1 ≤ Z ≤ 92 to 100 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David A.; Cynn, Hyunchae; Söderlind, Per

    2016-12-01

    Most of the chemical elements have now been compressed close to or above 100 GPa (1 Mbar) pressure in diamond-anvil cells and the pressure–volume room-temperature isotherms have been measured. We collect these data and use simple lattice-dynamics models to reduce the isotherms to 0 K. We have extended the published work by making new diamond-anvil-cell measurements on Cr and Rh, and by conducting density-functional calculations on the elements Po, At, Rn, Fr, Ra, and Ac. The 0 K data are tabulated for all elements 1 ≤ Z ≤ 92 and 0 ≤ P ≤ 100 GPa. These data are usefulmore » for generating wide-range equation of state models and for studying the stability of chemical compounds at high pressure (“Megabar chemistry”). The tables presented here are intended to be reference thermodynamic tables for use in high-pressure research. Further experimental and theoretical work will be needed to extend the tables to higher pressure and to improve accuracy.« less

  13. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE PAGES

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...

    2017-06-12

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  14. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  15. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  16. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Vandine, Leslie; Gonzalez-Sanabria, Olga; Levy, Alexander

    1987-01-01

    The results of a 12 month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application are summarized. Emphasis was placed on concepts with the potential for high energy density and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. Results indicate that using near term technology energy densities between 46 and 52 watt-hour/lb can be achieved at efficiencies of 55 percent. Using advanced light weight cell construction which was achieved in experimental cells, composite tankage material for the reactant gases and the reversible stack concept, system energy densities of 115 watt-hours/lb can be projected.

  17. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  18. Echinacea purpurea (L.) Moench modulates human T-cell cytokine response☆

    PubMed Central

    Fonseca, Fabiana N.; Papanicolaou, Genovefa; Lin, Hong; Lau, Clara B.S.; Kennelly, Edward J.; Cassileth, Barrie R.; Cunningham-Rundles, Susanna

    2014-01-01

    The study objective was to evaluate the composition of a neutral and weakly acidic water-soluble extract from Echinacea purpurea (L.) Moench (EchNWA) previously shown to modify murine influenza infection, and to assess immunomodulatory effects on human T-cells. EchNWA extract from fresh aerial parts was extracted with water, ethanolic precipitation, and size-exclusion chromatography. The chemical profile of EchNWA was characterized by chromatography (size-exclusion, HPLC, GC–MS), and small molecule finger-print analysis performed by HPLC–PDA. Jurkat T-cells at high and low cell density were pretreated or not with doses of EchNWA, followed by activation with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I). Interleukin-2 (IL-2) and interferon gamma (IFNg) cytokine secretions were measured by multi-cytokine luminex technology. Results showed that EchNWA contains 80% polysaccharides, predominantly a 10 kDa entity; phenolic compounds, cynarin, cichoric and caftaric acids, but no detectable alkylamides. Cytokine production required stimulation and was lower after PMA+I activation in high-density compared to low-density conditions. EchNWA mediated a strong dose-dependent enhancement of high-density T-cell production of IL-2 and IFNg response to PMA+I. EchNWA alone did not stimulate T-cells. EchNWA enhanced mean fluorescence intensity of IL-2 in Jurkat T-cells activated by PMA+1 or ionomycin alone. Conversely EchNWA mediated modest but significant suppression of IFNg response and reduced the percentage of CD25+ T-cells under low-density conditions. Conclusions are that EchNWA polysaccharides, but not phenolic compounds have dose-related adjuvant effects on human T-cell cytokine responses characterized by enhancing and suppressive effects that are regulated by T-cell density. PMID:24434371

  19. Mass Measurements of Focal Adhesions in Single Cells Using High Resolution Surface Plasmon Resonance Microscopy.

    PubMed

    Peterson, Alexander W; Halter, Michael; Tona, Alessandro; Plant, Anne L; Elliott, John T

    2018-01-01

    Surface plasmon resonance microscopy (SPRM) is a powerful label-free imaging technique with spatial resolution approaching the optical diffraction limit. The high sensitivity of SPRM to small changes in index of refraction at an interface allows imaging of dynamic protein structures within a cell. Visualization of subcellular features, such as focal adhesions (FAs), can be performed on live cells using a high numerical aperture objective lens with a digital light projector to precisely position the incident angle of the excitation light. Within the cell-substrate region of the SPRM image, punctate regions of high contrast are putatively identified as the cellular FAs. Optical parameter analysis is achieved by application of the Fresnel model to the SPRM data and resulting refractive index measurements are used to calculate protein density and mass. FAs are known to be regions of high protein density that reside at the cell-substratum interface. Comparing SPRM with fluorescence images of antibody stained for vinculin, a component in FAs, reveals similar measurements of FA size. In addition, a positive correlation between FA size and protein density is revealed by SPRM. Comparing SPRM images for two cell types reveals a distinct difference in the protein density and mass of their respective FAs. Application of SPRM to quantify mass can greatly aid monitoring basic processes that control FA mass and growth and contribute to accurate models that describe cell-extracellular interactions.

  20. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    PubMed

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  1. Fuel cells and the theory of metals.

    NASA Technical Reports Server (NTRS)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  2. From Lévy to Brownian: A Computational Model Based on Biological Fluctuation

    PubMed Central

    Nurzaman, Surya G.; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-01-01

    Background Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. Methodology/Principal Findings We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Conclusions/Significance Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior. PMID:21304911

  3. Is Urografin density gradient centrifugation suitable to separate nonculturable cells from Escherichia coli populations?

    PubMed

    Arana, Inés; Orruño, Maite; Seco, Carolina; Muela, Alicia; Barcina, Isabel

    2008-03-01

    The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.

  4. Electron beam induced current in the high injection regime.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B

    2015-07-24

    Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.

  5. Tailoring sphere density for high pressure physical property measurements on liquids

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Tucker, R. F.; Balog, S. P.; Rutter, M. D.

    2001-04-01

    We present a new method of tailoring the density of a sphere for use as a probe in high pressure-temperature physical property experiments on liquids. The method consists of a composite sphere made of an inner, high density, metallic, spherical core and an exterior, low density, refractory, spherical shell or mantle. Micromechanical techniques are used to fabricate the composite sphere. We describe a relatively simple mechanical device that can grind hemispherical recesses as small as 200 μm in diameter in sapphire and as small as 500 μm in diameter in ruby hemispheres. Examples of composite spheres made with a Pt or WC core and Al2O3 shell used in metallic liquids pressurized to 16 GPa and 1900 K are shown.

  6. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms

    PubMed Central

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T

    2014-01-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715

  7. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    PubMed

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  8. Study of flywheel energy storage for space stations

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  9. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    PubMed Central

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae. PMID:18304329

  10. Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

    PubMed

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-02-27

    Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.

  11. Ultrathin Mesoporous RuCo2 O4 Nanoflakes: An Advanced Electrode for High-Performance Asymmetric Supercapacitors.

    PubMed

    Dubal, Deepak P; Chodankar, Nilesh R; Holze, Rudolf; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2017-04-22

    A new ruthenium cobalt oxide (RuCo 2 O 4 ) with a unique marigold-like nanostructure and excellent performance as an advanced electrode material has been successfully prepared by a simple electrodeposition (potentiodynamic mode) method. The RuCo 2 O 4 marigolds consist of numerous clusters of ultrathin mesoporous nanoflakes, leaving a large interspace between them to provide numerous electrochemically active sites. Strikingly, this unique marigold-like nanostructure provided excellent electrochemical performance in terms of high energy-storage capacitance (1469 F g -1 at 6 A g -1 ) with excellent rate proficiency and long-lasting operating cycling stability (ca. 91.3 % capacitance retention after 3000 cycles), confirming that the mesoporous nanoflakes participate in the ultrafast electrochemical reactions. Furthermore, an asymmetric supercapacitor was assembled using RuCo 2 O 4 (positive electrode) and activated carbon (negative electrode) with aqueous KOH electrolyte. The asymmetric design allowed an upgraded potential range of 1.4 V, which further provided a good energy density of 32.6 Wh kg -1 (1.1 mWh cm -3 ). More importantly, the cell delivered an energy density of 12.4 Wh kg -1 even at a maximum power density of 3.2 kW kg -1 , which is noticeably superior to carbon-based symmetric systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using a Highly Efficient Culture System

    PubMed Central

    Tano, Keiko; Yasuda, Satoshi; Kuroda, Takuya; Saito, Hirohisa; Umezawa, Akihiro; Sato, Yoji

    2014-01-01

    Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process. PMID:25347300

  13. The gene expression pattern induced by high plating density in cultured bovine and buffalo granulosa cells might be regulated by specific miRNA species

    PubMed Central

    YENUGANTI, Vengala Rao; BADDELA, Vijay Simha; BAUFELD, Anja; SINGH, Dheer; VANSELOW, Jens

    2015-01-01

    Precise regulation of cell type-specific gene expression profiles precedes the profound morphological reorganization of somatic cell layers during folliculogenesis, ovulation and luteinization. Cell culture models are essential to the study of corresponding molecular mechanisms of gene regulation. In a recent study, it was shown that an increased cell plating density can largely change gene expression profiles of cultured bovine granulosa cells. In our present study, we comparatively analyzed cell plating density effects on cultured bovine and buffalo granulosa cells. Cells were isolated from small- to medium-sized follicles (2–6 mm) and cultured under serum-free conditions at different plating densities. The abundance of selected marker transcripts and associated miRNA candidates was determined by quantitative real-time RT-PCR. We found in both species that the abundance of CYP19A1, CCNE1 and PCNA transcripts was remarkably lower at a high plating density, whereas VNN2 and RGS2 transcripts significantly increased. In contrast, putative regulators of CYP19A1, miR-378, miR-106a and let-7f were significantly higher in both species or only in buffalo, respectively. Also miR-15a, a regulator of CCNE1, was upregulated in both species. Thus, increased plating density induced similar changes of mRNA and miRNA expression in granulosa cells from buffalo and cattle. From these data, we conclude that specific miRNA species might be involved in the observed density-induced gene regulation. PMID:25740097

  14. A simple eccentric stirred tank mini-bioreactor: mixing characterization and mammalian cell culture experiments.

    PubMed

    Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M

    2013-04-01

    In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor. Copyright © 2012 Wiley Periodicals, Inc.

  15. Dependency of subcellular reactions during PDT on the metabolic state of cell cultures probed by different microscopic techniques

    NASA Astrophysics Data System (ADS)

    Rueck, Angelika C.; Schneckenburger, Herbert; Strauss, Wolfgang S. L.; Gschwend, Michael H.; Beck, Gerd C.; Kunzi-Rapp, Karin; Steiner, Rudolf W.

    1994-02-01

    Various microscopic techniques were used to study the dependency of photodynamically induced subcellular reactions on the metabolic state of cell cultures. TPPS4 and AlS2-3Pc were incubated in RR 1022 epithelial cells with varying cell density. To attain almost isolated cells (low cell density) or confluent growing cells (high cell density) 25 cells/mm2 or 500 cells/mm2 were seeded, respectively. Low cell density irradiation with blue light led to a change in the initial cytoplasmatic fluorescence pattern. For both sensitizers, TPPS4 as well as AlS2-3, a fluorescence relocalization and fluorescence intensity increase could be detected, moreover in the case of TPPS4 a fluorescence formation in the nucleus and nucleoli were detected. In contrast, for confluent growing cells no redistribution was observed.

  16. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  17. Liquid densities and vapor pressures of 1-chloro-1, 1-difluorethane (HCFC 142b)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maezawa, Yl; Sato, H.; Watanabe, K.

    1991-04-01

    In this paper, thirty-six saturated liquid densities of HCFC 142b (1-chloro-1,1-difluoroethane) are measured in a range of temperatures from 210 to 400 K. Twelve vapor pressures, from 320 to 400 K, and six compressed liquid PVT properties, from 320 to 360 K and of pressures up to 2 MPa, are also measured. All measurements were made by a magnetic densimeter coupled with a variable volume cell. The experimental uncertainties in temperature, pressure, and density were estimated to be not greater than [plus minus]15 mK, [plus minus]10 kPa, and [plus minus]0.2%, respectively. The purity of the sample used was 99.8 wtmore » % or better. The simple correlation for the saturated liquid density of HCFC 142b was developed.« less

  18. Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod

    NASA Astrophysics Data System (ADS)

    Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.

    2003-09-01

    The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.

  19. Microfluidic engineered high cell density three-dimensional neural cultures

    NASA Astrophysics Data System (ADS)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities <=5.0 × 103 cells mm-3 were required for survival. In 3D neuronal and neuronal-astrocytic co-cultures with increased cell density (>=104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p < 0.01), which exhibited widespread cell death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p < 0.05); however, at perfusion rates of 10.0-11.0 µL min-1 survival did not depend on the distance from the perfusion source, and resulted in a preservation of cell density with >90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  20. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  1. Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density Spermatozoa Following Cryopreservation.

    PubMed

    D'Amours, Olivier; Frenette, Gilles; Bourassa, Sylvie; Calvo, Ézéchiel; Blondin, Patrick; Sullivan, Robert

    2018-01-05

    Mammalian semen contains a heterogeneous population of sperm cells. This heterogeneity results from variability in the complex processes of cell differentiation in the testis, biochemical modifications undergone by spermatozoa during transit along the male reproductive tract, interactions with secretions from accessory sex glands at ejaculation, and, in the context of reproductive technologies, in the ability of ejaculated spermatozoa to resist damage associated with freeze-thaw procedures. When submitted to density gradient centrifugation, ejaculated spermatozoa distribute themselves into two distinct populations: a low-density population characterized by low motility parameters, and a high-density population with high motility characteristics. To understand the origin of ejaculated spermatozoa heterogeneity, cryopreserved semen samples from bulls used by the artificial insemination (A.I.) industry were submitted to Percoll gradient centrifugation. Proteins from low and high density spermatozoa were then extracted with sodium deoxycholate and submitted to proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) methodologies. Quantification of selected sperm proteins was confirmed by multiple reaction monitoring (MRM). Overall, 31 different proteins were more abundant in low-density spermatozoa, while 80 different proteins were more abundant in the high-density subpopulation. Proteins enriched in high-density spermatozoa were markers of sperm functionality such as the glycolytic process, binding to the egg zona pellucida, and motility. Low-density spermatozoa were not solely characterized by loss of proteins and their associated functions. Chaperonin-containing TCP1s and chaperones are hallmarks of the low-density subpopulation. iTRAQ analysis revealed that other proteins such as binder of sperm proteins, histone, GPX5, ELSPBP1, and clusterin are overexpressed in low-density spermatozoa suggesting that these proteins represent defects occurring at different steps during the sperm journey. These differences contribute to the sperm cell heterogeneity present in mammalian semen.

  2. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  3. A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Hughes, Annie; Schruba, Andreas

    2016-11-01

    The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue thatmore » our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J {sup 12}CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.« less

  4. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO2 Gate Insulator TFT with a High Concentration Precursor

    PubMed Central

    Cai, Wei; Zhu, Zhennan; Wei, Jinglin; Fang, Zhiqiang; Zheng, Zeke; Zhou, Shangxiong; Peng, Junbiao; Lu, Xubing

    2017-01-01

    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO2 films by intentionally increasing the concentration of precursor. The ZrO2 films not only exhibit a low leakage current density of 10−6 A/cm2 at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm2·V−1·s−1 and a Ion/Ioff ratio of 106 in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO2/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness. PMID:28825652

  5. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO₂ Gate Insulator TFT with a High Concentration Precursor.

    PubMed

    Cai, Wei; Zhu, Zhennan; Wei, Jinglin; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Zhou, Shangxiong; Yao, Rihui; Peng, Junbiao; Lu, Xubing

    2017-08-21

    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO₂ films by intentionally increasing the concentration of precursor. The ZrO₂ films not only exhibit a low leakage current density of 10 -6 A/cm² at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm²·V -1 ·s -1 and a I on /I off ratio of 10⁶ in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO₂/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness.

  6. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    PubMed

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  7. Socializing makes thick-skinned individuals: on the density of epidermal alarm substance cells in cyprinid fish, the crucian carp (Carassius carassius).

    PubMed

    Stabell, Ole B; Vegusdal, Anne

    2010-09-01

    In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.

  8. Solitary waves in morphogenesis: Determination fronts as strain-cued strain transformations among automatous cells

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Landis, Chad M.

    2018-02-01

    We present a simple theory of a strain pulse propagating as a solitary wave through a continuous two-dimensional population of cells. A critical strain is assumed to trigger a strain transformation, while, simultaneously, cells move as automata to tend to restore a preferred cell density. We consider systems in which the strain transformation is a shape change, a burst of proliferation, or the commencement of growth (which changes the shape of the population sheet), and demonstrate isomorphism among these cases. Numerical and analytical solutions describe a strain pulse whose height does not depend on how the strain disturbance was first launched, or the rate at which the strain transformation is achieved, or the rate constant in the rule for the restorative cell motion. The strain pulse is therefore very stable, surviving the imposition of strong perturbations: it would serve well as a timing signal in development. The automatous wave formulation is simple, with few model parameters. A strong case exists for the presence of a strain pulse during amelogenesis. Quantitative analysis reveals a simple relationship between the velocity of the leading edge of the pulse in amelogenesis and the known speed of migration of ameloblast cells. This result and energy arguments support the depiction of wave motion as an automatous cell response to strain, rather than as a response to an elastic energy gradient. The theory may also contribute to understanding the determination front in somitogenesis, moving fronts of convergent-extension transformation, and mitotic wavefronts in the syncytial drosophila embryo.

  9. Rapid detection of microbial cell abundance in aquatic systems

    DOE PAGES

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...

    2016-06-01

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  10. Rapid detection of microbial cell abundance in aquatic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  11. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    PubMed

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  12. Pore water sampling in acid sulfate soils: a new peeper method.

    PubMed

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  13. THE FIRST FERMI IN A HIGH ENERGY NUCLEAR COLLISION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRASNITZ,A.

    1999-08-09

    At very high energies, weak coupling, non-perturbative methods can be used to study classical gluon production in nuclear collisions. One observes in numerical simulations that after an initial formation time, the produced partons are on shell, and their subsequent evolution can be studied using transport theory. At the initial formation time, a simple non-perturbative relation exists between the energy and number densities of the produced partons, and a scale determined by the saturated parton density in the nucleus.

  14. Deriving Sea Surface Salinity and Density Variations from Satellite and Aircraft Microwave Radiometer Measurements: Application to Coastal Plumes Using STARRS

    DTIC Science & Technology

    2007-11-01

    again, with of the prevailing T, S, and, hence, D gradients through the the advent of high-performance spaceborne altimeters (e.g., high- aspect - ratio ... rectangular domains with linear dimensions largely , if not completely, eliminated by the differencing oper- of about 60 km in a 4-h flight. (See...strongest A simple four- quadrant arctangent of the terms in the density in the 00 and 1800 directions, whereas compensation is most ratio would serve our

  15. Proteolytic and non-proteolytic regulation of collective cell invasion: tuning by ECM density and organization

    PubMed Central

    Kumar, Sandeep; Kapoor, Aastha; Desai, Sejal; Inamdar, Mandar M.; Sen, Shamik

    2016-01-01

    Cancer cells manoeuvre through extracellular matrices (ECMs) using different invasion modes, including single cell and collective cell invasion. These modes rely on MMP-driven ECM proteolysis to make space for cells to move. How cancer-associated alterations in ECM influence the mode of invasion remains unclear. Further, the sensitivity of the two invasion modes to MMP dynamics remains unexplored. In this paper, we address these open questions using a multiscale hybrid computational model combining ECM density-dependent MMP secretion, MMP diffusion, ECM degradation by MMP and active cell motility. Our results demonstrate that in randomly aligned matrices, collective cell invasion is more efficient than single cell invasion. Although increase in MMP secretion rate enhances invasiveness independent of cell–cell adhesion, sustenance of collective invasion in dense matrices requires high MMP secretion rates. However, matrix alignment can sustain both single cell and collective cell invasion even without ECM proteolysis. Similar to our in-silico observations, increase in ECM density and MMP inhibition reduced migration of MCF-7 cells embedded in sandwich gels. Together, our results indicate that apart from cell intrinsic factors (i.e., high cell–cell adhesion and MMP secretion rates), ECM density and organization represent two important extrinsic parameters that govern collective cell invasion and invasion plasticity. PMID:26832069

  16. Acute Ischemia Induced by High-Density Culture Increases Cytokine Expression and Diminishes the Function and Viability of Highly Purified Human Islets of Langerhans.

    PubMed

    Smith, Kate E; Kelly, Amy C; Min, Catherine G; Weber, Craig S; McCarthy, Fiona M; Steyn, Leah V; Badarinarayana, Vasudeo; Stanton, J Brett; Kitzmann, Jennifer P; Strop, Peter; Gruessner, Angelika C; Lynch, Ronald M; Limesand, Sean W; Papas, Klearchos K

    2017-11-01

    Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.

  17. Tuning carrier density across Dirac point in epitaxial graphene on SiC by corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lartsev, Arseniy; Yager, Tom; Lara-Avila, Samuel, E-mail: samuel.lara@chalmers.se

    We demonstrate reversible carrier density control across the Dirac point (Δn ∼ 10{sup 13 }cm{sup −2}) in epitaxial graphene on SiC (SiC/G) via high electrostatic potential gating with ions produced by corona discharge. The method is attractive for applications where graphene with a fixed carrier density is needed, such as quantum metrology, and more generally as a simple method of gating 2DEGs formed at semiconductor interfaces and in topological insulators.

  18. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress

    PubMed Central

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757

  19. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell.

  20. MnO2 nanowires-decorated carbon fiber cloth as electrodes for aqueous asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Hong, Congcong; Wang, Xing; Yu, Houlin; Wu, Huaping; Wang, Jianshan; Liu, Aiping

    Manganese dioxide nanowires (MnO2 NWs) anchored on carbon fiber cloth (CFC) were fabricated through a simple hydrothermal reaction and used as integrated electrodes for supercapacitor. The morphology-dependent electrochemical performance of MnO2 NWs was confirmed, yielding good capacitance performance with a high specific capacitance of 3.88Fṡcm‑2 at a charge-discharge current density of 5mAṡcm‑2 and excellent stability of 91.5% capacitance retention after 3000 cycles. Moreover, the composite electrodes were used to fabricate supercapacitors, which showed a high specific capacitance of 194mFṡcm‑2 at a charge-discharge current density of 2mAṡcm‑2 and high energy density of 0.108mWhṡcm‑2 at power density of 2mWṡcm‑2, foreboding its potential application for high-performance supercapacitor.

  1. [Methodological aspects of evaluation of potential lipid capacity for peroxidation from the serum levels of TBA-active products during iron ion stimulation].

    PubMed

    Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N

    2008-05-01

    The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.

  2. Mast cells in the human lung at high altitude

    NASA Astrophysics Data System (ADS)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  3. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  4. A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering

    NASA Astrophysics Data System (ADS)

    Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia

    2017-12-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.

  5. Calculation of density of states for modeling photoemission using method of moments

    NASA Astrophysics Data System (ADS)

    Finkenstadt, Daniel; Lambrakos, Samuel G.; Jensen, Kevin L.; Shabaev, Andrew; Moody, Nathan A.

    2017-09-01

    Modeling photoemission using the Moments Approach (akin to Spicer's "Three Step Model") is often presumed to follow simple models for the prediction of two critical properties of photocathodes: the yield or "Quantum Efficiency" (QE), and the intrinsic spreading of the beam or "emittance" ɛnrms. The simple models, however, tend to obscure properties of electrons in materials, the understanding of which is necessary for a proper prediction of a semiconductor or metal's QE and ɛnrms. This structure is characterized by localized resonance features as well as a universal trend at high energy. Presented in this study is a prototype analysis concerning the density of states (DOS) factor D(E) for Copper in bulk to replace the simple three-dimensional form of D(E) = (m/π2 h3)p2mE currently used in the Moments approach. This analysis demonstrates that excited state spectra of atoms, molecules and solids based on density-functional theory can be adapted as useful information for practical applications, as well as providing theoretical interpretation of density-of-states structure, e.g., qualitatively good descriptions of optical transitions in matter, in addition to DFT's utility in providing the optical constants and material parameters also required in the Moments Approach.

  6. Prenatal tolerance induction: relationship between cell dose, marrow T-cells, chimerism, and tolerance.

    PubMed

    Chen, Jeng-Chang; Chang, Ming-Ling; Huang, Shiu-Feng; Chang, Pei-Yeh; Muench, Marcus O; Fu, Ren-Huei; Ou, Liang-Shiou; Kuo, Ming-Ling

    2008-01-01

    It was reported that the dose of self-antigens can determine the consequence of deletional tolerance and donor T cells are critical for tolerance induction in mixed chimeras. This study aimed at assessing the effect of cell doses and marrow T cells on engraftment and tolerance induction after prenatal bone marrow transplantation. Intraperitoneal cell transplantation was performed in FVB/N (H-2K(q)) mice at gestational day 14 with escalating doses of adult C57BL/6 (H-2K(b)) marrows. Peripheral chimerism was examined postnatally by flow cytometry and tolerance was tested by skin transplantation. Transplantation of light-density marrow cells showed a dose response. High-level chimerism emerged with a threshold dose of 5.0 x 10(6) and host leukocytes could be nearly replaced at a dose of 7.5-10.0 x 10(6). High-dose transplants conferred a steady long-lasting donor-specific tolerance but were accompanied by >50% incidence of graft-versus-host disease. Depletion of marrow T cells lessened graft-versus-host disease to the detriment of engraftment. With low-level chimerism, tolerance was a graded phenomenon dependent upon the level of chimerism. Durable chimerism within 6 months required a threshold of > or = 2% chimerism at 1 month of age and predicted a 50% chance of long-term tolerance, whereas transient chimerism (<2%) only caused hyporesponsiveness to the donor. Tolerance induction did not succeed without peripheral chimerism even if a large amount of injected donor cells persisted in the peritoneum. Neither did an increase in cell doses or donor T-cell contents benefit skin graft survivals unless it had substantially improved peripheral chimerism. Thus, peripheral chimerism level can be a simple and straightforward test to predict the degree of prenatal immune tolerance.

  7. Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries.

    PubMed

    Thangavel, Ranjith; Samuthira Pandian, Amaresh; Ramasamy, Hari Vignesh; Lee, Yun-Sung

    2017-11-22

    The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS 2 over graphene sheets in a few minutes. SnS 2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g -1 ), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS 2 //Na 3 V 2 (PO 4 ) 3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg -1 and an ultrahigh specific power of ∼8.3 kW kg -1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS 2 could be a promising candidate for practical realization of high-power SIBs.

  8. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  9. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  10. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application

    PubMed Central

    Lv, Pengfei; Feng, Quan; Wang, Qingqing; Li, Guohui; Li, Dawei; Wei, Qufu

    2016-01-01

    Novel nanocomposites comprised of bacterial cellulose (BC) with carboxylic multi-walled carbon nanotubes (c-MWCNTs) incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC) were prepared using BC/c-MWCNTs composite injected by laccase (Lac) and glucose oxidase (GOD) with the aid of glutaraldehyde (GA) crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scanning electron microscope (SEM), and Fourier Transform Infrared (FTIR). The experimental results indicated the successful incorporation of c-MWCNTs into the BC. The electrochemical and biofuel performance were evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The power density and current density of EBFCs were recorded at 32.98 µW/cm3 and 0.29 mA/cm3, respectively. Additionally, the EBFCs also showed acceptable stability. Preliminary tests on double cells indicated that renewable BC have great potential in the application field of EBFCs. PMID:28773310

  11. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates

    NASA Astrophysics Data System (ADS)

    Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.

    2000-12-01

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  12. Mapping tree density in forests of the southwestern USA using Landsat 8 data

    USGS Publications Warehouse

    Humagain, Kamal; Portillo-Quintero, Carlos; Cox, Robert D.; Cain, James W.

    2017-01-01

    The increase of tree density in forests of the American Southwest promotes extreme fire events, understory biodiversity losses, and degraded habitat conditions for many wildlife species. To ameliorate these changes, managers and scientists have begun planning treatments aimed at reducing fuels and increasing understory biodiversity. However, spatial variability in tree density across the landscape is not well-characterized, and if better known, could greatly influence planning efforts. We used reflectance values from individual Landsat 8 bands (bands 2, 3, 4, 5, 6, and 7) and calculated vegetation indices (difference vegetation index, simple ratios, and normalized vegetation indices) to estimate tree density in an area planned for treatment in the Jemez Mountains, New Mexico, characterized by multiple vegetation types and a complex topography. Because different vegetation types have different spectral signatures, we derived models with multiple predictor variables for each vegetation type, rather than using a single model for the entire project area, and compared the model-derived values to values collected from on-the-ground transects. Among conifer-dominated areas (73% of the project area), the best models (as determined by corrected Akaike Information Criteria (AICc)) included Landsat bands 2, 3, 4, and 7 along with simple ratios, normalized vegetation indices, and the difference vegetation index (R2 values for ponderosa: 0.47, piñon-juniper: 0.52, and spruce-fir: 0.66). On the other hand, in aspen-dominated areas (9% of the project area), the best model included individual bands 4 and 2, simple ratio, and normalized vegetation index (R2 value: 0.97). Most areas dominated by ponderosa, pinyon-juniper, or spruce-fir had more than 100 trees per hectare. About 54% of the study area has medium to high density of trees (100–1000 trees/hectare), and a small fraction (4.5%) of the area has very high density (>1000 trees/hectare). Our results provide a better understanding of tree density for identifying areas in need of treatment and planning for more effective treatment. Our analysis also provides an integrated method of estimating tree density across complex landscapes that could be useful for further restoration planning.

  13. High quality InP-on-Si for solar cell applications

    NASA Technical Reports Server (NTRS)

    Shellenbarger, Zane A.; Goodwin, Thomas A.; Collins, Sandra R.; Dinetta, Louis C.

    1994-01-01

    InP on Si solar cells combine the low-cost and high-strength of Si with the high efficiency and radiation tolerance of InP. The main obstacle in the growth of single crystal InP-on-Si is the high residual strain and high dislocation density of the heteroepitaxial InP films. The dislocations result from the large differences in lattice constant and thermal expansion mismatch of InP and Si. Adjusting the size and geometry of the growth area is one possible method of addressing this problem. In this work, we conducted a material quality study of liquid phase epitaxy overgrowth layers on selective area InP grown by a proprietary vapor phase epitaxy technique on Si. The relationship between growth area and dislocation density was quantified using etch pit density measurements. Material quality of the InP on Si improved both with reduced growth area and increased aspect ratio (length/width) of the selective area. Areas with etch pit density as low as 1.6 x 10(exp 4) sq cm were obtained. Assuming dislocation density is an order of magnitude greater than etch pit density, solar cells made with this material could achieve the maximum theoretical efficiency of 23% at AMO. Etch pit density dependence on the orientation of the selective areas on the substrate was also studied.

  14. Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode.

    PubMed

    Anandhababu, Ganesan; Abbas, Syed Comail; Lv, Jiangquan; Ding, Kui; Liu, Qin; Babu, Dickson D; Huang, Yiyin; Xie, Jiafang; Wu, Maoxiang; Wang, Yaobing

    2017-02-14

    Progress in the development of efficient electrocatalysts for oxygen reduction reactions is imperative for various energy systems such as metal-air batteries and fuel cells. In this paper, an innovative porous two-dimensional (2D) poly-iron-phthalocyanine (PFe-Pc) based oxygen reduction electrocatalyst created with a simple solid-state chemical reaction without pyrolysis is reported. In this strategy, silicon dioxide nanoparticles play a pivotal role in preserving the Fe-N 4 structure during the polymerization process and thereby assist in the development of a porous structure. The new polymerized phthalocyanine electrocatalyst with tuned porous structure, improved specific surface area and more exposed catalytic active sites via the 2D structure shows an excellent performance towards an oxygen reduction reaction in alkaline media. The onset potential (E = 1.033 V) and limiting current density (I = 5.58 mA cm -2 ) are much better than those obtained with the commercial 20% platinum/carbon electrocatalyst (1.046 V and 4.89 mA cm -2 ) and also show better stability and tolerance to methanol crossover. For practical applications, a zinc-air (Zn-air) battery and methanol fuel cell equipped with the PFe-Pc electrocatalyst as an air cathode reveal a high open circuit voltage and maximum power output (1.0 V and 23.6 mW cm -2 for a methanol fuel cell, and 1.6 V and 192 mW cm -2 for the liquid Zn-air battery). In addition, using the PFe-Pc electrocatalyst as an air cathode in a flexible cable-type Zn-air battery exhibits excellent performance with an open-circuit voltage of 1.409 V. This novel porous 2D PFe-Pc has been designed logically using a new, simple strategy with ultrahigh electrochemical performances in Zn-air batteries and methanol fuel cell applications.

  15. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish.

    PubMed

    Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe

    2016-11-15

    The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.

  16. Increased fibroblast density in actinic cheilitis: association with tryptase-positive mast cells, actinic elastosis and epithelial p53 and COX-2 expression.

    PubMed

    Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra

    2012-01-01

    Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.

  17. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries

    DOE PAGES

    Du, Zhijia; Wood, David L.; Daniel, Claus; ...

    2017-02-09

    We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less

  18. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge

    NASA Astrophysics Data System (ADS)

    Moussa, Mahmoud; El-Kady, Maher F.; Wang, Hao; Michimore, Andrew; Zhou, Qinqin; Xu, Jian; Majeswki, Peter; Ma, Jun

    2015-02-01

    We in this study used a commercial grade kitchen sponge as the scaffold where both graphene platelets (GnPs) and polyaniline (PANi) nanorods were deposited. The high electrical conductivity of GnPs (1460 S cm-1) enhances the pseudo-capacitive performance of PANi grown vertically on the GnPs basal planes; the interconnected pores of the sponge provide sufficient inner surface between the GnPs/PANi composite and the electrolyte, which thus facilitates ion diffusion during charge and discharge processes. When the composite electrode was used to build a supercapacitor with two-electrode configuration, it exhibited a specific capacitance of 965.3 F g-1 at a scan rate of 10 mV s-1 in 1.0 M H2SO4 solution. In addition, the composite Nyquist plot showed no semicircle at high frequency corresponding to a low equivalent series resistance of 0.35 Ω. At 100 mV s-1, the supercapacitor demonstrated an energy density of 34.5 Wh kg-1 and a power density of 12.4 kW kg-1 based on the total mass of the active materials on both electrodes. To demonstrate the performance, we built an array consisting of three cells connected in series, which lit up a red light emitting diode for five minutes. This simple method holds promise for high-performance yet low-cost electrodes for supercapacitors.

  19. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    PubMed Central

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  20. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.

    PubMed

    El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B

    2015-04-07

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.

  1. Nanoparticles decorated with viral antigens are more immunogenic at low surface density.

    PubMed

    Brewer, Matthew G; DiPiazza, Anthony; Acklin, Joshua; Feng, Changyong; Sant, Andrea J; Dewhurst, Stephen

    2017-02-01

    There is an urgent need to develop protective vaccines for high priority viral pathogens. One approach known to enhance immune responses to viral proteins is to display them on a nanoparticle (NP) scaffold. However, little is known about the effect of protein density on the B cell response to antigens displayed on NPs. To address this question HIV-1 Envelope (Env) and influenza hemagglutinin (HA) were displayed on a polystyrene-based NP scaffold at various densities - corresponding to mean antigen distances that span the range encountered on naturally occurring virions. Our studies revealed that NPs displaying lower densities of Env or HA more efficiently stimulated antigen-specific B cells in vitro, as measured by calcium flux, than did NPs displaying higher antigen densities. Similarly, NPs displaying a low density of Env or HA also elicited higher titers of antigen-specific serum IgG in immunized BALB/c mice (including elevated titers of hemagglutination-inhibiting antibodies), as well as an increased frequency of antigen-specific antibody secreting cells in the lymph node, spleen and bone marrow. Importantly, our studies showed that the enhanced B cell response elicited by the lower density NPs is likely secondary to more efficient development of follicular helper CD4 T cells and germinal center B cells. These findings demonstrate that the density of antigen on a NP scaffold is a critical determinant of the humoral immune response elicited, and that high density display does not always result in an optimal response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells.

    PubMed

    Tsai, Jenn-Kai; Tu, Yu-Shin

    2017-03-15

    In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs) were successfully fabricated by attaching a double anti-reflection (AR) layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA) film and a polydimethylsiloxane (PDMS) film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO) template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO₂) nanoparticles (NPs) with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO) glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC) and conversion efficiency from 14.77 to 15.79 mA/cm² and from 6.26% to 6.79%, respectively.

  3. Need for optimizing catalyst loading for achieving affordable microbial fuel cells.

    PubMed

    Singh, Inderjeet; Chandra, Amreesh

    2013-08-01

    Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61 mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Softening non-metallic crystals by inhomogeneous elasticity.

    PubMed

    Howie, P R; Thompson, R P; Korte-Kerzel, S; Clegg, W J

    2017-09-14

    High temperature structural materials must be resistant to cracking and oxidation. However, most oxidation resistant materials are brittle and a significant reduction in their yield stress is required if they are to be resistant to cracking. It is shown, using density functional theory, that if a crystal's unit cell elastically deforms in an inhomogeneous manner, the yield stress is greatly reduced, consistent with observations in layered compounds, such as Ti 3 SiC 2 , Nb 2 Co 7 , W 2 B 5 , Ta 2 C and Ta 4 C 3 . The mechanism by which elastic inhomogeneity reduces the yield stress is explained and the effect demonstrated in a complex metallic alloy, even though the electronegativity differences within the unit cell are less than in the layered compounds. Substantial changes appear possible, suggesting this is a first step in developing a simple way of controlling plastic flow in non-metallic crystals, enabling materials with a greater oxidation resistance and hence a higher temperature capability to be used.

  5. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.

    PubMed

    Park, Jinwoo; Kim, Byungwoo; Yoo, Young-Eun; Chung, Haegeun; Kim, Woong

    2014-11-26

    We demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V→2.1 V) and cell capacitance (8.3 F/g→61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.

  6. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    NASA Astrophysics Data System (ADS)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.

  7. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.

    PubMed

    Berger, J B; Wadley, H N G; McMeeking, R M

    2017-03-23

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.

  8. Rechargeable Magnesium Power Cells

    NASA Technical Reports Server (NTRS)

    Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

    1995-01-01

    Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

  9. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    PubMed

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  10. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Carbone, Lorenzo; Coneglian, Thomas; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steve; Hassoun, Jusef

    2018-02-01

    We report an electrolyte with low flammability, based on diethylene glycol dimethyl ether (DEGDME) dissolving lithium bis-trifluoromethane sulfonimidate (LiTFSI), and lithium nitrate (LiNO3) for high-performances lithium/sulfur battery. Self-diffusion coefficients, conductivity, and lithium transport number of the electrolyte are obtained by nuclear magnetic resonance and electrochemical impedance spectroscopy. Interface stability, lithium stripping/deposition ability, and the electrochemical stability window of the electrolyte are determined by voltammetry and impedance spectroscopy. The tests suggest conductivity higher than 10-2 S cm-1, lithium transport number of about 0.5, electrochemical stability extending from 0 V to 4.6 V, and excellent compatibility with lithium metal. A composite cathode using sulfur and multi walled carbon nanotubes (MWCNTs) is characterized in terms of structure and morphology by X-ray diffraction and scanning electron microscopy. The study shows spherical flakes in which the carbon nanotubes protect the crystalline sulfur from excessive dissolution, and create the optimal host for allowing the proper cell operation. The Li/S cell reveals highly reversible process during charge/discharge cycles, fast kinetic, and lithium diffusion coefficient in the sulfur electrode ranging from 10-12 to 10-10 cm2 s-1. The cell evidences a coulombic efficiency approaching 100%, capacity from 1300 mAh g-1 to 900 mAh g-1 and practical energy density higher than 400 Wh kg-1.

  11. A simple cell-based high throughput screening (HTS) assay for inhibitors of Salmonella enterica RNA polymerase containing the general stress response regulator RpoS (σS).

    PubMed

    Campos-Gomez, Javier; Benitez, Jorge A

    2018-07-01

    RNA polymerase containing the stress response regulator σ S subunit (RpoS) plays a key role in bacterial survival in hostile environments in nature and during infection. Here we devise and validate a simple cell-based high throughput luminescence assay for this holoenzyme suitable for screening large chemical libraries in a robotic platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. High current proton beams production at Simple Mirror Ion Source 37.

    PubMed

    Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O

    2014-02-01

    This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.

  13. Effect with high density nano dot type storage layer structure on 20 nm planar NAND flash memory characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo

    2014-01-01

    The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.

  14. A homogeneous cell-based assay for measurement of endogenous paraoxonase 1 activity.

    PubMed

    Ahmad, Syed; Carter, Jade J; Scott, John E

    2010-05-01

    Paraoxonase 1 (PON1) is a high-density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. Thus, there is significant interest in identifying nutritional and pharmacological enhancers of PON1 activity. To identify such compounds, we developed a rapid homogeneous assay to detect endogenous cell-associated PON1 activity. PON1 activity was measured by the simple addition of fluorigenic PON1 substrate DEPFMU to live Huh7 cells in medium and monitoring change in fluorescence. A specific PON1 inhibitor, 2-hydroxyquinoline, was used to confirm that the observed activity was due to PON1. The assay was optimized and characterized with regard to time course, substrate and sodium chloride concentration, number of cells, and tolerance to dimethyl sulfoxide and serum. Aspirin, quercetin, and simvastatin are compounds reported to increase PON1 expression. Consistent with the literature and Western blot data, these compounds enhanced PON1 activity in this assay with comparable efficacies and potencies. A known toxic compound did not increase assay signal. This assay method also detected PON1 activity in normal hepatocytes. Thus, a novel homogeneous assay for detection of endogenous PON1 expression has been developed and is amenable to high-throughput screening for the identification of small molecules that enhance PON1 expression. 2010 Elsevier Inc. All rights reserved.

  15. Proximity Effect Correction by Pattern Modified Stencil Mask in Large-Field Projection Electron-Beam Lithography

    NASA Astrophysics Data System (ADS)

    Kobinata, Hideo; Yamashita, Hiroshi; Nomura, Eiichi; Nakajima, Ken; Kuroki, Yukinori

    1998-12-01

    A new method for proximity effect correction, suitable for large-field electron-beam (EB) projection lithography with high accelerating voltage, such as SCALPEL and PREVAIL in the case where a stencil mask is used, is discussed. In this lithography, a large-field is exposed by the same dose, and thus, the dose modification method, which is used in the variable-shaped beam and the cell projection methods, cannot be used in this case. In this study, we report on development of a new proximity effect correction method which uses a pattern modified stencil mask suitable for high accelerating voltage and large-field EB projection lithography. In order to obtain the mask bias value, we have investigated linewidth reduction, due to the proximity effect, in the peripheral memory cell area, and found that it could be expressed by a simple function and all the correction parameters were easily determined from only the mask pattern data. The proximity effect for the peripheral array pattern could also be corrected by considering the pattern density. Calculated linewidth deviation was 3% or less for a 0.07-µm-L/S memory cell pattern and 5% or less for a 0.14-µm-line and 0.42-µm-space peripheral array pattern, simultaneously.

  16. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  17. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  18. Density Functional Theory Calculations of the Role of Defects in Amorphous Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Johlin, Eric; Wagner, Lucas; Buonassisi, Tonio; Grossman, Jeffrey C.

    2010-03-01

    Amorphous silicon holds promise as a cheap and efficient material for thin-film photovoltaic devices. However, current device efficiencies are severely limited by the low mobility of holes in the bulk amorphous silicon material, the cause of which is not yet fully understood. This work employs a statistical analysis of density functional theory calculations to uncover the implications of a range of defects (including internal strain and substitution impurities) on the trapping and mobility of holes, and thereby also on the total conversion efficiency. We investigate the root causes of this low mobility and attempt to provide suggestions for simple methods of improving this property.

  19. Attraction of swimming microorganisms by solid surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2007-11-01

    Swimming microorganisms such as spermatozoa or bacteria are usually observed to accumulate near surfaces. Here, we report on an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates. The distribution for the bacteria concentration is found to peak near the glass plates, in agreement with a simple physical model based on the far-field hydrodynamics of swimming cells.

  20. Fabrication of three-dimensional crystalline silicon-on-carbon nanotube nanocomposite anode by sputtering and laser annealing for high-performance lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Kim, Ilwhan; Hyun, Seungmin; Nam, Seunghoon; Lee, Hoo-Jeong; Kang, Chiwon

    2018-05-01

    In this study, we fabricate a three-dimensional (3D) crystalline Si (c-Si)/carbon nanotube (CNT) nanocomposite anode by sputtering Si on 3D CNTs followed by laser annealing for Si crystallization — a simple, cost-effective route — for advanced Li-ion battery (LIB) applications. We use scanning electron microscopy, X-ray diffraction spectroscopy, and Raman spectroscopy to analyze the samples annealed at different laser energy densities. As a result, we confirm that laser annealing enables Si crystallization without damaging the CNTs. We assemble half-type coin cells for the battery performance test: the 3D c-Si/CNT anode sample demonstrates a specific capacity superior to that of its control counterpart; the cyclic stability is also enhanced significantly.

  1. Description and performance of a novel aqueous all-copper redox flow battery

    NASA Astrophysics Data System (ADS)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Kontturi, Kyösti

    2014-12-01

    In this paper we present a novel aqueous redox flow battery chemistry based on copper chloro complexes. The energy density (20 Wh L-1) achieved is comparable to traditional vanadium redox flow batteries. This is due to the high solubility of copper (3 M), which offsets the relatively low cell potential (0.6 V). The electrolyte is cheap, simple to prepare and easy to recycle since no additives or catalysts are used. The stack used is based on plain graphite electrode materials and a low-cost microporous separator. The system can be operated at 60 °C eliminating the need for a heat exchanger and delivers an energy efficiency of 93, 86 and 74% at 5, 10 and 20 mA cm-2 respectively.

  2. Quinoline containing acetyl hydrazone: An easily accessible switch-on optical chemosensor for Zn2.

    PubMed

    Wu, Wei-Na; Mao, Pan-Dong; Wang, Yuan; Zhao, Xiao-Lei; Xu, Zhou-Qing; Xu, Zhi-Hong; Xue, Yuan

    2018-01-05

    A simple chemosensor, namely, N-((quinolin-8-yl)methylene)acetohydrazide (1) was synthesized and used as an off-on fluorescence sensor, which exhibits high selectivity toward Zn 2+ in aqueous media. The probe has large Stokes shift of >200nm, and its detection limit for Zn 2+ is 89.3nM. The binding process was confirmed through UV-vis absorption analysis, fluorescence measurements, mass spectroscopy study, 1 H NMR spectra and density functional theory calculation. The crystal structures of Zn 2+ , Ni 2+ , and Cu 2+ complexes based on 1 were determined through X-ray crystallographic analysis. The fluorescent probe was then applied to monitor intracellular Zn 2+ in HeLa cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inferring animal densities from tracking data using Markov chains.

    PubMed

    Whitehead, Hal; Jonsen, Ian D

    2013-01-01

    The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.

  4. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE PAGES

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  5. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost,more » high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.« less

  7. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

    PubMed

    Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M

    2017-01-01

    Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

  8. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  9. Kinetics of Cell Fusion Induced by a Syncytia-Producing Mutant of Herpes Simplex Virus Type I

    PubMed Central

    Person, Stanley; Knowles, Robert W.; Read, G. Sullivan; Warner, Susan C.; Bond, Vincent C.

    1976-01-01

    We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 × 104 cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a simple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay. PMID:173881

  10. A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete

    PubMed Central

    Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam

    2014-01-01

    The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907

  11. Phase and vacancy behaviour of hard "slanted" cubes

    NASA Astrophysics Data System (ADS)

    van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.

    2017-09-01

    We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.

  12. Facile generation of cell microarrays using vacuum degassing and coverslip sweeping.

    PubMed

    Wang, Min S; Luo, Zhen; Cherukuri, Sundar; Nitin, Nitin

    2014-07-15

    A simple method to generate cell microarrays with high-percentage well occupancy and well-defined cell confinement is presented. This method uses a synergistic combination of vacuum degassing and coverslip sweeping. The vacuum degassing step dislodges air bubbles from the microwells, which in turn enables the cells to enter the microwells, while the physical sweeping step using a glass coverslip removes the excess cells outside the microwells. This low-cost preparation method provides a simple solution to generating cell microarrays that can be performed in basic research laboratories and point-of-care settings for routine cell-based screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.

  14. A simple index of stand density for Douglas-fir.

    Treesearch

    R.O. Curtis

    1982-01-01

    The expression RD = G/(Dg½), where G is basal area and Dg is quadratic mean stand diameter, provides a simple and convenient scale of relative stand density for Douglas-fir, equivalent to other generally accepted diameter-based stand density measures.

  15. Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes

    NASA Astrophysics Data System (ADS)

    Weinberger, Andreas; Walter, Vivien; MacEwan, Sarah R.; Schmatko, Tatiana; Muller, Pierre; Schroder, André P.; Chilkoti, Ashutosh; Marques, Carlos M.

    2017-03-01

    Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.

  16. High throughput single cell counting in droplet-based microfluidics.

    PubMed

    Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie

    2017-05-02

    Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.

  17. Response to Comment on "Cell nuclei have lower refractive index and mass density than cytoplasm": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.

    PubMed

    Müller, Paul; Guck, Jochen

    2018-05-02

    In a recent study entitled "Cell nuclei have lower refractive index and mass density than cytoplasm," we provided strong evidence indicating that the nuclear refractive index (RI) is lower than the RI of the cytoplasm for several cell lines. In a complementary study in 2017, entitled "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies," Steelman et al. observed a lower nuclear RI also for other cell lines and ruled out methodological error sources such as phase wrapping and scattering effects. Recently, Yurkin composed a comment on these 2 publications, entitled "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?," putting into question the methods used for measuring the cellular and nuclear RI in the aforementioned publications by suggesting that a lower nuclear RI would produce a characteristic dip in the measured phase profile in situ. We point out the difficulty of identifying this dip in the presence of other cell organelles, noise, or blurring due to the imaging point spread function. Furthermore, we mitigate Yurkin's concerns regarding the ability of the simple-transmission approximation to compare cellular and nuclear RI by analyzing a set of phase images with a novel, scattering-based approach. We conclude that the absence of a characteristic dip in the measured phase profiles does not contradict the usage of the simple-transmission approximation for the determination of the average cellular or nuclear RI. Our response can be regarded as an addition to the response by Steelman, Eldridge and Wax. We kindly ask the reader to attend to their thorough ascertainment prior to reading our response. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measuring the Density of a Sugar Solution: A General Chemistry Experiment Using a Student-Prepared Unknown

    ERIC Educational Resources Information Center

    Peterson, Karen I.

    2008-01-01

    The experiment developed in this article addresses the concept of equipment calibration for reducing systematic error. It also suggests simple student-prepared sucrose solutions for which accurate densities are known, but not readily available to students. Densities are measured with simple glassware that has been calibrated using the density of…

  19. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    NASA Astrophysics Data System (ADS)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  20. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk

    PubMed Central

    Hafiane, Anouar; Genest, Jacques

    2015-01-01

    Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice. PMID:26674734

  1. Measurement of the Specific Heat Using a Gravity Cancellation Approach

    NASA Technical Reports Server (NTRS)

    Zhong, Fang

    2003-01-01

    The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.

  2. Demonstration of a 4H SiC betavoltaic cell

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, M. V. S.; Thomas, Christopher I.; Li, Hui; Spencer, M. G.; Lal, Amit

    2006-01-01

    A betavoltaic cell in 4H SiC is demonstrated. A p-n diode structure was used to collect the charge from a 1mCi Ni-63 source. An open circuit voltage of 0.72V and a short circuit current density of 16.8nA /cm2 were measured in a single p-n junction. A 6% lower bound on the power conversion efficiency was obtained. A simple photovoltaic-type model was used to explain the results. Fill factor and backscattering effects were included in the efficiency calculation. The performance of the device was limited by edge recombination.

  3. Continuous melting through a hexatic phase in confined bilayer water

    NASA Astrophysics Data System (ADS)

    Zubeltzu, Jon; Corsetti, Fabiano; Fernández-Serra, M. V.; Artacho, Emilio

    2016-06-01

    Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems.

  4. Requirements for high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1986-01-01

    Minimum recombination and low injection level are essential for high efficiency. Twenty percent AM1 efficiency requires a dark recombination current density of 2 x 10 to the minus 13th power A/sq cm and a recombination center density of less than 10 to the 10th power /cu cm. Recombination mechanisms at thirteen locations in a conventional single crystalline silicon cell design are reviewed. Three additional recombination locations are described at grain boundaries in polycrystalline cells. Material perfection and fabrication process optimization requirements for high efficiency are outlined. Innovative device designs to reduce recombination in the bulk and interfaces of single crystalline cells and in the grain boundary of polycrystalline cells are reviewed.

  5. Nanofibers grafted on titanium alloy: the effects of fiber alignment and density on osteoblast mineralization.

    PubMed

    Lin, Hsin-Yi; Peng, Zhao-Xiang

    2017-08-17

    The surface of medical implant alloy Ti-6Al-4V was chemically modified to allow it to covalently bond with collagen/PVA nanofibers. These nanofibers were successfully attached to the Ti-6Al-4V surface in three different morphologies: randomly oriented high-density fiber, COL(H); randomly oriented low-density fiber, COL(L); and aligned high-density fiber, COL(A). The effects of the morphology of these covalently-bound collagen nanofibers on the growth and differentiation of osteoblasts were studied for 21 days. The low-density nanofibers covered approximately 80% of the Ti64 surface, while the high-density nanofibers covered nearly 100%. These covalently attached fibrous coatings remained attached to the metal surface after 3 weeks of cell culture. In the first week the aligned fibers of COL(A) allowed the osteoblasts to stretch and elongate in the direction of the fibers. This directional elongation was not seen in the cells on the randomly-oriented samples. Cells proliferated and differentiated on all three surfaces over time. By the end of the test, the amount of type I collagen secreted by the cells on COL(H) was the highest, while the degree of mineralization was highest on COL(A) among the three samples (p < 0.05). Different nanofiber morphologies changed the cell morphology and the secretion of cellular products. The mechanisms remained to be investigated. The surface of medical implant alloy Ti-6Al-4V was chemically modified to allow it to covalently bond with collagen/PVA nanofibers. The SEM micrographs in the top row show the random and aligned morphology of the collagen-PVA nanofibers. The nanofibers on COL(A) were aligned in the general direction indicated by the arrow. The second row are images from EDX titanium element mapping. The location of the titanium elements are shown as bright dots. The low-density nanofibers, COL(L), covered approximately 80% of the Ti64 surface, while the high-density nanofibers, COL(H) and COL(A), covered nearly 100%. All three surfaces demonstrated good biocompatibility for the cultured osteoblasts. The fiber alignment seemed to have an effect on early cellular morphology (day 7), collagen secretion and calcium deposition, while the density of the fibers seemed to have no significant effect on cell behavior. SEM micrographs of osteoblasts after 7 and 14 days of cell culture are shown in the third and fourth rows. The surface of COL(L) has more cell-free spots indicated by (*) on day 7 as other two surfaces were covered by cells. The nanofibers could no longer be observed and were covered with mineralized granules (circles) after 14 days of cell culture. The cells appear stretched out on the mineralized granules.

  6. A 65 Ah rechargeable lithium molybdenum disulfide battery

    NASA Technical Reports Server (NTRS)

    Brandt, K.

    1986-01-01

    A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.

  7. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-04-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  8. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  9. A drift-diffusion checkpoint model predicts a highly variable and growth-factor-sensitive portion of the cell cycle G1 phase.

    PubMed

    Jones, Zack W; Leander, Rachel; Quaranta, Vito; Harris, Leonard A; Tyson, Darren R

    2018-01-01

    Even among isogenic cells, the time to progress through the cell cycle, or the intermitotic time (IMT), is highly variable. This variability has been a topic of research for several decades and numerous mathematical models have been proposed to explain it. Previously, we developed a top-down, stochastic drift-diffusion+threshold (DDT) model of a cell cycle checkpoint and showed that it can accurately describe experimentally-derived IMT distributions [Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta V. Derivation and experimental comparison of cell-division probability densities. J. Theor. Biol. 2014;358:129-135]. Here, we use the DDT modeling approach for both descriptive and predictive data analysis. We develop a custom numerical method for the reliable maximum likelihood estimation of model parameters in the absence of a priori knowledge about the number of detectable checkpoints. We employ this method to fit different variants of the DDT model (with one, two, and three checkpoints) to IMT data from multiple cell lines under different growth conditions and drug treatments. We find that a two-checkpoint model best describes the data, consistent with the notion that the cell cycle can be broadly separated into two steps: the commitment to divide and the process of cell division. The model predicts one part of the cell cycle to be highly variable and growth factor sensitive while the other is less variable and relatively refractory to growth factor signaling. Using experimental data that separates IMT into G1 vs. S, G2, and M phases, we show that the model-predicted growth-factor-sensitive part of the cell cycle corresponds to a portion of G1, consistent with previous studies suggesting that the commitment step is the primary source of IMT variability. These results demonstrate that a simple stochastic model, with just a handful of parameters, can provide fundamental insights into the biological underpinnings of cell cycle progression.

  10. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma.

    PubMed

    Hu, Jian Ming; Liu, Kai; Liu, Ji Hong; Jiang, Xian Li; Wang, Xue Li; Chen, Yun Zhao; Li, Shu Gang; Zou, Hong; Pang, Li Juan; Liu, Chun Xia; Cui, Xiao Bin; Yang, Lan; Zhao, Jin; Shen, Xi Hua; Jiang, Jin Fang; Liang, Wei Hua; Yuan, Xiang Lin; Li, Feng

    2017-03-28

    M2 macrophages was domesticated by tumor microenvironment to produce some angiogenic molecules and protease, facilitating angiogenesis and matrix breakdown, promoting tumor invasive and metastasis. However, The function of M2 macrophages to progression of eophageal carcinoma, especially Kazakh esophageal carcinoma is still dimness. This study aims to investigate M2 macrophages correlated with matrix metalloproteinase-9 (MMP9) and microvessel density, and the role in the progression of Kazakh esophageal squamous cell carcinoma. CD163 and CD34 as the marker of M2 macrophages and endothelial cells, were used to identify the M2 macrophages density and microvessel density, respectively. Immunohistochemistry staining was evaluated the expression of MMP9. The number of infiltrated CD163-positive M2 macrophages in tumor islets and stroma was significantly higher than in cancer adjacent normal tissues. The increased of M2 macrophages and microvessel density were significantly correlated with more malignant phenotypes including lymph node metastasis and clinical stage progression. Meanwhile, the expression of MMP9 showed much higher level in esophageal squamous cell carcinoma than that in cancer adjacent normal tissues, and high expression of MMP9 in Kazakh esophageal squamous cell carcinoma was significantly associated with age, depth of tumor invasion, lymph node metastasis, and tumor clinical stage. The quantity of M2 macrophages in tumor stroma was positively associated with microvessel density and the expression of MMP9, and as an independent poorly prognostic factor for overall survival time of Kazakh esophageal squamous cell carcinoma. These findings suggest the increased number of M2 macrophages correlated with high expression of MMP9 and high microvessel density may contribute to the tumor aggressiveness and angiogenesis, promoting the progression of Kazakh esophageal squamous cell carcinoma.

  11. From innervation density to tactile acuity: 1. Spatial representation.

    PubMed

    Brown, Paul B; Koerber, H Richard; Millecchia, Ronald

    2004-06-11

    We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination.

  12. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    PubMed

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  13. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array

    PubMed Central

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao

    2017-01-01

    Abstract Polymer‐based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400–600 kV mm−1, which may bring more challenges relating to the failure probability. Here, a simple two‐step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm−3 is achieved at low electric fields, i.e., 143 kV mm−1, which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm−2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis. PMID:29610724

  14. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  15. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    PubMed

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life.

  16. Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density.

    PubMed

    Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong

    2016-09-07

    Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.

  17. Near-critical density filling of the SF6 fluid cell for the ALI-R-DECLIC experiment in weightlessness

    NASA Astrophysics Data System (ADS)

    Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2018-05-01

    Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.

  18. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells

    DOE PAGES

    Zheng, Weiqing; Wang, Liang; Deng, Fei; ...

    2017-09-04

    Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Using focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• aremore » significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.« less

  19. High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy

    PubMed Central

    Cardesa-Salzmann, Teresa M.; Colomo, Luis; Gutierrez, Gonzalo; Chan, Wing C.; Weisenburger, Dennis; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Arenillas, Leonor; Serrano, Sergio; Tubbs, Ray; Delabie, Jan; Gascoyne, Randy D.; Connors, Joseph M; Mate, Jose L.; Rimsza, Lisa; Braziel, Rita; Rosenwald, Andreas; Lenz, Georg; Wright, George; Jaffe, Elaine S.; Staudt, Louis; Jares, Pedro; López-Guillermo, Armando; Campo, Elias

    2011-01-01

    Background Diffuse large B-cell lymphoma is a clinically and molecularly heterogeneous disease. Gene expression profiling studies have shown that the tumor microenvironment affects survival and that the angiogenesis-related signature is prognostically unfavorable. The contribution of histopathological microvessel density to survival in diffuse large B-cell lymphomas treated with immunochemotherapy remains unknown. The purpose of this study is to assess the prognostic impact of histopathological microvessel density in two independent series of patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Design and Methods One hundred and forty-seven patients from the Leukemia Lymphoma Molecular Profiling Project (training series) and 118 patients from the Catalan Lymphoma-Study group-GELCAB (validation cohort) were included in the study. Microvessels were immunostained with CD31 and quantified with a computerized image analysis system. The stromal scores previously defined in 110 Leukemia Lymphoma Molecular Profiling Project cases were used to analyze correlations with microvessel density data. Results Microvessel density significantly correlated with the stromal score (r=0.3209; P<0.001). Patients with high microvessel density showed significantly poorer overall survival than those with low microvessel density both in the training series (4-year OS 54% vs. 78%; P=0.004) and in the validation cohort (57% vs. 81%; P=0.006). In multivariate analysis, in both groups high microvessel density was a statistically significant unfavorable prognostic factor independent of international prognostic index [training series: international prognostic index (relative risk 2.7; P=0.003); microvessel density (relative risk 1.96; P=0.002); validation cohort: international prognostic index (relative risk 4.74; P<0.001); microvessel density (relative risk 2.4; P=0.016)]. Conclusions These findings highlight the impact of angiogenesis in the outcome of patients with diffuse large B-cell lymphoma and the interest of evaluating antiangiogenic drugs in clinical trials. PMID:21546504

  20. Hemorrhagic Fever with Renal Syndrome (Korean Hemorrhagic Fever)

    DTIC Science & Technology

    1990-06-29

    particles were used for a rapid serologic diagnostic test for HFRS. ’te-re were 430 cases of HFRS in Korea in 1989 and large outbreaks of scrub typhus...almost same as in 1988. A simple and rapid serologic diagnostic test for hantavirus infection was developed by high density particle agglutination...infection and HFRS b) serologic relation cif hantaviruses isolated from the different parts of the world c) development of a simple serologic diagnostic

  1. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    PubMed

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p < 0.0001) of high compared with low MD breast tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  2. Packing Regularities in Biological Structures Relate to Their Dynamics

    PubMed Central

    Jernigan, Robert L.; Kloczkowski, Andrzej

    2007-01-01

    The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring non-bonded residues in proteins substantially follow the similar geometric regularities, regardless of whether the residues are on the surface or buried - a direct result of hydrophobicity forces. These orientations are relatively fixed and correspond closely to small deformations from those of the face-centered cubic lattice, which is the way in which identical spheres pack at the highest density. Packing density also is related to the extent of conservation of residues, and we show this relationship for residue packing densities by averaging over a large sample or residue packings. There are three regimes: 1) over a broad range of packing densities the relationship between sequence entropy and inverse packing density is nearly linear, 2) over a limited range of low packing densities the sequence entropy is nearly constant, and 3) at extremely low packing densities the sequence entropy is highly variable. These packing results provide important justification for the simple elastic network models that have been shown for a large number of proteins to represent protein dynamics so successfully, even when the models are extremely coarse-grained. Elastic network models for polymeric chains are simple and could be combined with these protein elastic networks to represent partially denatured parts of proteins. Finally, we show results of applications of the elastic network model to study the functional motions of the ribosome, based on its known structure. These results indicate expected correlations among its components for the step-wise processing steps in protein synthesis, and suggest ways to use these elastic network models to develop more detailed mechanisms - an important possibility, since most experiments yield only static structures. PMID:16957327

  3. X-Ray Wind Tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2010-07-01

    IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.

  4. Determination of Process Parameters for High-Density, Ti-6Al-4V Parts Using Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, C.

    In our earlier work, we described an approach for determining the process parameters that re- sult in high-density parts manufactured using the additive-manufacturing process of selective laser melting (SLM). Our approach, which combines simple simulations and experiments, was demon- strated using 316L stainless steel. We have also used the approach successfully for several other materials. This short note summarizes the results of our work in determining process parameters for Ti-6Al-4V using a Concept Laser M2 system.

  5. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    PubMed

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  6. Long-term stability of the Io high-temperature plasma torus

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Festou, M. C.

    1985-01-01

    The short wavelength camera of the International Ultraviolet Explorer satellite was used to measure S II 1256, S III 1199, semiforbidden S III 1729, and semiforbidden S IV 1406 emission from the high-temperature region of the Io plasma torus. Observations over a period of five years (1979-1984) indicate that the Io plasma parameters have relatively small variations, particularly in the case of the mixing ratio for the dominant constituent S(++), and electron temperature. A simple three-dimensional model of the plasma torus was used to obtain the ion mixing ratios and the plasma density for each observation. The results are compared with Voyager 1 data for mixing ratio (ion density divided by electron density); ionization balance; and plasma density. The results of the comparison are discussed in detail.

  7. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980-2010

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.

    2014-01-01

    High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.

  8. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.

  9. One-dimensional α-MoO3 nanorods for high energy density pseudocapacitor

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-04-01

    Ultralong α-MoO3 nanorods having length of 500 nm to 1 µm and uniform width of around ˜50 nm have been synthesized by a simple one step hydrothermal route using a molybdenum organic salt precursor. An evaluation of the electrochemical properties of the nanorods was done by cyclic voltammetry (CV), and galvanometric charging- discharging (GCD) test. Because of the high active sites and rapid ion diffusion and electron transport of the electrodes using as prepared nanorods reveals energy density of 65 Wh/kg at a power density of 940 W/ kg and a maximum specific capacitance of 474 F/g. It also shows excellent cycling stability.

  10. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  11. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less

  12. A facile method for high yield synthesis of carbon nano onions for designing binder-free flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan

    2017-05-01

    Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.

  13. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    NASA Astrophysics Data System (ADS)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  14. Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-02-01

    In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.

  15. γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans.

    PubMed

    Williams, Headley E; Steele, Jonathan C P; Clements, Mark O; Keshavarz, Tajalli

    2012-11-01

    Microbes monitor their population density through a mechanism termed quorum sensing. It is believed that quorum-sensing molecules diffuse from the microbial cells and circulate in the surrounding environment as a function of cell density. When these molecules reach a threshold concentration, the gene expression of the entire population is altered in a coordinated manner. This work provides evidence that Aspergillus nidulans produces at least one small diffusible molecule during its growth cycle which accumulates at high cell density and alters the organism's behaviour. When added to low-density cell cultures, ethyl acetate extracts from stationary phase culture supernatants of A. nidulans resulted in the abolition of the lag phase, induced an earlier deceleration phase with 16.3 % decrease in the final cell dry weight and resulted in a 37.8 % increase in the expression of ipnA::lacZ reporter gene construct, which was used as a marker for penicillin production compared to non-treated controls. The bioactive molecule present in the stationary phase extract was purified to homogeneity and was identified by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to be γ-heptalactone. This study provides the first evidence that A. nidulans produces γ-heptalactone at a high cell density and it can alter the organism's behaviour at a low cell density. γ-Heptalactone hence acts as a quorum-sensing molecule in the producing strain.

  16. Development of Maps of Simple and Complex Cells in the Primary Visual Cortex

    PubMed Central

    Antolík, Ján; Bednar, James A.

    2011-01-01

    Hubel and Wiesel (1962) classified primary visual cortex (V1) neurons as either simple, with responses modulated by the spatial phase of a sine grating, or complex, i.e., largely phase invariant. Much progress has been made in understanding how simple-cells develop, and there are now detailed computational models establishing how they can form topographic maps ordered by orientation preference. There are also models of how complex cells can develop using outputs from simple cells with different phase preferences, but no model of how a topographic orientation map of complex cells could be formed based on the actual connectivity patterns found in V1. Addressing this question is important, because the majority of existing developmental models of simple-cell maps group neurons selective to similar spatial phases together, which is contrary to experimental evidence, and makes it difficult to construct complex cells. Overcoming this limitation is not trivial, because mechanisms responsible for map development drive receptive fields (RF) of nearby neurons to be highly correlated, while co-oriented RFs of opposite phases are anti-correlated. In this work, we model V1 as two topographically organized sheets representing cortical layer 4 and 2/3. Only layer 4 receives direct thalamic input. Both sheets are connected with narrow feed-forward and feedback connectivity. Only layer 2/3 contains strong long-range lateral connectivity, in line with current anatomical findings. Initially all weights in the model are random, and each is modified via a Hebbian learning rule. The model develops smooth, matching, orientation preference maps in both sheets. Layer 4 units become simple cells, with phase preference arranged randomly, while those in layer 2/3 are primarily complex cells. To our knowledge this model is the first explaining how simple cells can develop with random phase preference, and how maps of complex cells can develop, using only realistic patterns of connectivity. PMID:21559067

  17. Localization of acetylcholine receptors and synaptic ultrastructure at nerve-muscle contacts in culture: dependence on nerve type

    PubMed Central

    Cohen, MW; Weldon, PR

    1980-01-01

    In cultures of xenopus myotomal muscle cells and spinal cord (SC) some of the nerve-muscle contacts exhibit a high density of acetylcholine receptors (AchRs [Anderson et al., 1977, J. Physiol. (Lond.). 268:731- 756,757-773]) and synaptic ultrastructure (Weldon and Cohen, 1979, J. Neurocytol. 8:239-259). We have examined whether similarly specialized contacts are established when the muscle cells are cultured with explants of xenopus dorsal root ganglia (DRG) or sympathetic ganglia (SG). The outgrowth from the ganglionic explants contained neuronal and non- neuronal cell processes. Although both types of processes approached within 100 A of muscle cells, synaptic ultrastructure was rarely observed at these contacts. Because patches of postsynaptic ultrastructure also develop on noncontacted muscle cells, the very few examples of contacts with such specializations probably occurred by chance. AChRs were stained with fluroscent α-bungarotoxin. More than 70 percent of the SC-contacted muscle cells exhibited a high receptor density along the path of contact. The corresponding values for DRG- and SG- contacted muscle cells were 10 and 6 percent. Similar values were obtained when the ganlionic and SC explants were cultured together in the same chamber. The few examples of high receptor density at ganglionic-muscle contacts resembled the characteristic receptor patches of noncontacted muscle cells rather than the narrow bands of high receptor density seen at SC-muscle contacts. In addition, more than 90 percent of these ganglionic- contacted muscle cells had receptor patches elsewhere, compared to less than 40 percent for the SC-contacted muscle cells. These findings indicate that the SC neurites possess a specific property which is important for the establishment of synaptically specialized contacts with muscle and that this property is lacking in the DRG and SG neurites. PMID:7400212

  18. Rapid Assemblers for Voxel-Based VLSI Robotics

    DTIC Science & Technology

    2014-02-12

    relied on coin- cell batteries with high energy density, but low power density. Each of the actuators presented requires relatively high power...The device consists of a low power DC- DC low to high voltage converter operated by 4A cell batteries and an assembler, which is a grid of electrodes...design, simulate and fabricate complex 3D machines, as well as to repair, adapt and recycle existing machines, and to perform rigorous design

  19. A magnesium–sodium hybrid battery with high operating voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Li, Yifei; Liang, Yanliang

    2016-06-10

    We report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mAh g -1. We also demonstrate the cell with an energy density of 135 Wh kg -1 and a high power density of up to 1.67 kW kg -1.

  20. Comparison of Cell Preparations between Commercially Available Filter Cards of the Cytospin with Custom Made Filter Cards.

    PubMed

    Krishnamurthy, Vani; Satish, Suchitha; Doreswamy, Srinivasa Murthy; Vimalambike, Manjunath Gubbanna

    2016-07-01

    Cytological evaluation of body fluids is an important diagnostic technique. Cytocentrifuge has contributed immensely to improve the diagnostic yield of the body fluids. Cytocentrifuge requires a filter card for absorbing the cell free fluid. This is the only consumable which needs to be purchased from the manufacturer at a significant cost. To compare the cell density in cytocentrifuge preparations made from commercially available filter cards with custom made filter cards. This was a prospective analytical study undertaken in department of pathology of a tertiary care centre. A 300 GSM handmade paper with the absorbability similar to the conventional card was obtained and fashioned to suit the filter card slot of the cytospin. Thirty seven body fluids were centrifuged using both conventional and custom made filter card. The cell density was measured as number of cells per 10 high power fields. The median cell density was compared using Mann-Whitney U test. The agreement between the values was analysed using Bland Altman analysis. The median cell count per 10 High power field (HPF) with conventional card was 386 and that with custom made card was 408. The difference was not statistically significant (p = 0.66). There was no significant difference in the cell density and alteration in the morphology between the cell preparations using both the cards. Custom made filter card can be used for cytospin cell preparations of body fluids without loss of cell density or alteration in the cell morphology and at a very low cost.

  1. Modeling of the merging of two colliding field reversed configuration plasmoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guanqiong; Wang, Xiaoguang; Li, Lulu

    2016-06-15

    The field reversed configuration (FRC) is one of the candidate plasma targets for the magneto-inertial fusion, and a high temperature FRC can be formed by using the collision-merging technology. Although the merging process and mechanism of FRC are quite complicated, it is thinkable to build a simple model to investigate the macroscopic equilibrium parameters including the density, the temperature and the separatrix volume, which may play an important role in the collision-merging process of FRC. It is quite interesting that the estimates of the related results based on our simple model are in agreement with the simulation results of amore » two-dimensional magneto-hydrodynamic code (MFP-2D), which has being developed by our group since the last couple of years, while these results can qualitatively fit the results of C-2 experiments by Tri-alpha energy company. On the other hand, the simple model can be used to investigate how to increase the density of the merged FRC. It is found that the amplification of the density depends on the poloidal flux-increase factor and the temperature increases with the translation speed of two plasmoids.« less

  2. Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target

    PubMed Central

    Tsukamoto, Kazuya; Ueda, Hirofumi; Tamura, Hitomi; Kawahara, Kenji; Oie, Yuji

    2009-01-01

    In this paper, we focus on the problem of tracking a moving target in a wireless sensor network (WSN), in which the capability of each sensor is relatively limited, to construct large-scale WSNs at a reasonable cost. We first propose two simple multi-point surveillance schemes for a moving target in a WSN and demonstrate that one of the schemes can achieve high tracking probability with low power consumption. In addition, we examine the relationship between tracking probability and sensor density through simulations, and then derive an approximate expression representing the relationship. As the results, we present guidelines for sensor density, tracking probability, and the number of monitoring sensors that satisfy a variety of application demands. PMID:22412326

  3. Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries.

    PubMed

    Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui

    2017-07-26

    Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.

  4. Superconductivity in dense carbon-based materials

    DOE PAGES

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; ...

    2016-03-08

    Guided by a simple strategy in searching of new superconducting materials we predict that high temperature superconductivity can be realized in classes of high-density materials having strong sp 3 chemical bonding and high lattice symmetry. Here, we examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited and the density of states at the Fermi level in them can be as high as that in the renowned MgB 2. Altogether, with other factors, this boosts the superconducting temperaturemore » (T c) in the materials investigated to higher levels compared to doped diamond. For example, the superconducting T c of sodalite-like NaC 6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. In owing to the rigid carbon framework of these and related dense carbon-materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.« less

  5. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    NASA Astrophysics Data System (ADS)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  6. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    PubMed Central

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-01-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm−3), highly conductive (39 S cm−1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm−3 at 2 mV s−1 in a three-electrode cell and 300 F cm−3 at 175.7 mA cm−3 (568 mF cm−2 at 0.5 mA cm−2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm−3 with a maximum power density of 1600 mW cm−3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices. PMID:27248510

  7. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.

    PubMed

    Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P

    2000-12-15

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  8. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.

    PubMed

    Wang, Wei; Guo, Shirui; Bozhilov, Krassimir N; Yan, Dong; Ozkan, Mihrimah; Ozkan, Cengiz S

    2013-11-11

    Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  10. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  11. Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 92 to 100 GPa [Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 90 to 100 GPa (1 megabar)

    DOE PAGES

    Young, David A.; Cynn, Hyunchae; Soderlind, Per; ...

    2016-10-24

    Most of the chemical elements have now been compressed close to or above 100 GPa (1 Mbar) pressure in diamond-anvil cells and the pressure–volume room-temperature isotherms have been measured. We collect these data and use simple lattice-dynamics models to reduce the isotherms to 0 K. We have extended the published work by making new diamond-anvil-cell measurements on Cr and Rh, and by conducting density-functional calculations on the elements Po, At, Rn, Fr, Ra, and Ac. The 0 K data are tabulated for all elements 1 ≤ Z ≤ 92 and 0 ≤ P ≤ 100 GPa. These data are usefulmore » for generating wide-range equation of state models and for studying the stability of chemical compounds at high pressure (“Megabar chemistry”). As a result, the tables presented here are intended to be reference thermodynamic tables for use in high-pressure research. Further experimental and theoretical work will be needed to extend the tables to higher pressure and to improve accuracy.« less

  12. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  13. Detection of radiation treatment of beans using DNA comet assay

    NASA Astrophysics Data System (ADS)

    Khan, Ashfaq A.; Khan, Hasan M.; Delincée, Henry

    2002-03-01

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60min in 2.5% SDS and electrophoresis was carried out at a voltage of 2V/cm for 2-2.5min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans.

  14. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozan, S.; Faye, J.C.; Tournier, J.F.

    1985-11-27

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combinedmore » treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.« less

  15. Design of landfill daily cells.

    PubMed

    Panagiotakopoulos, D; Dokas, I

    2001-08-01

    The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill.

  16. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    NASA Astrophysics Data System (ADS)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.

    2013-08-01

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  17. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  18. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    NASA Astrophysics Data System (ADS)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  19. [A Modified Procedure to Isolate Synchronous Cells from Yeasts with Continuous Percoll Density Gradient and Their Raman Discrimination].

    PubMed

    Huang, Shu-shi; Lai, Jun-zhuo; Lu, Ming-qian; Cheng, Qin; Liao, Wei; Chen, Li-mei

    2015-08-01

    A modified procedure of Percoll density gradient centrifugation was developed to isolate and fractionate synchronous cells from stationary phase (sp) cultures of different yeast strains, as well as Raman spectra discrimination of single yeast cells was reported. About 1.75 mL Percoll solution in 2 mL polypropylene centrifugal tube was centrifuged at 19,320 g, 20 °C with an angle rotor for 15 min to form continuous densities gradient (1.00~1.31 g · mL(-1)), approximately 100 μL sample was overlaid onto the preformed continuous density gradient carefully, subsequently, centrifuged at 400 g for 60 min in a tabletop centrifuge equipped with a angle rotor at 25 °C. Yeast samples could be observed that the suspensions were separated into two cell fractions obviously. Both fractions of different yeast strains were respectively determined by differential interference contrast (DIC), phase contrast microscope and synchronous culture to distinguish their morphological and growth trait. The results showed that the lower fraction cells were unbudded, mostly unicellular, highly refractive, homogeneous and uniform in size, and represented growth characteristic synchronously; Their protoplasm had relatively high density, and contained significant concentrations of glycogen; all of which were accordant with description of quiescent yeast cells and G0 cells in previously published paper. It was shown that lower fraction was quiescent cells, synchronous G0 cells as well. A Raman tweezers setup was used to investigate the differences between two fractions, G0 cells and non G0 cells, at a single cell level. The result showed that both G0 cells and the non G0 cells had the same characteristic peaks corresponding biological macromolecules including proteins, carbohydrates and nucleic acids, but all characteristic peak intensities of G0 cells were higher than that of non G0 cells, implied that the macromolecular substance content of G0 cells was more higher. Principal component analysis (PCA) was performed between G0 cells and non G0 cells, the results showed that the chemical composition content among the synchronization G0 cells has less difference, and G0 cells were homogeneous but non G0 cells were heterogeneous, indicating single cell optical tweezers Raman spectroscopy could identify the synchronous and asynchronous cells. The modified method is feasible, economical and efficient highly. G0 synchronous cells of most yeast strains could be isolated by a modification of Percoll density gradient centrifugation.

  20. Synthesis of Wurtzite Cu2ZnSnS4 Nanosheets with Exposed High-Energy (002) Facets for Fabrication of Efficient Pt-Free Solar Cell Counter Electrodes.

    PubMed

    Zhang, Xiaoyan; Xu, You; Zhang, Junjie; Dong, Shuai; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2018-01-10

    Two-dimensional (2D) semiconducting nanomaterials have generated much interest both because of fundamental scientific interest and technological applications arising from the unique properties in two dimensions. However, the colloidal synthesis of 2D quaternary chalcogenide nanomaterials remains a great challenge owing to the lack of intrinsic driving force for its anisotropic growth. 2D wurtzite Cu 2 ZnSnS 4 nanosheets (CZTS-NS) with high-energy (002) facets have been obtained for the first time via a simple one-pot thermal decomposition method. The CZTS-NS exhibits superior photoelectrochemical activity as compared to zero-dimensional CZTS nanospheres and comparable performance to Pt counter electrode for dye sensitized solar cells. The improved catalytic activity can be attributed to additional reactive catalytic sites and higher catalytic reactivity in high-energy (002) facets of 2D CZTS-NS. This is in accordance with the density functional theory (DFT) calculations, which indicates that the (002) facets of wurtzite CZTS-NS possess higher surface energy and exhibits remarkable reducibility for I 3 - ions. The developed synthetic method and findings will be helpful for the design and synthesis of 2D semiconducting nanomaterials, especially eco-friendly copper chalcogenide nanocrystals for energy harvesting and photoelectric applications.

Top