Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge
2013-02-01
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.
Xu, Wei; Fu, Yanyan; Gao, Yixun; Yao, Junjun; Fan, Tianchi; Zhu, Defeng; He, Qingguo; Cao, Huimin; Cheng, Jiangong
2015-07-11
A simple, highly stable, sensitive and selective fluorescent system for peroxide explosives was developed via an aromatic aldehyde oxidation reaction. The high efficiency arises from its higher HOMO level and multiple H-bonding. The sensitivity is obtained to be 0.1 ppt for H2O2 and 0.2 ppb for TATP.
Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport
NASA Astrophysics Data System (ADS)
Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.
2003-06-01
High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.
Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenbauer, Ben
High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency watermore » heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less
Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenbauer, Ben
High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less
Zhang, Tianmu; Shi, Changsheng; Zhao, Chenyang; Wu, Zhongbin; Chen, Jiangshan; Xie, Zhiyuan; Ma, Dongge
2018-03-07
Phosphorescent organic light-emitting diodes (OLEDs) possess the property of high efficiency but have serious efficiency roll-off at high luminance. Herein, we manufactured high-efficiency phosphorescent OLEDs with extremely low roll-off by effectively locating the ultrathin emitting layer (UEML) away from the high-concentration exciton formation region. The strategic exciton management in this simple UEML architecture greatly suppressed the exciton annihilation due to the expansion of the exciton diffusion region; thus, this efficiency roll-off at high luminance was significantly improved. The resulting green phosphorescent OLEDs exhibited the maximum external quantum efficiency of 25.5%, current efficiency of 98.0 cd A -1 , and power efficiency of 85.4 lm W -1 and still had 25.1%, 94.9 cd A -1 , and 55.5 lm W -1 at 5000 cd m -2 luminance, and retained 24.3%, 92.7 cd A -1 , and 49.3 lm W -1 at 10 000 cd m -2 luminance, respectively. Compared with the usual structures, the improvement demonstrated in this work displays potential value in applications.
Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk
2017-06-27
Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.
Design of efficient and simple interface testing equipment for opto-electric tracking system
NASA Astrophysics Data System (ADS)
Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao
2016-10-01
Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.
High-efficiency K-band tracking antenna feed
NASA Technical Reports Server (NTRS)
Beavin, R. L.; Simanyi, A. I.
1975-01-01
Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.
NASA Astrophysics Data System (ADS)
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric De Souza
2017-02-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric de Souza
2017-01-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions). PMID:28145477
Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew
2015-11-25
Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Islam, Amjad; Zhang, Dongdong; Peng, Ruixiang; Yang, Rongjuan; Hong, Ling; Song, Wei; Wei, Qiang; Duan, Lian; Ge, Ziyi
2017-09-05
Blue organic light-emitting diodes (OLEDs) are necessary for flat-panel display technologies and lighting applications. To make more energy-saving, low-cost and long-lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky-blue emitters, 1,4,5-triphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEI), 1-(4-methoxyphenyl)-4,5-diphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEMeOPhI) and 1-phenyl-2,4,5-tris(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation-induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non-doped sky-blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A -1 , 2.70 lm W -1 ), 2.16 (4.33 cd A -1 , 2.59 lm W -1 ) and 3.13 % (6.97 cd A -1 , 4.74 lm W -1 ) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll-off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI-based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of solar loading on greenhouse containers used in transpiration efficiency screening
USDA-ARS?s Scientific Manuscript database
Earlier we described a simple high throughput method of screening sorghum for transpiration efficiency (TE). Subsequently it was observed that while results were consistent between lines exhibiting high and low TE, ranking between lines with similar TE was variable. We hypothesized that variable mic...
Han, Tae-Hee; Choi, Mi-Ri; Jeon, Chan-Woo; Kim, Yun-Hi; Kwon, Soon-Ki; Lee, Tae-Woo
2016-01-01
Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (~97.5 cd/A, ~35.5% photons per electron), green (~101.5 cd/A, ~29.0% photons per electron), and white (~74.2 cd/A, ~28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices. PMID:27819053
Etard, Christelle; Joshi, Swarnima; Stegmaier, Johannes; Mikut, Ralf; Strähle, Uwe
2017-12-01
A bottleneck in CRISPR/Cas9 genome editing is variable efficiencies of in silico-designed gRNAs. We evaluated the sensitivity of the TIDE method (Tracking of Indels by DEcomposition) introduced by Brinkman et al. in 2014 for assessing the cutting efficiencies of gRNAs in zebrafish. We show that this simple method, which involves bulk polymerase chain reaction amplification and Sanger sequencing, is highly effective in tracking well-performing gRNAs in pools of genomic DNA derived from injected embryos. The method is equally effective for tracing INDELs in heterozygotes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Schirber, B. Schoenbauer
High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high-performance water heaters difficult to justify economically. However, recent advancements in high-performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high-efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands.
The unlikely high efficiency of a molecular motor based on active motion
NASA Astrophysics Data System (ADS)
Ebeling, W.
2015-07-01
The efficiency of a simple model of a motor converting chemical into mechanical energy is studied analytically. The model motor shows interesting properties corresponding qualitatively to motors investigated in experiments. The efficiency increases with the load and may for low loss reach high values near to 100 percent in a narrow regime of optimal load. It is shown that the optimal load and the maximal efficiency depend by universal power laws on the dimensionless loss parameter. Stochastic effects decrease the stability of motor regimes with high efficiency and make them unlikely. Numerical studies show efficiencies below the theoretical optimum and demonstrate that special ratchet profiles my stabilize efficient regimes.
Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.
Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi
2012-01-01
A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications.
Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction
Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi
2012-01-01
A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326
Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin
2016-01-01
Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. PMID:27477212
Chi, Yongxiang; Zhou, Yong-Gui; Zhang, Xumu
2003-05-16
Using an Ir-f-Binaphane complex as the catalyst, complete conversions and high enantioselectivies (up to 96% ee) were achieved in the asymmetric reductive amination of aryl ketones in the presence of Ti(O(i)()Pr)(4) and I(2). A simple and efficient method of synthesizing chiral primary amines has been realized.
NASA Astrophysics Data System (ADS)
Sayama, K.; Arai, T.
2008-02-01
Efficient solar energy conversion system for hydrogen production from water, solar-hydrogen system, is one of most important technologies for genuinely sustainable development of the society in the world wide scale. However, there are many problems to breakthrough such as low solar-to-H2 efficiency (STH), high cost, low stability, etc in order to realize the system practically and economically. The solar-hydrogen systems using semiconductors are mainly classified as follows; solar cell-electrolysis system, semiconductor photoelectrode system, and photocatalyst system. There are various merits and demerits in each system. The solar cell-electrolysis system is very efficient but is very high cost. The photocatalyst system is very simple and relatively low cost, but the efficiency is still very low. On the other hand, various semiconductor systems with high efficiency have been investigated. A high STH more than 10% was reported using non-oxide semiconductor photoelectrodes such as InGaP, while the preparation methods were costly. In a European project, some simple oxide semiconductor photoelectrodes such as Fe2O3 and WO3 are mainly studied. Here, we investigated various photoelectrodes using mixed metal oxide especially on BiVO4 semiconductor, and a high throughput screening system of new visible light responsible semiconductors for photoelectrode and photocatalyst. Moreover, photocatalysis-electrolysis hybrid system for economical H2 production is studied to overcome the demerit of photocatalyst system on the gas separation and low efficiency.
Huang, Jiang; Carpenter, Joshua H.; Li, Chang -Zhi; ...
2015-12-02
A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. Lastly, the inverted off-center spinning technique promotes a vertical gradient of the donor–acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%.
Huang, Renliang; Wu, Mengyun; Goldman, Mark J; Li, Zhi
2015-06-01
Enzyme encapsulation is a simple, gentle, and general method for immobilizing enzyme, but it often suffers from one or more problems regarding enzyme loading efficiency, enzyme leakage, mechanical stability, and recyclability. Here we report a novel, simple, and efficient method for enzyme encapsulation to overcome these problems by forming stable organic-inorganic hybrid capsules. A new, facile, one-step, and template-free synthesis of organic-inorganic capsules in aqueous phase were developed based on PEI-induced simultaneous interfacial self-assembly of Fmoc-FF and polycondensation of silicate. Addition of an aqueous solution of Fmoc-FF and sodium silicate into an aqueous solution of PEI gave a new class of organic-inorganic hybrid capsules (FPSi) with multi-layered structure in high yield. The capsules are mechanically stable due to the incorporation of inorganic silica. Direct encapsulation of enzyme such as epoxide hydrolase SpEH and BSA along with the formation of the organic-inorganic capsules gave high yield of enzyme-containing capsules (∼1.2 mm in diameter), >90% enzyme loading efficiency, high specific enzyme loading (158 mg protein g(-1) carrier), and low enzyme leakage (<3% after 48 h incubation). FPSi-SpEH capsules catalyzed the hydrolysis of cyclohexene oxide to give (1R, 2R)-cyclohexane-1,2-diol in high yield and concentration, with high specific activity (6.94 U mg(-1) protein) and the same high enantioselectivity as the free enzyme. The immobilized SpEH demonstrated also excellent operational stability and recyclability: retaining 87% productivity after 20 cycles with a total reaction time of 80 h. The new enzyme encapsulation method is efficient, practical, and also better than other reported encapsulation methods. © 2015 Wiley Periodicals, Inc.
A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
2001-01-01
Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.
High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4
NASA Astrophysics Data System (ADS)
Manni, Jeffrey; Harris, Dennis; Fan, Tso Yee
2018-06-01
A simple implementation of a multipass amplifier along with the use of a cryogenic Yb:LiYF4 (YLF) gain medium has enabled the demonstration of a bulk amplifier with an unprecedented combination of large-signal gain (43 dB), efficiency (>50% optical), average output power (40 W) and a near-diffraction-limited output beam.
Red phosphorescent organic light-emitting diodes based on the simple structure.
Seo, Ji Hyun; Lee, Seok Jae; Kim, Bo Young; Choi, Eun Young; Han, Wone Keun; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan
2012-05-01
We demonstrated that the simple layered red phosphorescent organic light-emitting diodes (OLEDs) are possible to have high efficiency, low driving voltage, stable roll-off efficiency, and pure emission color without hole injection and transport layers. We fabricated the OLEDs with a structure of ITO/CBP doped with Ir(pq)2(acac)/BPhen/Liq/Al, where the doping concentration of red dopant, Ir(pq)2(acac), was varied from 4% to 20%. As a result, the quantum efficiencies of 13.4, 11.2, 16.7, 10.8 and 9.8% were observed in devices with doping concentrations of 4, 8, 12, 16 and 20%, respectively. Despite of absence of the hole injection and transport layers, these efficiencies are superior to efficiencies of device with hole transporting layer due to direct hole injection from anode to dopant in emission layer.
Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji
2013-11-18
A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.
A high-efficiency fibre double-scrambler prototype
NASA Astrophysics Data System (ADS)
Barnes, Stuart I.; MacQueen, Phillip J.
2010-07-01
Results for a high efficiency fibre double-scrambler are reported. The scrambler is based on the concept first presented by Casse and Vieira (1997) but with a substantial improvement in performance. The design uses a simple finite conjugate relay with large magnification followed by a combined scrambler/focal reducer singlet. This approach allows flexibility in the coupling of fibres with various focal ratios and diameters, and can be used to minimize loss of throughput due to focal ratio degradation. A prototype has been constructed using simple off-the-shelf optics which is shown to be capable of coupling a 15m long 300 μm fibre to a 5m long 320 μm fibre with an absolute efficiency of 75%. The focal ratio degradation (FRD) of the prototype is 7% when operated at f/3.65. A fully optimized version with both improved efficiency (>85%) and FRD is intended to be deployed as part of the Hobby Eberly Telescope HRS upgrade.
NASA Astrophysics Data System (ADS)
Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua
2013-11-01
In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.
Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.
Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng
2018-01-23
Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (<1 sun). This scalable sheet-like material was used to obtain pure drinkable water from both seawater and sewage water under ambient conditions. Our results demonstrate a competent monolithic material platform providing a paradigm change in water purification by using a simple, point of use, reusable, and low-cost solar thermal water purification system for a variety of environmental conditions.
Production technology for high efficiency ion implanted solar cells
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.
1978-01-01
Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.
Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; ...
2016-08-01
Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH 3NH 3PbI 3-xBr x (MAPbI 3-xBr x) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI 3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI 3-xBr x thin films following an Ostwald ripening process,more » which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. Lastly, this MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.« less
Chen, LiQin; Wang, Hui; Xu, Zhen; Zhang, QiuYue; Liu, Jia; Shen, Jun; Zhang, WanQi
2018-08-03
In the present study, we developed a simple and high-throughput solid phase extraction (SPE) procedure for selective extraction of catecholamines (CAs) in urine samples. The SPE adsorbents were electrospun composite fibers functionalized with 4-carboxybenzo-18-crown-6 ether modified XAD resin and polystyrene, which were packed into 96-well columns and used for high-throughput selective extraction of CAs in healthy human urine samples. Moreover, the extraction efficiency of packed-fiber SPE (PFSPE) was examined by high performance liquid chromatography coupled with fluorescence detector. The parameters affecting the extraction efficiency and impurity removal efficiency were optimized, and good linearity ranging from 0.5 to 400 ng/mL was obtained with a low limit of detection (LOD, 0.2-0.5 ng/mL) and a good repeatability (2.7%-3.7%, n = 6). The extraction recoveries of three CAs ranged from 70.5% to 119.5%. Furthermore, stable and reliable results obtained by the fluorescence detector were superior to those obtained by the electrochemical detector. Collectively, PFSPE coupled with 96-well columns was a simple, rapid, selective, high-throughput and cost-efficient method, and the proposed method could be applied in clinical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.
An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.
Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian
2015-04-14
A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deguchi, M.; Kawama, Y.; Matsuno, Y.
1994-12-31
The optimum design of the via-holes for the VEST cell was studied. Using a simple model, fill factors of the VEST cell were calculated. As for the via-hole distribution pattern, square grid pattern was found to be most suitable from the view points of the cell performance and the easiness of the electrode designing. It was found that the fill factor large enough (> 0.79) for the high efficiency can be obtained. A fabricated test cell showed the efficiency of 14.4%. Further improvement (efficiency over 18%) is possibly expected.
Gallium Nitride Monolithic Microwave Integrated Circuit Designs Using 0.25-micro m Qorvo Process
2017-07-27
and sensor systems of interest to US Defense Department applications, particularly for next-generation radar systems. Broadband, efficient, high...A simple GaN high-electron-mobility-transistor (HEMT) TR single-pull double- throw (SPDT) switch consists of at least 2 series- and 2 shunt... simple TR switch that works well up to 6 GHz is shown in Figs. 4 (layout) and 5 (simulation). Complementary DC-bias voltages are applied at inputs A
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Su, Fei; Xu, Ke; Zhao, Bo; Tai, Cui; Tao, Fei; Tang, Hongzhi; Xu, Ping
2011-11-01
Bacillus coagulans XZL4 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid, 2,3-butanediol, and acetoin. Here we present a 2.8-Mb assembly of its genome. Simple and efficient carbohydrate metabolism systems, especially the transketolase/transaldolase pathway, make it possible to convert pentose sugars to products at high levels.
Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun
2016-03-24
Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2017-08-01
The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.
Surface nanodroplets for highly efficient liquid-liquid microextraction
NASA Astrophysics Data System (ADS)
Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua
2016-11-01
Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.
A Simple and Efficient Method for Assembling TALE Protein Based on Plasmid Library
Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate. PMID:23840477
A simple and efficient method for assembling TALE protein based on plasmid library.
Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.
Su, Fei; Xu, Ke; Zhao, Bo; Tai, Cui; Tao, Fei; Tang, Hongzhi; Xu, Ping
2011-01-01
Bacillus coagulans XZL4 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid, 2,3-butanediol, and acetoin. Here we present a 2.8-Mb assembly of its genome. Simple and efficient carbohydrate metabolism systems, especially the transketolase/transaldolase pathway, make it possible to convert pentose sugars to products at high levels. PMID:22038963
High Performance Pulse Tube Cryocoolers
NASA Astrophysics Data System (ADS)
Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.
2008-03-01
Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.
High efficiency labeling of glycoproteins on living cells
Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.
2010-01-01
We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450
Free-electron laser simulations on the MPP
NASA Technical Reports Server (NTRS)
Vonlaven, Scott A.; Liebrock, Lorie M.
1987-01-01
Free electron lasers (FELs) are of interest because they provide high power, high efficiency, and broad tunability. FEL simulations can make efficient use of computers of the Massively Parallel Processor (MPP) class because most of the processing consists of applying a simple equation to a set of identical particles. A test version of the KMS Fusion FEL simulation, which resides mainly in the MPPs host computer and only partially in the MPP, has run successfully.
Least reliable bits coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Wagner, Paul
1992-01-01
LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Counter-facing plasma guns for efficient extreme ultra-violet plasma light source
NASA Astrophysics Data System (ADS)
Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko
2013-11-01
A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
Electro-Optic Quantum Memory for Light Using Two-Level Atoms
NASA Astrophysics Data System (ADS)
Hétet, G.; Longdell, J. J.; Alexander, A. L.; Lam, P. K.; Sellars, M. J.
2008-01-01
We present a simple quantum memory scheme that allows for the storage of a light field in an ensemble of two-level atoms. The technique is analogous to the NMR gradient echo for which the imprinting and recalling of the input field are performed by controlling a linearly varying broadening. Our protocol is perfectly efficient in the limit of high optical depths and the output pulse is emitted in the forward direction. We provide a numerical analysis of the protocol together with an experiment performed in a solid state system. In close agreement with our model, the experiment shows a total efficiency of up to 15%, and a recall efficiency of 26%. We suggest simple realizable improvements for the experiment to surpass the no-cloning limit.
Electro-optic quantum memory for light using two-level atoms.
Hétet, G; Longdell, J J; Alexander, A L; Lam, P K; Sellars, M J
2008-01-18
We present a simple quantum memory scheme that allows for the storage of a light field in an ensemble of two-level atoms. The technique is analogous to the NMR gradient echo for which the imprinting and recalling of the input field are performed by controlling a linearly varying broadening. Our protocol is perfectly efficient in the limit of high optical depths and the output pulse is emitted in the forward direction. We provide a numerical analysis of the protocol together with an experiment performed in a solid state system. In close agreement with our model, the experiment shows a total efficiency of up to 15%, and a recall efficiency of 26%. We suggest simple realizable improvements for the experiment to surpass the no-cloning limit.
A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
Shi, Dangwei; Song, Chen; Jiang, Qiao; Wang, Zhen-Gang; Ding, Baoquan
2013-03-28
We report a simple, rapid and efficient strategy for modification of gold nanorods (AuNRs) with thiolated DNA at low solution pH and high salt concentration. DNA functionalized AuNRs were then used to assemble with DNA modified gold nanoparticles to form discrete satellite nanostructures.
A Comparison of Wavetable and FM Data Reduction Methods for Resynthesis of Musical Sounds
NASA Astrophysics Data System (ADS)
Horner, Andrew
An ideal music-synthesis technique provides both high-level spectral control and efficient computation. Simple playback of recorded samples lacks spectral control, while additive sine-wave synthesis is inefficient. Wavetable and frequencymodulation synthesis, however, are two popular synthesis techniques that are very efficient and use only a few control parameters.
Highly efficient and stable catalyst for peroxynitrite decomposition
Yurii V. Geletii; Alan J. Bailey; Jennifer J. Cowan; Ira A. Weinstock; Craig L. Hill
2001-01-01
The new cobalt substituted-polyoxometalate K7[CoAlW11O39]â¢15H2O and the simple CoCl2â¢6H2O salt are efficient catalysts for peroxynitrite decomposition. These compounds also catalyze the oxidation of ascorbic acid and the nitration of phenol by peroxynitrite.
Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma
2017-02-01
Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.
Peng, Xiong; Karakalos, Stavros G; Mustain, William E
2018-01-17
Selective electrochemical reduction of CO 2 is one of the most important processes to study because of its promise to convert this greenhouse gas to value-added chemicals at low cost. In this work, a simple anodization treatment was devised that first oxidizes Ag to Ag 2 CO 3 , then uses rapid electrochemical reduction to create preferentially oriented nanoparticles (PONs) of metallic Ag (PON-Ag) with high surface area as well as high activity and very high selectivity for the reduction of CO 2 to CO. The PON-Ag catalyst was dominated by (110) and (100) orientation, which allowed PON-Ag to achieve a CO Faradaic efficiency of 96.7% at an operating potential of -0.69 V vs RHE. This performance is not only significantly higher than that of polycrystalline Ag (60% at -0.87 V vs RHE) but also represents one of the best combinations of activity and selectivity achieved to date - all with a very simple, scalable approach to electrode fabrication.
Highly efficient method for production of radioactive silver seed cores for brachytherapy.
Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti
2017-02-01
A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy. Copyright © 2016. Published by Elsevier Ltd.
Yu, Yuanyuan; Wang, Chunyu; He, Xinze; Yao, Xiaotong; Zu, Liansuo
2014-07-03
An unprecedented cascade strategy, used in conjunction with a redox isomerization, for the synthesis of 3-allyl pyrroles is reported. In a single step, readily accessible simple starting materials are transformed into highly substituted pyrroles with high efficiency. The products obtained contain allyl substituents, which can be readily elaborated to other useful functional groups. The reaction proceeds through an unusual (3 + 2) cycloaddition/skeletal rearrangement/redox isomerization pathway.
Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.
Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua
2016-08-31
Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.
Angle-resolved diffraction grating biosensor based on porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn
2016-03-07
In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less
Simple Motor Control Concept Results High Efficiency at High Velocities
NASA Astrophysics Data System (ADS)
Starin, Scott; Engel, Chris
2013-09-01
The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.
Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.
Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh
2017-11-01
Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun
2013-03-01
A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.
Noble, Adam; McCarver, Stefan J; MacMillan, David W C
2015-01-21
Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions.
Going the Extra Mile: Enabling Joint Logistics for the Tactical War Fighter
2010-05-04
few of the links when relocating hubs. Chains v. Networks Supply Chain Too brittle , long CPL, low clustering, simple pattern, simple control...Mass Service Perspective Efficiency Highly Optimized Brittle , Rigid Supply Chains vs Networked Cross-Service Mutual Support Cross-Enterprise...Storage and Distribution Centei\\" Army Logistician 39, no. 6 (November-December 2007): 40. 68 Glen R Dowling, "Army and Marine Joint Ammunition
A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Xiong; Bi, Dongqin; Yi, Chenyi; Décoppet, Jean-David; Luo, Jingshan; Zakeeruddin, Shaik Mohammed; Hagfeldt, Anders; Grätzel, Michael
2016-07-01
Metal halide perovskite solar cells (PSCs) currently attract enormous research interest because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication costs, but their practical development is hampered by difficulties in achieving high performance with large-size devices. We devised a simple vacuum flash-assisted solution processing method to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas. This enabled us to fabricate solar cells with an aperture area exceeding 1 square centimeter, a maximum efficiency of 20.5%, and a certified PCE of 19.6%. By contrast, the best certified PCE to date is 15.6% for PSCs of similar size. We demonstrate that the reproducibility of the method is excellent and that the cells show virtually no hysteresis. Our approach enables the realization of highly efficient large-area PSCs for practical deployment.
Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries
NASA Technical Reports Server (NTRS)
Rowlette, J. J.
1981-01-01
Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.
Bloom, Guillaume; Larat, Christian; Lallier, Eric; Lee-Bouhours, Mane-Si Laure; Loiseaux, Brigitte; Huignard, Jean-Pierre
2011-02-10
We have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm. The optimized beam splitter has both a high efficiency (∼96%) and a good intensity uniformity (∼0.2%). The fabrication error tolerances are numerically calculated, and it is shown that this subwavelength array generator could be fabricated with current electron beam writers and inductively coupled plasma etching. Finally, we studied the effect of a simple and realistic antireflection coating on the performance of the beam splitter.
GaInP2/GaAs tandem cells for space applications
NASA Technical Reports Server (NTRS)
Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Bertness, K. A.; Friedman, D. J.
1991-01-01
The monolithic, tunnel-junction-interconnected tandem combination of a GaInP2 top cell and a GaAs bottom cell has achieved a one-sun, AM1.5 efficiency of 27.3 percent. With proper design of the top cell, air mass zero (AM0) efficiencies greater than 25 percent are possible. A description and the advantages of this device for space applications are presented and discussed. The advantages include high-voltage, low-current, two-terminal operation for simple panel fabrication, and high conversion efficiency with low-temperature coefficient. Also, because the active regions of the device are Al-free, the growth of high efficiency devices is not affected by trace levels of O2 or H2O in the MOCVD growth system.
Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing
2015-11-25
A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Ablation Test Device for Brick Coating of Gun
NASA Astrophysics Data System (ADS)
shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO
2018-03-01
As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.
Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture.
Yang, Shubin; Zhan, Liang; Xu, Xiaoyue; Wang, Yanli; Ling, Licheng; Feng, Xinliang
2013-04-18
It is demonstrated that graphene-based porous silica sheets can serve as an efficient carrier support for PEI via a simple nanocasting technology. The resulting materials possess thin nature, high PEI loading content and high thermal-conductivity. Such features are favorable for the efficient diffusion and adsorption of CO2 as well as the rapid thermal transfer during the CO2 capture process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficiency equations of the railgun
NASA Astrophysics Data System (ADS)
Sadedin, D. R.
1984-03-01
The feasibility of an employment of railguns for large scale applications, such as space launching, will ultimately be determined by efficiency considerations. The present investigation is concerned with the calculation of the efficiencies for constant current railguns. Elementary considerations are discussed, taking into account a simple condition for high efficiency, the magnetic field of the rails, and the acceleration force on the projectile. The loss in a portion of the rails is considered along with rail loss comparisons, applications to the segmented gun, rail losses related to the constant resistance per unit length, efficiency expressions, and arc, or muzzle voltage energy.
Superlattice photonic crystal as broadband solar absorber for high temperature operation.
Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan
2014-12-15
A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.
Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori; Haleem, Ashraf
2017-10-04
A cofacial iron porphyrin hetero-dimer, Fe2TPFPP-TMP showed high electro-catalytic activity, selectivity, and stability for the O2 reduction to H2O both in homogeneous non-aqueous and heterogeneous neutral aqueous solutions. Moreover, when it is integrated to FTO/p-CuBi2O4 (FTO = fluorine doped tin oxide) photocathode prepared by a simple novel method, a remarkable efficient solar-assisted O2 reduction is achieved in neutral potassium phosphate (KPi) or basic NaOH solutions saturated with O2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xia, Yingdong; Pan, Yufeng; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei
2017-08-09
The hole extraction layer has a significant impact on the achievement of high-efficiency polymer solar cells (PSCs). Here, we report an efficient approach to direct UV-ozone treatment by larger device performance enhancement employing graphene oxide (GO). The dramatic performance enhancement of PSCs with the P3HT:PCBM blend as an active layer was demonstrated by the UV-ozone treatment of GO for 30 min: best power conversion efficiency (PCE) of 4.18%, fill factor of 0.63, J sc of 10.94 mA cm -2 , and V oc of 0.61 V, which are significantly higher than those of the untreated GO (1.82%) and highly comparable PEDOT:PSS-based PSCs (3.73%). In addition, PSCs with UV-ozone-treated GO showed a longer stability than PSCs with PEDOT:PSS. The significant enhancement of PCEs of PSCs can be attributed to the fact that ozone molecules can oxidize GO into CO 2 and leave highly conductive graphene particles. We suggest that this simple UV-ozone treatment can provide an efficient method for highly efficient GO hole extraction in high-performance PSCs.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes
NASA Astrophysics Data System (ADS)
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-01
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes.
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-14
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst
NASA Astrophysics Data System (ADS)
Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun
2011-07-01
In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h
Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures
Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev
2015-01-01
Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270
Magnetically Actuated Cilia for Microfluidic Manipulation
NASA Astrophysics Data System (ADS)
Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration
2015-11-01
We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.
2015-01-01
Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443
NASA Astrophysics Data System (ADS)
Khoobi, Mehdi; Delshad, Tayebeh Modiri; Vosooghi, Mohsen; Alipour, Masoumeh; Hamadi, Hosein; Alipour, Eskandar; Hamedani, Majid Pirali; Sadat ebrahimi, Seyed Esmaeil; Safaei, Zahra; Foroumadi, Alireza; Shafiee, Abbas
2015-02-01
A novel magnetically separable catalyst was prepared based on surface modification of Fe3O4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity.
Facile synthesis of polyaniline-modified CuS with enhanced adsorbtion and photocatalytic activity
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Chen, Shaohua; Shuai, Ying
2016-10-01
Novel hierarchical polyaniline-modified CuS (PANI-CuS) has been synthesized by simple assembling PANI on the surface of flower-like CuS spheres. The PANI modification enhances the adsorption properties of flower-like CuS. The prepared PANI-CuS composites exhibit higher visible-light-driven photocatalytic activities in degradation of rhodamine B (RhB) than that of neat CuS. The unusual photocatalytic activity could be attributed to the great adsorptivity of dyes, the extended photoresponse range, and the high migration efficiency of photoinduced electrons, which may effectively suppress the charge recombination. This work not only provides a simple strategy for fabricating highly efficient and stable CuS-based composites, but also proves that these unique structures are excellent platforms for significantly improving their visible- light-driven photoactivities, holding great promise for their applications in the field of purifying polluted water resources.
A Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries
Ai, Wei; Xie, Linghai; Du, Zhuzhu; Zeng, Zhiyuan; Liu, Juqing; Zhang, Hua; Huang, Yunhui; Huang, Wei; Yu, Ting
2013-01-01
We report a simple and efficient approach for fabrication of novel graphene-polysulfide (GPS) anode materials, which consists of conducting graphene network and homogeneously distributed polysulfide in between and chemically bonded with graphene sheets. Such unique architecture not only possesses fast electron transport channels, shortens the Li-ion diffusion length but also provides very efficient Li-ion reservoirs. As a consequence, the GPS materials exhibit an ultrahigh reversible capacity, excellent rate capability and superior long-term cycling performance in terms of 1600, 550, 380 mAh g−1 after 500, 1300, 1900 cycles with a rate of 1, 5 and 10 A g−1 respectively. This novel and simple strategy is believed to work broadly for other carbon-based materials. Additionally, the competitive cost and low environment impact may promise such materials and technique a promising future for the development of high-performance energy storage devices for diverse applications. PMID:23903017
Mohammadi Ziarani, Ghodsi; Aleali, Faezeh; Lashgari, Negar; Badiei, Alireza; Abolhasani Soorki, Ali
2018-01-01
A simple, efficient, and environmentally friendly method has been developed for the synthesis of a series of tricyclic fused pyrazolopyranopyrimidines via a one-pot three-component reaction of barbituric acids, aromatic aldehydes, and 3-methyl-5-pyrazolone in the presence of SBA-Pr-SO3H. SBA-15 mesoporous silica material functionalized with propyl sulfonic acid groups was used as a heterogeneous Brønsted acid catalyst with hexagonal structure, high surface area, thick walls, and large uniform pores. All reactions were performed under reflux conditions in water in the presence of a catalytic amount of SBA-Pr-SO3H. High yields, mild reaction conditions, short reaction times, and simple work-up procedures are some advantages of this method. The antimicrobial activities of the synthesized compounds were also evaluated and some products exhibited significant antibacterial activities at low concentrations. PMID:29881410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Li, X.; Xu, P.
2015-02-02
We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecturemore » offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.« less
Straight-Pore Microfilter with Efficient Regeneration
NASA Technical Reports Server (NTRS)
Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.
2010-01-01
A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.
Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun
2016-04-20
Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%.
Highly efficient bilayer interface exciplex for yellow organic light-emitting diode.
Hung, Wen-Yi; Fang, Guan-Cheng; Chang, Yuh-Chia; Kuo, Ting-Yi; Chou, Pi-Tai; Lin, Shih-Wei; Wong, Ken-Tsung
2013-08-14
A simple three-layer interfacial-type yellow emission exciplex device with an external quantum efficiency as high as 7.7% has been successfully achieved by combining conformation compatible C3-symmetric hole-transporting TCTA and electron-transporting 3P-T2T. The excellent and balanced charge-transporting properties of TCTA and 3P-T2T and the large energy-levels offset (0.8 eV) of TCTA/3P-T2T interface play important roles for the efficient exciplexes formation, which are effectively confined around the interfacial region due to the high triplet energies (2.85 eV) of TCTA and 3P-T2T. The high-performance OLED was believed to be from the effective harvest of exciplex triplet excitons via reverse intersystem crossing process.
Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.
Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene
2015-07-27
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.
Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M
2015-08-15
We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.
NASA Astrophysics Data System (ADS)
Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.
2017-01-01
In this paper, we investigate the usage of SOA for reach extension of an impulse radio over fiber system. Operating in the saturated regime translates into strong nonlinearities and spectral distortions, which drops the power efficiency of the propagated pulses. After studying the SOA response versus operating conditions, we have enhanced the system performance by applying simple analog pre-distortion schemes for various derivatives of the Gaussian pulse and their combination. A novel pulse shape has also been designed by linearly combining three basic Gaussian pulses, offering a very good spectral efficiency (> 55 %) for a high power (0 dBm) at the amplifier input. Furthermore, the potential of our technique has been examined considering a 1.5 Gbps-OOK and 0.75 Gbps-PPM modulation schemes. Pre-distortion proved an advantage for a large extension of optical link (150 km), with an inline amplification via SOA at 40 km.
Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping
2015-08-07
A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.
UPIC + GO: Zeroing in on informative markers
USDA-ARS?s Scientific Manuscript database
Microsatellites/SSRs (simple sequence repeats) have become a powerful tool in genomic biology because of their broad range of applications and availability. An efficient method recently developed to generate microsatellite-enriched libraries used in combination with high throughput DNA pyrosequencin...
A facile and eco-friendly synthesis of diarylthiazoles and diarylimidazoles in water
A simple, efficient and high yielding greener protocol for the synthesis of substituted thiazoles and imidazoles is described that utilizes the reaction of readily available α-tosyloxy ketones with variety of thioamides/amidines in water
A cosmic-ray-mediated shock in the solar system
NASA Technical Reports Server (NTRS)
Eichler, D.
1981-01-01
It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.
Amorphous MoS{sub x} on CdS nanorods for highly efficient photocatalytic hydrogen evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaofang; Tang, Chaowan; Zheng, Qun
Loading cocatalyst on semiconductors was crucially necessary for improving the photocatalytic hydrogen evolution. Amorphous MoS{sub x} as a novel and noble metal-free cocatalyst was loaded on CdS nanorods by a simple photodeposition method. Efficient hydrogen evolution with amount of 15 mmol h{sup −1} g{sup −1} was observed over the MoS{sub x} modified CdS nanorods, which was about 6 times higher than that by using Pt as cocatalyst. Meanwhile, with MoS{sub x} cocatalyst, the efficiency of CdS nanorods was superior to that of CdS nanoparticles and bulk CdS. No deactivation could be observed in the efficiency of MoS{sub x} modified CdSmore » nanorods under irradiation for successive 10 h. Further experimental results indicated that the efficient electrons transfer, low overpotential of hydrogen evolution and active S atoms over the MoS{sub x} modified CdS nanorods were responsible for the higher efficiency. Our results provided guidance for synthesizing noble metal-free materials as cocatalyst for photocatalytic hydrogen evolution. - Graphical abstract: Photodeposition of amorphous MoS{sub x} on CdS nanorods for highly efficient photocatalytic hydrogen evolution. - Highlights: • Amorphous MoSx cocatalyst was loaded on CdS NRs by a simple photodeposition. • MoS{sub x}/CdS NRs exhibited 6 times higher hydrogen evolution efficiency than Pt/CdS NRs. • The hydrogen evolution of MoS{sub x}/CdS NRs linearly increased with prolonging time. • Lower overpotential and efficient electron transfer were observed over MoS{sub x}/CdS NRs.« less
The Heterogeneous Investment Horizon and Dynamic Strategies for Asset Allocation
NASA Astrophysics Data System (ADS)
Xiong, Heping; Xu, Yiheng; Xiao, Yi
This paper discusses the influence of the portfolio rebalancing strategy on the efficiency of long-term investment portfolios under the assumption of independent stationary distribution of returns. By comparing the efficient sets of the stochastic rebalancing strategy, the simple rebalancing strategy and the buy-and-hold strategy with specific data examples, we find that the stochastic rebalancing strategy is optimal, while the simple rebalancing strategy is of the lowest efficiency. In addition, the simple rebalancing strategy lowers the efficiency of the portfolio instead of improving it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jong-Ho; Seol, Yongkoo
We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydratemore » turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.« less
Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping
NASA Technical Reports Server (NTRS)
Suresh, A.; Huynh, H. T.
1997-01-01
A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.
Li, Yu Hang; Cheng, Ling; Liu, Peng Fei; Zhang, Le; Zu, Meng Yang; Wang, Chong Wu; Jin, Yan Huan; Cao, Xiao Ming; Yang, Hua Gui; Li, Chunzhong
2018-05-09
A simple cadmium sulfide nanomaterial is found to be an efficient and stable electrocatalyst for CO 2 reduction in aqueous medium for more than 40 h with a steady CO faradaic efficiency of approximately 95 %. Moreover, it can realize a current density of -10 mA cm -2 at an overpotential of -0.55 V on a porous substrate with similar selectivity. Theoretical and experimental results confirm that the high selectivity for CO 2 reduction is due to its (0 0 0 2) face with sulfur vacancies that prefers CO 2 molecule reduction in aqueous medium. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks
NASA Astrophysics Data System (ADS)
Choi, H. B.; Oh, J. M.; Lee, D.; Ahn, S. J.; Park, B. S.; Lee, S. B.
2002-11-01
The performance of L-band erbium-doped fiber amplifier (EDFA) of a simple structure with a fiber Bragg grating (FBG) was investigated. The injected C-band ASE by the FBG offers low-cost amplification and greatly improves the efficiency of the EDFA. There are 9 and 4 dB improvements with the FBG at 1587 nm, at low and high input, respectively. The flat gain of 18 dB, up to a total input of -5 dBm at 150 mW of 980 nm pump, is obtained over 30 nm with less than ±0.5 dB gain variations without any gain equalizer. The proposed EDFA provides a cost-effective solution for wavelength division multiplexing systems.
Coding For Compression Of Low-Entropy Data
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu
1994-01-01
Improved method of encoding digital data provides for efficient lossless compression of partially or even mostly redundant data from low-information-content source. Method of coding implemented in relatively simple, high-speed arithmetic and logic circuits. Also increases coding efficiency beyond that of established Huffman coding method in that average number of bits per code symbol can be less than 1, which is the lower bound for Huffman code.
Just, Jeremy; Deans, Bianca J; Olivier, Wesley J; Paull, Brett; Bissember, Alex C; Smith, Jason A
2015-05-15
A new, practical, rapid, and high-yielding process for the pressurized hot water extraction (PHWE) of multigram quantities of shikimic acid from star anise (Illicium verum) using an unmodified household espresso machine has been developed. This operationally simple and inexpensive method enables the efficient and straightforward isolation of shikimic acid and the facile preparation of a range of its synthetic derivatives.
Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu
2016-01-22
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.
Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu
2016-01-01
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses. PMID:26795601
NASA Astrophysics Data System (ADS)
Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu
2016-01-01
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.
NASA Astrophysics Data System (ADS)
Wong, Tony E.; Bakker, Alexander M. R.; Ruckert, Kelsey; Applegate, Patrick; Slangen, Aimée B. A.; Keller, Klaus
2017-07-01
Simple models can play pivotal roles in the quantification and framing of uncertainties surrounding climate change and sea-level rise. They are computationally efficient, transparent, and easy to reproduce. These qualities also make simple models useful for the characterization of risk. Simple model codes are increasingly distributed as open source, as well as actively shared and guided. Alas, computer codes used in the geosciences can often be hard to access, run, modify (e.g., with regards to assumptions and model components), and review. Here, we describe the simple model framework BRICK (Building blocks for Relevant Ice and Climate Knowledge) v0.2 and its underlying design principles. The paper adds detail to an earlier published model setup and discusses the inclusion of a land water storage component. The framework largely builds on existing models and allows for projections of global mean temperature as well as regional sea levels and coastal flood risk. BRICK is written in R and Fortran. BRICK gives special attention to the model values of transparency, accessibility, and flexibility in order to mitigate the above-mentioned issues while maintaining a high degree of computational efficiency. We demonstrate the flexibility of this framework through simple model intercomparison experiments. Furthermore, we demonstrate that BRICK is suitable for risk assessment applications by using a didactic example in local flood risk management.
Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie
2016-01-01
Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
NASA Astrophysics Data System (ADS)
Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong
2018-04-01
In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.
Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture
NASA Astrophysics Data System (ADS)
Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.
2018-04-01
The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.
Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc
2015-01-01
Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.
2017-07-01
of interest to Department of Defense applications, particularly for next-generation radar systems. Broadband, efficient, high-power MMIC amplifiers...handling capability. Figures 1 and 2 show the layouts and simulations of a simple 1-stage 3- to 6-GHz Wilkinson coupler/combiner. A 2-stage broader band...from 4 to nearly 7 GHz for the 2-stage PA design. The simple , compact broadband feedback amplifier that serves as the first-stage driver for the 2
A simple highly efficient non invasive EMG-based HMI.
Vitiello, N; Olcese, U; Oddo, C M; Carpaneto, J; Micera, S; Carrozza, M C; Dario, P
2006-01-01
Muscle activity recorded non-invasively is sufficient to control a mobile robot if it is used in combination with an algorithm for its asynchronous analysis. In this paper, we show that several subjects successfully can control the movements of a robot in a structured environment made up of six rooms by contracting two different muscles using a simple algorithm. After a small training period, subjects were able to control the robot with performances comparable to those achieved manually controlling the robot.
Simple one-pot conversion of aldehydes and ketones to enals.
Valenta, Petr; Drucker, Natalie A; Bode, Jeffrey W; Walsh, Patrick J
2009-05-21
A simple and efficient method to convert aldehydes into alpha,beta-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH(3).SMe(2) generates tris(ethoxyvinyl) borane. Transmetalation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride, the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure.
Robust and durable superhydrophobic cotton fabrics for oil/water separation.
Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo
2013-08-14
By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.
Growth and yield models for central hardwoods
Martin E. Dale; Donald E. Hilt
1989-01-01
Over the last 20 years computers have become an efficient tool to estimate growth and yield. Computerized yield estimates vary from simple approximation or interpolation of traditional normal yield tables to highly sophisticated programs that simulate the growth and yield of each individual tree.
Nudds, Robert L.; Taylor, Graham K.; Thomas, Adrian L. R.
2004-01-01
The wing kinematics of birds vary systematically with body size, but we still, after several decades of research, lack a clear mechanistic understanding of the aerodynamic selection pressures that shape them. Swimming and flying animals have recently been shown to cruise at Strouhal numbers (St) corresponding to a regime of vortex growth and shedding in which the propulsive efficiency of flapping foils peaks (St approximately fA/U, where f is wingbeat frequency, U is cruising speed and A approximately bsin(theta/2) is stroke amplitude, in which b is wingspan and theta is stroke angle). We show that St is a simple and accurate predictor of wingbeat frequency in birds. The Strouhal numbers of cruising birds have converged on the lower end of the range 0.2 < St < 0.4 associated with high propulsive efficiency. Stroke angle scales as theta approximately 67b-0.24, so wingbeat frequency can be predicted as f approximately St.U/bsin(33.5b-0.24), with St0.21 and St0.25 for direct and intermittent fliers, respectively. This simple aerodynamic model predicts wingbeat frequency better than any other relationship proposed to date, explaining 90% of the observed variance in a sample of 60 bird species. Avian wing kinematics therefore appear to have been tuned by natural selection for high aerodynamic efficiency: physical and physiological constraints upon wing kinematics must be reconsidered in this light. PMID:15451698
Edwards, Elizabeth J; Edwards, Mark S; Lyvers, Michael
2016-08-01
Attentional control theory (ACT) describes the mechanisms associated with the relationship between anxiety and cognitive performance. We investigated the relationship between cognitive trait anxiety, situational stress and mental effort on phonological performance using a simple (forward-) and complex (backward-) word span task. Ninety undergraduate students participated in the study. Predictor variables were cognitive trait anxiety, indexed using questionnaire scores; situational stress, manipulated using ego threat instructions; and perceived level of mental effort, measured using a visual analogue scale. Criterion variables (a) performance effectiveness (accuracy) and (b) processing efficiency (accuracy divided by response time) were analyzed in separate multiple moderated-regression analyses. The results revealed (a) no relationship between the predictors and performance effectiveness, and (b) a significant 3-way interaction on processing efficiency for both the simple and complex tasks, such that at higher effort, trait anxiety and situational stress did not predict processing efficiency, whereas at lower effort, higher trait anxiety was associated with lower efficiency at high situational stress, but not at low situational stress. Our results were in full support of the assumptions of ACT and implications for future research are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Improving the photovoltaic performance of perovskite solar cells with acetate
Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.
2016-01-01
In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924
Improving the photovoltaic performance of perovskite solar cells with acetate.
Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P
2016-12-09
In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.
He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan
2017-12-06
Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.
2017-01-01
After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon–pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene. PMID:28261671
Digdaya, Ibadillah A.; Adhyaksa, Gede W. P.; Trześniewski, Bartek J.; Garnett, Erik C.; Smith, Wilson A.
2017-01-01
Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal–insulator–semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal–insulator–semiconductor photoanodes by showing over 200 h of operational stability. PMID:28660883
Simple and efficient production of embryonic stem cell-embryo chimeras by coculture.
Wood, S A; Pascoe, W S; Schmidt, C; Kemler, R; Evans, M J; Allen, N D
1993-01-01
A method for the production of embryonic stem (ES) cell-embryo chimeras was developed that involves the simple coculture of eight-cell embryos on a lawn of ES cells. After coculture, the embryos with ES cells attached are transferred to normal embryo culture medium and allowed to develop to the blastocyst stage before reimplantation into foster mothers. Although the ES cells initially attach to the outside of the embryos, they primarily colonize the inner cell mass and its derivatives. This method results in the efficient production of chimeras with high levels of chimerism including the germ line. As embryos are handled en masse and manipulative steps are minimal, this method should greatly reduce the time and effort required to produce chimeric mice. Images Fig. 1 Fig. 2 PMID:8506303
High Activity and Efficient Turnover by a Simple, Self-Assembled "Artificial Diels-Alderase".
Martí-Centelles, Vicente; Lawrence, Andrew L; Lusby, Paul J
2018-02-28
The Diels-Alder (DA) reaction is a cornerstone of synthesis, yet Nature does not use catalysts for intermolecular [4+2] cycloadditions. Attempts to create artificial "Diels-Alderases" have also met with limited success, plagued by product inhibition. Using a simple Pd 2 L 4 capsule we now show DA catalysis that combines efficient turnover alongside enzyme-like hallmarks. This includes excellent activity (k cat /k uncat > 10 3 ), selective transition-state stabilization comparable to the most proficient DA catalytic antibodies, and control over regio- and chemoselectivity that would otherwise be difficult to achieve using small-molecule catalysts. Unlike other catalytic approaches that use synthetic capsules, this method is not defined by entropic effects; instead multiple H-bonding interactions modulate reactivity, reminiscent of enzymatic action.
Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material
NASA Astrophysics Data System (ADS)
Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu
2011-05-01
The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.
Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.
Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M
2016-11-01
Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.
Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff
2015-02-01
Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.
A low-threshold, high-efficiency microfluidic waveguide laser.
Vezenov, Dmitri V; Mayers, Brian T; Conroy, Richard S; Whitesides, George M; Snee, Preston T; Chan, Yinthai; Nocera, Daniel G; Bawendi, Moungi G
2005-06-29
This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%. The output wavelength was tunable over a 20-nm range by changing the ratio of solvent components (dimethyl sulfoxide and methanol) in the liquid core.
Orr, G; Roth, M
2012-08-01
A low-voltage (mV) electronically triggered spot welding system for fabricating fine thermocouples and thin sheets used in high-temperature characterization of materials' properties is suggested. The system is based on the capacitance discharge method with a timed trigger for obtaining reliable and consistent welds. In contrast to existing techniques based on employing high voltage DC supplies for charging the capacitor or supplies with positive and negative rails, this method uses a simple, standard dual power supply available at most of the physical laboratories or can be acquired at a low cost. In addition, an efficient and simple method of fabricating non-sticking electrodes that do not contaminate the weld area is suggested and implemented.
A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-
NASA Astrophysics Data System (ADS)
Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal
2014-11-01
A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.
Camp Pendleton Saves 91% in Parking Lot Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-01
Case study describes how Camp Pendleton Marine Corps Base replaced high-pressure sodium (HPS) fixtures in one parking lot with high-efficiency induction fixtures for 91% savings in energy use and $5,700 in cost savings annually. This parking lot is estimated to have a simple payback of 2.9 years. Sitewide up-grades yielded annual savings of 1 million kWh.
NASA Astrophysics Data System (ADS)
Li, Cuiping; Yu, Huahua; Feng, Jinhua; Chen, Xiaolin; Li, Pengcheng
2009-02-01
In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel absorption to remove water to concentrate venom are not applicable due to the low concentration of the compounds dissolved. Although the recovery efficiency and the total venom obtained using the dialysis dehydration method are high, some proteins can be lost during the concentrating process. Comparing to the lyophilization method, ultrafiltration is a simple way to concentrate the compounds at high percentage but the hemolytic activities of the proteins obtained by ultrafiltration appear to be lower. Our results suggest that overall lyophilization is the best and recommended method to concentrate venom from the tentacles of jellyfish. It shows not only the high recovery efficiency for the venoms but high hemolytic activities as well.
Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.
2013-01-01
Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864
Interface design principles for high-performance organic semiconductor devices
Nie, Wanyi; Gupta, Gautam; Crone, Brian K.; ...
2015-03-23
Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which greatly limits the power conversion efficiency. W. Nie, A. Mohite, and co-workers demonstrate a simple strategy of suppressing the recombination rate by inserting a spacer layer at the donor-acceptor interface, resulting in a dramatic increase in power conversion efficiency.
Simplified dichromated gelatin hologram recording process
NASA Technical Reports Server (NTRS)
Georgekutty, Tharayil G.; Liu, Hua-Kuang
1987-01-01
A simplified method for making dichromated gelatin (DCG) holographic optical elements (HOE) has been discovered. The method is much less tedious and it requires a period of processing time comparable with that for processing a silver halide hologram. HOE characteristics including diffraction efficiency (DE), linearity, and spectral sensitivity have been quantitatively investigated. The quality of the holographic grating is very high. Ninety percent or higher diffraction efficiency has been achieved in simple plane gratings made by this process.
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.
2018-02-01
We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
High efficiency tapered free-electron lasers with a prebunched electron beam
Emma, C.; Sudar, N.; Musumeci, P.; ...
2017-11-17
In this study we analyze the high gain, high efficiency tapered free-electron laser amplifier with a prebunched electron beam. Simple scaling laws are derived for the peak output power and extraction efficiency and verified using 1D simulations. These studies provide useful analytical expressions which highlight the benefits resulting from fine control of the initial conditions of the system, namely the initial electron beam bunching and input seed radiation. When time-dependent effects are included, the sideband instability is known to limit the radiation amplification due to particle detrapping. We discuss two different approaches to mitigate the sideband growth via 1-D timemore » dependent simulations. We find that a more aggressive taper enabled by strong prebunching and a modulation of the resonance condition are both effective methods for suppressing the sideband instability growth rate.« less
Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert
2016-01-01
A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942
Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert
2016-01-01
A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.
The application of high efficient yellow phosphorescent material to white OLEDs
NASA Astrophysics Data System (ADS)
Lin, Jin-Sheng; Ku, Chun-Neng; Huang, Pang-Chi; Wu, Cheng-An; Chang, Meng-Hao; Liou, Jia-Lun; Tseng, Mei-Rurng
2014-10-01
A new type of thiopyridinyl-based iridium molecule (POT) was used as the yellow phosphorescent material in our research. On fabricating a yellow PHOLED by doping POT-02 with host as the emitter, the device achieved a high power efficiency of 66.0 lm/W and an external quantum efficiency of 23.2%. On the other hand, a white organic lightemitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in-between double blue phosphorescent emitters. In this study, we introduce a simple process for generating yellow emission of a WOLED by using the B/Y/B EML configuration. The B/Y/B EML configuration can achieve a higher efficiency and a smaller color shift with various operational brightness values. Based on the concept of this device, the molecular engineering of the blue phosphorescent host material as well as the light-extraction film, a WOLED with a power efficiency of 103 lm/W and an external quantum efficiency of 38.2% at a practical brightness of 1000 cd/m2 with CIE coordinates (CIEx, y) of (0.36, 0.48) can be achieved.
Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo
2002-01-01
Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.
Wickersheim, Michelle L; Blumenstiel, Justin P
2013-11-01
A large number of methods are available to deplete ribosomal RNA reads from high-throughput RNA sequencing experiments. Such methods are critical for sequencing Drosophila small RNAs between 20 and 30 nucleotides because size selection is not typically sufficient to exclude the highly abundant class of 30 nucleotide 2S rRNA. Here we demonstrate that pre-annealing terminator oligos complimentary to Drosophila 2S rRNA prior to 5' adapter ligation and reverse transcription efficiently depletes 2S rRNA sequences from the sequencing reaction in a simple and inexpensive way. This depletion is highly specific and is achieved with minimal perturbation of miRNA and piRNA profiles.
Yao, Huifeng; Ye, Long; Hou, Junxian; ...
2017-03-29
Here, a new acceptor–donor–acceptor-structured nonfullerene acceptor ITCC (3,9-bis(4-(1,1-dicyanomethylene)-3-methylene-2-oxo-cyclopenta[b]thiophen)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d':2,3- d'] -s-indaceno[1,2- b:5,6- b']-dithiophene) is designed and synthesized via simple end-group modification. ITCC shows improved electron-transport properties and a high-lying lowest unoccupied molecular orbital level. A power conversion efficiency of 11.4% with an impressive V OC of over 1 V is recorded in photovoltaic devices, suggesting that ITCC has great potential for applications in tandem organic solar cells.
Zhang, Yingying; Wang, Xiang; Hu, Dandan; Xue, Chaozhuang; Wang, Wei; Yang, Huajun; Li, Dongsheng; Wu, Tao
2018-04-25
The highly efficient and cheap non-Pt-based electrocatalysts such as transition-based catalysts prepared via facile methods for oxygen reduction reaction (ORR) are desirable for large-scale practical industry applications in energy conversion and storage systems. Herein, we report a straightforward top-down synthesis of monodisperse ultrasmall manganese-doped multimetallic (ZnGe) oxysulfide nanoparticles (NPs) as an efficient ORR electrocatalyst by simple ultrasonic treatment of the Mn-doped Zn-Ge-S chalcogenidometalate crystal precursors in H 2 O/EtOH for only 1 h at room temperature. Thus obtained ultrasmall monodisperse Mn-doped oxysulfide NPs with ultralow Mn loading level (3.92 wt %) not only exhibit comparable onset and half-wave potential (0.92 and 0.86 V vs reversible hydrogen electrode, respectively) to the commercial 20 wt % Pt/C but also exceptionally high metal mass activity (189 mA/mg at 0.8 V) and good methanol tolerance. A combination of transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analysis demonstrated that the homogenous distribution of a large amount of Mn(III) on the surface of NPs mainly accounts for the high ORR activity. We believe that this simple synthesis of Mn-doped multimetallic (ZnGe) oxysulfide NPs derived from chalcogenidometalates will open a new route to explore the utilization of discrete-cluster-based chalcogenidometalates as novel non-Pt electrocatalysts for energy applications and provide a facile way to realize the effective reduction of the amount of catalyst while keeping desired catalytic performances.
Optimized emission in nanorod arrays through quasi-aperiodic inverse design.
Anderson, P Duke; Povinelli, Michelle L
2015-06-01
We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.
A Simple One-pot Conversion of Aldehydes and Ketones to Enals
Valenta, Petr; Drucker, Natalie A.; Bode, Jeffrey W.; Walsh, Patrick J.
2009-01-01
A simple and efficient method to convert aldehydes into α,β-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH3•SMe2 generates tris(ethoxyvinyl) borane. Transmetallation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure. PMID:19419211
Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.
Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo
2017-04-01
To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.
A small cable tunnel inspection robot design
NASA Astrophysics Data System (ADS)
Zhou, Xiaolong; Guo, Xiaoxue; Huang, Jiangcheng; Xiao, Jie
2017-04-01
Modern city mainly rely on internal electricity cable tunnel, this can reduce the influence of high voltage over-head lines of urban city appearance and function. In order to reduce the dangers of cable tunnel artificial inspection and high labor intensity, we design a small caterpillar chassis in combination with two degrees of freedom robot with two degrees of freedom camera pan and tilt, used in the cable tunnel inspection work. Caterpillar chassis adopts simple return roller, damping structure. Mechanical arm with three parallel shafts, finish the up and down and rotated action. Two degrees of freedom camera pan and tilt are used to monitor cable tunnel with 360 °no dead angle. It looks simple, practical and efficient.
Alkali semi-metal films and method and apparatus for fabricating them
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.
Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM
A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...
Evaluation of hard red spring wheat quality using four different roller mills
USDA-ARS?s Scientific Manuscript database
Domestic and overseas buyers pay premium price for hard red spring (HRS) wheat due to high protein content and excellent milling and baking performances. For efficient quality identification of wheat samples, a wheat quality laboratory needs an objective and simple experimental milling procedure and...
Digital Movement Analysis in Physical Education
ERIC Educational Resources Information Center
Trout, Josh
2013-01-01
Mobile devices such as smartphones and tablets offer applications (apps) that make digital movement analysis simple and efficient in physical education. Highly sophisticated movement analysis software has been available for many years but has mainly appealed to coaches of elite athletes and biomechanists. Apps on mobile devices are less expensive…
Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines
A simple and facile condensation of hydrazines/hydrazides and diamines with 1,3-diketones/β-ketoester leads to the preparation of pyrazoles and diazepines in high yields. This eco-friendly protocol is accelerated by microwave heating and efficiently carried out without any r...
Development of longitudinally excited CO2 laser
NASA Astrophysics Data System (ADS)
Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.
2018-05-01
Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.
Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses
NASA Astrophysics Data System (ADS)
Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.
2018-03-01
Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.
An efficient transport solver for tokamak plasmas
Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...
2017-01-03
A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.
Al-Majid, Abdullah M.; Barakat, Assem; AL-Najjar, Hany J.; Mabkhot, Yahia N.; Ghabbour, Hazem A.; Fun, Hoong-Kun
2013-01-01
A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a–i and 4a–e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%–99%). PMID:24317435
Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
Krasny, Darren P; Orin, David E
2004-08-01
Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.
Tajima, Takahisa; Fuki, Koji; Kataoka, Naoya; Kudou, Daizou; Nakashimada, Yutaka; Kato, Junichi
2013-12-05
Most whole cell biocatalysts have some problems with yields and productivities because of various metabolites produced as byproducts and limitations of substrate uptake. We propose a psychrophile-based simple biocatalyst for efficient bio-production using mesophilic enzymes expressed in psychrophilic Shewanella livingstonensis Ac10 cells whose basic metabolism was inactivated by heat treatment. The 45°C heat-treated cells expressing lacZ showed maximum beta-galactosidase activity as well as chloroform/SDS-treated cells to increase membrane permeability. The fluorescent dye 5-cyano-2,3-ditolyl-tetrazolium chloride staining indicated that most basic metabolism of Ac10 was lost by heat treatment at 45˚C for 10 min. The simple biocatalyst was applied for 3-HPA production by using Klebsiella pneumoniae dhaB genes. 3-HPA was stoichiometrically produced with the complete consumption of glycerol at a high production rate of 8.85 mmol 3-HPA/g dry cell/h. The amount of 3-HPA production increased by increasing the concentrations of biocatalyst and glycerol. Furthermore, it could convert biodiesel-derived crude glycerol to 3-HPA.
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
Gao, Ke; Zhu, Zonglong; Xu, Bo; Jo, Sae Byeok; Kan, Yuanyuan; Peng, Xiaobin; Jen, Alex K-Y
2017-12-01
Employing a layer of bulk-heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite-based solar cells, instead of using tandem devices or near infrared (NIR)-absorbing Sn-containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short-circuit current (J SC ) and fill factor (FF). To find an appropriate NIR-absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase J SC , but also possess suitable energy levels and high mobility to afford high V OC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well-matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high V oc , J SC , and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui
2015-05-06
Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.
The Rise of Highly Efficient and Stable Perovskite Solar Cells.
Grätzel, Michael
2017-03-21
Recently, metal halide perovskite solar cells (PSCs) of the general formular ABX 3 where A is a monovalent cation, that is, methylammonium (MA) CH 3 NH 3 +• , formamidinium CH 2 (NH 2 ) 2 + , Cs + , or Rb + , B stands for Pb(II) or Sn(II), and X for iodide or bromide have achieved solar to electric power conversion efficiencies (PCEs) above 22%, exceeding the efficiency of the present market leader polycrystalline silicon while using 1000 times less light harvesting material and simple solution processing for their fabrication. The top performing devices all employ formulations containing a mixture of up to four A cations and iodide as well as a small fraction of bromide as anion, whose emergence will be described in this Commentary. Apart from leading the current PV efficiency race, these new perovskite materials exhibit intense electroluminescence and an extraordinarily high stability under heat and light stress.
Absorption of solar radiation by alkali vapors. [for efficient high temperature energy converters
NASA Technical Reports Server (NTRS)
Mattick, A. T.
1978-01-01
A theoretical study of the direct absorption of solar radiation by the working fluid of high temperature, high efficiency energy converters has been carried out. Alkali vapors and potassium vapor in particular were found to be very effective solar absorbers and suitable thermodynamically for practical high temperature cycles. Energy loss via reradiation from a solar boiler was shown to reduce the overall efficiency of radiation-heated energy converters, although a simple model of radiation transfer in a potassium vapor solar boiler revealed that self-trapping of the reradiation may reduce this loss considerably. A study was also made of the requirements for a radiation boiler window. It was found that for sapphire, one of the best solar transmitting materials, the severe environment in conjunction with high radiation densities will require some form of window protection. An aerodynamic shield is particularly advantageous in this capacity, separating the window from the absorbing vapor to prevent condensation and window corrosion and to reduce the radiation density at the window.
Realization of highly efficient hexagonal boron nitride neutron detectors
Maity, A.; Doan, T. C.; Li, J.; ...
2016-08-16
Here, we report the achievement of highly efficient 10B enriched hexagonal boron nitride (h- 10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h- 10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical “photoconductor-type” detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>10 13 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h- BNmore » was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h- BN. Exposure to thermal neutrons from a californium-252 ( 252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h- 10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.« less
Han, Tae-Hee; Kim, Young-Hoon; Kim, Myung Hwan; Song, Wonjun; Lee, Tae-Woo
2016-03-09
We used various nondestructive analyses to investigate various host material systems in the emitting layer (EML) of simple-structured, green phosphorescent organic light-emitting diodes (OLEDs) to clarify how the host systems affect its luminous efficiency (LE) and operational stability. An OLED that has a unipolar single-host EML with conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) showed high operating voltage, low LE (∼26.6 cd/A, 13.7 lm/W), and short lifetime (∼4.4 h @ 1000 cd/m(2)). However, the combined use of a gradient mixed-host EML and a molecularly controlled HIL that has increased surface work function (WF) remarkably decreased operating voltage and improved LE (∼68.7 cd/A, 77.0 lm/W) and lifetime (∼70.7 h @ 1000 cd/m(2)). Accumulated charges at the injecting interfaces and formation of a narrow recombination zone close to the interfaces are the major factors that accelerate degradation of charge injection/transport and electroluminescent properties of OLEDs, so achievement of simple-structured OLEDs with high efficiency and long lifetime requires facilitating charge injection and balanced transport into the EML and distributing charge carriers and excitons in EML.
Zhang, Bo; Pirmoradian, Mohammad; Chernobrovkin, Alexey; Zubarev, Roman A.
2014-01-01
Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs. PMID:25100859
NASA Astrophysics Data System (ADS)
Levell, Jack W.; Harkema, Stephan; Pendyala, Raghu K.; Rensing, Peter A.; Senes, Alessia; Bollen, Dirk; MacKerron, Duncan; Wilson, Joanne S.
2013-09-01
A general challenge in Organic Light Emitting Diodes (OLEDs) is to extract the light efficiently from waveguided modes within the device structure. This can be accomplished by applying an additional scattering layer to the substrate which results in outcoupling increases between 0% to <100% in external quantum efficiency. In this work, we aim to address this large variation and show that the reflectivity of the OLED is a simple and useful predictor of the efficiency of substrate scattering techniques without the need for detailed modeling. We show that by optimizing the cathode and anode structure of glass based OLEDs by using silver and an ITO free high conductive Agfa Orgacon™ PEDOT:PSS we are able to increase the external quantum efficiency of OLEDs with the same outcoupling substrates from 2.4% to 5.6%, an increase of 130%. In addition, Holst Centre and partners are developing flexible substrates with integrated light extraction features and roll to roll compatible processing techniques to enable this next step in OLED development both for lighting and display applications. These devices show promise as they are shatterproof substrates and facilitate low cost manufacture.
Sweet Potato [Ipomoea batatas (L.) Lam].
Song, Guo-qing; Yamaguchi, Ken-ichi
2006-01-01
Among the available transformation methods reported on sweet potato, Agrobacterium tumefaciens-mediated transformation is more successful and desirable. Stem explants have shown to be ideal for the transformation of sweet potato because of their ready availability as explants, the simple transformation process, and high-frequency-regeneration via somatic embryogenesis. Under the two-step kanamycin-hygromycin selection method and using the appropriate explants type (stem explants), the efficiency of transformation can be considerably improved in cv. Beniazuma. The high efficiency in the transformation of stem explants suggests that the transformation protocol described in this chapter warrants testing for routine stable transformation of diverse varieties of sweet potato.
General statistical considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberhardt, L L; Gilbert, R O
From NAEG plutonium environmental studies program meeting; Las Vegas, Nevada, USA (2 Oct 1973). The high sampling variability encountered in environmental plutonium studies along with high analytical costs makes it very important that efficient soil sampling plans be used. However, efficient sampling depends on explicit and simple statements of the objectives of the study. When there are multiple objectives it may be difficult to devise a wholly suitable sampling scheme. Sampling for long-term changes in plutonium concentration in soils may also be complex and expensive. Further attention to problems associated with compositing samples is recommended, as is the consistent usemore » of random sampling as a basic technique. (auth)« less
NASA Astrophysics Data System (ADS)
Liu, Lijuan; Zhang, Guiyang; Kong, Xiaobo; Liu, Yonggang; Xuan, Li
2018-01-01
A high conversion efficiency distributed feedback (DFB) laser from a dye-doped holographic polymer dispersed liquid crystal (HPDLC) transmission grating structure was reported. The alignment polyimide (PI) films were used to control the orientation of the phase separated liquid crystals (LCs) to increase the refractive index difference between the LC and the polymer, so it can provide better light feedback. The lasing wavelength located at 645.8 nm near the maximum of the amplified spontaneous emission (ASE) spectrum with the lowest threshold 0.97 μ J/pulse and the highest conversion efficiency 1.6% was obtained. The laser performance under electric field were also investigated and illustrated. The simple configuration, one-step fabrication organic dye laser shows the potential to realize ultra-low cost plastic lasers.
NASA Astrophysics Data System (ADS)
Vinoth, S.; Kanimozhi, G.; Kumar, Harish; Srinadhu, E. S.; Satyanarayana, N.
2017-12-01
In the present investigation, the recently developed, simple, robust, and powerful metaheuristic symbiotic organism search (SOS) algorithm was used for simulation of J- V characteristics and optimizing the internal parameters of the dye-sensitized solar cells (DSSCs) fabricated using electrospun 1-D mesoporous TiO2 nanofibers as photoanode. The efficiency ( η = 5.80 %) of the DSSC made up of TiO2 nanofibers as photoanode is found to be ˜ 21.59% higher compared to the efficiency ( η = 4.77 %) of the DSSC made up of TiO2 nanoparticles as photoanode. The observed high efficiency can be attributed to high dye loading as well as high electron transport in the mesoporous 1-D TiO2 nanofibers. Further, the validity and advantage of SOS algorithm are verified by simulating J- V characteristics of DSSC with Lambert-W function.
Pei, Jiquan; Han, Steve; Liao, Haijun; Li, Tao
2014-01-22
A highly efficient and simple-to-implement Monte Carlo algorithm is proposed for the evaluation of the Rényi entanglement entropy (REE) of the quantum dimer model (QDM) at the Rokhsar-Kivelson (RK) point. It makes possible the evaluation of REE at the RK point to the thermodynamic limit for a general QDM. We apply the algorithm to a QDM defined on the triangular and the square lattice in two dimensions and the simple and the face centered cubic (fcc) lattice in three dimensions. We find the REE on all these lattices follows perfect linear scaling in the thermodynamic limit, apart from an even-odd oscillation in the case of the square lattice. We also evaluate the topological entanglement entropy (TEE) with both a subtraction and an extrapolation procedure. We find the QDMs on both the triangular and the fcc lattice exhibit robust Z2 topological order. The expected TEE of ln2 is clearly demonstrated in both cases. Our large scale simulation also proves the recently proposed extrapolation procedure in cylindrical geometry to be a highly reliable way to extract the TEE of a topologically ordered system.
Jernigan, J A; Adal, K A; Anglim, A M; Byers, K E; Farr, B M
1994-12-01
In 1990, the Centers for Disease Control and Prevention recommended substituting dust-mist particulate respirators for simple isolation masks in acid-fast bacillus isolation rooms, reasoning that air leaks around the simple masks could result in a higher rate of purified protein derivative skin-test conversion. In 1993, a Centers for Disease Control and Prevention draft guideline proposed that high-efficiency particulate air filter respirators be used instead of dust-mist particulate respirators. Epidemiologic data were not available to assess the importance of these changes or their cost-effectiveness. The University of Virginia was affiliated with a tuberculosis hospital from 1979 until 1987. We surveyed physicians who had served as residents in internal medicine during this period regarding purified protein derivative skin-test history. duration of work at the tuberculosis sanatorium, and any history of unprotected exposures to patients with active pulmonary or laryngeal tuberculosis. Patients with active tuberculosis at the sanatorium were isolated in negative-pressure rooms with UV lights. Physicians wore simple isolation masks in these rooms. Responses were received from 83 former resident physicians. Fifty-two physicians had worked on the tuberculosis wards for a total of 420 weeks, with no subsequent skin-test conversions (95% CI 0 to 1 conversion/8 physician-years). These data document a low risk of occupational transmission of Mycobacterium tuberculosis to physicians who wear simple isolation masks in negative-pressure ventilation rooms with UV lights. This low rate predicts that the additional protective efficacy and cost-effectiveness of the more expensive high-efficiency particulate air filter respirators and the respiratory protection program will be low.
Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...
2015-01-07
Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.
Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang
2015-05-20
Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such simple and efficient method could provide a novel route toward high-performance packaging materials and other functional materials require layered structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, S.P.; Jefferies, T.M.
1995-05-01
The production, use and toxicity of Polychlorinated biphenyls (PCBs) has been discussed in detail and increasing concern has been shown by the scientific community and by the public about the effectiveness of thermal incineration as an environmentally satisfactory means of destroying polychlorinated biphenyls. Therefore, a greater need for alternative, more efficient, low energy processes such as catalytic combustion, has been discussed. This paper is part of research to investigate the catalytic combustion of Aroclor 1242 in a packed bed reactor using chromia on an alumina support and other oxidation catalysts. It was essential for these studies to be able tomore » determine the PCB destruction efficiencies of the catalytic processes examined. The high efficiency of capillary GC columns permits the resolution of an Aroclor into a chromatogram consisting mainly of individual PCB congeners. The chromatogram may typically contain 50-150 peaks. Quantification requires each peak to be identified and individual response factors assigned before the amount of each congener present may be calculated. Response factors vary and the high cost of purchasing all individual PCB standards was prohibitive. A commonly adopted alternative method is to measure only the 6 or 7 individual PCB congeners available as a commercial mixture and convert the answer into a value for an Aroclor, not an accurate measure of the destruction efficiency of PCBs. This paper describes a simple quantitative HPLC method that measures all PCBs as a single peak. 14 refs., 3 figs., 1 tab.« less
Improved High/Low Junction Silicon Solar Cell
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.
1986-01-01
Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.
Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo
2017-06-01
This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.
NASA Astrophysics Data System (ADS)
Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo
2017-06-01
This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.
Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.
Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki
2014-09-24
In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C.
NASA Astrophysics Data System (ADS)
Hwang, Kyo Min; Lee, Song Eun; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Young Kwan; Kim, Jwajin; Yoon, Seung Soo
2016-08-01
In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with a simple structure. All the hole transporting material and host in the emitting layer (EML) of devices utilized the same material N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD), which is known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated with blue fluorescent, green and red phosphorescent materials. We investigated the effect of triplet harvesting (TH) by an exciton generation zone on simple hybrid WOLEDs. The simple hybrid WOLEDs characteristically had a dominant hole mobility, so an exciton generation zone was expected in the EML. Additionally, the optimal the thickness of the hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. The simple hybrid WOLED exhibits a maximum luminous efficiency of 29.3 cd/A and a maximum external quantum efficiency of 11.2%. The Commission Internationale de l'Éclairage (International Commission on Illumination) coordinates were (0.45, 0.43) at about 10,000 cd/m2.
Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks
NASA Astrophysics Data System (ADS)
Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.
2016-01-01
Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.
Scalable graphene production from ethanol decomposition by microwave argon plasma torch
NASA Astrophysics Data System (ADS)
Melero, C.; Rincón, R.; Muñoz, J.; Zhang, G.; Sun, S.; Perez, A.; Royuela, O.; González-Gago, C.; Calzada, M. D.
2018-01-01
A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.
The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin
2018-03-01
Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.
Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging.
Hou, Weijia; Liu, Yuan; Jiang, Ying; Wu, Yuan; Cui, Cheng; Wang, Yanyue; Zhang, Liqin; Teng, I-Ting; Tan, Weihong
2018-06-14
We designed an aptamer-based multifunctional ligand which, upon conjugation to the surface of upconversion nanoparticles (UCNPs), could realize phase transfer, covalent photosensitizer (PS) loading, and cancer cell targeting in one simple step. The as-built PDT nanodrug is selectively internalized into cancer cells and it exhibits highly efficient and selective cytotoxicity.
Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua
2013-06-07
We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.
The search for red AGN with 2MASS
NASA Technical Reports Server (NTRS)
Cutri, R. M.; Nelson, B. O.; Kirkpatrick, J. D.; Huchra, J. P.; Smith, P. S.
2001-01-01
We present the results of a simple, highly efficient 2MASS color-based survey that has already discovered 140 previously unknown red AGN and QSOs. These objects are near-infrared-bright and relatively nearby; the media redshift of the sample is z=0.25, and all but two have z<0.7.
United by Goals: There Is No Integrated Advancement without Communications and Marketing
ERIC Educational Resources Information Center
DiConsiglio, John
2011-01-01
The idea behind integrated advancement is simple and dates back to the 1990s: A strong relationship between advancement offices conserves resources. It leads to a more efficient workforce. It portrays a highly unified message to stakeholders, including donors, alumni, local officials, and opinion leaders. In short, the entire advancement team…
High-efficiency water collection on biomimetic material with superwettable patterns.
Zhu, Hai; Yang, Fuchao; Li, Jing; Guo, Zhiguang
2016-10-13
A superhydrophilic surface with two superhydrophobic circular patterns was fabricated via a simple and rapid route, showing outstanding fog harvesting properties with a water collection rate (WCR) of 1316.9 mg h -1 cm -2 . Water collection can be repeated on the sample 10 times without obvious change in the WCR.
USDA-ARS?s Scientific Manuscript database
Salmonella ser. Enteritidis is a major public health concern worldwide. Loop-mediated isothermal amplification (LAMP) is a novel simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was t...
Gas-fired duplex free-piston Stirling refrigerator
NASA Astrophysics Data System (ADS)
Urieli, L.
1984-03-01
The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.
Synthetically Simple, Highly Resilient Hydrogels
Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.
2014-01-01
Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639
Magiera, Sylwia; Kwietniowska, Ewelina
2016-11-15
In this study, an easy, simple and efficient method for the determination of naringenin enantiomers in fruit juices after salting-out-assisted liquid-liquid extraction (SALLE) and high-performance liquid chromatography (HPLC) with diode-array detection (DAD) was developed. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. After extraction, juice samples were incubated with hydrochloric acid in order to achieve hydrolysis of naringin to naringenin. The hydrolysis parameters were optimized by using a half-fraction factorial central composite design (CCD). After sample preparation, chromatographic separation was obtained on a Chiralcel® OJ-RH column using the mobile phase consisting of 10mM aqueous ammonium acetate:methanol:acetonitrile (50:30:20; v/v/v) with detection at 288nm. The average recovery of the analyzed compounds ranged from 85.6 to 97.1%. The proposed method was satisfactorily used for the determination of naringenin enantiomers in various fruit juices samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering
NASA Astrophysics Data System (ADS)
Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia
2017-12-01
In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.
Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo
2016-11-15
Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.
Aggregative Learning Method and Its Application for Communication Quality Evaluation
NASA Astrophysics Data System (ADS)
Akhmetov, Dauren F.; Kotaki, Minoru
2007-12-01
In this paper, so-called Aggregative Learning Method (ALM) is proposed to improve and simplify the learning and classification abilities of different data processing systems. It provides a universal basis for design and analysis of mathematical models of wide class. A procedure was elaborated for time series model reconstruction and analysis for linear and nonlinear cases. Data approximation accuracy (during learning phase) and data classification quality (during recall phase) are estimated from introduced statistic parameters. The validity and efficiency of the proposed approach have been demonstrated through its application for monitoring of wireless communication quality, namely, for Fixed Wireless Access (FWA) system. Low memory and computation resources were shown to be needed for the procedure realization, especially for data classification (recall) stage. Characterized with high computational efficiency and simple decision making procedure, the derived approaches can be useful for simple and reliable real-time surveillance and control system design.
Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei
2013-07-21
This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.
A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps
NASA Astrophysics Data System (ADS)
Ahmad, Musheer; Khurana, Shruti; Singh, Sushmita; AlSharari, Hamed D.
2017-06-01
The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.
Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-01-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274
Smart swarms of bacteria-inspired agents with performance adaptable interactions.
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-09-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-19
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
NASA Astrophysics Data System (ADS)
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-01
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
López-Ferrer, Daniel; Hixson, Kim K.; Smallwood, Heather; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.
2009-01-01
A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultra-rapid digestion and thorough 18O labeling for quantitative protein comparisons. The reproducible and highly efficient method provided effective digestions in <1 min with a minimized amount of enzyme required compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as 18O labeling of such complex protein mixtures, which validated the application of this method for differential proteomic measurements. This approach is simple, reproducible, cost effective, rapid, and thus well-suited for automation. PMID:19555078
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
NASA Astrophysics Data System (ADS)
Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao
2018-05-01
An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.
NASA Astrophysics Data System (ADS)
Jodlowski, Alexander D.; Roldán-Carmona, Cristina; Grancini, Giulia; Salado, Manuel; Ralaiarisoa, Maryline; Ahmad, Shahzada; Koch, Norbert; Camacho, Luis; de Miguel, Gustavo; Nazeeruddin, Mohammad Khaja
2017-12-01
Organic-inorganic lead halide perovskites have shown photovoltaic performances above 20% in a range of solar cell architectures while offering simple and low-cost processability. Despite the multiple ionic compositions that have been reported so far, the presence of organic constituents is an essential element in all of the high-efficiency formulations, with the methylammonium and formamidinium cations being the sole efficient options available to date. In this study, we demonstrate improved material stability after the incorporation of a large organic cation, guanidinium, into the MAPbI3 crystal structure, which delivers average power conversion efficiencies over 19%, and stabilized performance for 1,000 h under continuous light illumination, a fundamental step within the perovskite field.
Liu, Chun-Sen; Sun, Chun-Xiao; Tian, Jia-Yue; Wang, Zhuo-Wei; Ji, Hong-Fei; Song, Ying-Pan; Zhang, Shuai; Zhang, Zhi-Hong; He, Ling-Hao; Du, Miao
2017-05-15
Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H 3 NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL -1 toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Zhongliang; Hui, Yi; Shi, Lei; Chen, Zhenyu; Xu, Xiangjie; Chi, Liankai; Fan, Beibei; Fang, Yujiang; Liu, Yang; Ma, Lin; Wang, Yiran; Xiao, Lei; Zhang, Quanbin; Jin, Guohua; Liu, Ling; Zhang, Xiaoqing
2016-09-13
Loss-of-function studies in human pluripotent stem cells (hPSCs) require efficient methodologies for lesion of genes of interest. Here, we introduce a donor-free paired gRNA-guided CRISPR/Cas9 knockout strategy (paired-KO) for efficient and rapid gene ablation in hPSCs. Through paired-KO, we succeeded in targeting all genes of interest with high biallelic targeting efficiencies. More importantly, during paired-KO, the cleaved DNA was repaired mostly through direct end joining without insertions/deletions (precise ligation), and thus makes the lesion product predictable. The paired-KO remained highly efficient for one-step targeting of multiple genes and was also efficient for targeting of microRNA, while for long non-coding RNA over 8 kb, cleavage of a short fragment of the core promoter region was sufficient to eradicate downstream gene transcription. This work suggests that the paired-KO strategy is a simple and robust system for loss-of-function studies for both coding and non-coding genes in hPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Preparation and the influencing factors of timozolomide liposomes.
Kong, Bin; Sun, Yong; Li, Yongjian; Hu, Dejian
2009-01-01
To prepare timozolomide liposomes for administration through nasal mucous membrane, we studied the factors of the preparation of the liposomes. The timozolomide liposomes were prepared by the ammonium sulphate gradient method; electroscopy and laser particle analyzer were utilized to determine the conformation, size and distribution of timozolomide liposomes; high performance liquid chromatography (HPLC) was applied to determine the entrapping efficiency of timozolomide liposomes; then we studied the influences of the concentration of ammonium sulphate solution, temperature, and the drug-to-lipid ratio on the entrapping efficiency. The average size of timozolomide liposomes was 185 nm; the entrapping efficiency was 90.3%. The entrapping efficiency was enhanced with the increasing of the concentration of ammonium sulphate solution and the rising of temperature, and decreased with the increasing of the drug-to-lipid ratio. The timozolomide liposomes with high entrapping efficiency, small and even particle sizes could be prepared by the simple and convenient ammonium sulphate gradient method. The primary influencing factors on the entrapping efficiency of timozolomide liposomes were the concentration of ammonium sulphate solution, the temperature, and the drug-to-lipid ratio.
Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Li, Chang-Zhi; Zhang, Yunhai; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren
2016-12-21
Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C 60 -bis) in an inverted p-i-n architecture. The devices with an ultrathin C 60 -bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C 60 -bis, due to a favorable energy level alignment between the CH 3 NH 3 PbI 3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C 60 -bis become better under indoor humidity conditions.
Borate esters: Simple catalysts for the sustainable synthesis of complex amides
Sabatini, Marco T.; Boulton, Lee T.; Sheppard, Tom D.
2017-01-01
Chemical reactions for the formation of amide bonds are among the most commonly used transformations in organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles and even unprotected amino acids. The method was used to access a wide range of functionalized amide derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a natural product. PMID:28948222
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.
Efficient simple sealed-off CO laser at room temperature
NASA Astrophysics Data System (ADS)
Peters, P. J. M.; Witteman, W. J.; Zuidema, R. J.
1980-07-01
The paper reports a simple sealed-off CW CO laser with gold electrodes. A constant long-life output power of more than 29 W/m and a maximum efficiency of 15% at room temperature are reported. No auxiliary features, such as a palladium hydrogen extraction tube, are necessary.
Pu, Jinji; Guo, Jianrong; Fan, Zaifeng
2014-01-01
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides. PMID:24787387
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao
2017-10-01
A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.
Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing
2012-01-01
A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041
Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency
NASA Astrophysics Data System (ADS)
Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.
2017-10-01
An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.
An interactive Doppler velocity dealiasing scheme
NASA Astrophysics Data System (ADS)
Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li
2009-10-01
Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.
NASA Astrophysics Data System (ADS)
Deufel, Christopher L.; Furutani, Keith M.
2014-02-01
As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.
A Simple and Resource-efficient Setup for the Computer-aided Drug Design Laboratory.
Moretti, Loris; Sartori, Luca
2016-10-01
Undertaking modelling investigations for Computer-Aided Drug Design (CADD) requires a proper environment. In principle, this could be done on a single computer, but the reality of a drug discovery program requires robustness and high-throughput computing (HTC) to efficiently support the research. Therefore, a more capable alternative is needed but its implementation has no widespread solution. Here, the realization of such a computing facility is discussed, from general layout to technical details all aspects are covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hanson, Frank; Lasher, Mark
2010-06-01
We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.
NASA Astrophysics Data System (ADS)
Kim, Jong H.
2018-03-01
In this work, an efficient colorimetric chemosensor for the detection of ethylamines using a pyridinium salt (the Zincke salt) is reported. Highly sensitive and selective reactivity of the Zincke salt enables colorimetric response of the Zincke salt solution to the ethylamines by showing well-defined visible color changes from colorless to the deep red. Furthermore, the Zincke salt thin film exhibits discernable color changes in response to ethylamine gas as well, which allows fabrication of simple, fast and portable strip- and textile-type ethylamine sensors.
Upconversion fiber-optic confocal microscopy under near-infrared pumping.
Kim, Do-Hyun; Kang, Jin U; Ilev, Ilko K
2008-03-01
We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55 microm. The upconversion confocal design allows the use of conventional Si detectors and 1.55 microm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11 microm, respectively.
Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren
2013-01-01
Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.
Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren
2013-01-01
Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures. PMID:23383368
Efficient exfoliation of layered materials by waste liquor
NASA Astrophysics Data System (ADS)
Ding, Jiheng; Zhao, Hongran; Zheng, Yan; Wang, Qiaolei; Chen, Hao; Dou, Huimin; Yu, Haibin
2018-03-01
Based on their unique material properties, two-dimensional (2D) nanomaterials such as graphene, molybdenum disulfide (MoS2), and boron nitride (BN) have been attracting increased research interest. The potential of 2D materials, in the form of nanoplatelets that are used as new materials, will be important to both nanomaterials and advanced materials. Water is usually considered to be the ideal dispersed medium, and the essential hydrophobicity and limitations to mass production of 2D nanoplatelets have become quite serious obstacles to their usage in various fields. In this paper, pulping black liquor was used as dispersant, with high concentration of lignin to get single- and few-layered nanoplatelets. The whole process required only the high-shear mixing of 2D layered materials and pulping waste liquor. This method was not only simple and efficient but also environmentally friendly and resource-recycling. Moreover, the fabricated single- or few-layered nanoplatelets possessed good solubility in aqueous solution due to their edge functionalization, and could be well dispersed in water at concentrations (10 mg ml-1 for graphene, 6.3 mg ml-1 for MoS2, and 6.0 mg ml-1 for BN) which were much higher than that of other methods. The dispersions of graphene, MoS2, and BN nanosheets were highly stable over several months, which allowed us to easily prepare graphene, MoS2, and BN films through simple vacuum filtration or spraying. These results indicated that pulping black liquor can be used as a material or reagent, and the mass production of 2D material is possible in a simple and fast method.
NASA Technical Reports Server (NTRS)
Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.
1984-01-01
The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.
Synthesis of photothermal nanocomposites and their application to antibacterial assays
NASA Astrophysics Data System (ADS)
Yang, Ning; Wang, Chun; Wang, Xiaoyu; Li, Lidong
2018-04-01
In this work, we report a novel gold nanorod (AuNR)-based nanocomposite that shows strong binding to bacterium and high antibacterial efficiency. The AuNRs were used as a photothermal material to transform near-infrared radiation (NIR) into heat. We selected poly (acrylic acid) to modify the surface of the AuNRs based on a simple self-assembly method. After conjugation of the bacterium-binding molecule vancomycin, the nanocomposites were capable of efficiently gathering on the cell walls of bacteria. The nanocomposites exhibited a high bacterial inhibition capability owing to NIR-induced heat generation in situ. Therefore, the prepared photothermal nanocomposites show great potential for use in antibacterial assays.
Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications
NASA Technical Reports Server (NTRS)
Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette
2005-01-01
A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.
Inefficient epidemic spreading in scale-free networks
NASA Astrophysics Data System (ADS)
Piccardi, Carlo; Casagrandi, Renato
2008-02-01
Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.
Dispersion Engineering of High-Q Silicon Microresonators via Thermal Oxidation - Postprint
2014-03-12
microresonators, which benefit from dramatic cavity enhancement, enables intriguing functionalities such as ultralow -threshold parametric oscillation9–11, octave...real- ization of a desired dispersion in practice is still a chal- lenging problem. In this paper, we propose and demon- strate a simple but powerful ...for broad applications of nonlinear parametric processes. To show the power of this technique, we applied it to achieve highly efficient photon-pair
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with four PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost-effectively implement with their own staffs in the normal course of housing operations at the time whenmore » units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing, and measures that improve equipment efficiency. ARIES documented implementation in 18 housing units. Reductions in average air leakage were 16 percent and duct leakage reductions averaged 23 percent. Total source energy consumption savings due to implemented measures was estimated at 3-10 percent based on BEopt modeling with a simple payback of 1.6 to 2.5 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.« less
Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-08-01
More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations atmore » the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.« less
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-01-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-12
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-08-14
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.
Liu, Zhaolang; Yang, Zhenhai; Wu, Sudong; Zhu, Juye; Guo, Wei; Sheng, Jiang; Ye, Jichun; Cui, Yi
2017-12-26
Carrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO 2 ) films, due to formation of an accumulation layer of negative carriers (O 2 - species) under UV (sunlight) illumination. This photoinduced field not only suppressed the silicon surface recombination but also enhanced the built-in potential of HSCs with 84 mV increment. In addition, this photoactive ARC also displayed the outstanding light-trapping capability. The front PEDOT:PSS/Si HSC with the saturated O 2 - received a champion PCE of 15.51% under AM 1.5 simulated sunlight illumination. It was clearly demonstrated that the photoinduced electric field was a simple, efficient, and low-cost method for the surface passivation and contributed to achieve a high efficiency when applied in the Si/PEDOT:PSS HSCs.
ERIC Educational Resources Information Center
Santos, Joel; Centurio, Tina
2012-01-01
What happens in the first week of school could very well set the stage for the rest of the school year. Setting high standards for science activities based in inquiry can start on the first day of science class and develop as the year unfolds. With the use of simple, readily available, inexpensive materials, an efficient mystery box lesson can be…
A template-free solid-state synthesis of a morphologically controlled and highly organized iron(III)oxide micro–mesoporous Fenton catalyst has been engineered through a simple two-step synthetic procedure. The 3D nanoassembly of hematite nanoparticles (5–7 nm) organized into a ro...
New Solar Cell Is More Efficient, Less Costly | News | NREL
rules for solar cells. Credit: Dennis Schroeder American innovators still have some cards to play when significant cost advantage when it comes to high-volume manufacturing. "It's a potentially disruptive . solar manufacturing when the approach hits the assembly line next year. The innovative design, simple
USDA-ARS?s Scientific Manuscript database
Loop-mediated isothermal amplification (LAMP) is a novel simple detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to evaluate the effectiveness of 3M Molecular Detection System (MDS) and ANSR Pathogen Det...
A hybrid color mapping approach to fusing MODIS and Landsat images for forward prediction
USDA-ARS?s Scientific Manuscript database
We present a new, simple, and efficient approach to fusing MODIS and Landsat images. It is well known that MODIS images have high temporal resolution and low spatial resolution whereas Landsat images are just the opposite. Similar to earlier approaches, our goal is to fuse MODIS and Landsat images t...
A Simplified Model for the Acceleration of Cosmic Ray Particles
ERIC Educational Resources Information Center
Gron, Oyvind
2010-01-01
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos
2018-06-01
Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.
NASA Astrophysics Data System (ADS)
Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen
2017-11-01
Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.
High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode
Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai
2010-01-01
High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470
Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J
2015-02-04
Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-efficiency screen-printed belt co-fired solar cells on cast multicrystalline silicon
NASA Astrophysics Data System (ADS)
Upadhyaya, Ajay; Sheoran, Manav; Rohatgi, Ajeet
2005-01-01
High-efficiency 4cm2 untextured screen-printed solar cells were achieved on cast multicrystalline silicon. These cells were fabricated using a simple manufacturable process involving POCl3 diffusion for emitter, PECVD SiNx:H deposition for a single-layer antireflection coating and rapid co-firing of Ag grid, Al backcontact, and Al-BSF in a belt furnace. An optimized process sequence contributed to effective impurity gettering and defect passivation, resulting in high average bulk lifetimes in the range of 100-250 μs after the cell processing. The contact firing contributed to good ohmic contacts with low series resistance of <1Ωcm2, low backsurface recombination velocity of <500cm/s, and high fill factors of ˜0.78. These parameters resulted in 16.9% and 16.8% efficient untextured screen-printed cells with a single layer AR coating on heat exchanger method (HEM) and Baysix mc-Si. The identical process applied to the untextured float zone wafers gave an efficiency of 17.2%. The same optimized co-firing cycle, when applied to HEM mc-Si wafers with starting lifetimes varying over a wide range of 4-70 μs, resulted in cell efficiencies in the range of 16.5%-17%.
Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae
2016-05-01
Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Unconventional missile concepts from consideration of varied mission requirements
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Missile concepts for volumetric efficiency, minimum carriage constraints, and aerodynamic performance to achieve mission requirements. The mission requirements considered include air to surface roles such as defense suppression or antishipping where payload and range may have priority over high maneuver capability, and air to air and surface to air roles paying attention to good maneuvering capability. The concepts are intended to provide for ease of storage or carriage. The concepts include monoplanes with highly swept, thick delta wings, highly swept delta wings mounted either high or low on a semicircular body, some ring wing and semiring wing arrangements, parasol wing, and elliptical lifting bodies. The missile configurations indicate possible approaches toward resolving problems of carriage and storage while retaining good volumetric and aerodynamic efficiency. The configurations can accomplish a variety of possible missions with relatively simple vehicle shapes.
Towards microscale electrohydrodynamic three-dimensional printing
NASA Astrophysics Data System (ADS)
He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen
2016-02-01
It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.
The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan
2017-01-01
Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974
FormTracer. A mathematica tracing package using FORM
NASA Astrophysics Data System (ADS)
Cyrol, Anton K.; Mitter, Mario; Strodthoff, Nils
2017-10-01
We present FormTracer, a high-performance, general purpose, easy-to-use Mathematica tracing package which uses FORM. It supports arbitrary space and spinor dimensions as well as an arbitrary number of simple compact Lie groups. While keeping the usability of the Mathematica interface, it relies on the efficiency of FORM. An additional performance gain is achieved by a decomposition algorithm that avoids redundant traces in the product tensors spaces. FormTracer supports a wide range of syntaxes which endows it with a high flexibility. Mathematica notebooks that automatically install the package and guide the user through performing standard traces in space-time, spinor and gauge-group spaces are provided. Program Files doi:http://dx.doi.org/10.17632/7rd29h4p3m.1 Licensing provisions: GPLv3 Programming language: Mathematica and FORM Nature of problem: Efficiently compute traces of large expressions Solution method: The expression to be traced is decomposed into its subspaces by a recursive Mathematica expansion algorithm. The result is subsequently translated to a FORM script that takes the traces. After FORM is executed, the final result is either imported into Mathematica or exported as optimized C/C++/Fortran code. Unusual features: The outstanding features of FormTracer are the simple interface, the capability to efficiently handle an arbitrary number of Lie groups in addition to Dirac and Lorentz tensors, and a customizable input-syntax.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com
Highlights: • Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe{sub 3}O{sub 4}/hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) wasmore » used to investigate the drug release behavior of Fe{sub 3}O{sub 4}/HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe{sub 3}O{sub 4}/hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery.« less
Public Housing: A Tailored Approach to Energy Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Conlin, F.; Podorson, D.
2014-06-01
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at themore » time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.« less
NASA Astrophysics Data System (ADS)
Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang
2018-06-01
Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.
NASA Astrophysics Data System (ADS)
Yang, Shuting; Mao, Xinxin; Cao, Zhaoxia; Yin, Yanhong; Wang, Zhichao; Shi, Mengjiao; Dong, Hongyu
2018-01-01
Onion-derived nitrogen, sulfur self-doped nanoporous carbon spheres (NSC) as efficient metal-free electrocatalyst were synthesized via a facile hydrothermal and subsequent pyrolysis process. The typical NSC with a high BET specific surface area of 1558 m2 g-1, contains 6.23 at.% N and 0.36 at.% S, and possesses high concentration of pyridinic and graphitic nitrogen species. Experimentally, the best performance was the NSC-A2 which showed excellent catalytic activity to oxygen reduction reaction via a 4 electron mechanism with an onset potential of 0.88 V (vs. RHE), and a superior stability comparable to commercial Pt/C catalyst. The high electrocatalytic activity is attributed to not only the synergistic effect of N and S dual doping in carbon and the sufficient active sites, but also its high BET specific surface area and suitable microporous structure. The results demonstrate that it is a simple and scalable approach for preparing efficient and low-cost carbon-based electrocatalysts for oxygen reduction reaction.
Schelkle, Korwin M; Becht, Steffy; Faraji, Shirin; Petzoldt, Martin; Müllen, Klaus; Buckup, Tiago; Dreuw, Andreas; Motzkus, Marcus; Hamburger, Manuel
2015-01-01
The synthesis of highly efficient two-photon uncaging groups and their potential use in functional conjugated polymers for post-polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two-photon process through a combination of exceptionally high two-photon absorption cross-sections and high reaction quantum yields. Furthermore, π-conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn-on of the fluorescence while solubility of the π-conjugated materials is drastically reduced. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Pan; Feng, Liang-Wen; Wang, Lijia; Li, Jun-Fang; Liao, Saihu; Tang, Yong
2015-04-15
This study has led to the development of a novel, highly efficient, 1,2-perfluoro-alkyl/-aryl migration process in reactions of hydrate of 1-perfluoro-alkyl/-aryl-1,2-diketones with alcohols, which are promoted by a Zn(II)/bisoxazoline and form α-perfluoro-alkyl/-aryl-substituted α-hydroxy esters. With (-)-8-phenylmenthol as the alcohol, the corresponding menthol esters are generated in high yields with excellent levels of diastereoselectivity. The mechanistic studies show that the benzilic ester-type rearrangement reaction takes place via an unusual 1,2-migration of electron-deficient trifluoromethyl group rather than the phenyl group. The overall process serves as a novel, efficient, and simple approach for the synthesis of highly enantioenriched, biologically relevant α-hydroxy-α-perfluoroalkyl carboxylic acid derivatives.
Orzó, László
2015-06-29
Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.
The ringer - An efficient, high repetition rate circuit for electromagnetic launchers
NASA Astrophysics Data System (ADS)
Giorgi, D.; Helava, H.; Lindner, K.; Long, J.; Zucker, O.
1989-01-01
The Meatgrinder is an efficient, current-multiplying circuit which can be used to optimize the energy transfer to various electromagnetic gun configurations. The authors present a simple variant of the Meatgrinder circuit which permits a first-order current profiling into the gun and recovery of the inductive energy in the barrel at a high repetition rate. The circuit is basically a one-stage Meatgrinder which utilizes the ringing of the energy storage capacitor (less than 40 percent reversal) to perform the opening switch function and a solid-state diode as the crowbar switch between the two mutually coupled inductors. With resonant charging, this results in a completely passive, high-repetiton-rate electromagnetic-gun power supply. Since most of the barrel energy is recovered, a railgun with negligible muzzle flash can be realized.
A Novel High-Efficiency Rear-Contact Solar Cell with Bifacial Sensitivity
NASA Astrophysics Data System (ADS)
Hezel, R.
At present, wafer-based silicon solar cells have a share of more than 90% of the photovoltaic market. Despite rapid growth in the manufacturing volume, accompanied by a significant drop in the module selling price, the high costs currently associated with photovoltaic power generation are one of the most important obstacles to widespread global use of solar electricity. Up to a certain level, a higher production volume is a key driver in cost reduction. However, apart from a drastic reduction of the silicon wafer thickness in conjunction with improved light-trapping schemes, innovative processing sequences combining very high solar cell efficiencies with simple and cost-effective fabrication techniques are needed to become competitive with conventional energy sources and thus to move solar energy from niche to mainstream.
Optical design of nanowire absorbers for wavelength selective photodetectors
Mokkapati, S.; Saxena, D.; Tan, H. H.; Jagadish, C.
2015-01-01
We propose the optical design for the absorptive element of photodetectors to achieve wavelength selective photo response based on resonant guided modes supported in semiconductor nanowires. We show that the waveguiding properties of nanowires result in very high absorption efficiency that can be exploited to reduce the volume of active semiconductor compared to planar photodetectors, without compromising the photocurrent. We present a design based on a group of nanowires with varying diameter for multi-color photodetectors with small footprint. We discuss the effect of a dielectric shell around the nanowires on the absorption efficiency and present a simple approach to optimize the nanowire diameter-dielectric shell thickness for maximizing the absorption efficiency. PMID:26469227
Hosokai, Takuya; Matsuzaki, Hiroyuki; Nakanotani, Hajime; Tokumaru, Katsumi; Tsutsui, Tetsuo; Furube, Akihiro; Nasu, Keirou; Nomura, Hiroko; Yahiro, Masayuki; Adachi, Chihaya
2017-01-01
The design of organic compounds with nearly no gap between the first excited singlet (S1) and triplet (T1) states has been demonstrated to result in an efficient spin-flip transition from the T1 to S1 state, that is, reverse intersystem crossing (RISC), and facilitate light emission as thermally activated delayed fluorescence (TADF). However, many TADF molecules have shown that a relatively appreciable energy difference between the S1 and T1 states (~0.2 eV) could also result in a high RISC rate. We revealed from a comprehensive study of optical properties of TADF molecules that the formation of delocalized states is the key to efficient RISC and identified a chemical template for these materials. In addition, simple structural confinement further enhances RISC by suppressing structural relaxation in the triplet states. Our findings aid in designing advanced organic molecules with a high rate of RISC and, thus, achieving the maximum theoretical electroluminescence efficiency in organic light-emitting diodes. PMID:28508081
Rapid and efficient method to extract metagenomic DNA from estuarine sediments.
Shamim, Kashif; Sharma, Jaya; Dubey, Santosh Kumar
2017-07-01
Metagenomic DNA from sediments of selective estuaries of Goa, India was extracted using a simple, fast, efficient and environment friendly method. The recovery of pure metagenomic DNA from our method was significantly high as compared to other well-known methods since the concentration of recovered metagenomic DNA ranged from 1185.1 to 4579.7 µg/g of sediment. The purity of metagenomic DNA was also considerably high as the ratio of absorbance at 260 and 280 nm ranged from 1.88 to 1.94. Therefore, the recovered metagenomic DNA was directly used to perform various molecular biology experiments viz. restriction digestion, PCR amplification, cloning and metagenomic library construction. This clearly proved that our protocol for metagenomic DNA extraction using silica gel efficiently removed the contaminants and prevented shearing of the metagenomic DNA. Thus, this modified method can be used to recover pure metagenomic DNA from various estuarine sediments in a rapid, efficient and eco-friendly manner.
Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok
2014-08-27
We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.
Ribosomal Binding Site Switching: An Effective Strategy for High-Throughput Cloning Constructions
Li, Yunlong; Zhang, Yong; Lu, Pei; Rayner, Simon; Chen, Shiyun
2012-01-01
Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions. PMID:23185557
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef
2015-09-04
A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.
Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes
NASA Astrophysics Data System (ADS)
Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo
2015-12-01
Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.
A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2
NASA Astrophysics Data System (ADS)
Guo, Nanjie; Zhang, Taiyang; Li, Ge; Xu, Feng; Qian, Xufang; Zhao, Yixin
2017-01-01
The CH3NH3PbI3 (MAPbI3) perovskite was usually prepared by high-purity PbI2 with high cost. The low cost and low-purity PbI2 was seldom reported for fabrication of MAPbI3 because it cannot even dissolve well in widely adopted solvent of DMF. We developed an easy method to adapt low-purity PbI2 for fabrication of high quality MAPbI3 just by the simple addition of some hydrochloric acid into the mixture of low-purity PbI2, MAI and DMF. This straightforward method can not only help dissolve the low quality PbI2 by reacting with some impurities in DMF, but also lead to a successful fabrication of high-quality perovskite solar cells with up to 14.80% efficiency comparable to the high quality PbI2 precursors. Project supported by the National Natural Science Foundation of China (Nos. 51372151, 21303103) and Houyingdong Grant (No. 151046).
NASA Astrophysics Data System (ADS)
Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo
2018-05-01
Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.
Wang, Jiajia; Chen, Hui; Tang, Lin; Zeng, Guangming; Liu, Yutang; Yan, Ming; Deng, Yaocheng; Feng, Haopeng; Yu, Jiangfang; Wang, Longlu
2018-10-15
Photocatalytic degradation is an alternative method to remove pharmaceutical compounds from water, however it is hard to achieve efficient rate because of the low efficiency of photocatalysts. In this study, an efficient Z-Scheme photocatalyst was constructed by integrating graphitic carbon nitride (CN) and reduced graphene oxide (rGO) with AP via a simple facile precipitation method. Excitedly, ternary AP/rGO/CN composite showed superior photocatalytic and anti-photocorrosion performances under both intense sunlight and weak indoor light irradiation. NOF can be completely degraded in only 30 min and about 85% of NOF can be mineralized after 2 h irradiation under intensive sunlight irradiation. rGO could work not only as a sheltering layer to protect AP from photocorrosion but also as a mediator for Z-Scheme electron transport, which can protect AP from the photoreduction. This strategy could be a promising method to construct photocatalytic system with high efficiency for the removal of antibiotics under natural light irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.
Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors
Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L.; Yoon, Seok-Jin; Jang, Ho Won
2012-01-01
One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319
Liang, Jiajie; Chen, Yongsheng; Xu, Yanfei; Liu, Zhibo; Zhang, Long; Zhao, Xin; Zhang, Xiaoliang; Tian, Jianguo; Huang, Yi; Ma, Yanfeng; Li, Feifei
2010-11-01
Owing to its extraordinary electronic property, chemical stability, and unique two-dimensional nanostructure, graphene is being considered as an ideal material for the highly expected all-carbon-based micro/nanoscale electronics. Herein, we present a simple yet versatile approach to constructing all-carbon micro/nanoelectronics using solution-processing graphene films directly. From these graphene films, various graphene-based microcosmic patterns and structures have been fabricated using maskless computer-controlled laser cutting. Furthermore, a complete system involving a prototype of a flexible write-once-read-many-times memory card and a fast data-reading system has been demonstrated, with infinite data retention time and high reliability. These results indicate that graphene could be the ideal material for fabricating the highly demanded all-carbon and flexible devices and electronics using the simple and efficient roll-to-roll printing process when combined with maskless direct data writing.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
NASA Astrophysics Data System (ADS)
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Soowhan; Thomsen, Edwin; Xia, Guanguang
This paper explores demonstration of an advanced vanadium redox flow battery (VRFB) using a mixed acid (sulfuric and hydrochloric acid) supporting electrolyte in a kW scale. The prototype VRFB is capable of delivering more than 1.1 kW in the whole operation range (15~85% state of charge) at 80 mA/cm2 with high energy efficiency of 82% and energy content of 1.4 kWh. The system has been operated stably without any precipitation even at elevated electrolyte temperatures of > 45°C, while the control tests with the conventional sulfuric acid electrolyte suffered from precipitation after 80 cycles. The mixed acid system enabled operationmore » at elevated temperature (> 40°C), providing unique advantages over the conventional pure sulfate system; 1) high stack energy efficiency due to better kinetics and low electrolyte resistance, 2) low viscosity, resulting in reduced pumping loss, 3) elimination of additional heat exchanger, 4) high system efficiency and 5) simple system design and operation.« less
Highly selective rhodium catalyzed domino C-H activation/cyclizations.
Trans, Duc N; Cramer, Nicolai
2011-01-01
The direct functionalization of carbon-hydrogen bonds is an emerging tool to establish more sustainable and efficient synthetic methods. We present its implementation in a cascade reaction that provides a rapid assembly of functionalized indanylamines from simple and readily available starting materials. Careful choice of the ancillary ligand---an electron-rich bidentate phosphine ligand--enables highly diastereoselective rhodium(i)-catalyzed intramolecular allylations of unsubstituted ketimines induced by a directed C-H bond activation and allene carbo-metalation sequence.
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.
NASA Astrophysics Data System (ADS)
Tang, Ailing; Chen, Fan; Xiao, Bo; Yang, Jing; Li, Jianfeng; Wang, Xiaochen; Zhou, Erjun
2018-05-01
Devolopment of organic solar cells with high open-circuit voltage (VOC) and power conversion efficiency (PCE) simutaniously plays a significant role, but there is no guideline how to choose the suitable photovoltaic material combinations. In this study, we adopted a simple and feasible strategy by utilizing the same electron-donating unit and electron-accepting segment to construct both polymeric donor and small molecular acceptors. The p-type polymer of PIDT-DTffBTA is designed by inserting conjugated bridge between indacenodithiophene (IDT) and fluorinated benzotriazole (BTA), while the n-type small molecules of BTAx (x = 1, 2, 3) are obtained by introducing different end-capped groups to BTA-IDT-BTA backbone. PIDT-DTffBTA: BTAx (x = 1-3) based photovolatic devices can realize high VOC of 1.21-1.37 V with the very small voltage loss (0.55-0.60 V), while only the PIDT-DTffBTA: BTA3 based device possesses the enough driving force for efficient hole and electron transfer and yields the optimal PCE of 5.67%, which is among the highest value for organic solar cells with a VOC beyond 1.20 V reported so far. Our results provide a simple and effective method to obtain fullerene-free organic solar cells with a high VOC and PCE.
Kan, Bin; Li, Miaomiao; Zhang, Qian; Liu, Feng; Wan, Xiangjian; Wang, Yunchuang; Ni, Wang; Long, Guankui; Yang, Xuan; Feng, Huanran; Zuo, Yi; Zhang, Mingtao; Huang, Fei; Cao, Yong; Russell, Thomas P; Chen, Yongsheng
2015-03-25
A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based on DRCN5T, DRCN7T, and DRCN9T with axisymmetric chemical structures exhibit much higher short-circuit current densities than those based on DRCN6T and DRCN8T with centrosymmetric chemical structures, which is attributed to their well-developed fibrillar network with a feature size less than 20 nm. The devices based on DRCN5T/PC71BM showed a notable certified power conversion efficiency (PCE) of 10.10% under AM 1.5G irradiation (100 mW cm(-2)) using a simple solution spin-coating fabrication process. This is the highest PCE for single-junction small-molecule-based organic photovoltaics (OPVs) reported to date. DRCN5T is a rather simpler molecule compared with all of the other high-performance molecules in OPVs to date, and this might highlight its advantage in the future possible commercialization of OPVs. These results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.
Okada, Morihiro; Miller, Thomas C; Roediger, Julia; Shi, Yun-Bo; Schech, Joseph Mat
2017-09-01
Various animal models are indispensible in biomedical research. Increasing awareness and regulations have prompted the adaptation of more humane approaches in the use of laboratory animals. With the development of easier and faster methodologies to generate genetically altered animals, convenient and humane methods to genotype these animals are important for research involving such animals. Here, we report skin swabbing as a simple and noninvasive method for extracting genomic DNA from mice and frogs for genotyping. We show that this method is highly reliable and suitable for both immature and adult animals. Our approach allows a simpler and more humane approach for genotyping vertebrate animals.
Yu, Jianfei; Duan, Meng; Wu, Weilong; Qi, Xiaotian; Xue, Peng; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu
2017-01-18
We have successfully developed a series of novel and modular ferrorence-based amino-phosphine-alcohol (f-Amphol) ligands, and applied them to iridium-catalyzed asymmetric hydrogenation of various simple ketones to afford the corresponding chiral alcohols with excellent enantioselectivities and conversions (98-99.9 % ee, >99 % conversion, turnover number up to 200 000). Control experiments and density functional theory (DFT) calculations have shown that the hydroxyl group of our f-Amphol ligands played a key role in this asymmetric hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae
2005-12-05
We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.
Electronic Identities: The Strategic Use of Email for Impression Management.
ERIC Educational Resources Information Center
Kersten, Larry; Phillips, Stephen R.
Traditionally, e-mail (electronic mail) has been seen as an efficient communications medium for the transmission of simple, routine, unambiguous messages. More recent research has argued that the simple, efficient view of e-mail is incomplete. Future research should be extended into the strategic and symbolic functions of email, such as the use of…
NASA Astrophysics Data System (ADS)
Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud
2014-01-01
High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.
Effect of steam addition on cycle performance of simple and recuperated gas turbines
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1979-01-01
Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.
Improving High School Students' Understanding of Potential Difference in Simple Electric Circuits
ERIC Educational Resources Information Center
Liegeois, Laurent; Chasseigne, G'erard; Papin, Sophie; Mullet, Etienne
2003-01-01
This paper reports two studies into the understanding of the concept of potential difference in the current-potential difference-resistance context among 8th-12th graders (Study 1), and the efficiency of a learning device derived from Social Judgment Theory (Study 2). These two studies showed that: (a) when asked to infer potential difference from…
Li, Xianwei; He, Li; Chen, Huoji; Wu, Wanqing; Jiang, Huanfeng
2013-04-19
A simple, practical, and highly efficient synthesis of pyrazoles and indazoles via copper-catalyzed direct aerobic oxidative C(sp(2))-H amination has been reported herein. This process tolerated a variety of functional groups under mild conditions. Further diversification of pyrazoles was also investigated, which provided its potential for drug discovery.
A Randomized Trial of a Computer-Assisted Tutoring Program Targeting Letter-Sound Expression
ERIC Educational Resources Information Center
DuBois, Matthew R.; Volpe, Robert J.; Hemphill, Elizabeth M.
2014-01-01
Given that many schools have limited resources and a high proportion of students who present with deficits in early literacy skills, supports aimed at preventing reading failure must be simple and efficient and generate meaningful changes in student learning. We used a randomized group design with a wait-list control to extend the work of Volpe,…
ERIC Educational Resources Information Center
Pizauro, Joao M., Jr.; Ferro, Jesus A.; de Lima, Andrea C. F.; Routman, Karina S.; Portella, Maria Celia
2004-01-01
The present research describes an efficient procedure to obtain high levels of trypsinogen and chymotrypsinogen by using a simple, rapid, and easily reproducible method. The extraction process and the time-course of activation of zymogens can be carried out in a single laboratory period, without sophisticated equipment. The main objective was to…
ERIC Educational Resources Information Center
Ohashi, Atsushi
2015-01-01
A high-school third-year or undergraduate first-semester general chemistry laboratory experiment introducing simple-cubic, face-centered cubic, body-centered cubic, and hexagonal closest packing unit cells is presented. Latex balls and acrylic resin plates are employed to make each atomic arrangement. The volume of the vacant space in each cell is…
ERIC Educational Resources Information Center
Allodi, Mara Westling
2013-01-01
The principles of new public management -- market mechanisms, accountability and standards -- have been applied in the education system. These methods are supposed to increase efficiency, but there is also a risk of negative consequences from the services provided if the measures of performance target a reduced range of goals, ignore relevant…
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1979-01-01
A description and explanation of a simple multigrid algorithm for solving finite element systems is given. Numerical results for an implementation are reported for a number of elliptic equations, including cases with singular coefficients and indefinite equations. The method shows the high efficiency, essentially independent of the grid spacing, predicted by the theory.
An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.
Sattarahmady, N; Heli, H; Vais, R Dehdari
2013-10-15
Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product. Copyright © 2013 Elsevier B.V. All rights reserved.
Global Contrast Based Salient Region Detection.
Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min
2015-03-01
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.
Zhang, Xin; Liu, Fei; Knapp, Karla-Anne; Nickels, Michael L; Manning, H Charles; Bellan, Leon M
2018-05-01
Herein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies. To produce the on-chip concentration and purification columns, we employ a simple "trapping" mechanism by inserting rows of square pillars with predefined gaps near the outlet of microchannel. Microspheres with appropriate functionality are suspended in solution and loaded into the microchannels to form columns for radioactivity concentration and product purification. Instead of relying on complicated flow control elements (e.g., micromechanical valves requiring complex external pneumatic actuation), external valves are utilized to control transfer of the reagents between different modules. The on-chip ion exchange column can efficiently capture [18F]fluoride with negligible loss (∼98% trapping efficiency), and subsequently release a burst of concentrated [18F]fluoride to the reaction cavity. A thin layer of PDMS with a small hole in the center facilitates rapid and reliable water evaporation (with the aid of azeotropic distillation and nitrogen flow) while reducing fluoride loss. During the solvent exchange and fluorination reaction, the entire chip is uniformly heated to the desired temperature using a hot plate. All aspects of the [18F]fallypride synthesis were monitored by high-performance liquid chromatography (HPLC) analysis, resulting in labelling efficiency in fluorination reaction ranging from 67-87% (n = 5). Moreover, after isolating unreacted [18F]fluoride, remaining fallypride precursor, and various by-products via an on-chip purification column, the eluted [18F]fallypride is radiochemically pure and of a sufficient quantity to allow for PET imaging (∼5 mCi). Finally, a positron emission tomography (PET) image of a rat brain injected with ∼300 μCi [18F]fallypride produced by our microfluidic chip is provided, demonstrating the utility of the product produced by the microfluidic reactor. With a short synthesis time (∼60 min) and a highly integrated on-chip modular configuration that allows for concentration, reaction, and product purification, our microfluidic chip offers numerous exciting advantages with the potential for applications in radiochemical research and clinical production. Moreover, due to its simplicity and potential for automation, we anticipate it may be easily integrated into a clinical environment.
Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao
2017-02-01
A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.
Li, Mengzhen; Li, Yue; Sasaki, Shin-Ichi; Song, Jiaxing; Wang, Chen; Tamiaki, Hitoshi; Tian, Wenjing; Chen, Gang; Miyasaka, Tsutomu; Wang, Xiao-Feng
2016-10-06
Chlorophylls (Chls) are abundant, naturally occurring pigments that play key roles in light-harvesting and electron/energy transfer in natural photosynthetic apparatus. To demonstrate the idea that Chls are suitable hole transporters, we employed two Chl derivatives, Chl-1 and Chl-2, which self-assembled readily into π-stacking aggregates through a simple spincasting process, in perovskite solar cells (PSCs). The Chl aggregate films exhibit an ultra-smooth film surface, high hole mobility, appropriate energy levels, and efficient hole injection efficiencies that are all key characteristics for efficient hole transporters in PSCs. CH 3 NH 3 PbI 3-x Cl x -based PSCs with these Chls as hole transporters were fabricated and compared with P3HT as a standard hole transporter. PSCs based on Chl-1 and Chl-2 without the use of typical additives, such as 4-tert-butylpyridine and lithium bis(trifluoromethanesulfinyl)imide, gave power conversion efficiencies of 11.44 and 8.06 %, respectively. This research provides a unique way to incorporate low-cost and environmentally friendly natural photosynthetic materials in the development of highly efficient photovoltaic devices. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mining Distance Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule
NASA Technical Reports Server (NTRS)
Bay, Stephen D.; Schwabacher, Mark
2003-01-01
Defining outliers by their distance to neighboring examples is a popular approach to finding unusual examples in a data set. Recently, much work has been conducted with the goal of finding fast algorithms for this task. We show that a simple nested loop algorithm that in the worst case is quadratic can give near linear time performance when the data is in random order and a simple pruning rule is used. We test our algorithm on real high-dimensional data sets with millions of examples and show that the near linear scaling holds over several orders of magnitude. Our average case analysis suggests that much of the efficiency is because the time to process non-outliers, which are the majority of examples, does not depend on the size of the data set.
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
Park, Kwangho; Gunasekar, Gunniya Hariyanandam; Prakash, Natarajan; Jung, Kwang-Deog; Yoon, Sungho
2015-10-26
A heterogenized catalyst on a highly porous covalent triazine framework was synthesized and characterized to have a coordination environment similar to that of its homogeneous counterpart. The catalyst efficiently converted CO2 into formate through hydrogenation with a turnover number of 5000 after 2 h and an initial turnover frequency of up to 5300 h(-1) ; both of these values are the highest reported to date for a heterogeneous catalyst, which makes it attractive toward industrial application. Furthermore, the synthesized catalyst was found to be stable in air and was recycled by simple filtration without significant loss of catalytic activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The present status and problems in document retrieval system : document input type retrieval system
NASA Astrophysics Data System (ADS)
Inagaki, Hirohito
The office-automation (OA) made many changes. Many documents were begun to maintained in an electronic filing system. Therefore, it is needed to establish efficient document retrieval system to extract useful information. Current document retrieval systems are using simple word-matching, syntactic-matching, semantic-matching to obtain high retrieval efficiency. On the other hand, the document retrieval systems using special hardware devices, such as ISSP, were developed for aiming high speed retrieval. Since these systems can accept a single sentence or keywords as input, it is difficult to explain searcher's request. We demonstrated document input type retrieval system, which can directly accept document as an input, and can search similar documents from document data-base.
Printing method for organic light emitting device lighting
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol
2013-03-01
Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.
NASA Astrophysics Data System (ADS)
Safari, Javad; Zarnegar, Zohre
2014-08-01
An efficient synthesis of 2-amino-4H-chromenes is achieved by one pot three component coupling reaction of aldehyde, malononitrile, and resorcinol using amino-silane modified Fe3O4 nanoparticles (MNPs-NH2) heterogeneous nanocatalyst under sonic condition. The attractive advantages of the present process are mild reaction conditions, short reaction times, easy isolation of products, good yields and simple operational procedures. Combination of the advantages of ultrasonic irradiation and magnetic nanoparticles provides important methodology to carry out catalytic transformations.
Improving care and efficiency: appointment times in a haemodialysis unit.
Lunts, P
2002-01-01
Shortage of nurses and dialysis spaces and the desire to improve patient care are the two main driving forces in the dialysis field today. This paper suggests that these issues can be addressed by organisational change. We describe a simple, dramatically effective but rarely used example - the effect on a haemodialysis unit of the introduction of patient appointment times. This paper will demonstrate that appointment times can be highly effective in reducing waiting times for patients and in utilizing staff and resources more efficiently, as long as there is commitment from key staff to implement and maintain them effectively
Freeform lens design for LED collimating illumination.
Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang
2012-05-07
We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
NASA Astrophysics Data System (ADS)
Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook
2014-06-01
A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.
NASA Astrophysics Data System (ADS)
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-07-01
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen
2013-01-01
Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856
Lyu, Lingyun; Zeng, Xu; Yun, Jun; Wei, Feng; Jin, Fangming
2014-05-20
The "greenhouse effect" caused by the increasing atmospheric CO2 level is becoming extremely serious, and thus, the reduction of CO2 emissions has become an extensive, urgent, and long-term task. The dissociation of water for CO2 reduction with solar energy is regarded as one of the most promising methods for the sustainable development of the environment and energy. However, a high solar-to-fuel efficiency keeps a great challenge. In this work, the first observation of a highly effective, highly selective, and robust system of dissociating water for the reduction of carbon dioxide (CO2) into formic acid with metallic manganese (Mn) is reported. A considerably high formic acid yield of more than 75% on a carbon basis from NaHCO3 was achieved with 98% selectivity in the presence of simple commercially available Mn powder without the addition of any catalyst, and the proposed process is exothermic. Thus, this study may provide a promising method for the highly efficient dissociation of water for CO2 reduction by combining solar-driven thermochemistry with the reduction of MnO into Mn.
A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing
NASA Astrophysics Data System (ADS)
Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai
2015-11-01
High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.
A Simple and Efficient Method of Extracting DNA from Aged Bones and Teeth.
Liu, Qiqi; Liu, Liyan; Zhang, Minli; Zhang, Qingzhen; Wang, Qiong; Ding, Xiaoran; Shao, Liting; Zhou, Zhe; Wang, Shengqi
2018-05-01
DNA is often difficult to extract from old bones and teeth due to low levels of DNA and high levels of degradation. This study established a simple yet efficient method for extracting DNA from 20 aged bones and teeth (approximately 60 years old). Based on the concentration and STR typing results, the new method of DNA extraction (OM) developed in this study was compared with the PrepFiler™ BTA Forensic DNA Extraction Kit (BM). The total amount of DNA extracted using the OM method was not significantly different from that extracted using the commercial kit (p > 0.05). However, the number of STR loci detected was significantly higher in the samples processed using the OM method than using the BM method (p < 0.05). This study aimed to establish a DNA extraction method for aged bones and teeth to improve the detection rate of STR typing and reduce costs compared to the BM technique. © 2017 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Nam, Yoon-Ho; Kim, Dong-Hyung; Shinde, Sambhaji S.; Song, Jae-Won; Park, Min-Joon; Yu, Jin-Young; Lee, Jung-Ho
2017-11-01
Herein, we present a facile and simple strategy for in situ synthesis of functionalized carbon nanoparticles (CNPs) via direct pyrolysis of ethylenediaminetetraacetic acid (EDTA) on silicon surface. The CNPs were incorporated in hybrid planar n-Si and poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells to improve device performance. We demonstrate that the CNPs-incorporated devices showed increased electrical conductivity (reduced series resistance) and minority carrier lifetime (better charge carrier collection) than those of the cells without CNPs due to the existence of electrically conductive sp 2-hybridized carbon at the heterojunction interfaces. With an optimal concentration of CNPs, the hybrid solar cells exhibited power conversion efficiency up to 11.95%, with an open-circuit voltage of 614 mV, short-circuit current density of 26.34 mA cm-2, and fill factor of 73.93%. These results indicate that our approach is promising for the development of highly efficient organic-inorganic hybrid solar cells.
Ion implantation enhanced metal-Si-metal photodetectors
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.
1994-05-01
The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.
NASA Astrophysics Data System (ADS)
Safari, Javad; Gandomi-Ravandi, Soheila
2014-09-01
A Biginelli-like condensation is described using acetophenone as active methylene compound with aldehydes and urea to furnish pyrimidinone analogues under solvent-free conditions. In this paper, besides the preparation of nanocomposites based on MWCNTs, our investigations have been focused on the catalytic efficiency of metal oxide-MWCNTs composites. The requisites of a good catalyst are high activity, selectivity, reusability, reasonable cost and long lifetime. The application of solvent-free conditions and transition metal oxides decorated-MWCNTs (MOx-MWCNTs) nanocomposites as attractive, effective and reusable catalysts leads to the efficient synthesis of 4,6-diaryl-3,4-dihydropyrimidin-2-(1H)-ones. This recyclable heterogeneous catalytic system provides a simple strategy to generate a variety of pyrimidinones under solvent-free conditions. Utilization of easy reaction condition, recyclable green catalyst, reduced environmental impacts and simple work-up make this methodology as an interesting option for the eco-friendly synthesis of Biginelli-like compounds.
High efficiency and simple technique for controlling mechanisms by EMG signals
NASA Astrophysics Data System (ADS)
Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Javier, F.; Ceballos, G.; Olivares, A.
2016-04-01
This article reports the development of a simple and efficient system that allows control of mechanisms through electromyography (EMG) signals. The novelty about this instrument is focused on individual control of each motion vector mechanism through independent electronic circuits. Each of electronic circuit does positions a motor according to intensity of EMG signal captured. This action defines movement in one mechanical axis considered from an initial point, based on increased muscle tension. The final displacement of mechanism depends on individual’s ability to handle the levels of muscle tension at different body parts. This is the design of a robotic arm where each degree of freedom is handled with a specific microcontroller that responds to signals taken from a defined muscle. The biophysical interaction between the person and the final positioning of the robotic arm is used as feedback. Preliminary tests showed that the control operates with minimal positioning error margins. The constant use of system with the same operator showed that the person adapts and progressively improves at control technique.
Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun
2017-06-28
Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.
Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan
2016-12-21
Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.
A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan
2015-04-01
The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.
Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.
Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo
2013-12-01
Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.
NASA Technical Reports Server (NTRS)
Browning, L. H.; Argenbright, L. A.
1983-01-01
A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-11
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
A Computationally Efficient Method for Polyphonic Pitch Estimation
NASA Astrophysics Data System (ADS)
Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio
2009-12-01
This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-01
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Gan, Shifeng; Hu, Shimin; Li, Xiang-Long; Zeng, Jiajie; Zhang, Dongdong; Huang, Tianyu; Luo, Wenwen; Zhao, Zujin; Duan, Lian; Su, Shi-Jian; Tang, Ben Zhong
2018-05-23
Raising triplet exciton utilization of pure organic luminescent materials is of significant importance for efficiency advancement of organic light-emitting diodes (OLEDs). Herein, by introducing bromine atom(s) onto a typical molecule (bis(carbazol-9-yl)-4,5-dicyanobenzene) with thermally activated delayed fluorescence, we demonstrate that the heavy atom effect of bromine can increase spin-orbit coupling and promote the reverse intersystem crossing, which endow the molecules with more distinct delayed fluorescence. In consequence, the triplet exciton utilization is improved greatly with the increase of bromine atoms, affording apparently advanced external quantum efficiencies of OLEDs. Utilizing the enhancement effect of bromine atoms on delayed fluorescence should be a simple and promising design concept for efficient organic luminogens with high exciton utilization.
Sun, Bingfeng; Deng, Chao; Meng, Fenghua; Zhang, Jian; Zhong, Zhiyuan
2016-11-01
The clinical success of cancer nanomedicines critically depends on availability of simple, safe and highly efficient nanocarriers. Here, we report that robust and multifunctional nanoparticles self-assembled from hyaluronic acid-g-poly(γ-benzyl-l-glutamate)-lipoic acid conjugates achieve a remarkably high loading (up to 25.8wt.%) and active targeted delivery of doxorubicin (DOX) to human breast tumor xenograft in vivo. DOX-loaded nanoparticles following auto-crosslinking (DOX-CLNPs) are highly stable with little drug leakage under physiological conditions while quickly release ca. 92% DOX in 30h under a cytoplasmic-mimicking reductive environment. The in vitro assays reveal that DOX-CLNPs possess a superior selectivity and antitumor activity to clinically used pegylated liposomal doxorubicin hydrochloride (DOX-LPs) in CD44 receptor overexpressing MCF-7 human breast cancer cells. Strikingly, DOX-CLNPs exhibit a superb tolerated dose of over 100mg DOX equiv./kg, which is more than 5 times higher than DOX-LPs, and an extraordinary breast tumor accumulation of 8.6%ID/g in mice. The in vivo therapeutic studies in MCF-7 human breast tumor-bearing nude mice show that DOX-CLNPs effectively inhibit tumor growth, improve survival rate, and significantly decrease adverse effects as compared to DOX-LPs. DOX-CLNPs based on natural endogenous materials with high drug loading, great stability and CD44-targetability are highly promising for precision cancer chemotherapy. We demonstrate that with rational design, simple and multifunctional anticancer nanotherapeutics can be developed to achieve highly efficient and targeted cancer chemotherapy. Doxorubicin-loaded multifunctional nanoparticles based on hyaluronic acid-g-poly(γ-benzyl-l-glutamate)-lipoic acid conjugates exhibit a high drug loading, superior stability, fast bioresponsivity, high tolerability, and obvious selectivity toward CD44-overexpressing tumors in vivo. These nanotherapeutics achieve effective tumor suppression, drastically improved survival rate and reduced side effects as compared to clinically used pegylated liposomal doxorubicin in MCF-7 human breast tumor-bearing nude mice. Unlike previously reported multifunctional nanomedicines, the present nanotherapeutics primarily based on natural endogenous materials are simple and straightforward to fabricate, which makes them potentially interesting for clinical translation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin
2014-11-07
In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.
Lens, Frederic; Vos, Rutger A.; Charrier, Guillaume; van der Niet, Timo; Merckx, Vincent; Baas, Pieter; Aguirre Gutierrez, Jesus; Jacobs, Bart; Chacon Dória, Larissa; Smets, Erik; Delzon, Sylvain; Janssens, Steven B.
2016-01-01
Background and Aims Angiosperms with simple vessel perforations have evolved many times independently of species having scalariform perforations, but detailed studies to understand why these transitions in wood evolution have happened are lacking. We focus on the striking difference in wood anatomy between two closely related genera of Adoxaceae, Viburnum and Sambucus, and link the anatomical divergence with climatic and physiological insights. Methods After performing wood anatomical observations, we used a molecular phylogenetic framework to estimate divergence times for 127 Adoxaceae species. The conditions under which the genera diversified were estimated using ancestral area reconstruction and optimization of ancestral climates, and xylem-specific conductivity measurements were performed. Key Results Viburnum, characterized by scalariform vessel perforations (ancestral), diversified earlier than Sambucus, having simple perforations (derived). Ancestral climate reconstruction analyses point to cold temperate preference for Viburnum and warm temperate for Sambucus. This is reflected in the xylem-specific conductivity rates of the co-occurring species investigated, showing that Viburnum lantana has rates much lower than Sambucus nigra. Conclusions The lack of selective pressure for high conductive efficiency during early diversification of Viburnum and the potentially adaptive value of scalariform perforations in frost-prone cold temperate climates have led to retention of the ancestral vessel perforation type, while higher temperatures during early diversification of Sambucus have triggered the evolution of simple vessel perforations, allowing more efficient long-distance water transport. PMID:27498812
NASA Astrophysics Data System (ADS)
Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji
2018-03-01
This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.
NASA Technical Reports Server (NTRS)
You, J. H.; Chen, W. P.; Zhang, S. N.; Chen, L.; Liu, D.; Chou, C. K.
2003-01-01
We present simple analytical formulae for the emission spectrum and total power of a special kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense magnetic field. In contrast with the available formulae system, we obtain a markedly simplified one based on the semiclassical quantum theory, which is more understandable for people who are unfamiliar with quantum electrodynamics. We show that the RICS process, under an appropriate 'accommodation condition' derived in this paper, is predominantly much more efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed high-frequency radiation with moderately good monochromaticity. Our formulae are simple to use - thus offering a lucid physical intuition for the theory - and may find wide applications in hard X-ray and gamma-ray astrophysics.
NASA Astrophysics Data System (ADS)
Sun, Tao; Li, Yang; Niu, Qingfen; Li, Tianduo; Liu, Yan
2018-04-01
A new simple and efficient fluorescent sensor L based on 1,8-diaminonaphthalene Schiff-base for highly sensitive and selective determination of Cu2+ in drink and water has been developed. This Cu2+-selective detection over other tested metal ions displayed an obvious color change from blue to colorless easily detected by naked eye. The detection limit is determined to be as low as 13.2 nM and the response time is very fast within 30 s. The 1:1 binding mechanism was well confirmed by fluorescence measurements, IR analysis and DFT calculations. Importantly, this sensor L was employed for quick detection of Cu2+ in drink and environmental water samples with satisfactory results, providing a simple, rapid, reliable and feasible Cu2+-sensing method.
Least Reliable Bits Coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Wagner, Paul; Budinger, James
1992-01-01
An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Audiovisual focus of attention and its application to Ultra High Definition video compression
NASA Astrophysics Data System (ADS)
Rerabek, Martin; Nemoto, Hiromi; Lee, Jong-Seok; Ebrahimi, Touradj
2014-02-01
Using Focus of Attention (FoA) as a perceptual process in image and video compression belongs to well-known approaches to increase coding efficiency. It has been shown that foveated coding, when compression quality varies across the image according to region of interest, is more efficient than the alternative coding, when all region are compressed in a similar way. However, widespread use of such foveated compression has been prevented due to two main conflicting causes, namely, the complexity and the efficiency of algorithms for FoA detection. One way around these is to use as much information as possible from the scene. Since most video sequences have an associated audio, and moreover, in many cases there is a correlation between the audio and the visual content, audiovisual FoA can improve efficiency of the detection algorithm while remaining of low complexity. This paper discusses a simple yet efficient audiovisual FoA algorithm based on correlation of dynamics between audio and video signal components. Results of audiovisual FoA detection algorithm are subsequently taken into account for foveated coding and compression. This approach is implemented into H.265/HEVC encoder producing a bitstream which is fully compliant to any H.265/HEVC decoder. The influence of audiovisual FoA in the perceived quality of high and ultra-high definition audiovisual sequences is explored and the amount of gain in compression efficiency is analyzed.
Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2018-05-31
Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.
NASA Astrophysics Data System (ADS)
Ha, P. T. H.
2018-04-01
The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.
Bo, Ruonan; Sun, Yaqin; Zhou, Shuzhen; Ou, Ning; Gu, Pengfei; Liu, Zhenguang; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun
2017-01-01
The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4 + and CD8 + T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.
Multiplex SNaPshot-a new simple and efficient CYP2D6 and ADRB1 genotyping method.
Ben, Songtao; Cooper-DeHoff, Rhonda M; Flaten, Hanna K; Evero, Oghenero; Ferrara, Tracey M; Spritz, Richard A; Monte, Andrew A
2016-04-23
Reliable, inexpensive, high-throughput genotyping methods are required for clinical trials. Traditional assays require numerous enzyme digestions or are too expensive for large sample volumes. Our objective was to develop an inexpensive, efficient, and reliable assay for CYP2D6 and ADRB1 accounting for numerous polymorphisms including gene duplications. We utilized the multiplex SNaPshot® custom genotype method to genotype CYP2D6 and ADRB1. We compared the method to reference standards genotyped using the Taqman Copy Number Variant Assay followed by pyrosequencing quantification and determined assigned genotype concordance. We genotyped 119 subjects. Seven (5.9 %) were found to be CYP2D6 poor metabolizers (PMs), 18 (15.1 %) intermediate metabolizers (IMs), 89 (74.8 %) extensive metabolizers (EMs), and 5 (4.2 %) ultra-rapid metabolizers (UMs). We genotyped two variants in the β1-adrenoreceptor, rs1801253 (Gly389Arg) and rs1801252 (Ser49Gly). The Gly389Arg genotype is Gly/Gly 18 (15.1 %), Gly/Arg 58 (48.7 %), and Arg/Arg 43 (36.1 %). The Ser49Gly genotype is Ser/Ser 82 (68.9 %), Ser/Gly 32 (26.9), and Gly/Gly 5 (4.2 %). The multiplex SNaPshot method was concordant with genotypes in reference samples. The multiplex SNaPshot method allows for specific and accurate detection of CYP2D6 genotypes and ADRB1 genotypes and haplotypes. This platform is simple and efficient and suited for high throughput.
Chou, Hsien-Hsin; Liu, Yu-Chieh; Fang, Guanjie; Cao, Qiao-Kai; Wei, Tzu-Chien; Yeh, Chen-Yu
2017-11-01
The need for low-cost and highly efficient dyes for dye-sensitized solar cells under both the sunlight and dim light environments is growing. We have devised GJ-series push-pull organic dyes which require only four synthesis steps. These dyes feature a linear molecular structure of donor-perylene-ethynylene-arylcarboxylic acid, where donor represents N,N-diarylamino group and arylcarboxylic groups represent benzoic, thienocarboxylic, 2-cyano-3-phenylacrylic, 2-cyano-3-thienoacrylic, and 4-benzo[c][1,2,5]thiadiazol-4-yl-benzoic groups. In this study, we demonstrated that a dye without tedious and time-consuming synthesis efforts can perform efficiently. Under the illumination of AM1.5G simulated sunlight, the benzothiadiazole-benzoic-containing GJ-BP dye shows the best power conversion efficiency (PCE) of 6.16% with V OC of 0.70 V and J SC of 11.88 mA cm -2 using liquid iodide-based electrolyte. It also shows high performance in converting light of 6000 lx light intensity, that is, incident power of ca. 1.75 mW cm -2 , to power output of 0.28 mW cm -2 which equals a PCE of 15.79%. Interestingly, the benzoic-containing dye GJ-P with a simple molecular structure has comparable performance in generating power output of 0.26 mW cm -2 (PCE of 15.01%) under the same condition and is potentially viable toward future application.
Public Housing: A Tailored Approach to Energy Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Conlin, F.; Podorson, D.
2016-02-18
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with four PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost-effectively implement with their own staffs in the normal course of housing operations at the time whenmore » units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing, and measures that improve equipment efficiency. ARIES documented implementation in 18 housing units. Reductions in average air leakage were 16% and duct leakage reductions averaged 23%. Total source energy consumption savings due to implemented measures was estimated at 3-10% based on BEopt modeling with a simple payback of 1.6 to 2.5 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.« less
Shi, Xuesong; Li, Xin; Jiang, Lan; Qu, Liangti; Zhao, Yang; Ran, Peng; Wang, Qingsong; Cao, Qiang; Ma, Tianbao; Lu, Yongfeng
2015-01-01
We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough for large-area patterning. The graphene films were composed of layer-by-layer graphene nanosheets separated by nanogaps (~10–50 nm), and graphene monolayers with an interlayer spacing of ~0.37 nm constituted each of the graphene nanosheets. This unique hierarchical layering structure of graphene films provides great possibilities for generation of tensile stress during femtosecond laser ablation to roll up the nanoflakes, which contributes to the formation of microflowers. By a simple scanning technique, patterned surfaces with controllable densities of flower patterns were obtained, which can exhibit adhesive superhydrophobicity. More importantly, this technique enables fabrication of the large-area patterned surfaces at centimeter scales in a simple and efficient way. This study not only presents new insights of ultrafast laser processing of novel graphene-based materials but also shows great promise of designing new materials combined with ultrafast laser surface patterning for future applications in functional coatings, sensors, actuators and microfluidics. PMID:26615800
Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition
NASA Astrophysics Data System (ADS)
Kesrarat, Darun; Patanavijit, Vorapoj
2017-02-01
In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).
NASA Astrophysics Data System (ADS)
Buldt, J.; Müller, M.; Klas, R.; Eidam, T.; Limpert, J.; Tünnermann, A.
2018-02-01
We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered SPM broadened spectra. A measured temporal contrast enhancement by at least 7 orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.
Murai, Masahito; Omura, Tetsuya; Kuninobu, Yoichiro; Takai, Kazuhiko
2015-03-18
Rhenium-catalysed C(sp(3))-H bond borylation in the absence of any oxidant, hydrogen acceptor, or external ligand, with the generation of H2 as the sole byproduct is described. The transformation, which represents a rare example of rhenium-catalysed C(sp(3))-H bond functionalisation, features high atom efficiency and simple reaction conditions.
Wang, Xinzhe; Ge, Huihua; Zhang, Dandan; Wu, Shuyu; Zhang, Guangya
2017-07-03
Effective and simple methods that lead to higher enzymatic efficiencies are highly sough. Here we proposed a foldon-triggered trimerization of the target enzymes with significantly improved catalytic performances by fusing a foldon domain at the C-terminus of the enzymes via elastin-like polypeptides (ELPs). The foldon domain comprises 27 residues and can forms trimers with high stability. Lichenase and xylanase can hydrolyze lichenan and xylan to produce value added products and biofuels, and they have great potentials as biotechnological tools in various industrial applications. We took them as the examples and compared the kinetic parameters of the engineered trimeric enzymes to those of the monomeric and wild type ones. When compared with the monomeric ones, the catalytic efficiency (k cat /K m ) of the trimeric lichenase and xylanase increased 4.2- and 3.9- fold. The catalytic constant (k cat ) of the trimeric lichenase and xylanase increased 1.8- fold and 5.0- fold than their corresponding wild-type counterparts. Also, the specific activities of trimeric lichenase and xylanase increased by 149% and 94% than those of the monomeric ones. Besides, the recovery of the lichenase and xylanase activities increased by 12.4% and 6.1% during the purification process using ELPs as the non-chromatographic tag. The possible reason is the foldon domain can reduce the transition temperature of the ELPs. The trimeric lichenase and xylanase induced by foldon have advantages in the catalytic performances. Besides, they were easier to purify with increased purification fold and decreased the loss of activities compared to their corresponding monomeric ones. Trimerizing of the target enzymes triggered by the foldon domain could improve their activities and facilitate the purification, which represents a simple and effective enzyme-engineering tool. It should have exciting potentials both in industrial and laboratory scales.
H2O2 rejuvenation-mediated synthesis of stable mixed-morphology Ag3PO4 photocatalysts.
Agbe, Henry; Raza, Nadeem; Dodoo-Arhin, David; Chauhan, Aditya; Kumar, Ramachandran Vasant
2018-04-01
Ag 3 PO 4 photocatalyst has attracted interest of the scientific community in recent times due to its reported high efficiency for water oxidation and dye degradation. However, Ag 3 PO 4 photo-corrodes if electron accepter such as AgNO 3 is not used as scavenger. Synthesis of efficient Ag 3 PO 4 followed by a simple protocol for regeneration of the photocatalyst is therefore a prerequisite for practical application. Herein, we present a facile method for the synthesis of a highly efficient Ag 3 PO 4 , whose photocatalytic efficiency was demonstrated using 3 different organic dyes: Methylene Blue (MB), Methyl orange (MO) and Rhodamine B (RhB) organic dyes for degradation tests. Approximately, 19 % of Ag 3 PO 4 is converted to Ag 0 after 4.30 hours of continuous UV-Vis irradiation in presence of MB organic dye. We have shown that the Ag/Ag 3 PO 4 composite can be rejuvenated by a simple chemical oxidation step after several cycles of photocatalysis tests. At an optimal pH of 6.5, a mixture of cubic, rhombic dodecahedron, nanosphere and nanocrystals morphologies of the photocatalyst was formed. H 2 O 2 served as the chemical oxidant to re-insert the surface metallic Ag into the Ag 3 PO 4 photocatalyst but also as the agent that can control morphology of the regenerated as-prepared photocatalyst without the need for any other morphology controlling Agent (MCA). Surprisingly, the as- regenerated Ag 3 PO 4 was found to have higher photocatalytic reactivity than the freshly made material and superior at least 17 times in comparison with the conventional Degussa TiO 2 , and some of TiO 2 composites tested in this work.
Assessing map accuracy in a remotely sensed, ecoregion-scale cover map
Edwards, T.C.; Moisen, Gretchen G.; Cutler, D.R.
1998-01-01
Landscape- and ecoregion-based conservation efforts increasingly use a spatial component to organize data for analysis and interpretation. A challenge particular to remotely sensed cover maps generated from these efforts is how best to assess the accuracy of the cover maps, especially when they can exceed 1000 s/km2 in size. Here we develop and describe a methodological approach for assessing the accuracy of large-area cover maps, using as a test case the 21.9 million ha cover map developed for Utah Gap Analysis. As part of our design process, we first reviewed the effect of intracluster correlation and a simple cost function on the relative efficiency of cluster sample designs to simple random designs. Our design ultimately combined clustered and subsampled field data stratified by ecological modeling unit and accessibility (hereafter a mixed design). We next outline estimation formulas for simple map accuracy measures under our mixed design and report results for eight major cover types and the three ecoregions mapped as part of the Utah Gap Analysis. Overall accuracy of the map was 83.2% (SE=1.4). Within ecoregions, accuracy ranged from 78.9% to 85.0%. Accuracy by cover type varied, ranging from a low of 50.4% for barren to a high of 90.6% for man modified. In addition, we examined gains in efficiency of our mixed design compared with a simple random sample approach. In regard to precision, our mixed design was more precise than a simple random design, given fixed sample costs. We close with a discussion of the logistical constraints facing attempts to assess the accuracy of large-area, remotely sensed cover maps.
Edwards, Lindsay M; Murray, Andrew J; Holloway, Cameron J; Carter, Emma E; Kemp, Graham J; Codreanu, Ion; Brooker, Helen; Tyler, Damian J; Robbins, Peter A; Clarke, Kieran
2011-03-01
We recently showed that a short-term high-fat diet blunted exercise performance in rats, accompanied by increased uncoupling protein levels and greater respiratory uncoupling. In this study, we investigated the effects of a similar diet on physical and cognitive performance in humans. Twenty sedentary men were assessed when consuming a standardized, nutritionally balanced diet (control) and after 7 d of consuming a diet comprising 74% kcal from fat. Efficiency was measured during a standardized exercise task, and cognition was assessed using a computerized assessment battery. Skeletal muscle mitochondrial function was measured using (31)P magnetic resonance spectroscopy. The diet increased mean ± se plasma free fatty acids by 44% (0.32±0.03 vs. 0.46±0.05 mM; P<0.05) and decreased whole-body efficiency by 3% (21±1 vs. 18±1%; P<0.05), although muscle uncoupling protein (UCP3) content and maximal mitochondrial function were unchanged. High-fat diet consumption also increased subjects' simple reaction times (P<0.01) and decreased power of attention (P<0.01). Thus, we have shown that a high-fat diet blunts whole-body efficiency and cognition in sedentary men. We suggest that this effect may be due to increased respiratory uncoupling.
Two-layer wireless distributed sensor/control network based on RF
NASA Astrophysics Data System (ADS)
Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo
2006-11-01
A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.
A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging
NASA Astrophysics Data System (ADS)
Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih
2018-02-01
Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua
2013-05-01
We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00775h
Continuous-wave Nd:GYSGG laser at 1.1 μm
NASA Astrophysics Data System (ADS)
Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Copner, Nigel; Sun, Dong
2018-02-01
We demonstrated a compact and simple continuous-wave (CW) Nd:GYSGG laser with triple-wavelength lines at 1105, 1107 and 1110 nm based on R2 → Y6, R1 → Y5 and R1 → Y6 of the 4F3/2 → 4I11/2 transition. The total output power of the triple-wavelength lines was 480 mW. Moreover, we obtained an efficient CW Nd:GYSGG laser at 1110 nm with the output power of 1560 mW at the pump power of 11.05 W. Those lines at 1058 and 1062 nm were suppressed completely by the simple output mirror of high transmission at 1.06 μm.
NASA Astrophysics Data System (ADS)
Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank
Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.
A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon
2012-03-01
We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d
Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok
2016-09-01
Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.
Overview of Fundamental High-Lift Research for Transport Aircraft at NASA
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.
2007-01-01
NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.
NASA Astrophysics Data System (ADS)
Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong
2018-05-01
In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.
NASA Astrophysics Data System (ADS)
Hilali, Mohamed M.
2005-11-01
A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.
Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang
2017-06-15
Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Lijun; Sun, Kuan; Wang, Ming; Chen, Wei; Yang, Bo; Fu, Jiehao; Xiong, Zhuang; Li, Xinyi; Tang, Xiaosheng; Zang, Zhigang; Zhang, Shupeng; Sun, Lidong; Li, Meng
2017-12-20
The performance of inverted perovskite solar cells is highly dependent on hole extraction and surface properties of hole transport layers. To highlight the important role of hole transport layers, a facile and simple method is developed by adding sodium chloride (NaCl) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The average power conversion efficiency of the perovskite solar cells prepared on NaCl-doped PEDOT:PSS is 17.1% with negligible hysteresis, compared favorably to the control devices (15.1%). Particularly, they exhibit markedly improved V oc and fill factor (FF), with the best FF as high as 81.9%. The enhancement of photovoltaic performance is ascribed to two effects. Better conductivity and hole extraction of PEDOT:PSS are observed after NaCl doping. More intriguingly, the perovskite polycrystalline film shows a preferred orientation along the (001) direction on NaCl-doped PEDOT:PSS, leading to a more uniform thin film. The comparison of the crystal structure between NaCl and MAPbCl 3 indicates a lattice constant mismatch less than 2% and a matched chlorine atom arrangement on the (001) surface, which implies that the NaCl crystallites on the top surface of PEDOT:PSS might serve as seeds guiding the growth of perovskite crystals. This simple method is fully compatible with printing technologies to mass-produce perovskite solar cells with high efficiency and tunable crystal orientations.
The theoretical limit to plant productivity.
DeLucia, Evan H; Gomez-Casanovas, Nuria; Greenberg, Jonathan A; Hudiburg, Tara W; Kantola, Ilsa B; Long, Stephen P; Miller, Adam D; Ort, Donald R; Parton, William J
2014-08-19
Human population and economic growth are accelerating the demand for plant biomass to provide food, fuel, and fiber. The annual increment of biomass to meet these needs is quantified as net primary production (NPP). Here we show that an underlying assumption in some current models may lead to underestimates of the potential production from managed landscapes, particularly of bioenergy crops that have low nitrogen requirements. Using a simple light-use efficiency model and the theoretical maximum efficiency with which plant canopies convert solar radiation to biomass, we provide an upper-envelope NPP unconstrained by resource limitations. This theoretical maximum NPP approached 200 tC ha(-1) yr(-1) at point locations, roughly 2 orders of magnitude higher than most current managed or natural ecosystems. Recalculating the upper envelope estimate of NPP limited by available water reduced it by half or more in 91% of the land area globally. While the high conversion efficiencies observed in some extant plants indicate great potential to increase crop yields without changes to the basic mechanism of photosynthesis, particularly for crops with low nitrogen requirements, realizing such high yields will require improvements in water use efficiency.
Efficient mouse genome engineering by CRISPR-EZ technology.
Modzelewski, Andrew J; Chen, Sean; Willis, Brandon J; Lloyd, K C Kent; Wood, Joshua A; He, Lin
2018-06-01
CRISPR/Cas9 technology has transformed mouse genome editing with unprecedented precision, efficiency, and ease; however, the current practice of microinjecting CRISPR reagents into pronuclear-stage embryos remains rate-limiting. We thus developed CRISPR ribonucleoprotein (RNP) electroporation of zygotes (CRISPR-EZ), an electroporation-based technology that outperforms pronuclear and cytoplasmic microinjection in efficiency, simplicity, cost, and throughput. In C57BL/6J and C57BL/6N mouse strains, CRISPR-EZ achieves 100% delivery of Cas9/single-guide RNA (sgRNA) RNPs, facilitating indel mutations (insertions or deletions), exon deletions, point mutations, and small insertions. In a side-by-side comparison in the high-throughput KnockOut Mouse Project (KOMP) pipeline, CRISPR-EZ consistently outperformed microinjection. Here, we provide an optimized protocol covering sgRNA synthesis, embryo collection, RNP electroporation, mouse generation, and genotyping strategies. Using CRISPR-EZ, a graduate-level researcher with basic embryo-manipulation skills can obtain genetically modified mice in 6 weeks. Altogether, CRISPR-EZ is a simple, economic, efficient, and high-throughput technology that is potentially applicable to other mammalian species.
Turbulent FEL theory and experiment on ELSA at Bruyeres-le-Chatel
NASA Astrophysics Data System (ADS)
Chaix, P.; Guimbal, P.
1995-04-01
We consider the asymptotic behaviour of long pulse high current Compton free electron laser oscillators. It is known that if the current is high enough and the cavity losses low enough, sideband instabilities and non-linear mode couplings eventually lead to a strong broadening of the radiated spectrum, and to a strong efficiency enhancement. In this “post-sideband” regime, the electron dynamics along the wiggler is intrinsically stochastic, and the efficiency is due to chaotic diffusion of the electrons toward lower energies, rather than to standard synchrotron oscillations. This results in new scaling laws for saturation properties. We have obtained simple analytical estimates for the extracted efficiency and for the spectral width, in very good agreement with numerical simulations. The infrared ELSA free electron laser at Bruyères-le-Châtel has been used to obtain experimental evidence for these new scaling laws. In particular it has been verified that in the post-sideband regime, the ratio of the extracted efficiency to the relative spectral width is independent of the operating parameters, and close to 3/3 as predicted by theory.
Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong
2011-12-07
Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society
Chen, Hua-xing; Tang, Hong-ming; Duan, Ming; Liu, Yi-gang; Liu, Min; Zhao, Feng
2015-01-01
In this study, the effects of gravitational settling time, temperature, speed and time of centrifugation, flocculant type and dosage, bubble size and gas amount were investigated. The results show that the simple increase in settling time and temperature is of no use for oil-water separation of the three wastewater samples. As far as oil-water separation efficiency is concerned, increasing centrifugal speed and centrifugal time is highly effective for L sample, and has a certain effect on J sample, but is not valid for S sample. The flocculants are highly effective for S and L samples, and the oil-water separation efficiency increases with an increase in the concentration of inorganic cationic flocculants. There exist critical reagent concentrations for the organic cationic and the nonionic flocculants, wherein a higher or lower concentration of flocculant would cause a decrease in the treatment efficiency. Flotation is an effective approach for oil-water separation of polymer-contained wastewater from the three oilfields. The oil-water separation efficiency can be enhanced by increasing floatation agent concentration, flotation time and gas amount, and by decreasing bubble size.
Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin
2016-01-01
Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A−1 and 40.6 cd A−1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A−1 and 25.4 cd A−1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays. PMID:27278527
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-08-01
Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.
Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon
2012-09-01
A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic fitness function for screening semiconductors as thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Guangzong; Sun, Jifeng; Li, Yuwei
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
NASA Astrophysics Data System (ADS)
Ziegler, Benjamin; Rauhut, Guntram
2016-03-01
The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.
Ziegler, Benjamin; Rauhut, Guntram
2016-03-21
The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.
Electronic fitness function for screening semiconductors as thermoelectric materials
Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...
2017-11-17
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
NASA Astrophysics Data System (ADS)
Lee, Seungmin; Rhee, Bum Ku
2015-02-01
The pump laser was a cw-diode-pumped, acousto-optically Q-switched Nd:YAG laser. The laser had a pulse width of ~85 ns when operating at 10 kHz repetition rates. For infrared output of 2300 nm, we used 35-mm-long PPMgSLT which has a grating period of 32.7 μm for the first-order quasi-phase matching, resulting in the signal wavelength of 1980 nm at the crystal temperature of 76.5oC. Our optical parametric oscillator (OPO) was of a simple linear extra-cavity structure, formed by two flat dichroic mirrors with a separation of ~45 mm. The input coupling mirror had a high transmission of 98% for the pump, high reflectance of 98% at the signal and idler wavelengths, whereas the output coupler had a high reflectance of 98% at the pump wavelength. Hence, the OPO can be considered as singly resonant with double-pass pumping. In order to find an optimum reflectance for the efficient generation of infrared radiation of 2300 nm, we used the three different output mirrors whose reflectivity are ranging from 90% to 38% at the signal wavelength. We measured the signal and idler power as a function of the pumping power of Nd:YAG laser for three different output couplers. A maximum extraction efficiency with an optimum reflectance of output mirror was 27% for the idler, corresponding to 5.6 W of average output power. The fluctuations in the idler root-mean-square output power were measured to be below 1.5%. Our result is comparable with the recent one based on PPLN even with a simple cavity.
Das, Indranee; De, Goutam
2015-01-01
A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754
Inoue, Ippei; Watanabe, Kiyoshi; Yamauchi, Hirofumi; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro
2014-10-01
We designed and mass-produced a versatile protein supramolecule that can be used to manufacture a highly efficient dye-sensitized solar cell (DSSC). Twelve single-walled carbon-nanotube (SWNT)-binding and titanium-mineralizing peptides were genetically integrated on a cage-shaped dodecamer protein (CDT1). A process involving simple mixing of highly conductive SWNTs with CDT1 followed by TiO2 biomineralization produces a high surface-area/weight TiO2 -(anatase)-coated intact SWNT nanocomposite under environmentally friendly conditions. A DSSC with a TiO2 photoelectrode containing 0.2 wt % of the SWNT-TiO2 nanocomposite shows a current density improvement by 80% and a doubling of the photoelectric conversion efficiency. The SWNT-TiO2 nanocomposite transfers photon-generated electrons from dye molecules adsorbed on the TiO2 to the anode electrode swiftly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muck, A; Ramm, M; Hamburger, M
1999-09-10
A method for the efficient preparation of highly purified lipopolysaccharides (LPSs) by hydrophobic interaction chromatography (HIC) has been developed. The procedure can be used for the purification of cell wall bound LPSs after hot phenol-water extraction and for the isolation of extracellular LPSs from the supernatant, respectively. The method described has been tested with artificial mixtures containing LPSs, polysaccharide, protein and RNA and subsequently employed for the preparative purification of two LPSs of different origin, namely the extracellular LPS secreted by Escherichia coli E49 into the culture medium, and the cell wall bound LPS from Pseudomonas aeruginosa VA11465/1. Compared to currently used methods for LPS purification such as enzymatic digestion and ultracentrifugation, the chromatographic separation reported here combines superior purity with minimal loss of LPS, high reproducibility and simple handling. The removal of contaminants such as protein, RNA and polysaccharides and the recovery of LPSs were monitored by appropriate assays.
NASA Astrophysics Data System (ADS)
Panthakkal Abdul Muthalif, Mohammed; Sunesh, Chozhidakath Damodharan; Choe, Youngson
2018-05-01
Herein we report a simple synthetic strategy to prepare highly efficient and surface modified CuS counter electrodes (CEs) for quantum dot-sensitized solar cells (QDSSCs) in the presence of phosphoric acid (H3PO4) using the chemical bath deposition method. This is the first report of successful treatment of H3PO4 on the surface of CuS CEs for designing a high-performance QDSSCs with improved photovoltaic properties. After optimization, the 4 ml H3PO4 treated CuS CE-based QDSSC exhibits excellent photovoltaic performance with a conversion efficiency (η) of 4.20% (Voc = 0.592 V, Jsc = 13.35 mA cm-2, FF = 0.532) under one full-sun illumination (100 mW cm-2, AM 1.5 G).
Lin, Yii-Lih; Huang, Yen-Jun; Teerapanich, Pattamon; Leïchlé, Thierry
2016-01-01
Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1. PMID:27375819
Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries
Ai, Guo; Dai, Yiling; Mao, Wenfeng; ...
2016-08-08
The lithium–sulfur (Li–S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature’s ant-nest structure, this study results in a novel Li–S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li–S electrode. The efficient capabilities of the ant-nest structure are adoptedmore » to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. Finally, high cycling stability in the Li–S batteries, for practical applications, has been achieved with up to 3 mg·cm –2 sulfur loading. Li–S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.« less
Investigation of methods for sterilization of potting compounds and mated surfaces
NASA Technical Reports Server (NTRS)
Tulius, J. J.; Daley, D. J.; Phillips, G. B.
1972-01-01
The feasibility of using formaldehyde-liberating synthetic resins or polymers for the sterilization of potting compounds, mated and occluded areas, and spacecraft surfaces was demonstrated. The detailed study of interrelated parameters of formaldehyde gas sterilization revealed that efficient cycle conditions can be developed for the sterilization of spacecraft components. It was determined that certain parameters were more important than others in the development of cycles for specific applications. The use of formaldehyde gas for the sterilization of spacecraft components provides NASA with a highly efficient method which is inexpensive, reproducible, easily quantitated, materials compatible, operationally simple, generally non-hazardous and not thermally destructive.
An Object-Oriented Collection of Minimum Degree Algorithms: Design, Implementation, and Experiences
NASA Technical Reports Server (NTRS)
Kumfert, Gary; Pothen, Alex
1999-01-01
The multiple minimum degree (MMD) algorithm and its variants have enjoyed 20+ years of research and progress in generating fill-reducing orderings for sparse, symmetric positive definite matrices. Although conceptually simple, efficient implementations of these algorithms are deceptively complex and highly specialized. In this case study, we present an object-oriented library that implements several recent minimum degree-like algorithms. We discuss how object-oriented design forces us to decompose these algorithms in a different manner than earlier codes and demonstrate how this impacts the flexibility and efficiency of our C++ implementation. We compare the performance of our code against other implementations in C or Fortran.
NASA Technical Reports Server (NTRS)
Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad
1995-01-01
The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.
Ito, Yoichiro; Clary, Robert
2016-01-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621
Ito, Yoichiro; Clary, Robert
2016-12-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.
NASA Astrophysics Data System (ADS)
Jamalullail, N.; Smohamad, I.; Nnorizan, M.; Mahmed, N.
2018-06-01
Dye sensitized solar cell (DSSC) is a third generation solar cell that is well known for its low cost, simple fabrication process and promised reasonable energy conversion efficiency. Basic structure of DSSC is composed of photoanode, dye sensitizer, electrolyte that is sandwiched together in between two transparent conductive oxide (TCO) glasses. Each of the components in the DSSC contributes important role that affect the energy conversion efficiency. In this research, the commonly used titanium dioxide (TiO2) photoanode has previously reported to have high recombination rate and low electron mobility which caused efficiency loss had been compared with the zinc oxide (ZnO) photoanode with high electron mobility (155 cm2V-1s-1). Both of these photoanodes had been deposited through doctor blade technique. The electrical performance of the laboratory based DSSCs were tested using solar cell simulator and demonstrated that ZnO is a better photoanode compared to TiO2 with the energy conversion efficiency of 0.34% and 0.29% respectively. Nanorods shape morphology was observed in ZnO photoanode with average particle size of 41.60 nm and average crystallite size of 19.13 nm. This research proved that the energy conversion efficiency of conventional TiO2 based photoanode can be improved using ZnO material.
A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin
2016-01-01
A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890
Digitally gain controlled linear high voltage amplifier for laboratory applications.
Koçum, C
2011-08-01
The design of a digitally gain controlled high-voltage non-inverting bipolar linear amplifier is presented. This cost efficient and relatively simple circuit has stable operation range from dc to 90 kHz under the load of 10 kΩ and 39 pF. The amplifier can swing up to 360 V(pp) under these conditions and it has 2.5 μs rise time. The gain can be changed by the aid of JFETs. The amplifiers have been realized using a combination of operational amplifiers and high-voltage discrete bipolar junction transistors. The circuit details and performance characteristics are discussed.
Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields
NASA Astrophysics Data System (ADS)
Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.
2017-10-01
It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.
NASA Astrophysics Data System (ADS)
Kilic, V. T.; Unal, E.; Demir, H. V.
2017-07-01
We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.
Watt-level dysprosium fiber laser at 315 μm with 73% slope efficiency
NASA Astrophysics Data System (ADS)
Woodward, R. I.; Majewski, M. R.; Bharathan, G.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.
2018-04-01
Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 {\\mu}m and 3.3-3.8 {\\mu}m regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 {\\mu}m. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved: the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.
Maximizing fluorescence collection efficiency in multiphoton microscopy
Zinter, Joseph P.; Levene, Michael J.
2011-01-01
Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm. PMID:21934897
Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik
2015-01-01
Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery. PMID:26017924
Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik
2015-05-28
Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery.
Vázquez-Iglesias, Lorena; Estefanell-Ucha, Borja; Barcia-Castro, Leticia; Páez de la Cadena, María; Álvarez-Chaver, Paula; Ayude-Vázquez, Daniel; Rodríguez-Berrocal, Francisco Javier
2017-01-01
Clostridium septicum produces a number of diseases in human and farm animals which, in most of the cases, are fatal without clinical intervention. Alpha toxin is an important agent and the unique lethal virulent factor produced by Clostridium septicum. This toxin is haemolytic, highly lethal and necrotizing activities but is being used as an antigen to develop animal vaccines. The aim of this study was to isolate the alpha toxin of Clostridium septicum and produce highly specific antibodies against it. In this work, we have developed a simple and efficient method for alpha toxin purification, based on electroelution that can be used as a time-saving method for purifying proteins. This technique avoids contamination by other proteins that could appear during other protein purification techniques such chromatography. The highly purified toxin was used to produce polyclonal antibodies. The specificity of the antibodies was tested by western blot and these antibodies can be applied to the quantitative determination of alpha toxin by slot blot.
Estefanell-Ucha, Borja; Barcia-Castro, Leticia; Páez de la Cadena, María; Álvarez-Chaver, Paula; Ayude-Vázquez, Daniel; Rodríguez-Berrocal, Francisco Javier
2017-01-01
Clostridium septicum produces a number of diseases in human and farm animals which, in most of the cases, are fatal without clinical intervention. Alpha toxin is an important agent and the unique lethal virulent factor produced by Clostridium septicum. This toxin is haemolytic, highly lethal and necrotizing activities but is being used as an antigen to develop animal vaccines. The aim of this study was to isolate the alpha toxin of Clostridium septicum and produce highly specific antibodies against it. In this work, we have developed a simple and efficient method for alpha toxin purification, based on electroelution that can be used as a time-saving method for purifying proteins. This technique avoids contamination by other proteins that could appear during other protein purification techniques such chromatography. The highly purified toxin was used to produce polyclonal antibodies. The specificity of the antibodies was tested by western blot and these antibodies can be applied to the quantitative determination of alpha toxin by slot blot. PMID:28652930
Zhao, Shanshan; Yan, Tingting; Wang, Hui; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong
2016-07-20
In this work, 3D hierarchical carbon architectures (3DHCAs) with micro-, meso-, and macropores were prepared via a simple self-blowing strategy as highly efficient electrodes for a flow-through deionization capacitor (FTDC). The obtained 3DHCAs have a hierarchically porous structure, large accessible specific surface area (2061 m(2) g(-1)), and good wettability. The electrochemical tests show that the 3DHCA electrode has a high specific capacitance and good electric conductivity. The deionization experiments demonstrate that the 3DHCA electrodes possess a high deionization capacity of 17.83 mg g(-1) in a 500 mg L(-1) NaCl solution at 1.2 V. Moreover, the 3DHCA electrodes present a fast deionization rate in 100-500 mg L(-1) NaCl solutions at 0.8-1.4 V. The 3DHCA electrodes also present a good regeneration behavior in the reiterative regeneration test. These above factors render the 3DHCAs a promising FTDC electrode material.
Shim, Bong Sup; Chen, Wei; Doty, Chris; Xu, Chuanlai; Kotov, Nicholas A
2008-12-01
The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemicallmechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight, and "smart" functionalities. Here we demonstrate a simple process of transforming general commodity cotton threads into intelligent e-textiles using a polyelectrolyte-based coating with carbon nanotubes (CNTs). Efficient charge transport through the network of nanotubes (20 omega/cm) and the possibility to engineer tunneling junctions make them promising materials for many high-knowledge-content garments. Along with integrated humidity sensing, we demonstrate that CNT-cotton threads can be used to detect albumin, the key protein of blood, with high sensitivity and selectivity. Notwithstanding future challenges, these proof-of-concept demonstrations provide a direct pathway for the application of these materials as wearable biomonitoring and telemedicine sensors, which are simple, sensitive, selective, and versatile.
Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang
2017-03-08
Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe 3 O 4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.
A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautier, D. C.; Kline, J. L.; Flippo, K. A.
2008-10-15
Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface.more » A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.« less
Al-Khalifah, Nasser S; Shanavaskhan, A E
2017-01-01
Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.
Achieving Helicopter Modernization with Advanced Technology Turbine Engines
1999-04-01
computer modeling of compressor and turbine aerody- digital engine control ( FADEC ) with manual backup. namics. Modern directionally solidified and single...controlled by a dual RAH.66A M channel FADEC , and features a very simple installation "" Improved Gross Weight and significantly reduced pilot...air separation efficiencies as an "advanced technology" engine. Technological meas- high as 97.5%. The FADEC improves acceleration, ures include but
[Rapid detection of caffeine in blood by freeze-out extraction].
Bekhterev, V N; Gavrilova, S N; Kozina, E P; Maslakov, I V
2010-01-01
A new method for the detection of caffeine in blood has been proposed based on the combination of extraction and freezing-out to eliminate the influence of sample matrix. Metrological characteristics of the method are presented. Selectivity of detection is achieved by optimal conditions of analysis by high performance liquid chromatography. The method is technically simple and cost-efficient, it ensures rapid performance of the studies.
NASA Astrophysics Data System (ADS)
Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei
2015-09-01
Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k
Olive mill wastewater treatment using a simple zeolite-based low-cost method.
Aly, Anwar A; Hasan, Yousef N Y; Al-Farraj, Abdullah S
2014-12-01
Olive mill wastewater (OMW), a liquid by-product of the olive oil industry, represents a severe environmental problem owing to its high pollution load. In this study, successive columns containing different types of natural materials were investigated for their OMW treatment efficiency. Passing OMW through three columns of gravel, fine sand, and a mixture of acidified cotton and zeolite (weight:weight ratio of cotton:clinoptilolite of 2:1), followed by treatment with activated charcoal (AC) and lime, was the best treatment in terms of the quality of water obtained. This treatment decreased concentrations of [Formula: see text] , B, K, P, and total fat in OMW by mean percentages of 78.0, 92.4, 66.6, 48.3, and 93.3%, respectively. Furthermore, it decreased OMW turbidity and electric conductivity (EC) by 96.8 and 48.4%, respectively. Most contaminants were removed from the OMW in the cotton/clinoptilolite column owing to the high sorption affinity of clinoptilolite on its active sites. The AC was efficient for organic particle removal; meanwhile, lime was used to raise the pH of the treated OMW (TOMW) from 2.9 to 5.1. This simple method enables us to obtain environmentally friendly TOMW that can be safely used for irrigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gao, Hongfei; Wang, Wenwen; Wang, Zhenxing; Han, Jing; Fu, Zhifeng
2014-03-28
Amorphous carbon nanoparticles (ACNPs) showing highly efficient quenching of chemiluminescence (CL) were prepared from candle soot with a very simple protocol. The prepared ACNP was employed as the novel energy acceptor for a chemiluminescence resonance energy transfer (CRET)-based immunoassay. In this work, ACNP was linked with transferrin (TRF), and horseradish peroxidase (HRP) was conjugated to TRF antibody (HRP-anti-TRF). The immunoreaction rendered the distance between the ACNP acceptor and the HRP-catalyzed CL emitter to be short enough for CRET occurring. In the presence of TRF, this antigen competed with ACNP-TRF for HRP-anti-TRF, thus led to the decreased occurrence of CRET. A linear range of 20-400 ng mL(-1) and a limit of detection of 20 ng mL(-1) were obtained in this immunoassay. The proposed method was successfully applied for detection of TRF levels in human sera, and the results were in good agreement with ELISA method. Moreover, the ACNPs show higher energy transfer efficiency than other conventional nano-scaled energy acceptors such as graphene oxide in CRET assay. It is anticipated that this approach can be developed for determination of other analytes with low cost, simple manipulation and high specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Research on Design of Tri-color Shift Device
NASA Astrophysics Data System (ADS)
Xu, Ping; Yuan, Xia; Huang, Haixuan; Yang, Tuo; Huang, Yanyan; Zhu, Tengfei; Tang, Shaotuo; Peng, Wenda
2016-11-01
An azimuth-tuned tri-color shift device based on an embedded subwavelength one-dimensional rectangular structure with single period is proposed. High reflection efficiencies for both TE and TM polarizations can be achieved simultaneously. Under an oblique incidence of 60°, the reflection efficiencies can reach up to 85, 86, and 100 % in blue (azimuth of 24°), green (azimuth of 63°), and red (azimuth of 90°) waveband, respectively. Furthermore, the laws of influence of device period, groove depth, coating thickness, and incident angle on reflection characteristics are investigated and exposed, and feasibility of the device is demonstrated. The proposed device realizes tri-color shift for natural light using a simple structure. It exhibits high efficiency as well as good security. Such a device can be fabricated by the existing embossing and coating technique. All these break through the limit of bi-color shift anti-counterfeiting technology and have great applications in the field of optically variable image security.
CMOS image sensors as an efficient platform for glucose monitoring.
Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo
2013-10-07
Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications.
Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...
2016-08-11
The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yujue; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn
2015-01-21
InGaN-based light-emitting diodes (LEDs) with some specific designs on the quantum barrier layers by alternating InGaN barriers with GaN barriers are proposed and studied numerically. In the proposed structure, simulation results show that the carriers are widely dispersed in the multi-quantum well active region, and the radiative recombination rate is efficiently improved and the electron leakage is suppressed accordingly, due to the appropriate band engineering. The internal quantum efficiency and light-output power are thus markedly enhanced and the efficiency droop is smaller, compared to the original structures with GaN barriers or InGaN barriers. Moreover, the gradually decrease of indium compositionmore » in the alternating quantum barriers can further promote the LED performance because of the more uniform carrier distribution, which provides us a simple but highly effective approach for high-performance LED applications.« less
Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing.
Beerens, Koen; De Winter, Karel; Van de Walle, Davy; Grootaert, Charlotte; Kamiloglu, Senem; Miclotte, Lisa; Van de Wiele, Tom; Van Camp, John; Dewettinck, Koen; Desmet, Tom
2017-07-26
Cost-efficient (bio)chemical production processes are essential to evaluate the commercial and industrial applications of promising carbohydrates and also are essential to ensure economically viable production processes. Here, the synthesis of the naturally occurring disaccharide kojibiose (2-O-α-d-glucopyranosyl-d-glucopyranoside) was evaluated using different Bifidobacterium adolescentis sucrose phosphorylase variants. Variant L341I_Q345S was found to efficiently synthesize kojibiose while remaining fully active after 1 week of incubation at 55 °C. Process optimization allowed kojibiose production at the kilogram scale, and simple but efficient downstream processing, using a yeast treatment and crystallization, resulted in more than 3 kg of highly pure crystalline kojibiose (99.8%). These amounts allowed a deeper characterization of its potential in food applications. It was found to have possible beneficial health effects, including delayed glucose release and potential to trigger SCFA production. Finally, we compared the bulk functionality of highly pure kojibiose to that of sucrose, hereby mapping its potential as a new sweetener in confectionery products.
Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu
2018-05-15
Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin
2017-07-13
Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.
Evolving phage vectors for cell targeted gene delivery.
Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew
2002-03-01
We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.
Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution
NASA Astrophysics Data System (ADS)
Tang, Xiaosheng; Chen, Weiwei; Zu, Zhiqiang; Zang, Zhigang; Deng, Ming; Zhu, Tao; Sun, Kuan; Sun, Lidong; Xue, Junmin
2015-11-01
In this study, AgInZnS-reduced graphene (AIZS-rGO) nanocomposites with tunable band gap absorption and large specific surface area were synthesized by a simple hydrothermal route, which showed highly efficient photocatalytic hydrogen evolution under visible-light irradiation. The relationships between their crystal structures, morphology, surface chemical states and photocatalytic activity have been explored in detail. Importantly, the AIZS-rGO nanocomposites with 0.02 wt% of graphene exhibited the highest hydrogen production rate of 1.871 mmol h-1 g-1, which was nearly 2 times the hydrogen production rate when using pure AIZS nanoparticles as the photocatalyst. This high photocatalytic H2-production activity was attributed predominantly to the incorporation of graphene sheets, which demonstrated an obvious influence on the structure and optical properties of the AIZS nanoparticles. In the AIZS-rGO nanocomposites, graphene could not only serve as an effective supporting layer but also is a recombination center for conduction band electrons and valence band holes. It is believed that this kind of graphene-based material would attract much attention as a promising photocatalyst with a high efficiency and a low cost for photocatalytic H2 evolution and facilitates their application in the environmental protection field.In this study, AgInZnS-reduced graphene (AIZS-rGO) nanocomposites with tunable band gap absorption and large specific surface area were synthesized by a simple hydrothermal route, which showed highly efficient photocatalytic hydrogen evolution under visible-light irradiation. The relationships between their crystal structures, morphology, surface chemical states and photocatalytic activity have been explored in detail. Importantly, the AIZS-rGO nanocomposites with 0.02 wt% of graphene exhibited the highest hydrogen production rate of 1.871 mmol h-1 g-1, which was nearly 2 times the hydrogen production rate when using pure AIZS nanoparticles as the photocatalyst. This high photocatalytic H2-production activity was attributed predominantly to the incorporation of graphene sheets, which demonstrated an obvious influence on the structure and optical properties of the AIZS nanoparticles. In the AIZS-rGO nanocomposites, graphene could not only serve as an effective supporting layer but also is a recombination center for conduction band electrons and valence band holes. It is believed that this kind of graphene-based material would attract much attention as a promising photocatalyst with a high efficiency and a low cost for photocatalytic H2 evolution and facilitates their application in the environmental protection field. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05145b
ERIC Educational Resources Information Center
Boyd, James N.
1991-01-01
Presents a mathematical problem that, when examined and generalized, develops the relationships between power and efficiency in energy transfer. Offers four examples of simple electrical and mechanical systems to illustrate the principle that maximum power occurs at 50 percent efficiency. (MDH)
Design of a high-power, high-brightness Nd:YAG solar laser.
Liang, Dawei; Almeida, Joana; Garcia, Dário
2014-03-20
A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24 W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.
Arendt, Cassandra S.; Ri, Keirei; Yates, Phillip A.; Ullman, Buddy
2007-01-01
We describe an efficient method for generating highly functional membrane proteins with variant amino acids at defined positions that couples a modified site-saturation strategy with functional genetic selection. We applied this method to the production of a cysteine-less variant of the Crithidia fasciculata inosine-guanosine permease CfNT2, in order to facilitate biochemical studies using thiol-specific modifying reagents. Of ten endogenous cysteine residues in CfNT2, two cannot be replaced with serine or alanine without loss of function. High-quality single- and double-mutant libraries were produced by combining a previously reported site-saturation mutagenesis scheme based on the Quikchange method with a novel gel purification step that effectively eliminated template DNA from the products. Following selection for functional complementation in S. cerevisiae cells auxotrophic for purines, several highly functional non-cysteine substitutions were efficiently identified at each desired position, allowing the construction of cysteine-less variants of CfNT2 that retained wild-type affinity for inosine. This combination of an improved site-saturation mutagenesis technique and positive genetic selection provides a simple and efficient means to identify functional and perhaps unexpected amino acid variants at a desired position. PMID:17481563
Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha
2014-09-01
In spite of the economic importance of sesame (Sesamum indicum L.) and the recent availability of its genome sequence, a high-frequency transformation protocol is still not available. The only two existing Agrobacterium-mediated transformation protocols that are available have poor transformation efficiencies of less than 2%. In the present study, we report a high-frequency, simple, and reproducible transformation protocol for sesame. Transformation was done using de-embryonated cotyledons via somatic embryogenic stages. All the critical parameters of transformation, like incubation period of explants in pre-regeneration medium prior to infection by Agrobacterium tumefaciens, cocultivation period, concentrations of acetosyringone in cocultivation medium, kanamycin concentration, and concentration of plant hormones, including 6-benzylaminopurine, have been optimized. This protocol is superior to the two existing protocols in its high regeneration and transformation efficiencies. The transformed sesame lines have been tested by PCR, RT-PCR for neomycin phosphotransferase II gene expression, and β-glucuronidase (GUS) assay. The regeneration frequency and transformation efficiency are 57.33 and 42.66%, respectively. T0 and T1 generation transgenic plants were analyzed, and several T1 plants homozygous for the transgenes were obtained.
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
A multi-functional nanoplatform for tumor synergistic phototherapy
NASA Astrophysics Data System (ADS)
Zhang, Huijuan; Jiao, Xiaojing; Chen, Qianqian; Ji, Yandan; Zhang, Xiaoge; Zhu, Xing; Zhang, Zhenzhong
2016-02-01
Phototherapy, which mainly includes photothermal treatment (PTT) and photodynamic treatment (PDT), is a photo-initiated, noninvasive and effective approach for cancer treatment. The high accumulation of photosensitizers (PSs) in a targeted tumor is still a major challenge for efficient light conversion, to generate reactive oxygen species (ROS) and local hyperthermia. In this study, a simple and efficient hyaluronic acid (HA)-modified nanoplatform (HA-TiO2@MWCNTs) with high tumor-targeting ability, excellent phototherapy efficiency, low light-associated side effects and good water solubility was developed. It could be an effective carrier to load hematoporphyrin monomethyl ether (HMME), owing to the tubular conjugate structure. Apart from this, the as-prepared TiO2@MWCNTs nanocomposites could also be used as PSs for tumor PTT and PDT. Those results in vitro and in vivo showed that the anti-tumor effect of this system-mediated PTT/PDT were significantly better than those of single treatment manner. In addition, this drug delivery system could realize high ratio of drug loading, sustained drug release, prolonged circulation in vivo and active targeted accumulation in tumor. These results suggest that HA-TiO2@MWCNTs/HMME has high potential for tumor synergistic phototherapy as a smart theranostic nanoplatform.
Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu
2017-06-07
We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.
Silicon nanowires for photovoltaic solar energy conversion.
Peng, Kui-Qing; Lee, Shuit-Tong
2011-01-11
Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.
Commercialization of the Stone and Webster/Conoco SCB technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, R.C.; Johnson, W.B.; Ratliff, B.D.
1982-06-01
Stone and Webster have developed a second generation recirculating fluidized bed boiler system, named Solids Circulation Boiler (SCB). The heart of the system is the recirculating fluidized bed, which is schematized, and explained. In November 1981 Conoco announced plans to construct an SCB at Lake Charles LA. Preliminary plot plan and elevation drawings are provided. The advantages of SCB are its rapid and controlled turn on and turn down capability, high carbon efficiency, simple coal and limestone feed system, high sulphur capture, compact design, and low NOx emission.
Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.
Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing
2016-01-27
A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.
Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells
Shao, Yuchuan; Yuan, Yongbo; Huang, Jinsong
2016-01-11
Organometal trihalide perovskites have been demonstrated as excellent light absorbers for high efficiency photovoltaic applications. Previous approaches to increasing the solar cell efficiency have focussed on optimisation of the grain morphology of perovskite thin films. Here, we show that the structural order of the electron-transport layers also has a significant impact on solar cell performance. We demonstrate that the power conversion efficiency of CH 3NH 3PbI 3 planar-heterojunction photovoltaic cells increases from 17.1% to 19.4% when the energy disorder in the fullerene electron-transport layer is reduced by a simple solvent annealing process. The increase in efficiency is the result ofmore » the enhancement in open-circuit voltage from 1.04 V to 1.13 V without sacrificing the short-circuit current and fill factor. Finally, these results shed light on the origin of open-circuit voltage in perovskite solar cells, and provide a new path to further increase their efficiency« less
Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao
2013-09-20
A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.
Quantifying the flow efficiency in constant-current capacitive deionization.
Hawks, Steven A; Knipe, Jennifer M; Campbell, Patrick G; Loeb, Colin K; Hubert, McKenzie A; Santiago, Juan G; Stadermann, Michael
2018-02-01
Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sparse RNA folding revisited: space-efficient minimum free energy structure prediction.
Will, Sebastian; Jabbari, Hosna
2016-01-01
RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences. So far, space-efficient sparsified RNA folding with fold reconstruction was solved only for simple base-pair-based pseudo-energy models. Here, we revisit the problem of space-efficient free energy minimization. Whereas the space-efficient minimization of the free energy has been sketched before, the reconstruction of the optimum structure has not even been discussed. We show that this reconstruction is not possible in trivial extension of the method for simple energy models. Then, we present the time- and space-efficient sparsified free energy minimization algorithm SparseMFEFold that guarantees MFE structure prediction. In particular, this novel algorithm provides efficient fold reconstruction based on dynamically garbage-collected trace arrows. The complexity of our algorithm depends on two parameters, the number of candidates Z and the number of trace arrows T; both are bounded by [Formula: see text], but are typically much smaller. The time complexity of RNA folding is reduced from [Formula: see text] to [Formula: see text]; the space complexity, from [Formula: see text] to [Formula: see text]. Our empirical results show more than 80 % space savings over RNAfold [Vienna RNA package] on the long RNAs from the RNA STRAND database (≥2500 bases). The presented technique is intentionally generalizable to complex prediction algorithms; due to their high space demands, algorithms like pseudoknot prediction and RNA-RNA-interaction prediction are expected to profit even stronger than "standard" MFE folding. SparseMFEFold is free software, available at http://www.bioinf.uni-leipzig.de/~will/Software/SparseMFEFold.
BASIC: A Simple and Accurate Modular DNA Assembly Method.
Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S
2017-01-01
Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].
Wahab, M Farooq; Pohl, Christopher A; Lucy, Charles A
2012-12-28
The development of small particles in ion chromatography (IC) is a recent phenomenon. Very few studies are available on packing polymeric particles bearing ionizable functional groups. This study explores the colloidal and rheological properties that govern slurry packing to form high efficiency IC columns. The polymeric substrate used was non-porous 4.4 μm sulfonated ethylvinylbenzene–divinylbenzene (1.4 mequiv. SO(3)H/g resin) with 55% crosslink. We developed simple tests optical microscopy and sedimentation tests for predicting the quality of packed columns. The negatively charged particles (zeta potential: −52 mV in water) behave like colloids. The influence of counter-ion charge (Al(3+), Mg(2+), Na(+)) and ionic strength on column efficiency followed the Schulze–Hardy rule. Highly flocculating slurries give poorly packed columns with N ~ 900 whereas under non-agglomerating slurry conditions efficiencies up to N > 10,000 can be achieved. A non-agglomerating slurry also shows non-Newtonian behaviour, specifically shear thickening. Packing at lower flow rate (<1 mL/min) or higher temperature (>50 °C) reduces the shear thickening and produces higher efficiency columns. The packed sulfonated resin column is coated with 72 nm quaternary ammonium bearing latex (AS4A) and used in the separation of F(−), Cl(−), NO(2)(−), Br(−), and NO(3)(−) yielding a reduced plate height of 1.9 under optimum conditions.
Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia
2016-06-28
Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.
High Power High Efficiency Diode Laser Stack for Processing
NASA Astrophysics Data System (ADS)
Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan
2018-03-01
High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.
Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping; Yang, Jun
2017-05-01
The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MRI prospectively. A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T 2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. The treatment time and sonication time of the combination group were 102.0 min (55.8-152.2 min) and 25.4 min (12.2-34.1 min); however, they were 149.0 min (87.0-210.0 min) and 38.9 min (14.0-46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm 3 s -1 (28.5-95.8 mm 3 s -1 ), 69.2 ± 29.8% (35.5-97.4%) and 9.9 KJ mm -3 (4.5-15.7 KJ mm -3 ) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm 3 s -1 (8.9-32.9 mm 3 s -1 ), 50.2 ± 27.3% (0-78.6%) and 23.8 KJ mm -3 (12.4-46.2 KJ mm -3 ), respectively. Pain scores in the combination group were 3.0 ± 0.5 points (2-4 points)-significantly less than the simple USgHIFU group. There were no significant adverse reactions in either group. Our data suggest that USgHIFU combined with GnRHa may be performed to ablate symptomatic uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MRI. Advances in knowledge: The conclusions indicate that GnRHa can improve the effectiveness of the USgHIFU treatment of a homogeneous hyperintense leiomyoma on T 2 weighted MRI, and combination treatment could be a promising alternative treatment for the uterine leiomyoma.
NASA Astrophysics Data System (ADS)
Moroz, N. A.; Olvera, A.; Willis, G. M.; Poudeu, P. F. P.
2015-05-01
The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01451d
Maximum efficiency of state-space models of nanoscale energy conversion devices
NASA Astrophysics Data System (ADS)
Einax, Mario; Nitzan, Abraham
2016-07-01
The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.
Maximum efficiency of state-space models of nanoscale energy conversion devices.
Einax, Mario; Nitzan, Abraham
2016-07-07
The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.
In Vivo Functional Genomic Studies of Sterol Carrier Protein-2 Gene in the Yellow Fever Mosquito
Peng, Rong; Maklokova, Vilena I.; Chandrashekhar, Jayadevi H.; Lan, Que
2011-01-01
A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosaomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes. PMID:21437205
Pereira, Rui; Phillips, Christopher; Pinto, Nádia; Santos, Carla; dos Santos, Sidney Emanuel Batista; Amorim, António; Carracedo, Ángel; Gusmão, Leonor
2012-01-01
Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies. PMID:22272242
Electron beam induced current in the high injection regime.
Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B
2015-07-24
Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.
Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis
Cozens, Christopher
2018-01-01
Abstract Engineering proteins for designer functions and biotechnological applications almost invariably requires (or at least benefits from) multiple mutations to non-contiguous residues. Several methods for multiple site-directed mutagenesis exist, but there remains a need for fast and simple methods to efficiently introduce such mutations – particularly for generating large, high quality libraries for directed evolution. Here, we present Darwin Assembly, which can deliver high quality libraries of >108 transformants, targeting multiple (>10) distal sites with minimal wild-type contamination (<0.25% of total population) and which takes a single working day from purified plasmid to library transformation. We demonstrate its efficacy with whole gene codon reassignment of chloramphenicol acetyl transferase, mutating 19 codons in a single reaction in KOD DNA polymerase and generating high quality, multiple-site libraries in T7 RNA polymerase and Tgo DNA polymerase. Darwin Assembly uses commercially available enzymes, can be readily automated, and offers a cost-effective route to highly complex and customizable library generation. PMID:29409059
Yu, Xinghua; Cai, Xingke; Cui, Haodong; Lee, Seung-Wuk; Yu, Xue-Feng; Liu, Bilu
2017-11-23
Titanium carbide MXene quantum dots (QDs) were synthesized using an effective fluorine-free method as a biocompatible and highly efficient nanoagent for photothermal therapy (PTT) applications. In contrast to the traditional, hazardous and time-consuming process of HF pretreatment, our fluorine-free method is safe and simple. More importantly, abundant Al oxoanions were found to be modified on the MXene QD surface by the fluorine-free method, which endowed the QDs with strong and broad absorption in the NIR region. As a result, the as-prepared MXene QDs exhibited an extinction coefficient as large as 52.8 Lg -1 cm -1 at 808 nm and a photothermal conversion efficiency as high as 52.2%. Both the values are among the best reported so far. The as-prepared MXene QDs achieved simultaneous photoacoustic (PA) imaging and the remarkable PTT effect of tumors. Moreover, MXene QDs showed great biocompatibility without causing noticeable toxicity in vitro and in vivo, indicating their high potential for clinical applications.
Lignin and silicate based hydrogels for biosensor applications
NASA Astrophysics Data System (ADS)
Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.
2013-05-01
Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.
Efficient high-performance ultrasound beamforming using oversampling
NASA Astrophysics Data System (ADS)
Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew
1998-05-01
High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.
Shi, Xinjian; Jeong, Hokyeong; Oh, Seung Jae; Ma, Ming; Zhang, Kan; Kwon, Jeong; Choi, In Taek; Choi, Il Yong; Kim, Hwan Kyu; Kim, Jong Kyu; Park, Jong Hyeok
2016-01-01
Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method to overcome this contradiction by incorporating a hybrid conductive distributed Bragg reflector on the back side of the transparent conducting substrate for the front photoelectrochemical electrode, which functions as both an optical filter and a conductive counter-electrode of the rear dye-sensitized solar cell. The hybrid conductive distributed Bragg reflectors were designed to be transparent to the long-wavelength part of the incident solar spectrum (λ>500 nm) for the rear solar cell, while reflecting the short-wavelength photons (λ<500 nm) which can then be absorbed by the front photoelectrochemical electrode for enhanced photocurrent generation. PMID:27324578
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji
A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.
Performance and stability of a liquid anode high-temperature metal-air battery
NASA Astrophysics Data System (ADS)
Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.
2014-02-01
A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.
Hu, Wen; Hirota, Yuichiro; Zhu, Yexin; Yoshida, Nao; Miyamoto, Manabu; Zheng, Tao; Nishiyama, Norikazu
2017-09-22
A macro-/mesoporous Co-N-C-decorated separator is proposed to confine and reutilize migrating polysulfides. Endowed with a desirable structure and synchronous lithio- and sulfiphilic chemistry, the macro-/mesoporous Co-N-C interface manipulates large polysulfide adsorption uptake, enabling good polysulfide adsorption kinetics, reversible electrocatalysis toward redox of anchored polysulfides, and facile charge transport. It significantly boosts the performance of a simple 70 wt % S/MWCNTs (MWCNTs=multi-walled carbon nanotubes) cathode, achieving high initial capacities (e.g., 1406 mAh g -1 at 0.2C, 1203 mAh g -1 at 1C), nearly 100 % Coulombic efficiencies, and high reversible capacities after cycle tests (e.g., 828.4 mAh g -1 at 1C after 100 cycles) at both low and high current rates. These results demonstrate that decorating separator with macro-/mesoporous Co-N-C paves a feasible way for developing advanced Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Zhenyu; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue
2017-12-19
Two new four-coordinate organoboron compounds with 2-(2-hydroxyphenyl)imidazole derivatives as the chelating ligands have been synthesized. They possess high thermal stability and are able to form an amorphous glass state. Crystallographic analyses indicate that the differences in ligand structure cause the change of ππ stacking character. The CH 2 Cl 2 solutions and thin films of these compounds display bright blue emission, and these compounds have appropriate HOMO and LUMO energy levels for carrier injection in OLEDs. By utilizing the good thermal and luminescent properties, as well as the proper frontier orbital energy levels, bright non-doped OLEDs with a simple structure have been realized. Notably, these simple devices show deep blue electroluminescence with the Commission Internationale de l'Éclairage (CIE) coordinate of ca. (0.16, 0.08), which is close to the CIE coordinate of (0.14, 0.08) for standard blue defined by the National Television System Committee. In addition, one of the devices exhibits good performance, showing brightness, current efficiency, power efficiency and external quantum efficiency up to 2692 cd m -2 , 2.50 cd A -1 , 1.81 lm W -1 and 3.63%, respectively. This study not only provides good deep-blue emitting OLED materials that are rarely achieved by using four-coordinate organoboron compounds, but also allows a deeper understanding of the structure-property relationship of 2-(2-hydroxyphenyl)imidazole-based boron complexes, which benefits the further structural design of this type of material.
Design and fabrication of a novel self-powered solid-state neutron detector
NASA Astrophysics Data System (ADS)
LiCausi, Nicholas
There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three key advantages of the novel devices are theoretical neutron detection efficiency of ˜48%, a self-passivating structure that reduces leakage current and detector operation with no bias resulting in extremely low device noise. Processes required to fabricate the 3D type detector were explored and developed in this thesis. The detector capacitance and processing steps have been simulated with MEDICI and TSuprem-4, respectively. Lithography masks were then designed using Cadence. The fabrication process development was conducted in line with standard CMOS grade integrated circuit processing to allow for simple integration with existing fabrication facilities. A number of new processes were developed including the low pressure chemical vapor deposition of conformal boron films using diborane on very high aspect-ratio trenches and holes. Development also included methods for "wet" chemical etching and "dry" reactive ion etching of the deposited boron films. Fabricated detectors were characterized with the transmission line method, 4-point probe, I-V measurements and C-V measurements. Finally the detector response to thermal neutrons was studied. Characterization has shown significant reduction in reverse leakage current density to ˜8x10-8 A/cm2 (nearly 4 orders of magnitude over the previously published data). Results show that the fabrication process developed is capable of producing efficient (˜22.5%) solid-state thermal neutron detectors.
Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin
2016-03-01
Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent.
The production of ultra-high purity single isotopes or tailored isotope mixtures by ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liezers, Martin; Farmer, Orville T.; Dion, Michael P.
2015-01-01
We report the development and testing of a simple collector arrangement for a commercial quadrupole ICP-MS that for the first time has been used to produce small quantities of highly enriched (>99.99%) single isotopes, with deposition rates >10 ng/hour. The collector assembly replaces the standard instrument detector allowing for implantation with simultaneous monitoring of the incident ion current. Even under zero bias implant conditions, low energy (<10 eV), ion collection efficiency was observed to be very high ~99%. 151Eu ion currents of 0.1-0.5 nA were collected on a simple, planar foil without resorting to any type of cup configuration. Recoverymore » of the enriched isotope from such foils is much simpler than from a more complex cup configuration. High rejection of adjacent mass isotopes was demonstrated by selectively implanting 167Er without any discernible co-implantation of 166Er and 168Er. The important analytical possibilities of the new approach to isotope ratio measurement, tracer purification and radiation measurements are discussed.« less
Zhang, Xiaomei; Yu, Hongwen; Yang, Hongjun; Wan, Yuchun; Hu, Hong; Zhai, Zhuang; Qin, Jieming
2015-01-01
A simple sol-gel method using non-toxic and cost-effective precursors has been developed to prepare graphene oxide (GO)/cellulose bead (GOCB) composites for removal of dye pollutants. Taking advantage of the combined benefits of GO and cellulose, the prepared GOCB composites exhibit excellent removal efficiency towards malachite green (>96%) and can be reused for over 5 times through simple filtration method. The high-decontamination performance of the GOCB system is strongly dependent on encapsulation amount of GO, temperature and pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Langmuir isotherm and pseudo-second-order kinetic model. Copyright © 2014 Elsevier Inc. All rights reserved.
Study of Flapping Flight Using Discrete Vortex Method Based Simulations
NASA Astrophysics Data System (ADS)
Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.
2013-12-01
In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.
Ghashang, Majid; Mansoor, Syed Sheik; Aswin, Krishnamoorthy
2013-01-01
A new, simple thermally efficient and solvent-free condensation of 2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-ethylcarboxylate derivatives with coumarin-3-carboxylic acid employing pentafluorophenylammonium triflate (PFPAT) as an inexpensive organocatalyst for the synthesis of a series of ethyl 4,5-dihydro 7-methyl-2-(2-oxo-2H-chromen-3-yl)-4-oxo-5-aryl-3H-chromeno[2,3-d]pyrimidine-6-carboxylate derivatives is described. This method has the advantages of high yields, a cleaner reaction, simple methodology, short reaction times, easy workup, and greener conditions. All the compounds were evaluated for their in vitro antimicrobial activity against different bacterial and fungal strains. PMID:25685489
NASA Astrophysics Data System (ADS)
Azizkhani, Vahid; Montazeri, Faezeh; Molashahi, Ebrahim; Ramazani, Ali
2017-07-01
Magnetic nanoparticles of copper ferrite (CuFe2O4 MNPs) have been simply prepared and applied as an efficient recyclable and reusable catalyst for the green synthesis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HBIW). The structure of the synthesized pure HBIW (recrystallization from ethanol) was confirmed by using various spectral techniques like infrared (IR), 1H-NMR, 13C-NMR and some of its physical properties. The prepared catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). In addition, CuFe2O4 MNPs could be reused up to seven runs without any significant loss of activity. Finally, the remarkable advantages of this method are the simple experimental procedure, shorter reaction times, simple workup, and green aspects by avoiding toxic catalysts and high yield of product.
Schünemann, Katrin; Connelly, Stephen; Kowalczyk, Renata; Sperry, Jonathan; Wilson, Ian A; Fraser, John D; Brimble, Margaret A
2012-08-01
With over a 100 different serotypes, the human rhinovirus (HRV) is the major aetiological agent for the common cold, for which only symptomatic treatment is available. HRV maturation and replication is entirely dependent on the activity of a virally encoded 3C protease that represents an attractive target for the development of therapeutics to treat the common cold. Although a variety of small molecules and peptidomimetics have been found to inhibit HRV 3C protease, no universally compatible assay exists to reliably quantify the activity of the enzyme in vitro. Herein we report the development of a universal and robust solid phase peptide assay that utilizes the full HRV-14 3C protease recognition sequence and the release of 5(6)-carboxyfluorescein to sensitively quantify protease activity. This novel assay overcomes several limitations of existing assays allowing for the simple and efficient analysis of HRV-14 3C protease activity facilitating both high-throughput screening and the accurate kinetic study of HRV-14 3C protease inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modular thermal analyzer routine, volume 1
NASA Technical Reports Server (NTRS)
Oren, J. A.; Phillips, M. A.; Williams, D. R.
1972-01-01
The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.
Simple color tuning of phosphorescent dendrimer light emitting diodes
NASA Astrophysics Data System (ADS)
Namdas, Ebinazar B.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Frampton, Michael J.; Lo, Shih-Chun; Burn, Paul L.
2005-04-01
A simple way of tuning the emission color in solution processed phosphorescent organic light emitting diodes is demonstrated. For each color a single emissive spin-coated layer consisting of a blend of three materials, a fac-tris(2-phenylpyridyl)iridium (III) cored dendrimer (Ir-G1) as the green emitter, a heteroleptic [bis(2-phenylpyridyl)-2-(2'-benzo[4,5-α]thienyl)pyridyl]iridium (III) cored dendrimer [Ir(ppy)2btp] as the red emitter, and 4,4'-bis(N-carbazolyl) biphenyl (CBP) as the host was employed. By adjusting the relative amount of green and red dendrimers in the blends, the color of the light emission was tuned from green to red. High efficiency two layer devices were achieved by evaporating a layer of electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBI) on top of the spin-coated emissive layer. A brightness of 100cd/m2 was achieved at drive voltages in the range 5.3-7.3 V. The peak external efficiencies at this brightness ranged from 31cd/A(18lm/W) to 7cd/A(4lm/W).
The Automatic Recognition of the Abnormal Sky-subtraction Spectra Based on Hadoop
NASA Astrophysics Data System (ADS)
An, An; Pan, Jingchang
2017-10-01
The skylines, superimposing on the target spectrum as a main noise, If the spectrum still contains a large number of high strength skylight residuals after sky-subtraction processing, it will not be conducive to the follow-up analysis of the target spectrum. At the same time, the LAMOST can observe a quantity of spectroscopic data in every night. We need an efficient platform to proceed the recognition of the larger numbers of abnormal sky-subtraction spectra quickly. Hadoop, as a distributed parallel data computing platform, can deal with large amounts of data effectively. In this paper, we conduct the continuum normalization firstly and then a simple and effective method will be presented to automatic recognize the abnormal sky-subtraction spectra based on Hadoop platform. Obtain through the experiment, the Hadoop platform can implement the recognition with more speed and efficiency, and the simple method can recognize the abnormal sky-subtraction spectra and find the abnormal skyline positions of different residual strength effectively, can be applied to the automatic detection of abnormal sky-subtraction of large number of spectra.
Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin
2017-11-01
Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Devarajan, Nainamalai; Karthik, Murugan; Suresh, Palaniswamy
2017-11-07
A straightforward and efficient method has been demonstrated for the oxidative coupling of terminal alkynes using a simple Cu 3 (BTC) 2 -metal organic framework as a sustainable heterogeneous copper catalyst. A series of symmetrical 1,3-diynes bearing diverse functional groups have been synthesized in moderate to excellent yields via a Cu 3 (BTC) 2 catalyzed Glaser-Hay reaction. The presence of the coordinatively unsaturated open Cu II sites in Cu 3 (BTC) 2 catalyzes the homocoupling in the presence of air, as an environment friendly oxidant without the use of external oxidants, ligands or any additives. The present methodology avoids stoichiometric reagents and harsher or special reaction conditions, and shows good functional group tolerance. The as-prepared catalyst could be separated easily by simple filtration and reused several times without any notable loss in activity. The hot filtration test has investigated the true heterogeneity of the catalyst. Additionally, the powder X-ray diffraction pattern of the reused catalyst revealed the high stability of the catalyst.
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-01-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
Micro-optics: enabling technology for illumination shaping in optical lithography
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard
2014-03-01
Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1988-01-01
Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.
Long Term Outdoor Testing of Low Concentration Solar Modules
NASA Astrophysics Data System (ADS)
Fraas, Lewis; Avery, James; Minkin, Leonid; Huang, H. X.; Hebrink, Tim; Hurt, Rik; Boehm, Robert
2011-12-01
A 1-axis carousel tracker equipped with four 3-sun low-concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building rooftops. Third, an experiment is underway comparing aluminum based mirrors with novel 3M Company multilayer polymeric mirrors which are potentially very low cost. Comparing the data from March of 2008 through March of 2011 shows that the aluminum mirror degradation to date is negligible and that the carousel tracker has been operating continuously and reliable. Also, no degradation has been observed for the 3M brand cool mirrors after one year in use.
Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard
2017-09-25
Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.
Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)
NASA Astrophysics Data System (ADS)
Wadsworth, William J.; Coutts, David W.; Webb, Colin E.
1999-11-01
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
NASA Astrophysics Data System (ADS)
Zhang, Yunhai; Lv, Huiru; Cui, Can; Xu, Lingbo; Wang, Peng; Wang, Hao; Yu, Xuegong; Xie, Jiangsheng; Huang, Jiabin; Tang, Zeguo; Yang, Deren
2017-05-01
Solution-processed polycrystalline perovskite films contribute critically to the high photovoltaic performance of perovskite-based solar cells (PSCs). The inevitable electronic trap states at grain boundaries and intrinsic defects such as metallic lead (Pb0) and halide vacancies in perovskite films cause serious carrier recombination loss. Furthermore, the film can easily decompose into PbI2 in a moist atmosphere. Here, we introduce a simple strategy, through a small increase in methylammonium iodide (CH3NH3I, MAI), molar proportion (5%), for perovskite fabrication in ambient air with ˜50% relative humidity. Analysis of the morphology and crystallography demonstrates that excess MAI significantly promotes grain growth without decomposition. X-ray photoemission spectroscopy shows that no metallic Pb0 exists in the perovskite film and the I/Pb ratio is improved. A time-resolved photoluminescence measurement indicates efficient suppression of non-radiative recombination in the perovskite layer. As a result, the device yields improved power conversion efficiency from 14.06% to 18.26% with reduced hysteresis and higher stability under AM1.5G illumination (100 mW cm-2). This work strongly provides a feasible and low-cost way to develop highly efficient PSCs in ambient air.
Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.
Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang
2013-11-07
The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.
Testing particle filters on convective scale dynamics
NASA Astrophysics Data System (ADS)
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.
Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
NASA Astrophysics Data System (ADS)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-01
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
NASA Astrophysics Data System (ADS)
VandeVondele, Joost; Rothlisberger, Ursula
2000-09-01
We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.
Ilyin, S E; Plata-Salamán, C R
2000-02-15
Homogenization of tissue samples is a common first step in the majority of current protocols for RNA, DNA, and protein isolation. This report describes a simple device for centrifugation-mediated homogenization of tissue samples. The method presented is applicable to RNA, DNA, and protein isolation, and we show examples where high quality total cell RNA, DNA, and protein were obtained from brain and other tissue samples. The advantages of the approach presented include: (1) a significant reduction in time investment relative to hand-driven or individual motorized-driven pestle homogenization; (2) easy construction of the device from inexpensive parts available in any laboratory; (3) high replicability in the processing; and (4) the capacity for the parallel processing of multiple tissue samples, thus allowing higher efficiency, reliability, and standardization.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less
Mercurio, Meagan D; Dambergs, Robert G; Herderich, Markus J; Smith, Paul A
2007-06-13
The methyl cellulose precipitable (MCP) tannin assay and a modified version of the Somers and Evans color assay were adapted to high-throughput (HTP) analysis. To improve efficiency of the MCP tannin assay, a miniaturized 1 mL format and a HTP format using 96 well plates were developed. The Somers color assay was modified to allow the standardization of pH and ethanol concentrations of wine samples in a simple one-step dilution with a buffer solution, thus removing inconsistencies between wine matrices prior to analysis and allowing for its adaptation to a HTP format. Validation studies showed that all new formats were efficient, and results were reproducible and analogous to the original formats.
Technique for Very High Order Nonlinear Simulation and Validation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2001-01-01
Finding the sources of sound in large nonlinear fields via direct simulation currently requires excessive computational cost. This paper describes a simple technique for efficiently solving the multidimensional nonlinear Euler equations that significantly reduces this cost and demonstrates a useful approach for validating high order nonlinear methods. Up to 15th order accuracy in space and time methods were compared and it is shown that an algorithm with a fixed design accuracy approaches its maximal utility and then its usefulness exponentially decays unless higher accuracy is used. It is concluded that at least a 7th order method is required to efficiently propagate a harmonic wave using the nonlinear Euler equations to a distance of 5 wavelengths while maintaining an overall error tolerance that is low enough to capture both the mean flow and the acoustics.
Hole Boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naumova, N.; Mourou, G.; Schlegel, T.
Recently achieved high intensities of short laser pulses open new prospects in their application to hole boring in inhomogeneous overdense plasmas and for ignition in precompressed DT fusion targets. A simple analytical model and numerical simulations demonstrate that pulses with intensities exceeding 10{sup 22} W/cm{sup 2} may penetrate deeply into the plasma as a result of efficient ponderomotive acceleration of ions in the forward direction. The penetration depth as big as hundreds of microns depends on the laser fluence, which has to exceed a few tens of GJ/cm{sup 2}. The fast ions, accelerated at the bottom of the channel withmore » an efficiency of more than 20%, show a high directionality and may heat the precompressed target core to fusion conditions.« less
Stability of organic solar cells: challenges and strategies.
Cheng, Pei; Zhan, Xiaowei
2016-05-03
Organic solar cells (OSCs) present some advantages, such as simple preparation, light weight, low cost and large-area flexible fabrication, and have attracted much attention in recent years. Although the power conversion efficiencies have exceeded 10%, the inferior device stability still remains a great challenge. In this review, we summarize the factors limiting the stability of OSCs, such as metastable morphology, diffusion of electrodes and buffer layers, oxygen and water, irradiation, heating and mechanical stress, and survey recent progress in strategies to increase the stability of OSCs, such as material design, device engineering of active layers, employing inverted geometry, optimizing buffer layers, using stable electrodes and encapsulation. Some research areas of device stability that may deserve further attention are also discussed to help readers understand the challenges and opportunities in achieving high efficiency and high stability of OSCs towards future industrial manufacture.