Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
Simple Technique for Dark-Field Photography of Immunodiffusion Bands
Jensh, Ronald P.; Brent, Robert L.
1969-01-01
A simple dark-field photographic technique was developed which enables laboratory personnel with minimal photographic training to easily record antigen-antibody patterns on immunodiffusion plates. Images PMID:4979944
NASA Astrophysics Data System (ADS)
Vidal, Borja; Lafuente, Juan A.
2016-03-01
A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.
A step-by-step solution for embedding user-controlled cines into educational Web pages.
Cornfeld, Daniel
2008-03-01
The objective of this article is to introduce a simple method for embedding user-controlled cines into a Web page using a simple JavaScript. Step-by-step instructions are included and the source code is made available. This technique allows the creation of portable Web pages that allow the user to scroll through cases as if seated at a PACS workstation. A simple JavaScript allows scrollable image stacks to be included on Web pages. With this technique, you can quickly and easily incorporate entire stacks of CT or MR images into online teaching files. This technique has the potential for use in case presentations, online didactics, teaching archives, and resident testing.
A data compression technique for synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Minden, G. J.
1986-01-01
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.
Improving cerebellar segmentation with statistical fusion
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.
New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology
Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying
2014-01-01
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850
Information extraction and transmission techniques for spaceborne synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.
1984-01-01
Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.
Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Kim, Sun Kwon; Gonzalez, Juan M.; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.
2010-01-01
Objective To describe a novel and simple technique (STAR: Simple Targeted Arterial Rendering) to visualize the fetal cardiac outflow tracts from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed a technique to image the outflow tracts by drawing three dissecting lines through the four-chamber view of the heart contained in a STIC volume dataset. Each line generated the following plane: 1) Line 1: ventricular septum “en face” with both great vessels (pulmonary artery anterior to the aorta); 2) Line 2: pulmonary artery with continuation into the longitudinal view of the ductal arch; and 3) Line 3: long axis view of the aorta arising from the left ventricle. The pattern formed by all 3 lines intersecting approximately through the crux of the heart resembles a “star”. The technique was then tested in 50 normal hearts (15.3 – 40.4 weeks of gestation). To determine if the technique could identify planes that departed from the normal images, we tested the technique in 4 cases with proven congenital heart defects (ventricular septal defect, transposition of great vessels, tetralogy of Fallot, and pulmonary atresia with intact ventricular septum). Results The STAR technique was able to generate the intended planes in all 50 normal cases. In the abnormal cases, the STAR technique allowed identification of the ventricular septal defect, demonstrated great vessel anomalies, and displayed views that deviated from what was expected from the examination of normal hearts. Conclusions This novel and simple technique can be used to visualize the outflow tracts and ventricular septum “en face” in normal fetal hearts. The inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease involving the great vessels and/or the ventricular septum. The STAR technique may simplify examination of the fetal heart and could reduce operator dependency. PMID:20878672
Haddock, Luis J; Kim, David Y; Mukai, Shizuo
2013-01-01
Purpose. We describe in detail a relatively simple technique of fundus photography in human and rabbit eyes using a smartphone, an inexpensive app for the smartphone, and instruments that are readily available in an ophthalmic practice. Methods. Fundus images were captured with a smartphone and a 20D lens with or without a Koeppe lens. By using the coaxial light source of the phone, this system works as an indirect ophthalmoscope that creates a digital image of the fundus. The application whose software allows for independent control of focus, exposure, and light intensity during video filming was used. With this app, we recorded high-definition videos of the fundus and subsequently extracted high-quality, still images from the video clip. Results. The described technique of smartphone fundus photography was able to capture excellent high-quality fundus images in both children under anesthesia and in awake adults. Excellent images were acquired with the 20D lens alone in the clinic, and the addition of the Koeppe lens in the operating room resulted in the best quality images. Successful photodocumentation of rabbit fundus was achieved in control and experimental eyes. Conclusion. The currently described system was able to take consistently high-quality fundus photographs in patients and in animals using readily available instruments that are portable with simple power sources. It is relatively simple to master, is relatively inexpensive, and can take advantage of the expanding mobile-telephone networks for telemedicine.
NASA Astrophysics Data System (ADS)
Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.
2017-11-01
We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.
Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique
2015-10-01
This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.
In vivo neuronal calcium imaging in C. elegans.
Chung, Samuel H; Sun, Lin; Gabel, Christopher V
2013-04-10
The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.
Raybould, John N.; Mhiddin, Haji K.
1974-01-01
The maintenance of Simulium adults in the laboratory is necessary for many experimental investigations and is a prerequisite to laboratory colonization. A simple technique for this purpose is described in which each fly is kept separately in a hole bored in a block of expanded polystyrene. ImagesFig. 1 PMID:4549353
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H
2009-09-15
We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.
Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A
2008-10-01
Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.
An integrtated approach to the use of Landsat TM data for gold exploration in west central Nevada
NASA Technical Reports Server (NTRS)
Mouat, D. A.; Myers, J. S.; Miller, N. L.
1987-01-01
This paper represents an integration of several Landsat TM image processing techniques with other data to discriminate the lithologies and associated areas of hydrothermal alteration in the vicinity of the Paradise Peak gold mine in west central Nevada. A microprocessor-based image processing system and an IDIMS system were used to analyze data from a 512 X 512 window of a Landsat-5 TM scene collected on June 30, 1984. Image processing techniques included simple band composites, band ratio composites, principal components composites, and baseline-based composites. These techniques were chosen based on their ability to discriminate the spectral characteristics of the products of hydrothermal alteration as well as of the associated regional lithologies. The simple band composite, ratio composite, two principal components composites, and the baseline-based composites separately can define the principal areas of alteration. Combined, they provide a very powerful exploration tool.
Extremely simple holographic projection of color images
NASA Astrophysics Data System (ADS)
Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej
2012-03-01
A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).
Intracutaneous sterile water for back pain in labour.
Reynolds, J. L.
1994-01-01
Intracutaneous sterile water appears to be a simple, effective, and harmless technique for relieving back pain. This technique has been used to relieve pain of renal colic, whiplash, and back pain in labour. Family doctors often practise obstetrics in small or isolated units that have limited options for pain relief in labour. This technique is simple, is easy to learn, and appears effective for relieving back pain, which complicates about one third of all labours. Images Figures 1-2 Figures 3-4 PMID:7950471
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.
A rapid and robust gradient measurement technique using dynamic single-point imaging.
Jang, Hyungseok; McMillan, Alan B
2017-09-01
We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu
2018-03-01
Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.
Mapping land cover from satellite images: A basic, low cost approach
NASA Technical Reports Server (NTRS)
Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.
1978-01-01
Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.
Shadow-free single-pixel imaging
NASA Astrophysics Data System (ADS)
Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang
2017-11-01
Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.
Simple computer method provides contours for radiological images
NASA Technical Reports Server (NTRS)
Newell, J. D.; Keller, R. A.; Baily, N. A.
1975-01-01
Computer is provided with information concerning boundaries in total image. Gradient of each point in digitized image is calculated with aid of threshold technique; then there is invoked set of algorithms designed to reduce number of gradient elements and to retain only major ones for definition of contour.
Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement
NASA Astrophysics Data System (ADS)
Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.
In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.
Statistical normalization techniques for magnetic resonance imaging.
Shinohara, Russell T; Sweeney, Elizabeth M; Goldsmith, Jeff; Shiee, Navid; Mateen, Farrah J; Calabresi, Peter A; Jarso, Samson; Pham, Dzung L; Reich, Daniel S; Crainiceanu, Ciprian M
2014-01-01
While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.
An edge preserving differential image coding scheme
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1992-01-01
Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.
Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge
2015-01-01
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
Methods for spectral image analysis by exploiting spatial simplicity
Keenan, Michael R.
2010-05-25
Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.
Methods for spectral image analysis by exploiting spatial simplicity
Keenan, Michael R.
2010-11-23
Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.
Document Examination: Applications of Image Processing Systems.
Kopainsky, B
1989-12-01
Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.
Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary
2015-02-07
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.
Legal issues of computer imaging in plastic surgery: a primer.
Chávez, A E; Dagum, P; Koch, R J; Newman, J P
1997-11-01
Although plastic surgeons are increasingly incorporating computer imaging techniques into their practices, many fear the possibility of legally binding themselves to achieve surgical results identical to those reflected in computer images. Computer imaging allows surgeons to manipulate digital photographs of patients to project possible surgical outcomes. Some of the many benefits imaging techniques pose include improving doctor-patient communication, facilitating the education and training of residents, and reducing administrative and storage costs. Despite the many advantages computer imaging systems offer, however, surgeons understandably worry that imaging systems expose them to immense legal liability. The possible exploitation of computer imaging by novice surgeons as a marketing tool, coupled with the lack of consensus regarding the treatment of computer images, adds to the concern of surgeons. A careful analysis of the law, however, reveals that surgeons who use computer imaging carefully and conservatively, and adopt a few simple precautions, substantially reduce their vulnerability to legal claims. In particular, surgeons face possible claims of implied contract, failure to instruct, and malpractice from their use or failure to use computer imaging. Nevertheless, legal and practical obstacles frustrate each of those causes of actions. Moreover, surgeons who incorporate a few simple safeguards into their practice may further reduce their legal susceptibility.
Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael
2018-02-01
Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCafferty, Ian, E-mail: ian.mccafferty@uhb.nhs.uk
This review article aims to give an overview of the current state of imaging, patient selection, agents and techniques used in the management of low-flow vascular malformations. The review includes the current classifications for low-flow vascular malformations including the 2014 updates. Clinical presentation and assessment is covered with a detailed section on the common sclerosant agents used to treat low-flow vascular malformations, including dosing and common complications. Imaging is described with a guide to a simple stratification of the use of imaging for diagnosis and interventional techniques.
The phantom robot - Predictive displays for teleoperation with time delay
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.
1990-01-01
An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Stroke-model-based character extraction from gray-level document images.
Ye, X; Cheriet, M; Suen, C Y
2001-01-01
Global gray-level thresholding techniques such as Otsu's method, and local gray-level thresholding techniques such as edge-based segmentation or the adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be insufficient when the backgrounds include sharply varying contours or fonts in different sizes. A stroke-model is proposed to depict the local features of character objects as double-edges in a predefined size. This model enables us to detect thin connected components selectively, while ignoring relatively large backgrounds that appear complex. Meanwhile, since the stroke width restriction is fully factored in, the proposed technique can be used to extract characters in predefined font sizes. To process large volumes of documents efficiently, a hybrid method is proposed for character extraction from various backgrounds. Using the measurement of class separability to differentiate images with simple backgrounds from those with complex backgrounds, the hybrid method can process documents with different backgrounds by applying the appropriate methods. Experiments on extracting handwriting from a check image, as well as machine-printed characters from scene images demonstrate the effectiveness of the proposed model.
Siegel, Nisan; Storrie, Brian; Bruce, Marc
2016-01-01
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443
Optimisation of radiation dose and image quality in mobile neonatal chest radiography.
Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C
2018-05-01
To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Mobile phone based laser speckle contrast imager for assessment of skin blood flow
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis
2014-10-01
Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.
A spatially adaptive spectral re-ordering technique for lossless coding of hyper-spectral images
NASA Technical Reports Server (NTRS)
Memon, Nasir D.; Galatsanos, Nikolas
1995-01-01
In this paper, we propose a new approach, applicable to lossless compression of hyper-spectral images, that alleviates some limitations of linear prediction as applied to this problem. According to this approach, an adaptive re-ordering of the spectral components of each pixel is performed prior to prediction and encoding. This re-ordering adaptively exploits, on a pixel-by pixel basis, the presence of inter-band correlations for prediction. Furthermore, the proposed approach takes advantage of spatial correlations, and does not introduce any coding overhead to transmit the order of the spectral bands. This is accomplished by using the assumption that two spatially adjacent pixels are expected to have similar spectral relationships. We thus have a simple technique to exploit spectral and spatial correlations in hyper-spectral data sets, leading to compression performance improvements as compared to our previously reported techniques for lossless compression. We also look at some simple error modeling techniques for further exploiting any structure that remains in the prediction residuals prior to entropy coding.
Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen
2014-01-27
A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.
Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen
2014-01-01
A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment. PMID:24473282
A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.
Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-06-01
This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.
A simple water-immersion condenser for imaging living brain slices on an inverted microscope.
Prusky, G T
1997-09-05
Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.
Medicine, material science and security: the versatility of the coded-aperture approach.
Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A
2014-03-06
The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.
Laser imaging for clinical applications
NASA Astrophysics Data System (ADS)
Van Houten, John P.; Cheong, Wai-Fung; Kermit, Eben L.; King, Richard A.; Spilman, Stanley D.; Benaron, David A.
1995-03-01
Medical optical imaging (MOI) uses light emitted into opaque tissues in order to determine the interior structure and chemical content. These optical techniques have been developed in an attempt to prospectively identify impending brain injuries before they become irreversible, thus allowing injury to be avoided or minimized. Optical imaging and spectroscopy center around the simple idea that light passes through the body in small amounts, and emerges bearing clues about tissues through which it passed. Images can be reconstructed from such data, and this is the basis of optical tomography. Over the past few years, techniques have been developed to allow construction of images from such optical data at the bedside. We have used a time-of-flight system reported earlier to monitor oxygenation and image hemorrhage in neonatal brain. This article summarizes the problems that we believe can be addressed by such techniques, and reports on some of our early results.
Stochastic Optical Reconstruction Microscopy (STORM).
Xu, Jianquan; Ma, Hongqiang; Liu, Yang
2017-07-05
Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros
2014-01-01
When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.
2013-04-01
We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.
Tchebichef moment transform on image dithering for mobile applications
NASA Astrophysics Data System (ADS)
Ernawan, Ferda; Abu, Nur Azman; Rahmalan, Hidayah
2012-04-01
Currently, mobile image applications spend a lot of computing process to display images. A true color raw image contains billions of colors and it consumes high computational power in most mobile image applications. At the same time, mobile devices are only expected to be equipped with lower computing process and minimum storage space. Image dithering is a popular technique to reduce the numbers of bit per pixel at the expense of lower quality image displays. This paper proposes a novel approach on image dithering using 2x2 Tchebichef moment transform (TMT). TMT integrates a simple mathematical framework technique using matrices. TMT coefficients consist of real rational numbers. An image dithering based on TMT has the potential to provide better efficiency and simplicity. The preliminary experiment shows a promising result in term of error reconstructions and image visual textures.
Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J
2015-06-01
Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.
Using pyramids to define local thresholds for blob detection.
Shneier, M
1983-03-01
A method of detecting blobs in images is described. The method involves building a succession of lower resolution images and looking for spots in these images. A spot in a low resolution image corresponds to a distinguished compact region in a known position in the original image. Further, it is possible to calculate thresholds in the low resolution image, using very simple methods, and to apply those thresholds to the region of the original image corresponding to the spot. Examples are shown in which variations of the technique are applied to several images.
Scaling images using their background ratio. An application in statistical comparisons of images.
Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J
2003-06-07
Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.
Histology image analysis for carcinoma detection and grading
He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.
2012-01-01
This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890
Medial Meniscus Posterior Root Tear Repair Using a 2-Simple-Suture Pullout Technique.
Samy, Tarek Mohamed; Nassar, Wael A M; Zakaria, Zeiad Mohamed; Farrag Abdelaziz, Ahmed Khaled
2017-06-01
Medial meniscus posterior root tear is one of the underestimated knee injuries in terms of incidence. Despite its grave sequelae, using simple but effective technique can maintain the native knee joint longevity. In the current note, a 2-simple-suture pullout technique was used to effectively reduce the meniscus posterior root to its anatomic position. The success of the technique depended on proper tool selection as well as tibial tunnel direction that allowed easier root suturing and better suture tensioning, without inducing any iatrogenic articular cartilage injury or meniscal tissue loss. Using anterior knee arthroscopy portals, anterolateral as a viewing portal and anteromedial as a working portal, a 7-mm tibial tunnel starting at Gerdy tubercle and ending at the medial meniscus posterior root bed was created. The 2 simple sutures were retrieved through the tunnel and tensioned and secured over a 12-mm-diameter washer at the tibial tunnel outer orifice. Anatomic reduction of the medial meniscus posterior root tear was confirmed arthroscopically intraoperatively and radiologically by postoperative magnetic resonance imaging.
A simple prescription for simulating and characterizing gravitational arcs
NASA Astrophysics Data System (ADS)
Furlanetto, C.; Santiago, B. X.; Makler, M.; de Bom, C.; Brandt, C. H.; Neto, A. F.; Ferreira, P. C.; da Costa, L. N.; Maia, M. A. G.
2013-01-01
Simple models of gravitational arcs are crucial for simulating large samples of these objects with full control of the input parameters. These models also provide approximate and automated estimates of the shape and structure of the arcs, which are necessary for detecting and characterizing these objects on massive wide-area imaging surveys. We here present and explore the ArcEllipse, a simple prescription for creating objects with a shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a Sérsic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+Sérsic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor that prevents ArcEllipse models from accurately describing real lensed systems.
NASA Technical Reports Server (NTRS)
Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)
1986-01-01
The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.
A cost-efficient frequency-domain photoacoustic imaging system
LeBoulluec, Peter; Liu, Hanli; Yuan, Baohong
2013-01-01
Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect. PMID:24659823
A cost-efficient frequency-domain photoacoustic imaging system.
Leboulluec, Peter; Liu, Hanli; Yuan, Baohong
2013-09-01
Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect.
Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.
Volkov, V V; Han, M G; Zhu, Y
2013-11-01
We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.
A simple and non-contact optical imaging probe for evaluation of corneal diseases
NASA Astrophysics Data System (ADS)
Hong, Xun Jie Jeesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, T.
2015-09-01
Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.
2012-01-01
Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID) or computed radiography (CR). We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence. PMID:22452821
A history of scanning electron microscopy developments: towards "wet-STEM" imaging.
Bogner, A; Jouneau, P-H; Thollet, G; Basset, D; Gauthier, C
2007-01-01
A recently developed imaging mode called "wet-STEM" and new developments in environmental scanning electron microscopy (ESEM) allows the observation of nano-objects suspended in a liquid phase, with a few manometers resolution and a good signal to noise ratio. The idea behind this technique is simply to perform STEM-in-SEM, that is SEM in transmission mode, in an environmental SEM. The purpose of the present contribution is to highlight the main advances that contributed to development of the wet-STEM technique. Although simple in principle, the wet-STEM imaging mode would have been limited before high brightness electron sources became available, and needed some progresses and improvements in ESEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.
Determination of high temperature strains using a PC based vision system
NASA Astrophysics Data System (ADS)
McNeill, Stephen R.; Sutton, Michael A.; Russell, Samuel S.
1992-09-01
With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain.
Steganography Detection Using Entropy Measures
2012-08-19
embedded steganography . For this research freely available software for embedding hidden messages will be used to create sample image files to... LSB ) is a simple approach to modify an image , while at the same time, making the change imperceptible to the human eye. By considering the redundant...to 00001110, we have applied the least significant bit technique. 2.4 Significant Bit Image Depiction Steganography fails to comply in its purpose, at
Low-Level Graphics Cues For Solicit Image Interpretation
NASA Astrophysics Data System (ADS)
McAnulty, Michael A.; Gemmill, Jill P.; Kegley, Kathleen A.; Chiu, Haw-Tsang
1984-08-01
Several straightforward techniques for displaying arbitrary solids of the sort encountered in the life sciences are presented, all variations of simple three-dimensional scatter plots. They are all targeted for a medium cost raster display (an AED-5l2 has been used here). Practically any host computer may be used to implement them. All techniques are broadly applicable and were implemented as Master Degree projects. The major hardware constraint is data transmission speed, and this is met by minimizing the amount of graphical data, ignoring enhancement of the data, and using terminal scan-conversion and aspect firmware wherever possible. Three simple rendering techniques and the use of several graphics cues are described.
Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.
ERIC Educational Resources Information Center
Heckman, J. R.; Strick, J. E.
1996-01-01
Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…
Apodized RFI filtering of synthetic aperture radar images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2014-02-01
Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less
A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.
Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M
2016-02-08
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
A Simple low-cost device enables four epi-illumination techniques on standard light microscopes
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.
2016-02-01
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
Histopathology slide projector: a simple improvisation.
Agarwal, Akhilesh K R; Bhattacharya, Nirjhar
2008-07-01
The ability to examine histopathology and other hematological slides under microscope is a necessary and important service which should be available in every health facility. The slides need to be projected on to a screen. We describe an inexpensive and easily constructed technique for projecting magnified images of slides using a simple microscope. It is effective both for making observations and for use as a teaching aid.
Simple Criteria to Determine the Set of Key Parameters of the DRPE Method by a Brute-force Attack
NASA Astrophysics Data System (ADS)
Nalegaev, S. S.; Petrov, N. V.
Known techniques of breaking Double Random Phase Encoding (DRPE), which bypass the resource-intensive brute-force method, require at least two conditions: the attacker knows the encryption algorithm; there is an access to the pairs of source and encoded images. Our numerical results show that for the accurate recovery by numerical brute-force attack, someone needs only some a priori information about the source images, which can be quite general. From the results of our numerical experiments with optical data encryption DRPE with digital holography, we have proposed four simple criteria for guaranteed and accurate data recovery. These criteria can be applied, if the grayscale, binary (including QR-codes) or color images are used as a source.
The Zombie Plot: A Simple Graphic Method for Visualizing the Efficacy of a Diagnostic Test.
Richardson, Michael L
2016-08-09
One of the most important jobs of a radiologist is to pick the most appropriate imaging test for a particular clinical situation. Making a proper selection sometimes requires statistical analysis. The objective of this article is to introduce a simple graphic technique, an ROC plot that has been divided into zones of mostly bad imaging efficacy (ZOMBIE, hereafter referred to as the "zombie plot"), that transforms information about imaging efficacy from the numeric domain into the visual domain. The numeric rationale for the use of zombie plots is given, as are several examples of the clinical use of these plots. Two online calculators are described that simplify the process of producing a zombie plot.
Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells
NASA Astrophysics Data System (ADS)
Itoh, Kazuyoshi
2015-12-01
Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.
Bubble masks for time-encoded imaging of fast neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Brennan, James S.; Marleau, Peter
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixedmore » blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.« less
A new blood vessel extraction technique using edge enhancement and object classification.
Badsha, Shahriar; Reza, Ahmed Wasif; Tan, Kim Geok; Dimyati, Kaharudin
2013-12-01
Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.
Persistence Mapping Using EUV Solar Imager Data
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Young, C. A.
2016-01-01
We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call "Persistence Mapping," to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or "time-lapse" imaging uses the full sample (of size N ), Persistence Mapping rejects (N - 1)/N of the data set and identifies the most relevant 1/N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.
Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho
2007-08-20
In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.
Zhang, Xiaoliang
2017-04-01
Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.
The application of infrared speckle interferometry to the imaging of remote galaxies and AGN
NASA Technical Reports Server (NTRS)
Olivares, Robert O.
1995-01-01
A 1.5 meter reflector, used for both infrared and optical astronomy, is also being used for infrared speckle interferometry and CCD imaging. The application of these imaging techniques to remote galaxies and active galactic nuclei are discussed. A simple model for the origin of speckle in coherent imaging systems is presented. Very careful photometry of the continuum of the galaxy M31 is underway using CCD images. It involves extremely intensive data reduction because the object itself is very large and has low surface brightness.
NASA Astrophysics Data System (ADS)
Ramadhan, Rifqi; Prabowo, Rian Gilang; Aprilliyani, Ria; Basari
2018-02-01
Victims of acute cancer and tumor are growing each year and cancer becomes one of the causes of human deaths in the world. Cancers or tumor tissue cells are cells that grow abnormally and turn to take over and damage the surrounding tissues. At the beginning, cancers or tumors do not have definite symptoms in its early stages, and can even attack the tissues inside of the body. This phenomena is not identifiable under visual human observation. Therefore, an early detection system which is cheap, quick, simple, and portable is essensially required to anticipate the further development of cancer or tumor. Among all of the modalities, microwave imaging is considered to be a cheaper, simple, and portable system method. There are at least two simple image reconstruction algorithms i.e. Filtered Back Projection (FBP) and Algebraic Reconstruction Technique (ART), which have been adopted in some common modalities. In this paper, both algorithms will be compared by reconstructing the image from an artificial tissue model (i.e. phantom), which has two different dielectric distributions. We addressed two performance comparisons, namely quantitative and qualitative analysis. Qualitative analysis includes the smoothness of the image and also the success in distinguishing dielectric differences by observing the image with human eyesight. In addition, quantitative analysis includes Histogram, Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR) calculation were also performed. As a result, quantitative parameters of FBP might show better values than the ART. However, ART is likely more capable to distinguish two different dielectric value than FBP, due to higher contrast in ART and wide distribution grayscale level.
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...
2017-02-24
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
Kast, Rachel; Auner, Gregory; Yurgelevic, Sally; Broadbent, Brandy; Raghunathan, Aditya; Poisson, Laila M; Mikkelsen, Tom; Rosenblum, Mark L; Kalkanis, Steven N
2015-11-01
In neurosurgical applications, a tool capable of distinguishing grey matter, white matter, and areas of tumor and/or necrosis in near-real time could greatly aid in tumor resection decision making. Raman spectroscopy is a non-destructive spectroscopic technique which provides molecular information about the tissue under examination based on the vibrational properties of the constituent molecules. With careful measurement and data processing, a spatial step and repeat acquisition of Raman spectra can be used to create Raman images. Forty frozen brain tissue sections were imaged in their entirety using a 300-µm-square measurement grid, and two or more regions of interest within each tissue were also imaged using a 25 µm-square step size. Molecular correlates for histologic features of interest were identified within the Raman spectra, and novel imaging algorithms were developed to compare molecular features across multiple tissues. In previous work, the relative concentration of individual biomolecules was imaged. Here, the relative concentrations of 1004, 1300:1344, and 1660 cm(-1), which correspond primarily to protein and lipid content, were simultaneously imaged across all tissues. This provided simple interpretation of boundaries between grey matter, white matter, and diseased tissue, and corresponded with findings from adjacent hematoxylin and eosin-stained sections. This novel, yet simple, multi-channel imaging technique allows clinically-relevant resolution with straightforward molecular interpretation of Raman images not possible by imaging any single peak. This method can be applied to either surgical or laboratory tools for rapid, non-destructive imaging of grey and white matter.
High-speed transport-of-intensity phase microscopy with an electrically tunable lens.
Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand
2013-10-07
We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.
Diabetic peripheral neuropathy assessment through texture based analysis of corneal nerve images
NASA Astrophysics Data System (ADS)
Silva, Susana F.; Gouveia, Sofia; Gomes, Leonor; Negrão, Luís; João Quadrado, Maria; Domingues, José Paulo; Morgado, António Miguel
2015-05-01
Diabetic peripheral neuropathy (DPN) is one common complication of diabetes. Early diagnosis of DPN often fails due to the non-availability of a simple, reliable, non-invasive method. Several published studies show that corneal confocal microscopy (CCM) can identify small nerve fibre damage and quantify the severity of DPN, using nerve morphometric parameters. Here, we used image texture features, extracted from corneal sub-basal nerve plexus images, obtained in vivo by CCM, to identify DPN patients, using classification techniques. A SVM classifier using image texture features was used to identify (DPN vs. No DPN) DPN patients. The accuracies were 80.6%, when excluding diabetic patients without neuropathy, and 73.5%, when including diabetic patients without diabetic neuropathy jointly with healthy controls. The results suggest that texture analysis might be used as a complementing technique for DPN diagnosis, without requiring nerve segmentation in CCM images. The results also suggest that this technique has enough sensitivity to detect early disorders in the corneal nerves of diabetic patients.
Fast imaging of live organisms with sculpted light sheets
NASA Astrophysics Data System (ADS)
Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.
2015-04-01
Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.
Theory and applications of structured light single pixel imaging
NASA Astrophysics Data System (ADS)
Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.
2018-02-01
Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.
Leotta, Matthew J; Mundy, Joseph L
2011-07-01
In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.
On the Performance Evaluation of 3D Reconstruction Techniques from a Sequence of Images
NASA Astrophysics Data System (ADS)
Eid, Ahmed; Farag, Aly
2005-12-01
The performance evaluation of 3D reconstruction techniques is not a simple problem to solve. This is not only due to the increased dimensionality of the problem but also due to the lack of standardized and widely accepted testing methodologies. This paper presents a unified framework for the performance evaluation of different 3D reconstruction techniques. This framework includes a general problem formalization, different measuring criteria, and a classification method as a first step in standardizing the evaluation process. Performance characterization of two standard 3D reconstruction techniques, stereo and space carving, is also presented. The evaluation is performed on the same data set using an image reprojection testing methodology to reduce the dimensionality of the evaluation domain. Also, different measuring strategies are presented and applied to the stereo and space carving techniques. These measuring strategies have shown consistent results in quantifying the performance of these techniques. Additional experiments are performed on the space carving technique to study the effect of the number of input images and the camera pose on its performance.
Imaging of acoustic fields using optical feedback interferometry.
Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry
2014-12-01
This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.
Software manual for operating particle displacement tracking data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.
NASA Technical Reports Server (NTRS)
Diskin, Glenn S.; Lempert, Walter R.; Miles, Richard B.; Kumar, Vinod; Glesk, Ivan
1991-01-01
Two flow visualization techniques, i.e., simultaneous two-dimensional fluorescence imaging of H2 and O2 in a diffusion flame, and quasi-linear fluorescence imaging of O2, are presented. The first uses an injection-locked argon-fluoride excimer laser and a partial overlap of a two-photon ground state absorption in H2 with a single photon absorption from a vibrational level in O2. The second uses a simple, high-intensity ultraviolet flashlamp which provides a flux of photons in the 180-195 nm range, sufficient to produce a quasi-one-dimensional fluorescence image of hot/room temperature oxygen. Both techniques do not require that a seed material be introduced into the flow, they can image major flow constituents, and provide an instantaneous snapshot of the flow.
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R
2018-01-01
Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.
Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification
NASA Astrophysics Data System (ADS)
Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan
2011-07-01
A single-wavelength spectral-imaging-based Thai jasmine rice breed identification is demonstrated. Our nondestructive identification approach relies on a combination of fluorescent imaging and simple image processing techniques. Especially, we apply simple image thresholding, blob filtering, and image subtracting processes to either a 545 or a 575nm image in order to identify our desired Thai jasmine rice breed from others. Other key advantages include no waste product and fast identification time. In our demonstration, UVC light is used as our exciting light, a liquid crystal tunable optical filter is used as our wavelength seclector, and a digital camera with 640activepixels×480activepixels is used to capture the desired spectral image. Eight Thai rice breeds having similar size and shape are tested. Our experimental proof of concept shows that by suitably applying image thresholding, blob filtering, and image subtracting processes to the selected fluorescent image, the Thai jasmine rice breed can be identified with measured false acceptance rates of <22.9% and <25.7% for spectral images at 545 and 575nm wavelengths, respectively. A measured fast identification time is 25ms, showing high potential for real-time applications.
RGB-NDVI colour composites for visualizing forest change dynamics
NASA Technical Reports Server (NTRS)
Sader, S. A.; Winne, J. C.
1992-01-01
The study presents a simple and logical technique to display and quantify forest change using three dates of satellite imagery. The normalized difference vegetation index (NDVI) was computed for each date of imagery to define high and low vegetation biomass. Color composites were generated by combining each date of NDVI with either the red, green, or blue (RGB) image planes in an image display monitor. Harvest and regeneration areas were quantified by applying a modified parallelepiped classification creating an RGB-NDVI image with 27 classes that were grouped into nine major forest change categories. Aerial photographs and stand history maps are compared with the forest changes indicated by the RGB-NDVI image. The utility of the RGB-NDVI technique for supporting forest inventories and updating forest resource information systems are presented and discussed.
Simple Köhler Homogenizers for Image-forming Solar Concentrators
NASA Astrophysics Data System (ADS)
Winston, Roland; Zhang, Weiya
2011-12-01
We demonstrate that the Köhler illumination technique can be applied to the image-forming solar concentrators to solve the problem of "hot" spot and to generate the square irradiance pattern. The Köhler homogenizer can be simply a single aspheric lens optimized following a few guidelines. Two examples are given including a Fresnel lens based concentrator and a two-mirror aplanatic system.
Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development
Bertrand, Vincent; Lenne, Pierre-François
2014-01-01
Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time. PMID:24836407
3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy
Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan
2017-01-01
High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings. PMID:28819645
Doi, Ryoichi
2012-09-01
Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.
Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon
2014-03-01
Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Fast widefield techniques for fluorescence and phase endomicroscopy
NASA Astrophysics Data System (ADS)
Ford, Tim N.
Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.
Principal components colour display of ERTS imagery
NASA Technical Reports Server (NTRS)
Taylor, M. M.
1974-01-01
In the technique presented, colours are not derived from single bands, but rather from independent linear combinations of the bands. Using a simple model of the processing done by the visual system, three informationally independent linear combinations of the four ERTS bands are mapped onto the three visual colour dimensions of brightness, redness-greenness and blueness-yellowness. The technique permits user-specific transformations which enhance particular features, but this is not usually needed, since a single transformation provides a picture which conveys much of the information implicit in the ERTS data. Examples of experimental vector images with matched individual band images are shown.
Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.
2018-04-01
Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.
Application of three-dimensional rendering in joint-related ganglion cysts.
Spinner, Robert J; Edwards, Phillip K; Amrami, Kimberly K
2006-05-01
The origin of para-articular cysts is poorly understood and controversial. The relatively common, simple (extraneural) cysts are presumed to be derived from joints, although joint connections are not always established. Rarer complex cysts are thought by many to form de novo within nerves (intraneural ganglion cysts) or within vessels (adventitial cysts) (degenerative theory). We believe that these simple and complex ganglion cysts are joint-related (articular theory). Joint connections are often not readily appreciated with routine imaging or at surgery. Not identifying and/or treating joint connections frequently leads to cyst recurrence. More sophisticated imaging may enhance visualization of these joint connections. We created a 3D rendering technique to assess potential joint connections of simple and complex cysts localized to the knee and superior tibiofibular joints in patients with fibular (peroneal) neuropathy. Two- and three-dimensional data sets from MRI examinations were segmented semiautomatically by signal intensity with further refinement based on interaction with the user to identify specific anatomic structures, such as small nerves and vessels on serial images. The bone, cysts, nerves, and vessels were each assigned different color representations, and 3D renderings were created in ANALYZE using the data sets closest to isotropic (voxel with equal length in all dimensions) resolution as the primary background rendering. We selected four cases to illustrate the spectrum of pathology. In all of these cases, we demonstrated joint connections and correlated imaging and operative findings. Surgery addressing the cyst and the joint connection resulted in excellent outcomes; postoperative MRIs done more than 6 months later confirmed that there was no recurrence. In addition to highlighting the important relationship of these cysts to neighboring anatomic structures, this 3D technique allows visualization of "occult" connections not readily appreciated with standard MR imaging. We believe that these joint-related cysts have a common pathogenesis; they dissect through a capsular rent and follow the path of least resistance; they may form simple cysts by dissecting out into the soft tissue, or more complex cysts by dissecting within the epineurium of nerves or adventitia of vessels (along an articular branch), or various combinations of all of these types of cysts. Understanding the pathogenesis for cyst formation will improve surgical management and outcomes. We have adapted this 3D technique to enhance the visualization of cysts occurring at other joints.
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
Terahertz reflection imaging using Kirchhoff migration.
Dorney, T D; Johnson, J L; Van Rudd, J; Baraniuk, R G; Symes, W W; Mittleman, D M
2001-10-01
We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.
Hierarchical image coding with diamond-shaped sub-bands
NASA Technical Reports Server (NTRS)
Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken
1992-01-01
We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.
ERIC Educational Resources Information Center
Boddy, Clive Roland
2004-01-01
This paper describes how a simple qualitative market research technique using a projective device called a bubble drawing can be used as a useful feedback device to gain an understanding of students' views of the teaching effectiveness of a market research lecture. Comparisons are made with feedback gained from teaching observations and insights…
Using Java to generate globally unique identifiers for DICOM objects.
Kamauu, Aaron W C; Duvall, Scott L; Avrin, David E
2009-03-01
Digital imaging and communication in medicine (DICOM) specifies that all DICOM objects have globally unique identifiers (UIDs). Creating these UIDs can be a difficult task due to the variety of techniques in use and the requirement to ensure global uniqueness. We present a simple technique of combining a root organization identifier, assigned descriptive identifiers, and JAVA generated unique identifiers to construct DICOM compliant UIDs.
Kumar, B Santhosh; Sandhyamani, S; Nazeer, Shaiju S; Jayasree, R S
2015-02-01
Autofluorescence exhibited by tissues often interferes with immunofluorescence. Using imaging and spectral analysis, we observed remarkable reduction of autofluorescence of formalin fixed paraffin embedded tissues irradiated with light prior to incubation with immunofluorescent dyes. The technique of photobleaching offers significant improvement in the quality and specificity of immunofluorescence. This has the potential for better techniques for disease diagnosis.
An underwater turbulence degraded image restoration algorithm
NASA Astrophysics Data System (ADS)
Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew
2017-09-01
Underwater turbulence occurs due to random fluctuations of temperature and salinity in the water. These fluctuations are responsible for variations in water density, refractive index and attenuation. These impose random geometric distortions, spatio-temporal varying blur, limited range visibility and limited contrast on the acquired images. There are some restoration techniques developed to address this problem, such as image registration based, lucky region based and centroid-based image restoration algorithms. Although these methods demonstrate better results in terms of removing turbulence, they require computationally intensive image registration, higher CPU load and memory allocations. Thus, in this paper, a simple patch based dictionary learning algorithm is proposed to restore the image by alleviating the costly image registration step. Dictionary learning is a machine learning technique which builds a dictionary of non-zero atoms derived from the sparse representation of an image or signal. The image is divided into several patches and the sharp patches are detected from them. Next, dictionary learning is performed on these patches to estimate the restored image. Finally, an image deconvolution algorithm is employed on the estimated restored image to remove noise that still exists.
Camp, Christopher L; Heidenreich, Mark J; Dahm, Diane L; Bond, Jeffrey R; Collins, Mark S; Krych, Aaron J
2016-03-01
Tibial tubercle-trochlear groove (TT-TG) distance is a variable that helps guide surgical decision-making in patients with patellar instability. The purpose of this study was to compare the accuracy and reliability of an MRI TT-TG measuring technique using a simple external alignment method to a previously validated gold standard technique that requires advanced software read by radiologists. TT-TG was calculated by MRI on 59 knees with a clinical diagnosis of patellar instability in a blinded and randomized fashion by two musculoskeletal radiologists using advanced software and by two orthopaedists using the study technique which utilizes measurements taken on a simple electronic imaging platform. Interrater reliability between the two radiologists and the two orthopaedists and intermethods reliability between the two techniques were calculated using interclass correlation coefficients (ICC) and concordance correlation coefficients (CCC). ICC and CCC values greater than 0.75 were considered to represent excellent agreement. The mean TT-TG distance was 14.7 mm (Standard Deviation (SD) 4.87 mm) and 15.4 mm (SD 5.41) as measured by the radiologists and orthopaedists, respectively. Excellent interobserver agreement was noted between the radiologists (ICC 0.941; CCC 0.941), the orthopaedists (ICC 0.978; CCC 0.976), and the two techniques (ICC 0.941; CCC 0.933). The simple TT-TG distance measurement technique analysed in this study resulted in excellent agreement and reliability as compared to the gold standard technique. This method can predictably be performed by orthopaedic surgeons without advanced radiologic software. II.
Two-dimensional shape recognition using oriented-polar representation
NASA Astrophysics Data System (ADS)
Hu, Neng-Chung; Yu, Kuo-Kan; Hsu, Yung-Li
1997-10-01
To deal with such a problem as object recognition of position, scale, and rotation invariance (PSRI), we utilize some PSRI properties of images obtained from objects, for example, the centroid of the image. The corresponding position of the centroid to the boundary of the image is invariant in spite of rotation, scale, and translation of the image. To obtain the information of the image, we use the technique similar to Radon transform, called the oriented-polar representation of a 2D image. In this representation, two specific points, the centroid and the weighted mean point, are selected to form an initial ray, then the image is sampled with N angularly equispaced rays departing from the initial rays. Each ray contains a number of intersections and the distance information obtained from the centroid to the intersections. The shape recognition algorithm is based on the least total error of these two items of information. Together with a simple noise removal and a typical backpropagation neural network, this algorithm is simple, but the PSRI is achieved with a high recognition rate.
Lossless Astronomical Image Compression and the Effects of Random Noise
NASA Technical Reports Server (NTRS)
Pence, William
2009-01-01
In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.
ERIC Educational Resources Information Center
Mitchell, Charles W.
1985-01-01
Using many different media, students can turn leaves into images which can be used for study, bulletin boards, collections, and identification. The simple techniques described include pastel printing, smoke prints, ink or tempura printing, bleach printing on t-shirts, ditto machine printing using carbon paper, and making cutouts. (DH)
Indoor navigation by image recognition
NASA Astrophysics Data System (ADS)
Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man
2017-07-01
With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.
The Fringe-Imaging Skin Friction Technique PC Application User's Manual
NASA Technical Reports Server (NTRS)
Zilliac, Gregory G.
1999-01-01
A personal computer application (CXWIN4G) has been written which greatly simplifies the task of extracting skin friction measurements from interferograms of oil flows on the surface of wind tunnel models. Images are first calibrated, using a novel approach to one-camera photogrammetry, to obtain accurate spatial information on surfaces with curvature. As part of the image calibration process, an auxiliary file containing the wind tunnel model geometry is used in conjunction with a two-dimensional direct linear transformation to relate the image plane to the physical (model) coordinates. The application then applies a nonlinear regression model to accurately determine the fringe spacing from interferometric intensity records as required by the Fringe Imaging Skin Friction (FISF) technique. The skin friction is found through application of a simple expression that makes use of lubrication theory to relate fringe spacing to skin friction.
Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.
Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu
2015-11-07
Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.
Smartphone schlieren and shadowgraph imaging
NASA Astrophysics Data System (ADS)
Settles, Gary S.
2018-05-01
Schlieren and shadowgraph techniques are used throughout the realm of scientific experimentation to reveal transparent refractive phenomena, but the requirement of large precise optics has kept them mostly out of reach of the public. New developments, including the ubiquity of smartphones with high-resolution digital cameras and the Background-Oriented Schlieren technique (BOS), which replaces the precise optics with digital image processing, have changed these circumstances. This paper demonstrates a number of different schlieren and shadowgraph setups and image examples based only on a smartphone, its software applications, and some inexpensive accessories. After beginning with a simple traditional schlieren system the emphasis is placed on what can be visualized and measured using BOS and digital slit-scan imaging on the smartphone. Thermal plumes, liquid mixing and glass are used as subjects of investigation. Not only recreational and experimental photography, but also serious scientific imaging can be done.
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V.; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R.
2018-01-01
Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods. PMID:29619277
Wholefield displacement measurements using speckle image processing techniques for crash tests
NASA Astrophysics Data System (ADS)
Sriram, P.; Hanagud, S.; Ranson, W. F.
The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.
Lilliu, S; Maragliano, C; Hampton, M; Elliott, M; Stefancich, M; Chiesa, M; Dahlem, M S; Macdonald, J E
2013-11-27
We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.
A simple infrared-augmented digital photography technique for detection of pupillary abnormalities.
Shazly, Tarek A; Bonhomme, G R
2015-03-01
The purpose of the study was to describe a simple infrared photography technique to aid in the diagnosis and documentation of pupillary abnormalities. An unmodified 12-megapixel "point and shoot" digital camera was used to obtain binocular still photos and videos under different light conditions with near-infrared illuminating frames. The near-infrared light of 850 nm allows the capture of clear pupil images in both dim and bright light conditions. It also allows easy visualization of the pupil despite pigmented irides by augmenting the contrast between the iris and the pupil. The photos and videos obtained illustrated a variety of pupillary abnormalities using the aforementioned technique. This infrared-augmented photography technique supplements medical education, and aids in the more rapid detection, diagnosis, and documentation of a wide spectrum of pupillary abnormalities. Its portability and ease of use with minimal training complements the education of trainees and facilitates the establishment of difficult diagnoses.
PERSISTENCE MAPPING USING EUV SOLAR IMAGER DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, B. J.; Young, C. A., E-mail: barbara.j.thompson@nasa.gov
We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call “Persistence Mapping,” to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or “time-lapse” imaging uses the full sample (of size N ), Persistence Mapping rejects ( N − 1)/ N of the data set and identifies the most relevant 1/ N values using themore » following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.« less
Two-photon speckle illumination for super-resolution microscopy.
Negash, Awoke; Labouesse, Simon; Chaumet, Patrick C; Belkebir, Kamal; Giovannini, Hugues; Allain, Marc; Idier, Jérôme; Sentenac, Anne
2018-06-01
We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.
Recent developments in spectroscopic imaging techniques for historical paintings - A review
NASA Astrophysics Data System (ADS)
Alfeld, M.; de Viguerie, L.
2017-10-01
This paper provides an overview over the application of scanning macro-XRF with mobile instruments for the investigation of historical paintings. The method is compared to synchrotron based macro-XRF imaging and Neutron Activation Auto-Radiography. Full-Field XRF imaging instruments, a potential future alternative to scanning macro-XRF, and confocal XRF, providing complementary depth profiles and developing into a 3D imaging technique itself, are described with the focus on investigations of historical paintings. Recent developments of X-ray radiography are presented and the investigation of cultural heritage objects other than paintings by MA-XRF is summarized. In parallel to XRF, hyperspectral imaging in the visible and range has developed into a technique with comparable capabilities, providing insight in chemical compounds, where XRF imaging identifies the distribution of elements. Due to the complementary nature of these techniques the latter is summarized. Further, progress and state of the art in data evaluation for spectroscopic imaging is discussed. In general it could be observed that technical capabilities in MA-XRF and hyperspectral imaging have reached a plateau and that with the availability of commercial instruments the focus of recent studies has shifted from the development of methods to applications of the instruments. Further, that while simple instruments are easily available with medium budgets only few groups have high-end instrumentation available, bought or in-house built.
Diffraction-limited lucky imaging with a 12" commercial telescope
NASA Astrophysics Data System (ADS)
Baptista, Brian J.
2014-08-01
Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.
Photothermal imaging of skeletal muscle mitochondria.
Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi
2017-06-01
The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers.
Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging
NASA Astrophysics Data System (ADS)
Haynes, Mark Spencer
Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.
Constellation Coverage Analysis
NASA Technical Reports Server (NTRS)
Lo, Martin W. (Compiler)
1997-01-01
The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.
Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.
Gallais, Laurent; Monneret, Serge
2016-07-15
We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.
Synthetic schlieren—application to the visualization and characterization of air convection
NASA Astrophysics Data System (ADS)
Taberlet, Nicolas; Plihon, Nicolas; Auzémery, Lucile; Sautel, Jérémy; Panel, Grégoire; Gibaud, Thomas
2018-05-01
Synthetic schlieren is a digital image processing optical method relying on the variation of optical index to visualize the flow of a transparent fluid. In this article, we present a step-by-step, easy-to-implement and affordable experimental realization of this technique. The method is applied to air convection caused by a warm surface. We show that the velocity of rising convection plumes can be linked to the temperature of the warm surface and propose a simple physical argument to explain this dependence. Moreover, using this method, one can reveal the tenuous convection plumes rising from one’s hand, a phenomenon invisible to the naked eye. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques (refer to the video abstract).
Seismic migration in generalized coordinates
NASA Astrophysics Data System (ADS)
Arias, C.; Duque, L. F.
2017-06-01
Reverse time migration (RTM) is a technique widely used nowadays to obtain images of the earth’s sub-surface, using artificially produced seismic waves. This technique has been developed for zones with flat surface and when applied to zones with rugged topography some corrections must be introduced in order to adapt it. This can produce defects in the final image called artifacts. We introduce a simple mathematical map that transforms a scenario with rugged topography into a flat one. The three steps of the RTM can be applied in a way similar to the conventional ones just by changing the Laplacian in the acoustic wave equation for a generalized one. We present a test of this technique using the Canadian foothills SEG velocity model.
Classification of earth terrain using polarimetric synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Lim, H. H.; Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Shin, R. T.; Van Zyl, J. J.
1989-01-01
Supervised and unsupervised classification techniques are developed and used to classify the earth terrain components from SAR polarimetric images of San Francisco Bay and Traverse City, Michigan. The supervised techniques include the Bayes classifiers, normalized polarimetric classification, and simple feature classification using discriminates such as the absolute and normalized magnitude response of individual receiver channel returns and the phase difference between receiver channels. An algorithm is developed as an unsupervised technique which classifies terrain elements based on the relationship between the orientation angle and the handedness of the transmitting and receiving polariation states. It is found that supervised classification produces the best results when accurate classifier training data are used, while unsupervised classification may be applied when training data are not available.
An Information-Based Machine Learning Approach to Elasticity Imaging
Hoerig, Cameron; Ghaboussi, Jamshid; Insana, Michael. F.
2016-01-01
An information-based technique is described for applications in mechanical-property imaging of soft biological media under quasi-static loads. We adapted the Autoprogressive method that was originally developed for civil engineering applications for this purpose. The Autoprogressive method is a computational technique that combines knowledge of object shape and a sparse distribution of force and displacement measurements with finite-element analyses and artificial neural networks to estimate a complete set of stress and strain vectors. Elasticity imaging parameters are then computed from estimated stresses and strains. We introduce the technique using ultrasonic pulse-echo measurements in simple gelatin imaging phantoms having linear-elastic properties so that conventional finite-element modeling can be used to validate results. The Autoprogressive algorithm does not require any assumptions about the material properties and can, in principle, be used to image media with arbitrary properties. We show that by selecting a few well-chosen force-displacement measurements that are appropriately applied during training and establish convergence, we can estimate all nontrivial stress and strain vectors throughout an object and accurately estimate an elastic modulus at high spatial resolution. This new method of modeling the mechanical properties of tissue-like materials introduces a unique method of solving the inverse problem and is the first technique for imaging stress without assuming the underlying constitutive model. PMID:27858175
From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal
2016-02-01
X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray-Chaudhuri, A.K.; Ng, W.; Cerrina, F.
1995-11-01
Multilayer-coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo--Si multilayer-coated Schwarzschildmore » camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less
Stress Measurement by Geometrical Optics
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Rossnagel, S. M.
1986-01-01
Fast, simple technique measures stresses in thin films. Sample disk bowed by stress into approximately spherical shape. Reflected image of disk magnified by amount related to curvature and, therefore, stress. Method requires sample substrate, such as cheap microscope cover slide, two mirrors, laser light beam, and screen.
Diazo processing of LANDSAT imagery: A low-cost instructional technique
NASA Technical Reports Server (NTRS)
Lusch, D. P.
1981-01-01
Diazo processing of LANDSAT imagery is a relatively simple and cost effective method of producing enhanced renditions of the visual LANDSAT products. This technique is capable of producing a variety of image enhancements which have value in a teaching laboratory environment. Additionally, with the appropriate equipment, applications research which relys on accurate and repeatable results is possible. Exposure and development equipment options, diazo materials, and enhancement routines are discussed.
NASA Technical Reports Server (NTRS)
Sayood, K.; Chen, Y. C.; Wang, X.
1992-01-01
During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.
Magnetic resonance imaging of the prostate: interpretation using the PI-RADS V2.
Torregrosa Andrés, A; Otero García, M; Sineiro Galiñanes, M
Version 2 of the Prostate Imaging and Reporting and Data System (PI-RADS) was developed to help in the detection, location, and characterization of prostate cancer with magnetic resonance imaging (MRI). Its recommendations for standardizing image acquisition parameters aims to reduce variability in the interpretation of MRI studies of the prostate; this approach, together with structured reporting, has the added value of improving communication among radiologists and between radiologists and urologists. This article aims to explain the PI-RADS v2 classification in a simple way, using illustrative images for each of the categories, as well as to recommend the use of a standard technique that helps ensure the reproducibility of multiparametric MRI. The PI-RADS v2 is simple to appy when reading multiparametric MRI studies of the prostate. It is important for radiologists doing prostate imaging to use the PI-RADS v2 in daily practice to write clear and concise reports that improve communication between radiologists and urologists. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Imaging with hypertelescopes: a simple modal approach
NASA Astrophysics Data System (ADS)
Aime, C.
2008-05-01
Aims: We give a simple analysis of imaging with hypertelescopes, a technique proposed by Labeyrie to produce snapshot images using arrays of telescopes. The approach is modal: we describe the transformations induced by the densification onto a sinusoidal decomposition of the focal image instead of the usual point spread function approach. Methods: We first express the image formed at the focus of a diluted array of apertures as the product R_0(α) X_F(α) of the diffraction pattern of the elementary apertures R_0(α) by the object-dependent interference term X_F(α) between all apertures. The interference term, which can be written in the form of a Fourier Series for an extremely diluted array, produces replications of the object, which makes observing the image difficult. We express the focal image after the densification using the approach of Tallon and Tallon-Bosc. Results: The result is very simple for an extremely diluted array. We show that the focal image in a periscopic densification of the array can be written as R_0(α) X_F(α/γ), where γ is the factor of densification. There is a dilatation of the interference term while the diffraction term is unchanged. After de-zooming, the image can be written as γ2 X_F(α)R_0(γ α), an expression which clearly indicates that the final image corresponds to the center of the Fizeau image intensified by γ2. The imaging limitations of hypertelescopes are therefore those of the original configuration. The effect of the suppression of image replications is illustrated in a numerical simulation for a fully redundant configuration and a non-redundant one.
Wang, Hongzhi; Yushkevich, Paul A.
2013-01-01
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427
Radiometric calibration of Landsat Thematic Mapper multispectral images
Chavez, P.S.
1989-01-01
A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author
Some spectral and spatial characteristics of LANDSAT data
NASA Technical Reports Server (NTRS)
1982-01-01
Activities are provided for: (1) developing insight into the way in which the LANDSAT MSS produces multispectral data; (2) promoting understanding of what a "pixel" means in a LANDSAT image and the implications of the term "mixed pixel"; (3) explaining the concept of spectral signatures; (4) deriving a simple signature for a class or feature by analysis: of the four band images; (5) understanding the production of false color composites; (6) appreciating the use of color additive techniques; (7) preparing Diazo images; and (8) making quick visual identifications of major land cover types by their characteristic gray tones or colors in LANDSAT images.
Thaikruea, Lakkana; Santidherakul, Sineenart
2018-05-01
Our team aimed to create a new, simple, and inexpensive technique for collecting and transferring of toxic jellyfish specimens and for nematocysts identification. We collected tentacles of Chironex spp., Morbakka spp., and Physalia spp., and transferred them from the beaches by standard and by 'vacuum sticky tape' (VST) techniques. For the VST technique, our team placed the sticky tape on a tentacle and then folded it over to seal the tentacle in the equivalent of a vacuum. We kept the VST in room temperature. For nematocyst identification, we placed the VST on a glass microscope slide and took photographs down the microscope's eye piece using a mobile phone camera. The image quality was as good as when produced by standard techniques. Different classes of toxic jellyfish could be identified. Thus, VST is a potential public health breakthrough because it is practical, durable, inexpensive, allows good discrimination. It enables early warning of danger to health and rapid response via social network.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.
Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
NASA Astrophysics Data System (ADS)
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin
2012-11-21
New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.
Registration of heat capacity mapping mission day and night images
NASA Technical Reports Server (NTRS)
Watson, K.; Hummer-Miller, S.; Sawatzky, D. L.
1982-01-01
Registration of thermal images is complicated by distinctive differences in the appearance of day and night features needed as control in the registration process. These changes are unlike those that occur between Landsat scenes and pose unique constraints. Experimentation with several potentially promising techniques has led to selection of a fairly simple scheme for registration of data from the experimental thermal satellite HCMM using an affine transformation. Two registration examples are provided.
Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope
Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.
2012-01-01
Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580
Performance tests and quality control of cathode ray tube displays.
Roehrig, H; Blume, H; Ji, T L; Browne, M
1990-08-01
Spatial resolution, noise, characteristic curve, and absolute luminance are the essential parameters that describe physical image quality of a display. This paper presents simple procedures for assessing the performance of a cathode ray tube (CRT) in terms of these parameters as well as easy set up techniques. The procedures can be used in the environment where the CRT is used. The procedures are based on a digital representation of the Society of Motion Pictures and Television Engineers pattern plus a few simple other digital patterns. Additionally, measurement techniques are discussed for estimating brightness uniformity, veiling glare, and distortion. Apart from the absolute luminance, all performance features can be assessed with an uncalibrated photodetector and the eyes of a human observer. The measurement techniques especially enable the user to perform comparisons of different display systems.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2017-08-01
Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.
DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.
2010-03-01
Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.
Personalized models of bones based on radiographic photogrammetry.
Berthonnaud, E; Hilmi, R; Dimnet, J
2009-07-01
The radiographic photogrammetry is applied, for locating anatomical landmarks in space, from their two projected images. The goal of this paper is to define a personalized geometric model of bones, based uniquely on photogrammetric reconstructions. The personalized models of bones are obtained from two successive steps: their functional frameworks are first determined experimentally, then, the 3D bone representation results from modeling techniques. Each bone functional framework is issued from direct measurements upon two radiographic images. These images may be obtained using either perpendicular (spine and sacrum) or oblique incidences (pelvis and lower limb). Frameworks link together their functional axes and punctual landmarks. Each global bone volume is decomposed in several elementary components. Each volumic component is represented by simple geometric shapes. Volumic shapes are articulated to the patient's bone structure. The volumic personalization is obtained by best fitting the geometric model projections to their real images, using adjustable articulations. Examples are presented to illustrating the technique of personalization of bone volumes, directly issued from the treatment of only two radiographic images. The chosen techniques for treating data are then discussed. The 3D representation of bones completes, for clinical users, the information brought by radiographic images.
Laser interference fringe tomography: a novel 3D imaging technique for pathology
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan
2011-03-01
Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.
Registration of Heat Capacity Mapping Mission day and night images
NASA Technical Reports Server (NTRS)
Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)
1982-01-01
Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.
Optimized optical clearing method for imaging central nervous system
NASA Astrophysics Data System (ADS)
Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan
2015-03-01
The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.
NASA Astrophysics Data System (ADS)
Sanger, Demas S.; Haneishi, Hideaki; Miyake, Yoichi
1995-08-01
This paper proposed a simple and automatic method for recognizing the light sources from various color negative film brands by means of digital image processing. First, we stretched the image obtained from a negative based on the standardized scaling factors, then extracted the dominant color component among red, green, and blue components of the stretched image. The dominant color component became the discriminator for the recognition. The experimental results verified that any one of the three techniques could recognize the light source from negatives of any film brands and all brands greater than 93.2 and 96.6% correct recognitions, respectively. This method is significant for the automation of color quality control in color reproduction from color negative film in mass processing and printing machine.
A fast infrared scanning technique for nondestructive testing
NASA Astrophysics Data System (ADS)
Hartikainen, Jari
1989-04-01
A simple and fast thermal NDT measurement system is described and its usefulness is demonstrated using a honeycomb structure as a test sample. The sample is heated with a hot air jet and the surface temperature differences due to subsurface defects are detected with a single HgCdTe detector. An image of the sample is formed by scanning over the sample surface with a deflection mirror in the y direction while moving the sample in the x direction. The measurement time is typically 6 s per image and several images are averaged to improve signal to noise ratio. The main advantages of this system compared to conventional infrared camera techniques are considerably reduced cost and the ease with which the system can be modified to various applications.
Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco
2013-09-03
Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.
Optical Measurement Technique for Space Column Characterization
NASA Technical Reports Server (NTRS)
Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.
2004-01-01
A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.
The role of lung imaging in pulmonary embolism
Mishkin, Fred S.; Johnson, Philip M.
1973-01-01
The advantages of lung scanning in suspected pulmonary embolism are its diagnostic sensitivity, simplicity and safety. The ability to delineate regional pulmonary ischaemia, to quantitate its extent and to follow its response to therapy provides valuable clinical data available by no other simple means. The negative scan effectively excludes pulmonary embolism but, although certain of its features favour the diagnosis of embolism, the positive scan inherently lacks specificity and requires angiographic confirmation when embolectomy, caval plication or infusion of a thrombolytic agent are contemplated. The addition of simple ventilation imaging techniques with radioxenon overcomes this limitation by providing accurate analog estimation or digital quantitation of regional ventilation: perfusion (V/Q) ratios fundamental to understanding the pathophysiologic consequences of embolism and other diseases of the lung. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7p495-bFig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13 PMID:4602128
Current Status and Future Perspectives of Mass Spectrometry Imaging
Nimesh, Surendra; Mohottalage, Susantha; Vincent, Renaud; Kumarathasan, Prem
2013-01-01
Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology. PMID:23759983
Narrow-field imaging of the lunar sodium exosphere
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Flynn, Brian C.
1995-01-01
We present the first results of a new technique for imaging the lunar Na atmosphere. The technique employs high resolution, a narrow bandpass, and specific observing geometry to suppress scattered light and image lunar atmospheric Na I emission down to approximately 50 km altitude. Analysis of four latitudinally dispersed images shows that the lunar Na atmosphere exhibits intersting latitudinal and radial dependencies. Application of a simple Maxwellian collisionless exosphere model indicates that: (1) at least two thermal populations are required to adequately fit the soldium's radial intensity behavior, and (2) the fractional abundances and temperatures of the two components vary systematically with latitude. We conclude that both cold (barometric) and hot (suprathermal) Na may coexist in the lunar atmosphere, either as distinct components or as elements of a continuum of populations ranging in temperature from the local surface temperature up to or exceeding escape energies.
Rozen, Warren Matthew; Spychal, Robert T.; Hunter-Smith, David J.
2016-01-01
Background Accurate volumetric analysis is an essential component of preoperative planning in both reconstructive and aesthetic breast procedures towards achieving symmetrization and patient-satisfactory outcome. Numerous comparative studies and reviews of individual techniques have been reported. However, a unifying review of all techniques comparing their accuracy, reliability, and practicality has been lacking. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE, was undertaken. Results Since Bouman’s first description of water displacement method, a range of volumetric assessment techniques have been described: thermoplastic casting, direct anthropomorphic measurement, two-dimensional (2D) imaging, and computed tomography (CT)/magnetic resonance imaging (MRI) scans. However, most have been unreliable, difficult to execute and demonstrate limited practicability. Introduction of 3D surface imaging has revolutionized the field due to its ease of use, fast speed, accuracy, and reliability. However, its widespread use has been limited by its high cost and lack of high level of evidence. Recent developments have unveiled the first web-based 3D surface imaging program, 4D imaging, and 3D printing. Conclusions Despite its importance, an accurate, reliable, and simple breast volumetric analysis tool has been elusive until the introduction of 3D surface imaging technology. However, its high cost has limited its wide usage. Novel adjunct technologies, such as web-based 3D surface imaging program, 4D imaging, and 3D printing, appear promising. PMID:27047788
Preventing chemotherapy-induced alopecia.
Smith, F P; McCabe, M S
1983-07-01
Chemotherapy-induced alopecia is now potentially preventable. Although scalp tourniquets and hypothermia are neither universally applicable nor always successful, they represent simple and relatively inexpensive methods for reducing hair loss. When successful, these techniques help maintain the patient's self-image and thereby diminish the devastating psychologic effects that accompany a diagnosis of cancer.
Introducing keytagging, a novel technique for the protection of medical image-based tests.
Rubio, Óscar J; Alesanco, Álvaro; García, José
2015-08-01
This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ≃30 and ≃90ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers. Copyright © 2015 Elsevier Inc. All rights reserved.
Song, Chihong; Lee, Ju Huck; Jun, Sangmi; Chung, Jeong Min; Hyun, Jaekyung; Jung, Hyun Suk
2016-05-01
The preparation of biological specimens using cryofixation techniques ensures excellent visibility of intracellular structures and preserves the antigenic sites of subcellular molecules. Hence, cryofixation is an effective method of preparing samples for analyses using antibodies conjugated to gold nanoparticles that are designed to detect the localization of specific target molecules within cells. However, cryofixation cannot be utilized easily because it requires expensive equipment and skilled technologists, resulting in a high level of expense for researchers. Here, we describe a simple technical approach to cryofixation that uses metal contact quick freezing followed by a modified freeze substitution technique and immuno-gold labeling electron microscopy. Micrograph images of cells prepared using this modified cryofixation method demonstrated its superiority over chemical fixation for high contrast visualization of the morphologies of cellular components and preservation of antigenicity for immuno-gold labeling. This report provides valuable technical information related to the advancement of metal contact quick freezing techniques, which can be used to visualize biomedical events of interest in an easy, simple, and rapid manner.
Directional analysis and filtering for dust storm detection in NOAA-AVHRR imagery
NASA Astrophysics Data System (ADS)
Janugani, S.; Jayaram, V.; Cabrera, S. D.; Rosiles, J. G.; Gill, T. E.; Rivera Rivera, N.
2009-05-01
In this paper, we propose spatio-spectral processing techniques for the detection of dust storms and automatically finding its transport direction in 5-band NOAA-AVHRR imagery. Previous methods that use simple band math analysis have produced promising results but have drawbacks in producing consistent results when low signal to noise ratio (SNR) images are used. Moreover, in seeking to automate the dust storm detection, the presence of clouds in the vicinity of the dust storm creates a challenge in being able to distinguish these two types of image texture. This paper not only addresses the detection of the dust storm in the imagery, it also attempts to find the transport direction and the location of the sources of the dust storm. We propose a spatio-spectral processing approach with two components: visualization and automation. Both approaches are based on digital image processing techniques including directional analysis and filtering. The visualization technique is intended to enhance the image in order to locate the dust sources. The automation technique is proposed to detect the transport direction of the dust storm. These techniques can be used in a system to provide timely warnings of dust storms or hazard assessments for transportation, aviation, environmental safety, and public health.
Shaping the light for the investigation of depth-extended scattering media
NASA Astrophysics Data System (ADS)
Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.
2018-02-01
Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.
NASA Astrophysics Data System (ADS)
Klomp, Sander; van der Sommen, Fons; Swager, Anne-Fré; Zinger, Svitlana; Schoon, Erik J.; Curvers, Wouter L.; Bergman, Jacques J.; de With, Peter H. N.
2017-03-01
Volumetric Laser Endomicroscopy (VLE) is a promising technique for the detection of early neoplasia in Barrett's Esophagus (BE). VLE generates hundreds of high resolution, grayscale, cross-sectional images of the esophagus. However, at present, classifying these images is a time consuming and cumbersome effort performed by an expert using a clinical prediction model. This paper explores the feasibility of using computer vision techniques to accurately predict the presence of dysplastic tissue in VLE BE images. Our contribution is threefold. First, a benchmarking is performed for widely applied machine learning techniques and feature extraction methods. Second, three new features based on the clinical detection model are proposed, having superior classification accuracy and speed, compared to earlier work. Third, we evaluate automated parameter tuning by applying simple grid search and feature selection methods. The results are evaluated on a clinically validated dataset of 30 dysplastic and 30 non-dysplastic VLE images. Optimal classification accuracy is obtained by applying a support vector machine and using our modified Haralick features and optimal image cropping, obtaining an area under the receiver operating characteristic of 0.95 compared to the clinical prediction model at 0.81. Optimal execution time is achieved using a proposed mean and median feature, which is extracted at least factor 2.5 faster than alternative features with comparable performance.
Interventional articular and para-articular knee procedures
Lalam, Radhesh K; Winn, Naomi
2016-01-01
The knee is a common area of the body to undergo interventional procedures. This article discusses image-guided interventional issues specific to the knee area. The soft tissues in and around the knee are frequently affected by sport-related injuries and often need image-guided intervention. This article details the specific technical issues related to intervention in these soft tissues, including the iliotibial tract, fat pads, patellar tendon and other tendons, bursae and the meniscus. Most often, simple procedures such as injection and aspiration are performed without image guidance. Rarely image-guided diagnostic arthrography and therapeutic joint injections are necessary. The technique, indications and diagnostic considerations for arthrography are discussed in this article. Primary bone and soft-tissue tumours may involve the knee and adjacent soft tissues. Image-guided biopsies are frequently necessary for these lesions; this article details the technical issues related to image-guided biopsy around the knee. A number of newer ablation treatments are now available, including cryoablation, high-frequency ultrasound and microwave ablation. Radiofrequency ablation, however, still remains the most commonly employed ablation technique. The indications, technical and therapeutic considerations related to the application of this technique around the knee are discussed here. Finally, we briefly discuss some newer, but as of yet, unproven image-guided interventions for osteochondral lesions and Brodie's abscess. PMID:26682669
Radionuclide-anesthetic flow study: a new technique for the study of regional anesthesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, J.M.; Middaugh, R.E.; Cawthon, M.A.
1986-09-01
A new technique to study the dynamics of in vivo distribution of regional anesthetics is described. Five hundred microcuries of technetium-99m diethylenetriaminepentaacetic acid (DTPA) added to the anesthetic in a syringe prior to injection allows both dynamic and static imaging to assess the initial distribution of the injected anesthetic. Superimposed bone scans or transmission scans help delineate anatomy. The radionuclide-anesthetic flow study is a simple, safe technique to investigate both the spread of regional anesthetics and the factors that affect it.
Toward CMOS image sensor based glucose monitoring.
Devadhasan, Jasmine Pramila; Kim, Sanghyo
2012-09-07
Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.
Low-rate image coding using vector quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makur, A.
1990-01-01
This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less
A manual for inexpensive methods of analyzing and utilizing remote sensor data
NASA Technical Reports Server (NTRS)
Elifrits, C. D.; Barr, D. J.
1978-01-01
Instructions are provided for inexpensive methods of using remote sensor data to assist in the completion of the need to observe the earth's surface. When possible, relative costs were included. Equipment need for analysis of remote sensor data is described, and methods of use of these equipment items are included, as well as advantages and disadvantages of the use of individual items. Interpretation and analysis of stereo photos and the interpretation of typical patterns such as tone and texture, landcover, drainage, and erosional form are described. Similar treatment is given to monoscopic image interpretation, including LANDSAT MSS data. Enhancement techniques are detailed with respect to their application and simple techniques of creating an enhanced data item. Techniques described include additive and subtractive (Diazo processes) color techniques and enlargement of photos or images. Applications of these processes, including mappings of land resources, engineering soils, geology, water resources, environmental conditions, and crops and/or vegetation, are outlined.
Real-time restoration of white-light confocal microscope optical sections
Balasubramanian, Madhusudhanan; Iyengar, S. Sitharama; Beuerman, Roger W.; Reynaud, Juan; Wolenski, Peter
2009-01-01
Confocal microscopes (CM) are routinely used for building 3-D images of microscopic structures. Nonideal imaging conditions in a white-light CM introduce additive noise and blur. The optical section images need to be restored prior to quantitative analysis. We present an adaptive noise filtering technique using Karhunen–Loéve expansion (KLE) by the method of snapshots and a ringing metric to quantify the ringing artifacts introduced in the images restored at various iterations of iterative Lucy–Richardson deconvolution algorithm. The KLE provides a set of basis functions that comprise the optimal linear basis for an ensemble of empirical observations. We show that most of the noise in the scene can be removed by reconstructing the images using the KLE basis vector with the largest eigenvalue. The prefiltering scheme presented is faster and does not require prior knowledge about image noise. Optical sections processed using the KLE prefilter can be restored using a simple inverse restoration algorithm; thus, the methodology is suitable for real-time image restoration applications. The KLE image prefilter outperforms the temporal-average prefilter in restoring CM optical sections. The ringing metric developed uses simple binary morphological operations to quantify the ringing artifacts and confirms with the visual observation of ringing artifacts in the restored images. PMID:20186290
Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Tao, Feifei; Ngadi, Michael
2016-05-01
Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.
Destriping of Landsat MSS images by filtering techniques
Pan, Jeng-Jong; Chang, Chein-I
1992-01-01
: The removal of striping noise encountered in the Landsat Multispectral Scanner (MSS) images can be generally done by using frequency filtering techniques. Frequency do~ain filteri~g has, how~ver, se,:era~ prob~ems~ such as storage limitation of data required for fast Fourier transforms, nngmg artl~acts appe~nng at hlgh-mt,enslty.dlscontinuities, and edge effects between adjacent filtered data sets. One way for clrcu~,,:entmg the above difficulties IS, to design a spatial filter to convolve with the images. Because it is known that the,stnpmg a.lways appears at frequencies of 1/6, 1/3, and 1/2 cycles per line, it is possible to design a simple one-dimensIOnal spat~a~ fll,ter to take advantage of this a priori knowledge to cope with the above problems. The desired filter is the type of ~mlte Impuls~ response which can be designed by a linear programming and Remez's exchange algorithm coupled ~lth an adaptIve tec,hmque. In addition, a four-step spatial filtering technique with an appropriate adaptive approach IS also presented which may be particularly useful for geometrically rectified MSS images.
Volonté, Francesco; Pugin, François; Bucher, Pascal; Sugimoto, Maki; Ratib, Osman; Morel, Philippe
2011-07-01
New technologies can considerably improve preoperative planning, enhance the surgeon's skill and simplify the approach to complex procedures. Augmented reality techniques, robot assisted operations and computer assisted navigation tools will become increasingly important in surgery and in residents' education. We obtained 3D reconstructions from simple spiral computed tomography (CT) slides using OsiriX, an open source processing software package dedicated to DICOM images. These images were then projected on the patient's body with a beamer fixed to the operating table to enhance spatial perception during surgical intervention (augmented reality). Changing a window's deepness level allowed the surgeon to navigate through the patient's anatomy, highlighting regions of interest and marked pathologies. We used image overlay navigation for laparoscopic operations such cholecystectomy, abdominal exploration, distal pancreas resection and robotic liver resection. Augmented reality techniques will transform the behaviour of surgeons, making surgical interventions easier, faster and probably safer. These new techniques will also renew methods of surgical teaching, facilitating transmission of knowledge and skill to young surgeons.
Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains.
Busse, B L; Bezrukov, L; Blank, P S; Zimmerberg, J
2016-08-08
Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains.
Peckys, Diana B; Veith, Gabriel M; Joy, David C; de Jonge, Niels
2009-12-14
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.
Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains
Busse, B. L.; Bezrukov, L.; Blank, P. S.; Zimmerberg, J.
2016-01-01
Protein complexes associated with cellular processes comprise a significant fraction of all biology, but our understanding of their heterogeneous organization remains inadequate, particularly for physiological densities of multiple protein species. Towards resolving this limitation, we here present a new technique based on resin-embedded multicycle imaging (REMI) of proteins in-situ. By stabilizing protein structure and antigenicity in acrylic resins, affinity labels were repeatedly applied, imaged, removed, and replaced. In principle, an arbitrarily large number of proteins of interest may be imaged on the same specimen with subsequent digital overlay. A series of novel preparative methods were developed to address the problem of imaging multiple protein species in areas of the plasma membrane or volumes of cytoplasm of individual cells. For multiplexed examination of antibody staining we used straightforward computational techniques to align sequential images, and super-resolution microscopy was used to further define membrane protein colocalization. We give one example of a fibroblast membrane with eight multiplexed proteins. A simple statistical analysis of this limited membrane proteomic dataset is sufficient to demonstrate the analytical power contributed by additional imaged proteins when studying membrane protein domains. PMID:27499335
Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2
NASA Astrophysics Data System (ADS)
Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.
2007-08-01
Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.
Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.
Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M
2000-05-01
Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.
Analyzing speckle contrast for HiLo microscopy optimization.
Mazzaferri, J; Kunik, D; Belisle, J M; Singh, K; Lefrançois, S; Costantino, S
2011-07-18
HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.
Analyzing speckle contrast for HiLo microscopy optimization
NASA Astrophysics Data System (ADS)
Mazzaferri, J.; Kunik, D.; Belisle, J. M.; Singh, K.; Lefrançois, S.; Costantino, S.
2011-07-01
HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.
Carbon Tube Electrodes for Electrocardiography-Gated Cardiac Multimodality Imaging in Mice
Choquet, Philippe; Goetz, Christian; Aubertin, Gaelle; Hubele, Fabrice; Sannié, Sébastien; Constantinesco, André
2011-01-01
This report describes a simple design of noninvasive carbon tube electrodes that facilitates electrocardiography (ECG) in mice during cardiac multimodality preclinical imaging. Both forepaws and the left hindpaw, covered by conductive gel, of mice were placed into the openings of small carbon tubes. Cardiac ECG-gated single-photon emission CT, X-ray CT, and MRI were tested (n = 60) in 20 mice. For all applications, electrodes were used in a warmed multimodality imaging cell. A heart rate of 563 ± 48 bpm was recorded from anesthetized mice regardless of the imaging technique used, with acquisition times ranging from 1 to 2 h. PMID:21333165
Image retrieval for identifying house plants
NASA Astrophysics Data System (ADS)
Kebapci, Hanife; Yanikoglu, Berrin; Unal, Gozde
2010-02-01
We present a content-based image retrieval system for plant identification which is intended for providing users with a simple method to locate information about their house plants. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging. We studied the suitability of various well-known color, texture and shape features for this problem, as well as introducing some new ones. The features are extracted from the general plant region that is segmented from the background using the max-flow min-cut technique. Results on a database of 132 different plant images show promise (in about 72% of the queries, the correct plant image is retrieved among the top-15 results).
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
App-assisted external ventricular drain insertion.
Eftekhar, Behzad
2016-09-01
The freehand technique for insertion of an external ventricular drain (EVD) is based on fixed anatomical landmarks and does not take individual variations into consideration. A patient-tailored approach based on augmented-reality techniques using devices such as smartphones can address this shortcoming. The Sina neurosurgical assist (Sina) is an Android mobile device application (app) that was designed and developed to be used as a simple intraoperative neurosurgical planning aid. It overlaps the patient's images from previously performed CT or MRI studies on the image seen through the device camera. The device is held by an assistant who aligns the images and provides information about the relative position of the target and EVD to the surgeon who is performing EVD insertion. This app can be used to provide guidance and continuous monitoring during EVD placement. The author describes the technique of Sina-assisted EVD insertion into the frontal horn of the lateral ventricle and reports on its clinical application in 5 cases as well as the results of ex vivo studies of ease of use and precision. The technique has potential for further development and use with other augmented-reality devices.
Wide-Field Imaging of Single-Nanoparticle Extinction with Sub-nm2 Sensitivity
NASA Astrophysics Data System (ADS)
Payne, Lukas M.; Langbein, Wolfgang; Borri, Paola
2018-03-01
We report on a highly sensitive wide-field imaging technique for quantitative measurement of the optical extinction cross section σext of single nanoparticles. The technique is simple and high speed, and it enables the simultaneous acquisition of hundreds of nanoparticles for statistical analysis. Using rapid referencing, fast acquisition, and a deconvolution analysis, a shot-noise-limited sensitivity down to 0.4 nm2 is achieved. Measurements on a set of individual gold nanoparticles of 5 nm diameter using this method yield σext=(10.0 ±3.1 ) nm2, which is consistent with theoretical expectations and well above the background fluctuations of 0.9 nm2 .
Recent advances in imaging technologies in dentistry.
Shah, Naseem; Bansal, Nikhil; Logani, Ajay
2014-10-28
Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.
Recent advances in imaging technologies in dentistry
Shah, Naseem; Bansal, Nikhil; Logani, Ajay
2014-01-01
Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663
Composition of the cellular infiltrate in patients with simple and complex appendicitis.
Gorter, Ramon R; Wassenaar, Emma C E; de Boer, Onno J; Bakx, Roel; Roelofs, Joris J T H; Bunders, Madeleine J; van Heurn, L W Ernst; Heij, Hugo A
2017-06-15
It is now well established that there are two types of appendicitis: simple (nonperforating) and complex (perforating). This study evaluates differences in the composition of the immune cellular infiltrate in children with simple and complex appendicitis. A total of 47 consecutive children undergoing appendectomy for acute appendicitis between January 2011 and December 2012 were included. Intraoperative criteria were used to identify patients with either simple or complex appendicitis and were confirmed histopathologically. Immune histochemical techniques were used to identify immune cell markers in the appendiceal specimens. Digital imaging analysis was performed using Image J. In the specimens of patients with complex appendicitis, significantly more myeloperoxidase positive cells (neutrophils) (8.7% versus 1.2%, P < 0.001) were detected compared to patients with a simple appendicitis. In contrast, fewer CD8+ T cells (0.4% versus 1.3%, P = 0.016), CD20 + cells (2.9% versus 9.0%, P = 0.027), and CD21 + cells (0.2% versus 0.6%, P = 0.028) were present in tissue from patients with complex compared to simple appendicitis. The increase in proinflammatory innate cells and decrease of adaptive cells in patients with complex appendicitis suggest potential aggravating processes in complex appendicitis. Further research into the underlying mechanisms may identify novel biomarkers to be able to differentiate simple and complex appendicitis. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yesiltas, Mehmet
2018-04-01
Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.
NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research
NASA Technical Reports Server (NTRS)
Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.
2012-01-01
A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.
New calibration technique for KCD-based megavoltage imaging
NASA Astrophysics Data System (ADS)
Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.
1999-05-01
In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The application of this protocol to a KCD system under construction is expected shortly.
Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE; Department of Physics & Astronomy, University College London, London WC1E 6BT
2015-09-21
Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by specklemore » tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.« less
Phase contrast imaging using a micro focus x-ray source
NASA Astrophysics Data System (ADS)
Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.
2014-09-01
Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.
NASA Astrophysics Data System (ADS)
Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.
2016-10-01
Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.
Analysis of lithology: Vegetation mixes in multispectral images
NASA Technical Reports Server (NTRS)
Adams, J. B.; Smith, M.; Adams, J. D.
1982-01-01
Discrimination and identification of lithologies from multispectral images is discussed. Rock/soil identification can be facilitated by removing the component of the signal in the images that is contributed by the vegetation. Mixing models were developed to predict the spectra of combinations of pure end members, and those models were refined using laboratory measurements of real mixtures. Models in use include a simple linear (checkerboard) mix, granular mixing, semi-transparent coatings, and combinations of the above. The use of interactive computer techniques that allow quick comparison of the spectrum of a pixel stack (in a multiband set) with laboratory spectra is discussed.
Medical image segmentation to estimate HER2 gene status in breast cancer
NASA Astrophysics Data System (ADS)
Palacios-Navarro, Guillermo; Acirón-Pomar, José Manuel; Vilchez-Sorribas, Enrique; Zambrano, Eddie Galarza
2016-02-01
This work deals with the estimation of HER2 Gene status in breast tumour images treated with in situ hybridization techniques (ISH). We propose a simple algorithm to obtain the amplification factor of HER2 gene. The obtained results are very close to those obtained by specialists in a manual way. The developed algorithm is based on colour image segmentation and has been included in a software application tool for breast tumour analysis. The developed tool focus on the estimation of the seriousness of tumours, facilitating the work of pathologists and contributing to a better diagnosis.
[Color Doppler ultrasonography--a new imaging procedure in maxillofacial surgery].
Reinert, S; Lentrodt, J
1991-01-01
Colour Doppler ultrasonography shows blood flow in real time and colour by combining the features of real time B mode ultrasound and Doppler. At each point in the image the returning signal is interrogated for both amplitude and frequency information. The resulting image shows all non-moving structures in shades of gray and moving structures in shades of red or blue depending on direction and velocity. The technique of colour Doppler ultrasonography and our experiences in 63 examinations are described. The clinical application of this new simple non-invasive method in maxillo-facial surgery is discussed.
NASA Technical Reports Server (NTRS)
Duong, T. A.
2004-01-01
In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
ERIC Educational Resources Information Center
Lopez-Arias, T.; Calza, G.; Gratton, L. M.; Oss, S.
2009-01-01
A simple experiment is presented to visualize inferior and superior mirages in the laboratory. A quantitative analysis is done using ray tracing with both photographic and computational techniques. The mirage's image, as seen by the eye or the camera lens, can be used to analyse the deflection and inversion of light rays. (Contains 6 footnotes, 1…
Multiscale morphological filtering for analysis of noisy and complex images
NASA Astrophysics Data System (ADS)
Kher, A.; Mitra, S.
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Multiscale Morphological Filtering for Analysis of Noisy and Complex Images
NASA Technical Reports Server (NTRS)
Kher, A.; Mitra, S.
1993-01-01
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
NASA Astrophysics Data System (ADS)
Devadhasan, Jasmine P.; Kim, Sanghyo
2015-07-01
Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.
On estimating scale invariance in stratocumulus cloud fields
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard A.
1990-01-01
Examination of cloud radiance fields derived from satellite observations sometimes indicates the existence of a range of scales over which the statistics of the field are scale invariant. Many methods were developed to quantify this scaling behavior in geophysics. The usefulness of such techniques depends both on the physics of the process being robust over a wide range of scales and on the availability of high resolution, low noise observations over these scales. These techniques (area perimeter relation, distribution of areas, estimation of the capacity, d0, through box counting, correlation exponent) are applied to the high resolution satellite data taken during the FIRE experiment and provides initial estimates of the quality of data required by analyzing simple sets. The results of the observed fields are contrasted with those of images of objects with known characteristics (e.g., dimension) where the details of the constructed image simulate current observational limits. Throughout when cloud elements and cloud boundaries are mentioned; it should be clearly understood that by this structures in the radiance field are meant: all the boundaries considered are defined by simple threshold arguments.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.
Lee, Kyumin; Jeoung, Kiyong; Kim, Sang Hoon; Ji, Young-Bin; Son, Hyeyoung; Choi, Yuna; Huh, Young-Min; Suh, Jin-Suck; Oh, Seung Jae
2018-04-01
We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.
Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
Xu, Zhoubing; Burke, Ryan P; Lee, Christopher P; Baucom, Rebeccah B; Poulose, Benjamin K; Abramson, Richard G; Landman, Bennett A
2015-08-01
Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining. Copyright © 2015 Elsevier B.V. All rights reserved.
Segmentation by fusion of histogram-based k-means clusters in different color spaces.
Mignotte, Max
2008-05-01
This paper presents a new, simple, and efficient segmentation approach, based on a fusion procedure which aims at combining several segmentation maps associated to simpler partition models in order to finally get a more reliable and accurate segmentation result. The different label fields to be fused in our application are given by the same and simple (K-means based) clustering technique on an input image expressed in different color spaces. Our fusion strategy aims at combining these segmentation maps with a final clustering procedure using as input features, the local histogram of the class labels, previously estimated and associated to each site and for all these initial partitions. This fusion framework remains simple to implement, fast, general enough to be applied to various computer vision applications (e.g., motion detection and segmentation), and has been successfully applied on the Berkeley image database. The experiments herein reported in this paper illustrate the potential of this approach compared to the state-of-the-art segmentation methods recently proposed in the literature.
Electric field tomography for contactless imaging of resistivity in biomedical applications.
Korjenevsky, A V
2004-02-01
The technique of contactless imaging of resistivity distribution inside conductive objects, which can be applied in medical diagnostics, has been suggested and analyzed. The method exploits the interaction of a high-frequency electric field with a conductive medium. Unlike electrical impedance tomography, no electric current is injected into the medium from outside. The interaction is accompanied with excitation of high-frequency currents and redistribution of free charges inside the medium leading to strong and irregular perturbation of the field's magnitude outside and inside the object. Along with this the considered interaction also leads to small and regular phase shifts of the field in the area surrounding the object. Measuring these phase shifts using a set of electrodes placed around the object enables us to reconstruct the internal structure of the medium. The basics of this technique, which we name electric field tomography (EFT), are described, simple analytical estimations are made and requirements for measuring equipment are formulated. The realizability of the technique is verified by numerical simulations based on the finite elements method. Results of simulation have confirmed initial estimations and show that in the case of EFT even a comparatively simple filtered backprojection algorithm can be used for reconstructing the static resistivity distribution in biological tissues.
NASA Astrophysics Data System (ADS)
Wan, Tat C.; Kabuka, Mansur R.
1994-05-01
With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.
Ultrasound breast imaging using frequency domain reverse time migration
NASA Astrophysics Data System (ADS)
Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.
2016-04-01
Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.
Balance Contrast Enhancement using piecewise linear stretching
NASA Astrophysics Data System (ADS)
Rahavan, R. V.; Govil, R. C.
1993-04-01
Balance Contrast Enhancement is one of the techniques employed to produce color composites with increased color contrast. It equalizes the three images used for color composition in range and mean. This results in a color composite with large variation in hue. Here, it is shown that piecewise linear stretching can be used for performing the Balance Contrast Enhancement. In comparison with the Balance Contrast Enhancement Technique using parabolic segment as transfer function (BCETP), the method presented here is algorithmically simple, constraint-free and produces comparable results.
Espinheira Gomes, Filipe; Ledbetter, Eric
2018-05-11
To describe an indirect funduscopy imaging technique for dogs and cats using low cost and widely available equipment: a smartphone, a three-dimensional (3D) printed indirect lens adapter, and a 40 diopters (D) indirect ophthalmoscopy lens. Fundus videography was performed in dogs and cats using a 40D indirect ophthalmoscopy lens and a smartphone fitted with a 3D printed indirect lens adapter. All animals were pharmacologically dilated with topical tropicamide 1% solution. Eyelid opening and video recording were performed using standard binocular indirect ophthalmoscopy technique. All videos were uploaded to a computer, and still images were selected and acquired for archiving purposes. Fundic images were manipulated to represent the true anatomy of the fundus. It was possible to promptly obtain good quality images from normal and diseased retinas using the nonpatented 3D printed, lens adapter for a smartphone. Fundic imaging using a smartphone can be performed with minimal investment. This simple imaging modality can be used by veterinary ophthalmologists and general practitioners to acquire, archive, and share images of the retina. The quality of images obtained will likely improve with developments in smartphone camera software and hardware. © 2018 American College of Veterinary Ophthalmologists.
Robust image modeling techniques with an image restoration application
NASA Astrophysics Data System (ADS)
Kashyap, Rangasami L.; Eom, Kie-Bum
1988-08-01
A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herchko, S; Ding, G
2016-06-15
Purpose: To develop an accurate, straightforward, and user-independent method for performing light versus radiation field coincidence quality assurance utilizing EPID images, a simple phantom made of readily-accessible materials, and a free software program. Methods: A simple phantom consisting of a blocking tray, graph paper, and high-density wire was constructed. The phantom was used to accurately set the size of a desired light field and imaged on the electronic portal imaging device (EPID). A macro written for use in ImageJ, a free image processing software, was then use to determine the radiation field size utilizing the high density wires on themore » phantom for a pixel to distance calibration. The macro also performs an analysis on the measured radiation field utilizing the tolerances recommended in the AAPM Task Group #142. To verify the accuracy of this method, radiochromic film was used to qualitatively demonstrate agreement between the film and EPID results, and an additional ImageJ macro was used to quantitatively compare the radiation field sizes measured both with the EPID and film images. Results: The results of this technique were benchmarked against film measurements, which have been the gold standard for testing light versus radiation field coincidence. The agreement between this method and film measurements were within 0.5 mm. Conclusion: Due to the operator dependency associated with tracing light fields and measuring radiation fields by hand when using film, this method allows for a more accurate comparison between the light and radiation fields with minimal operator dependency. Removing the need for radiographic or radiochromic film also eliminates a reoccurring cost and increases procedural efficiency.« less
NASA Astrophysics Data System (ADS)
Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn
2017-02-01
The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.
A novel method for fast imaging of brain function, non-invasively, with light
NASA Astrophysics Data System (ADS)
Chance, Britton; Anday, Endla; Nioka, Shoko; Zhou, Shuoming; Hong, Long; Worden, Katherine; Li, C.; Murray, T.; Ovetsky, Y.; Pidikiti, D.; Thomas, R.
1998-05-01
Imaging of the human body by any non-invasive technique has been an appropriate goal of physics and medicine, and great success has been obtained with both Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) in brain imaging. Non-imaging responses to functional activation using near infrared spectroscopy of brain (fNIR) obtained in 1993 (Chance, et al. [1]) and in 1994 (Tamura, et al. [2]) are now complemented with images of pre-frontal and parietal stimulation in adults and pre-term neonates in this communication (see also [3]). Prior studies used continuous [4], pulsed [3] or modulated [5] light. The amplitude and phase cancellation of optical patterns as demonstrated for single source detector pairs affords remarkable sensitivity of small object detection in model systems [6]. The methods have now been elaborated with multiple source detector combinations (nine sources, four detectors). Using simple back projection algorithms it is now possible to image sensorimotor and cognitive activation of adult and pre- and full-term neonate human brain function in times < 30 sec and with two dimensional resolutions of < 1 cm in two dimensional displays. The method can be used in evaluation of adult and neonatal cerebral dysfunction in a simple, portable and affordable method that does not require immobilization, as contrasted to MRI and PET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, H; Lee, J; Pua, R
2014-06-01
Purpose: The purpose of our study is to reduce imaging radiation dose while maintaining image quality of region of interest (ROI) in X-ray fluoroscopy. A low-dose real-time ROI fluoroscopic imaging technique which includes graphics-processing-unit- (GPU-) accelerated image processing for brightness compensation and noise filtering was developed in this study. Methods: In our ROI fluoroscopic imaging, a copper filter is placed in front of the X-ray tube. The filter contains a round aperture to reduce radiation dose to outside of the aperture. To equalize the brightness difference between inner and outer ROI regions, brightness compensation was performed by use of amore » simple weighting method that applies selectively to the inner ROI, the outer ROI, and the boundary zone. A bilateral filtering was applied to the images to reduce relatively high noise in the outer ROI images. To speed up the calculation of our technique for real-time application, the GPU-acceleration was applied to the image processing algorithm. We performed a dosimetric measurement using an ion-chamber dosimeter to evaluate the amount of radiation dose reduction. The reduction of calculation time compared to a CPU-only computation was also measured, and the assessment of image quality in terms of image noise and spatial resolution was conducted. Results: More than 80% of dose was reduced by use of the ROI filter. The reduction rate depended on the thickness of the filter and the size of ROI aperture. The image noise outside the ROI was remarkably reduced by the bilateral filtering technique. The computation time for processing each frame image was reduced from 3.43 seconds with single CPU to 9.85 milliseconds with GPU-acceleration. Conclusion: The proposed technique for X-ray fluoroscopy can substantially reduce imaging radiation dose to the patient while maintaining image quality particularly in the ROI region in real-time.« less
Schlieren image velocimetry measurements in a rocket engine exhaust plume
NASA Astrophysics Data System (ADS)
Morales, Rudy; Peguero, Julio; Hargather, Michael
2017-11-01
Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.
Fantuzzo, J. A.; Mirabella, V. R.; Zahn, J. D.
2017-01-01
Abstract Synapse formation analyses can be performed by imaging and quantifying fluorescent signals of synaptic markers. Traditionally, these analyses are done using simple or multiple thresholding and segmentation approaches or by labor-intensive manual analysis by a human observer. Here, we describe Intellicount, a high-throughput, fully-automated synapse quantification program which applies a novel machine learning (ML)-based image processing algorithm to systematically improve region of interest (ROI) identification over simple thresholding techniques. Through processing large datasets from both human and mouse neurons, we demonstrate that this approach allows image processing to proceed independently of carefully set thresholds, thus reducing the need for human intervention. As a result, this method can efficiently and accurately process large image datasets with minimal interaction by the experimenter, making it less prone to bias and less liable to human error. Furthermore, Intellicount is integrated into an intuitive graphical user interface (GUI) that provides a set of valuable features, including automated and multifunctional figure generation, routine statistical analyses, and the ability to run full datasets through nested folders, greatly expediting the data analysis process. PMID:29218324
Imaging of non alcoholic fatty liver disease: A road less travelled.
Singh, Divya; Das, Chandan J; Baruah, Manas P
2013-11-01
Non alcoholic fatty liver disease (NAFLD) is a spectrum that includes simple steatosis, nonalcoholic steatohepatitis and cirrhosis. It is increasingly emerging as a cause of elevated liver enzymes, cryptogenic cirrhosis and hepatocellular carcinoma. The morbidity and mortality related to NAFLD is expected to rise with the upsurge of obesity and type 2 diabetes mellitus. The need of the hour is to devise techniques to estimate and then accurately follow-up hepatic fat content in patients with NAFLD. There are lots of imaging modalities in the radiological armamentarium, namely, ultrasonography with the extra edge of elastography, computed tomography, and magnetic resonance imaging with chemical shift imaging and spectroscopy to provide an estimation of hepatic fat content.
A Selective-Echo Method for Chemical-Shift Imaging of Two-Component Systems
NASA Astrophysics Data System (ADS)
Gerald, Rex E., II; Krasavin, Anatoly O.; Botto, Robert E.
A simple and effective method for selectively imaging either one of two chemical species in a two-component system is presented and demonstrated experimentally. The pulse sequence employed, selective- echo chemical- shift imaging (SECSI), is a hybrid (frequency-selective/ T1-contrast) technique that is executed in a short period of time, utilizes the full Boltzmann magnetization of each chemical species to form the corresponding image, and requires only hard pulses of quadrature phase. This approach provides a direct and unambiguous representation of the spatial distribution of the two chemical species. In addition, the performance characteristics and the advantages of the SECSI sequence are compared on a common basis to those of other pulse sequences.
Radiologic evaluation of nonalcoholic fatty liver disease
Lee, Seung Soo; Park, Seong Ho
2014-01-01
Nonalcoholic fatty liver disease (NAFLD) is a frequent cause of chronic liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH)-related liver cirrhosis. Although liver biopsy is still the gold standard for the diagnosis of NAFLD, especially for the diagnosis of NASH, imaging methods have been increasingly accepted as noninvasive alternatives to liver biopsy. Ultrasonography is a well-established and cost-effective imaging technique for the diagnosis of hepatic steatosis, especially for screening a large population at risk of NAFLD. Ultrasonography has a reasonable accuracy in detecting moderate-to-severe hepatic steatosis although it is less accurate for detecting mild hepatic steatosis, operator-dependent, and rather qualitative. Computed tomography is not appropriate for general population assessment of hepatic steatosis given its inaccuracy in detecting mild hepatic steatosis and potential radiation hazard. However, computed tomography may be effective in specific clinical situations, such as evaluation of donor candidates for hepatic transplantation. Magnetic resonance spectroscopy and magnetic resonance imaging are now regarded as the most accurate practical methods of measuring liver fat in clinical practice, especially for longitudinal follow-up of patients with NAFLD. Ultrasound elastography and magnetic resonance elastography are increasingly used to evaluate the degree of liver fibrosis in patients with NAFLD and to differentiate NASH from simple steatosis. This article will review current imaging methods used to evaluate hepatic steatosis, including the diagnostic accuracy, limitations, and practical applicability of each method. It will also briefly describe the potential role of elastography techniques in the evaluation of patients with NAFLD. PMID:24966609
THz near-field spectral encoding imaging using a rainbow metasurface.
Lee, Kanghee; Choi, Hyun Joo; Son, Jaehyeon; Park, Hyun-Sung; Ahn, Jaewook; Min, Bumki
2015-09-24
We demonstrate a fast image acquisition technique in the terahertz range via spectral encoding using a metasurface. The metasurface is composed of spatially varying units of mesh filters that exhibit bandpass features. Each mesh filter is arranged such that the centre frequencies of the mesh filters are proportional to their position within the metasurface, similar to a rainbow. For imaging, the object is placed in front of the rainbow metasurface, and the image is reconstructed by measuring the transmitted broadband THz pulses through both the metasurface and the object. The 1D image information regarding the object is linearly mapped into the spectrum of the transmitted wave of the rainbow metasurface. Thus, 2D images can be successfully reconstructed using simple 1D data acquisition processes.
Object extraction method for image synthesis
NASA Astrophysics Data System (ADS)
Inoue, Seiki
1991-11-01
The extraction of component objects from images is fundamentally important for image synthesis. In TV program production, one useful method is the Video-Matte technique for specifying the necessary boundary of an object. This, however, involves some manually intricate and tedious processes. A new method proposed in this paper can reduce the needed level of operator skill and simplify object extraction. The object is automatically extracted by just a simple drawing of a thick boundary line. The basic principle involves a thinning of the thick boundary line binary image using the edge intensity of the original image. This method has many practical advantages, including the simplicity of specifying an object, the high accuracy of thinned-out boundary line, its ease of application to moving images, and the lack of any need for adjustment.
On detection of median filtering in digital images
NASA Astrophysics Data System (ADS)
Kirchner, Matthias; Fridrich, Jessica
2010-01-01
In digital image forensics, it is generally accepted that intentional manipulations of the image content are most critical and hence numerous forensic methods focus on the detection of such 'malicious' post-processing. However, it is also beneficial to know as much as possible about the general processing history of an image, including content-preserving operations, since they can affect the reliability of forensic methods in various ways. In this paper, we present a simple yet effective technique to detect median filtering in digital images-a widely used denoising and smoothing operator. As a great variety of forensic methods relies on some kind of a linearity assumption, a detection of non-linear median filtering is of particular interest. The effectiveness of our method is backed with experimental evidence on a large image database.
Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M
2018-02-01
Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged <11 years (mean age of 6.9, range 2.5-10 years) with a bruise were recruited from the community. Demographics and bruise details were recorded. Each bruise was measured in vivo using a paper measuring tape. Standardised conventional and cross polarized digital images were obtained. The diameter of bruise images were measured by three computer aided measurement techniques: Image J (segmentation with Simple Interactive Object Extraction (maximum Feret diameter), 'Circular Selection Tool' (Circle diameter), & the Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p < 0.05 for all tests. Images were available for 38 bruises in vivo, with 48 bruises visible on cross polarized imaging and 46 on conventional imaging (some bruises interpreted as being single in vivo appeared to be multiple in digital images). Correlation coefficients were >0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra-observer agreement was high for all maximum diameter measurements (ICC's > 0.7). Whilst there are minimal differences between measurements of images obtained, the most consistent results were obtained when conventional images, segmented by Image J Software, were measured with a Feret diameter. This is therefore proposed as a standard for future research, and forensic practice, with the proviso that all computer aided measurements appear larger than in vivo. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
A computer vision system for diagnosing scoliosis using moiré images.
Batouche, M; Benlamri, R; Kholladi, M K
1996-07-01
For young people, scoliosis deformities are an evolving process which must be detected and treated as early as possible. The moiré technique is simple, inexpensive, not aggressive and especially convenient for detecting spinal deformations. Doctors make their diagnosis by analysing the symmetry of fringes obtained by such techniques. In this paper, we present a computer vision system for help diagnosing spinal deformations using noisy moiré images of the human back. The approach adopted in this paper consists of extracting fringe contours from moiré images, then localizing some anatomical features (the spinal column, lumbar hollow and shoulder blades) which are crucial for 3D surface generation carried out using Mota's relaxation operator. Finally, rules furnished by doctors are used to derive the kind of spinal deformation and to yield the diagnosis. The proposed system has been tested on a set of noisy moiré images, and the experimental result have shown its robustness and reliability for the recognition of most scoliosis deformities.
A simple autocorrelation algorithm for determining grain size from digital images of sediment
Rubin, D.M.
2004-01-01
Autocorrelation between pixels in digital images of sediment can be used to measure average grain size of sediment on the bed, grain-size distribution of bed sediment, and vertical profiles in grain size in a cross-sectional image through a bed. The technique is less sensitive than traditional laboratory analyses to tails of a grain-size distribution, but it offers substantial other advantages: it is 100 times as fast; it is ideal for sampling surficial sediment (the part that interacts with a flow); it can determine vertical profiles in grain size on a scale finer than can be sampled physically; and it can be used in the field to provide almost real-time grain-size analysis. The technique can be applied to digital images obtained using any source with sufficient resolution, including digital cameras, digital video, or underwater digital microscopes (for real-time grain-size mapping of the bed). ?? 2004, SEPM (Society for Sedimentary Geology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M.; Al-Dayeh, L.; Patel, P.
It is well known that even small movements of the head can lead to artifacts in fMRI. Corrections for these movements are usually made by a registration algorithm which accounts for translational and rotational motion of the head under a rigid body assumption. The brain, however, is not entirely rigid and images are prone to local deformations due to CSF motion, susceptibility effects, local changes in blood flow and inhomogeneities in the magnetic and gradient fields. Since nonrigid body motion is not adequately corrected by approaches relying on simple rotational and translational corrections, we have investigated a general approach wheremore » an n{sup th} order polynomial is used to map all images onto a common reference image. The coefficients of the polynomial transformation were determined through minimization of the ratio of the variance to the mean of each pixel. Simulation studies were conducted to validate the technique. Results of experimental studies using polynomial transformation for 2D and 3D registration show lower variance to mean ratio compared to simple rotational and translational corrections.« less
Clustered functional MRI of overt speech production.
Sörös, Peter; Sokoloff, Lisa Guttman; Bose, Arpita; McIntosh, Anthony R; Graham, Simon J; Stuss, Donald T
2006-08-01
To investigate the neural network of overt speech production, event-related fMRI was performed in 9 young healthy adult volunteers. A clustered image acquisition technique was chosen to minimize speech-related movement artifacts. Functional images were acquired during the production of oral movements and of speech of increasing complexity (isolated vowel as well as monosyllabic and trisyllabic utterances). This imaging technique and behavioral task enabled depiction of the articulo-phonologic network of speech production from the supplementary motor area at the cranial end to the red nucleus at the caudal end. Speaking a single vowel and performing simple oral movements involved very similar activation of the cortical and subcortical motor systems. More complex, polysyllabic utterances were associated with additional activation in the bilateral cerebellum, reflecting increased demand on speech motor control, and additional activation in the bilateral temporal cortex, reflecting the stronger involvement of phonologic processing.
Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.
Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi
2017-02-17
Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
Peckys, Diana B.; Veith, Gabriel M.; Joy, David C.; de Jonge, Niels
2009-01-01
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory. PMID:20020038
Interband coding extension of the new lossless JPEG standard
NASA Astrophysics Data System (ADS)
Memon, Nasir D.; Wu, Xiaolin; Sippy, V.; Miller, G.
1997-01-01
Due to the perceived inadequacy of current standards for lossless image compression, the JPEG committee of the International Standards Organization (ISO) has been developing a new standard. A baseline algorithm, called JPEG-LS, has already been completed and is awaiting approval by national bodies. The JPEG-LS baseline algorithm despite being simple is surprisingly efficient, and provides compression performance that is within a few percent of the best and more sophisticated techniques reported in the literature. Extensive experimentations performed by the authors seem to indicate that an overall improvement by more than 10 percent in compression performance will be difficult to obtain even at the cost of great complexity; at least not with traditional approaches to lossless image compression. However, if we allow inter-band decorrelation and modeling in the baseline algorithm, nearly 30 percent improvement in compression gains for specific images in the test set become possible with a modest computational cost. In this paper we propose and investigate a few techniques for exploiting inter-band correlations in multi-band images. These techniques have been designed within the framework of the baseline algorithm, and require minimal changes to the basic architecture of the baseline, retaining its essential simplicity.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Pline, Alexander D.
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Pline, Alexander D.
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.
A technique for transferring a patient's smile line to a cone beam computed tomography (CBCT) image.
Bidra, Avinash S
2014-08-01
Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Saknite, Inga; Spigulis, Janis
2014-05-01
Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.
Application of shift-and-add algorithms for imaging objects within biological media
NASA Astrophysics Data System (ADS)
Aizert, Avishai; Moshe, Tomer; Abookasis, David
2017-01-01
The Shift-and-Add (SAA) technique is a simple mathematical operation developed to reconstruct, at high spatial resolution, atmospherically degraded solar images obtained from stellar speckle interferometry systems. This method shifts and assembles individual degraded short-exposure images into a single average image with significantly improved contrast and detail. Since the inhomogeneous refractive indices of biological tissue causes light scattering similar to that induced by optical turbulence in the atmospheric layers, we assume that SAA methods can be successfully implemented to reconstruct the image of an object within a scattering biological medium. To test this hypothesis, five SAA algorithms were evaluated for reconstructing images acquired from multiple viewpoints. After successfully retrieving the hidden object's shape, quantitative image quality metrics were derived, enabling comparison of imaging error across a spectrum of layer thicknesses, demonstrating the relative efficacy of each SAA algorithm for biological imaging.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Prewarping techniques in imaging: applications in nanotechnology and biotechnology
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Milanfar, Peyman
2005-03-01
In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
A practical implementation of multi-frequency widefield frequency-domain FLIM
Chen, Hongtao
2013-01-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945
Buy, Xavier; Tok, Chung-Hong; Szwarc, Daniel; Bierry, Guillaume; Gangi, Afshin
2009-05-01
Percutaneous image-guided thermal ablation of tumor is widely used, and thermal injury to collateral structures is a known complication of this technique. To avoid thermal damage to surrounding structures, several protection techniques have been reported. We report the use of a simple and effective protective technique combining carbon dioxide dissection and thermocouple: CO(2) displaces the nontarget structures, and its low thermal conductivity provides excellent insulation; insertion of a thermocouple in contact with vulnerable structures achieves continuous thermal monitoring. We performed percutaneous thermal ablation of 37 tumors in 35 patients (4 laser, 10 radiofrequency, and 23 cryoablations) with protection of adjacent vulnerable structures by using CO(2) dissection combined with continuous thermal monitoring with thermocouple. Tumor locations were various (19 intra-abdominal tumors including 4 livers and 9 kidneys, 18 musculoskeletal tumors including 11 spinal tumors). CO(2) volume ranged from 10 ml (epidural space) to 1500 ml (abdominal). Repeated insufflations were performed if necessary, depending on the information given by the thermocouple and imaging control. Dissection with optimal thermal protection was achieved in all cases except two patients where adherences (one postoperative, one arachnoiditis) blocked proper gaseous distribution. No complication referred to this technique was noted. This safe, cost-effective, and simple method increases the safety and the success rate of percutaneous thermal ablation procedures. It also offers the potential to increase the number of tumors that can be treated via a percutaneous approach.
An effective approach for iris recognition using phase-based image matching.
Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi
2008-10-01
This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.
Patterson, Joseph P.; Sanchez, Ana M.; Petzetakis, Nikos; Smart, Thomas P.; Epps, Thomas H.; Portman, Ian
2013-01-01
Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies. PMID:24049544
Particle displacement tracking applied to air flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.
Cheng, Cynthia; Lee, Chadd W; Daskalakis, Constantine
2015-10-27
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient's microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.(1) This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique.
Daskalakis, Constantine
2015-01-01
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient’s microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.1 This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique. PMID:26554744
Sereshti, Hassan; Poursorkh, Zahra; Aliakbarzadeh, Ghazaleh; Zarre, Shahin; Ataolahi, Sahar
2018-01-15
Quality of saffron, a valuable food additive, could considerably affect the consumers' health. In this work, a novel preprocessing strategy for image analysis of saffron thin layer chromatographic (TLC) patterns was introduced. This includes performing a series of image pre-processing techniques on TLC images such as compression, inversion, elimination of general baseline (using asymmetric least squares (AsLS)), removing spots shift and concavity (by correlation optimization warping (COW)), and finally conversion to RGB chromatograms. Subsequently, an unsupervised multivariate data analysis including principal component analysis (PCA) and k-means clustering was utilized to investigate the soil salinity effect, as a cultivation parameter, on saffron TLC patterns. This method was used as a rapid and simple technique to obtain the chemical fingerprints of saffron TLC images. Finally, the separated TLC spots were chemically identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). Accordingly, the saffron quality from different areas of Iran was evaluated and classified. Copyright © 2017 Elsevier Ltd. All rights reserved.
The "Best Worst" Field Optimization and Focusing
NASA Technical Reports Server (NTRS)
Vaughnn, David; Moore, Ken; Bock, Noah; Zhou, Wei; Ming, Liang; Wilson, Mark
2008-01-01
A simple algorithm for optimizing and focusing lens designs is presented. The goal of the algorithm is to simultaneously create the best and most uniform image quality over the field of view. Rather than relatively weighting multiple field points, only the image quality from the worst field point is considered. When optimizing a lens design, iterations are made to make this worst field point better until such a time as a different field point becomes worse. The same technique is used to determine focus position. The algorithm works with all the various image quality metrics. It works with both symmetrical and asymmetrical systems. It works with theoretical models and real hardware.
NASA Astrophysics Data System (ADS)
Raman, Kumar; Casey, Dan; Callahan, Debra; Clark, Dan; Fittinghoff, David; Grim, Gary; Hatchett, Steve; Hinkel, Denise; Jones, Ogden; Kritcher, Andrea; Seek, Scott; Suter, Larry; Merrill, Frank; Wilson, Doug
2016-10-01
In experiments with cryogenic deuterium-tritium (DT) fuel layers at the National Ignition Facility (NIF), an important technique for visualizing the stagnated fuel assembly is to image the 6-12 MeV neutrons created by scatters of the 14 MeV hotspot neutrons in the surrounding cold fuel. However, such down-scattered neutron images are difficult to interpret without a model of the fuel assembly, because of the nontrivial neutron kinematics involved in forming the images. For example, the dominant scattering modes are at angles other than forward scattering and the 14 MeV neutron fluence is not uniform. Therefore, the intensity patterns in these images usually do not correspond in a simple way to patterns in the fuel distribution, even for simple fuel distributions. We describe our efforts to model synthetic images from ICF design simulations with data from the National Ignition Campaign and after. We discuss the insight this gives, both to understand how well the models are predicting fuel asymmetries and to inform how to optimize the diagnostic for the types of fuel distributions being predicted. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Study of adaptive methods for data compression of scanner data
NASA Technical Reports Server (NTRS)
1977-01-01
The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.
Application of single-shot spiral scanning for volume localization.
Ra, J B; Rim, C Y; Cho, Z H
1991-02-01
A new technique using a spiral scan single-shot RF pulse for localized volume selection has been developed and its experimental results are presented. This technique employs an additional radial-gradient coil in conjunction with the oscillating gradients for the spiral scan to localize the 3D volume. The short selection time in this technique minimizes both signal contamination from unwanted regions and signal attenuation due to T2 decay. We provide both the theoretical background of the technique and the experimental results obtained from a phantom as well as a human volunteer. The proposed method appears simple and accurate in localizing a volume which would be used as either fast imaging or localized spectroscopy.
Generative Models in Deep Learning: Constraints for Galaxy Evolution
NASA Astrophysics Data System (ADS)
Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.
2018-01-01
New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.
Combined SRCT & FXCT - The next steps
NASA Astrophysics Data System (ADS)
Hall, C.; Acres, R. G.; Winnett, A.; Wang, F.
2016-03-01
One of the goals in developing synchrotron radiation x-ray computed tomography (SRCT) for biomedical specimens, is allowing particular tissues and cell types to be marked in the images. This is equivalent to the staining in histology, which enables researchers to visualise and measure tissue structure and biochemical processes within the specimen. Some progress in this direction for SRCT is being made, using a variety of contrast agents that alter the natural x-ray attenuation of the marked tissue [1]. However there are limits to the usefulness of these attenuation altering techniques. Often high concentrations of potentially disruptive chemicals are required with reduced compatibility for in-vivo studies. Another image highlighting technique which might prove more sensitive is x-ray fluorescence imaging. In this case usually endogenous elemental markers are visualised. We would like to develop a lower resolution, but wider field of view means of three-dimensional (3-D) fluorescence imaging compatible with SRCT. We have previously proposed a technique in which x-ray fluorescence CT (FXCT) and SRCT data can be collected simultaneously [2]. This work resulted in proof of concept modelling, and a simple experiment test system. We show data here which demonstrate a two-dimensional (2-D) reconstruction of an iodine fluorescence map from a phantom. Measurements were performed with a fixed beam modulating mask using the Imaging and Medical beam line (IMBL) at the Australian Synchrotron. Fluorescence data was obtained during a CT scan using a single point detector, while transmission data was simultaneously collected using an area detector. A maximum likelihood expectation maximisation (MLEM) iterative algorithm was used to reconstruct the fluorescence map. We report on technique development and now believe compressive sensing (CS) imaging techniques suit SRCT and may overcome the issues encountered so far in combining SRCT and FXCT.
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
NASA Astrophysics Data System (ADS)
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Multichannel microfluidic chip for rapid and reliable trapping and imaging plant-parasitic nematodes
NASA Astrophysics Data System (ADS)
Amrit, Ratthasart; Sripumkhai, Witsaroot; Porntheeraphat, Supanit; Jeamsaksiri, Wutthinan; Tangchitsomkid, Nuchanart; Sutapun, Boonsong
2013-05-01
Faster and reliable testing technique to count and identify nematode species resided in plant roots is therefore essential for export control and certification. This work proposes utilizing a multichannel microfluidic chip with an integrated flow-through microfilter to retain the nematodes in a trapping chamber. When trapped, it is rather simple and convenient to capture images of the nematodes and later identify their species by a trained technician. Multiple samples can be tested in parallel using the proposed microfluidic chip therefore increasing number of samples tested per day.
Ultrasonic Evaluation and Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.
2015-10-01
Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection ofmore » spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.« less
Berardi, Alberto; Bisharat, Lorina; Blaibleh, Anaheed; Pavoni, Lucia; Cespi, Marco
2018-06-20
Tablets disintegration is often the result of a size expansion of the tablets. In this study, we quantified the extent and direction of size expansion of tablets during disintegration, using readily available techniques, i.e. a digital camera and a public domain image analysis software. After validating the method, the influence of disintegrants concentration and diluents type on kinetics and mechanisms of disintegration were studied. Tablets containing diluent, disintegrant (sodium starch glycolate-SSG, crospovidone-PVPP or croscarmellose sodium-CCS) and lubricant were prepared by direct compression. Projected area and aspect ratio of the tablets were monitored using image analysis techniques. The developed method could describe the kinetics and mechanisms of disintegration qualitatively and quantitatively. SSG and PVPP acted purely by swelling and shape recovery mechanisms. Instead, CCS worked by a combination of both mechanisms, the extent of which changed depending on its concentration and the diluent type. We anticipate that the method described here could provide a framework for the routine screening of tablets disintegration using readily available equipment. Copyright © 2018. Published by Elsevier Inc.
Upright Imaging of Drosophila Egg Chambers
Manning, Lathiena; Starz-Gaiano, Michelle
2015-01-01
Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882
Optical threshold secret sharing scheme based on basic vector operations and coherence superposition
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen
2015-04-01
We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.
SPET/CT image co-registration in the abdomen with a simple and cost-effective tool.
Förster, Gregor J; Laumann, Christina; Nickel, Otmar; Kann, Peter; Rieker, Olaf; Bartenstein, Peter
2003-01-01
Fusion of morphology and function has been shown to improve diagnostic accuracy in many clinical circumstances. Taking this into account, a number of instruments combining computed tomography (CT) with positron emission tomography (PET) or single-photon emission tomography (SPET) are appearing on the market. The aim of this study was to evaluate a simple and cost-effective approach to generate fusion images of similar quality. For the evaluation of the proposed approach, patients with neuroendocrine abdominal tumours with liver metastases were chosen, since the exact superimposition in the abdomen is more difficult than in other regions. Five hours following the injection of 110 MBq (111)In-DTPA-octreotide, patients were fixed in a vacuum cushion (MED-TEC, Vac-Loc) and investigated with helical CT in a mid-inspiration position ( n=14). Directly following the CT, a SPET study (SPET1) of the abdominal region was performed without changing the position of the patient. A second SPET study (SPET2), 24 h p.i., was acquired after repositioning the patient in his or her individually moulded vacuum cushion. A total of nine markers suitable for imaging with CT and SPET were fixed on the cushion. Datasets were fused by means of internal landmarks (e.g. metastases or margin of abdominal organs) or by the external markers. Image fusion using external markers was fast and easy to handle compared with the use of internal landmarks. Using this technique, all lesions detectable by SPET ( n=28) appeared exactly superpositioned on the respective CT morphology by visual inspection. Image fusion of CT/SPET1 and CT/SPET2 showed a mean deviation of the external markers that in the former case was smaller than the voxel size of 4.67 mm: 4.17+/-0.61 (CT/SPET1; +/-SD) and 5.52+/-1.56 mm (CT/SPET2), respectively. Using internal landmarks, the mean deviation of the chosen landmarks was 6.47+/-1.37 and 7.78+/-1.21 mm. Vector subtraction of corresponding anatomical points of the CT and the re-sampled SPET volume datasets resulted in a similar accuracy. Vector subtraction of the metastases showed a significantly less accurate superimposition when internal landmarks were used ( P<0.001). The vacuum cushion did not affect the image quality of CT and SPET. The proposed technique is a simple and cost-effective way to generate abdominal datasets suitable for image fusion. External markers positioned on the cushion allow for a rapid and robust overlay even if no readily identifiable internal landmarks are present. This technique is, in principle, also suitable for CT/PET fusion as well as for fusions of MRI data with PET or SPET.
Al-Dmour, Hayat; Al-Ani, Ahmed
2016-04-01
The present work has the goal of developing a secure medical imaging information system based on a combined steganography and cryptography technique. It attempts to securely embed patient's confidential information into his/her medical images. The proposed information security scheme conceals coded Electronic Patient Records (EPRs) into medical images in order to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. The secret EPR data is converted into ciphertext using private symmetric encryption method. Since the Human Visual System (HVS) is less sensitive to alterations in sharp regions compared to uniform regions, a simple edge detection method has been introduced to identify and embed in edge pixels, which will lead to an improved stego image quality. In order to increase the embedding capacity, the algorithm embeds variable number of bits (up to 3) in edge pixels based on the strength of edges. Moreover, to increase the efficiency, two message coding mechanisms have been utilized to enhance the ±1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications. The experimental results demonstrate that the proposed method can embed large amount of secret data without leaving a noticeable distortion in the output image. The effectiveness of the proposed algorithm is also proven using one of the efficient steganalysis techniques. The proposed medical imaging information system proved to be capable of concealing EPR data and producing imperceptible stego images with minimal embedding distortions compared to other existing methods. In order to refrain from introducing any modifications to the ROI, the proposed system only utilizes the Region of Non Interest (RONI) in embedding the EPR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Martens, Andreas; Rojas, Sebastian V; Baraki, Hassina; Rathert, Christian; Schecker, Natalie; Hernandez, Sara Rojas; Schwanke, Kristin; Zweigerdt, Robert; Martin, Ulrich; Saito, Shunsuke; Haverich, Axel; Kutschka, Ingo
2014-01-01
The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections. A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5 × 10(5)) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78 × 10(5) ± 0.31 × 10(5) in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74 × 10(5) ± 0.18 × 10(5); p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90 × 10(5) ± 0.20 × 10(5)) and the right (1.07 × 10(5) ± 0.17 × 10(5)) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups. We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after intramyocardial delivery using macroscopic fluorescence imaging. This new technique showed massive early particle loss and venous drainage into the right atrium leading to substantial accumulation of graft particles in both lungs.
Hazelaar, Colien; van Eijnatten, Maureen; Dahele, Max; Wolff, Jan; Forouzanfar, Tymour; Slotman, Ben; Verbakel, Wilko F A R
2018-01-01
Imaging phantoms are widely used for testing and optimization of imaging devices without the need to expose humans to irradiation. However, commercially available phantoms are commonly manufactured in simple, generic forms and sizes and therefore do not resemble the clinical situation for many patients. Using 3D printing techniques, we created a life-size phantom based on a clinical CT scan of the thorax from a patient with lung cancer. It was assembled from bony structures printed in gypsum, lung structures consisting of airways, blood vessels >1 mm, and outer lung surface, three lung tumors printed in nylon, and soft tissues represented by silicone (poured into a 3D-printed mold). Kilovoltage x-ray and CT images of the phantom closely resemble those of the real patient in terms of size, shapes, and structures. Surface comparison using 3D models obtained from the phantom and the 3D models used for printing showed mean differences <1 mm for all structures. Tensile tests of the materials used for the phantom show that the phantom is able to endure radiation doses over 24,000 Gy. It is feasible to create an anthropomorphic thorax phantom using 3D printing and molding techniques. The phantom closely resembles a real patient in terms of spatial accuracy and is currently being used to evaluate x-ray-based imaging quality and positional verification techniques for radiotherapy. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Iovea, M.; Creed, J.; Perin, E.; Neagu, M.; Mateiasi, G.
2009-02-01
The aim of this study was to conduct a preliminary check of a new method for measuring the 3D catheter position based on only one X-Ray view (image) and a simple pre-calibration procedure for catheters that could be equipped with high-opacity equal-spaced markers. The application chosen for this experiment is the targeted delivery of cell based therapeutic via a transendocardial retrograde approach into the left ventricle. This approach has shown promising therapeutic retention data when injected directly into the myocardial tissue, but lacks in the ability of the user to confidently manipulate the catheter within the left ventricle cavity space under traditional fluoroscopic guidance using a needle based catheter. The need for a new technique arose from the potential for increased safety and therapeutic efficacy by improving the targeting of the agent. The new technique, destined for Image guided catheter navigation systems for cardiac interventions, is based on a measurement of the marker's size and distance between them and followed by a comparison with the referenced catheter position. Preliminary experiments made with a simple phantom are presented, emphasizing the ability of the new technique in measuring the markers and the catheter tip 3D position. An overall maximum error in positioning markers and catheter tip below 12% has been obtained, yielding a promising result for continuing the future work of improving the algorithm accuracy.
ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox
NASA Astrophysics Data System (ADS)
Mede, Kyle; Brandt, Timothy D.
2017-08-01
ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.
Intelligence. Indochina Monographs,
1982-01-01
literary pieces such as proverbs, folk songs, lyrical poems cad ritual chants. The composition of these songs and poems is simple, -•% the language...exploited the merits of traditionally popular literature such as plainness, simplicity, flexibility, lyricality , and images. Careful studies of rules...governing the composition of folk songs, lyrical poems and ritual chants helped sharpen the Communist propaganda technique to the point that every
NASA Astrophysics Data System (ADS)
Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik
2001-05-01
Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.
Visualizing deep neural network by alternately image blurring and deblurring.
Wang, Feng; Liu, Haijun; Cheng, Jian
2018-01-01
Visualization from trained deep neural networks has drawn massive public attention in recent. One of the visualization approaches is to train images maximizing the activation of specific neurons. However, directly maximizing the activation would lead to unrecognizable images, which cannot provide any meaningful information. In this paper, we introduce a simple but effective technique to constrain the optimization route of the visualization. By adding two totally inverse transformations, image blurring and deblurring, to the optimization procedure, recognizable images can be created. Our algorithm is good at extracting the details in the images, which are usually filtered by previous methods in the visualizations. Extensive experiments on AlexNet, VGGNet and GoogLeNet illustrate that we can better understand the neural networks utilizing the knowledge obtained by the visualization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Video-rate volumetric neuronal imaging using 3D targeted illumination.
Xiao, Sheng; Tseng, Hua-An; Gritton, Howard; Han, Xue; Mertz, Jerome
2018-05-21
Fast volumetric microscopy is required to monitor large-scale neural ensembles with high spatio-temporal resolution. Widefield fluorescence microscopy can image large 2D fields of view at high resolution and speed while remaining simple and costeffective. A focal sweep add-on can further extend the capacity of widefield microscopy by enabling extended-depth-of-field (EDOF) imaging, but suffers from an inability to reject out-of-focus fluorescence background. Here, by using a digital micromirror device to target only in-focus sample features, we perform EDOF imaging with greatly enhanced contrast and signal-to-noise ratio, while reducing the light dosage delivered to the sample. Image quality is further improved by the application of a robust deconvolution algorithm. We demonstrate the advantages of our technique for in vivo calcium imaging in the mouse brain.
Detection and Evaluation of Skin Disorders by One of Photogrammetric Image Analysis Methods
NASA Astrophysics Data System (ADS)
Güçin, M.; Patias, P.; Altan, M. O.
2012-08-01
Abnormalities on skin may vary from simple acne to painful wounds which affect a person's life quality. Detection of these kinds of disorders in early stages, followed by the evaluation of abnormalities is of high importance. At this stage, photogrammetry offers a non-contact solution to this concern by providing geometric highly accurate data. Photogrammetry, which has been used for firstly topographic purposes, in virtue of terrestrial photogrammetry became useful technique in non-topographic applications also (Wolf et al., 2000). Moreover the extension of usage of photogrammetry, in parallel with the development in technology, analogue photographs are replaced with digital images and besides digital image processing techniques, it provides modification of digital images by using filters, registration processes etc. Besides, photogrammetry (using same coordinate system by registration of images) can serve as a tool for the comparison of temporal imaging data. The aim of this study is to examine several digital image processing techniques, in particular the digital filters, which might be useful to determine skin disorders. In our study we examine affordable to purchase, user friendly software which needs neither expertise nor pre-training. Since it is a pre-work for subsequent and deeper studies, Adobe Photoshop 7.0 is used as a present software. In addition to that Adobe Photoshop released a DesAcc plug-ins with CS3 version and provides full compatibility with DICOM (Digital Imaging and Communications in Medicine) and PACS (Picture Archiving and Communications System) that enables doctors to store all medical data together with relevant images and share if necessary.
Tratamiento formal de imágenes astronómicas con PSF espacialmente variable
NASA Astrophysics Data System (ADS)
Sánchez, B. O.; Domínguez, M. J.; Lares, M.
2017-10-01
We present a python implementation of a method for PSF determination in the context of optimal subtraction of astronomical images. We introduce an expansion of the spatially variant point spread function (PSF) in terms of the Karhunen Loève basis. The advantage of this approach is that the basis is able to naturally adapt to the data, instead of imposing a fixed ad-hoc analytic form. Simulated image reconstruction was analyzed, by using the measured PSF, with good agreement in terms of sky background level between the reconstructed and original images. The technique is simple enough to be implemented on more sophisticated image subtraction methods, since it improves its results without extra computational cost in a spatially variant PSF environment.
Combining multiple thresholding binarization values to improve OCR output
NASA Astrophysics Data System (ADS)
Lund, William B.; Kennard, Douglas J.; Ringger, Eric K.
2013-01-01
For noisy, historical documents, a high optical character recognition (OCR) word error rate (WER) can render the OCR text unusable. Since image binarization is often the method used to identify foreground pixels, a body of research seeks to improve image-wide binarization directly. Instead of relying on any one imperfect binarization technique, our method incorporates information from multiple simple thresholding binarizations of the same image to improve text output. Using a new corpus of 19th century newspaper grayscale images for which the text transcription is known, we observe WERs of 13.8% and higher using current binarization techniques and a state-of-the-art OCR engine. Our novel approach combines the OCR outputs from multiple thresholded images by aligning the text output and producing a lattice of word alternatives from which a lattice word error rate (LWER) is calculated. Our results show a LWER of 7.6% when aligning two threshold images and a LWER of 6.8% when aligning five. From the word lattice we commit to one hypothesis by applying the methods of Lund et al. (2011) achieving an improvement over the original OCR output and a 8.41% WER result on this data set.
Coghill, G; Grant, A; Orrell, J M; Jankowski, J; Evans, A T
1990-01-01
A new simple modification to the silver staining of nucleolar organiser regions (AgNORs) was devised which, by performing the incubation with the slide inverted, results in minimal undesirable background staining, a persistent problem. Inverted incubation is facilitated by the use of a commercially available plastic coverplate. This technique has several additional advantages over other published staining protocols. In particular, the method is straightforward, fast, and maintains a high degree of contrast between the background and the AgNORs. Images PMID:1702451
Path planning on cellular nonlinear network using active wave computing technique
NASA Astrophysics Data System (ADS)
Yeniçeri, Ramazan; Yalçın, Müstak E.
2009-05-01
This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.
Noise-gating to Clean Astrophysical Image Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, C. E.
I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to nomore » apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.« less
Noise-gating to Clean Astrophysical Image Data
NASA Astrophysics Data System (ADS)
DeForest, C. E.
2017-04-01
I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to no apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.
Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara
2011-12-27
Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.
Processing MALDI mass spectra to improve mass spectral direct tissue analysis
NASA Astrophysics Data System (ADS)
Norris, Jeremy L.; Cornett, Dale S.; Mobley, James A.; Andersson, Malin; Seeley, Erin H.; Chaurand, Pierre; Caprioli, Richard M.
2007-02-01
Profiling and imaging biological specimens using MALDI mass spectrometry has significant potential to contribute to our understanding and diagnosis of disease. The technique is efficient and high-throughput providing a wealth of data about the biological state of the sample from a very simple and direct experiment. However, in order for these techniques to be put to use for clinical purposes, the approaches used to process and analyze the data must improve. This study examines some of the existing tools to baseline subtract, normalize, align, and remove spectral noise for MALDI data, comparing the advantages of each. A preferred workflow is presented that can be easily implemented for data in ASCII format. The advantages of using such an approach are discussed for both molecular profiling and imaging mass spectrometry.
Digital image compression for a 2f multiplexing optical setup
NASA Astrophysics Data System (ADS)
Vargas, J.; Amaya, D.; Rueda, E.
2016-07-01
In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.
Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters.
Lee, Anthony M D; Hohert, Geoffrey; Angkiriwang, Patricia T; MacAulay, Calum; Lane, Pierre
2017-09-04
We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.
Image based method for aberration measurement of lithographic tools
NASA Astrophysics Data System (ADS)
Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa
2018-01-01
Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.
Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi
2018-04-01
In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25 μ radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.
In situ optical measurements for characterization of flame species and remote sensing
NASA Astrophysics Data System (ADS)
Cullum, Brian Michael
1998-12-01
The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.
NASA Astrophysics Data System (ADS)
Ali, Mohamed H.; Rakib, Fazle; Al-Saad, Khalid; Al-Saady, Rafif; Lyng, Fiona M.; Goormaghtigh, Erik
2018-07-01
Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes.
Photographic monitoring of soiling and decay of roadside walls in central Oxford, England
NASA Astrophysics Data System (ADS)
Thornbush, Mary J.; Viles, Heather A.
2008-12-01
As part of the Environmental Monitoring of Integrated Transport Strategies (EMITS) project, which examined the impact of the Oxford Transport Strategy (OTS) on the soiling and decay of buildings and structures in central Oxford, England, a simple photographic survey of a sample of roadside walls was carried out in 1997, with re-surveys in 1999 and 2003. Thirty photographs were taken each time, covering an area of stonework approximately 30 × 30 cm in dimensions at 1-1.3 m above pavement level. The resulting images have been used to investigate, both qualitatively as well as quantitatively, the progression of soiling and decay. Comparison of images by eye reveals a number of minor changes in soiling and decay patterns, but generally indicates stability except at one site where dramatic, superficial damage occurred over 2 years. Quantitative analysis of decay features (concavities resulting from surface blistering, flaking, and scaling), using simple techniques in Adobe Photoshop, shows variable pixel-based size proportions of concavities across 6 years of survey. Colour images (in Lab Color) generally have a reduced proportion of pixels, representing decay features in comparison to black and white (Grayscale) images. The study conveys that colour images provide more information both for general observations of soiling and decay patterns and for segmentation of decay-produced concavities. The study indicates that simple repeat photography can reveal useful information about changing patterns of both soiling and decay, although unavoidable variation in external lighting conditions between re-surveys is a factor limiting the accuracy of change detection.
A framework for interactive visualization of digital medical images.
Koehring, Andrew; Foo, Jung Leng; Miyano, Go; Lobe, Thom; Winer, Eliot
2008-10-01
The visualization of medical images obtained from scanning techniques such as computed tomography and magnetic resonance imaging is a well-researched field. However, advanced tools and methods to manipulate these data for surgical planning and other tasks have not seen widespread use among medical professionals. Radiologists have begun using more advanced visualization packages on desktop computer systems, but most physicians continue to work with basic two-dimensional grayscale images or not work directly with the data at all. In addition, new display technologies that are in use in other fields have yet to be fully applied in medicine. It is our estimation that usability is the key aspect in keeping this new technology from being more widely used by the medical community at large. Therefore, we have a software and hardware framework that not only make use of advanced visualization techniques, but also feature powerful, yet simple-to-use, interfaces. A virtual reality system was created to display volume-rendered medical models in three dimensions. It was designed to run in many configurations, from a large cluster of machines powering a multiwalled display down to a single desktop computer. An augmented reality system was also created for, literally, hands-on interaction when viewing models of medical data. Last, a desktop application was designed to provide a simple visualization tool, which can be run on nearly any computer at a user's disposal. This research is directed toward improving the capabilities of medical professionals in the tasks of preoperative planning, surgical training, diagnostic assistance, and patient education.
Percutaneous Method of Management of Simple Bone Cyst
Lakhwani, O. P.
2013-01-01
Introduction. Simple bone cyst or unicameral bone cysts are benign osteolytic lesions seen in metadiaphysis of long bones in growing children. Various treatment modalities with variable outcomes have been described in the literature. The case report illustrates the surgical technique of minimally invasive method of treatment. Case Study. A 14-year-old boy was diagnosed as active simple bone cyst proximal humerus with pathological fracture. The patient was treated by minimally invasive percutaneous curettage with titanium elastic nail (TENS) and allogenic bone grafting mixed with bone marrow under image intensifier guidance. Results. Pathological fracture was healed and allograft filled in the cavity was well taken up. The patient achieved full range of motion with successful outcome. Conclusion. Minimally invasive percutaneous method using elastic intramedullary nail gives benefit of curettage cyst decompression and stabilization of fracture. Allogenic bone graft fills the cavity and healing of lesion by osteointegration. This method may be considered with advantage of minimally invasive technique in treatment of benign cystic lesions of bone, and the level of evidence was therapeutic level V. PMID:23819089
Streak Imaging Flow Cytometer for Rare Cell Analysis.
Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham
2017-01-01
There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.
2013-01-01
Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233
Wistermayer, Paul R; McIlwain, Wesley R; Ieronimakis, Nicholas; Rogers, Derek J
2018-04-01
Validate an accurate and reproducible method of measuring the cross-sectional area (CSA) of the upper airway. This is a prospective animal study done at a tertiary care medical treatment facility. Control images were obtained using endotracheal tubes of varying sizes. In vivo images were obtained from various timepoints of a concurrent study on subglottic stenosis. Using a 0° rod telescope, an instrument was placed at the level of interest, and a photo was obtained. Three independent and blinded raters then measured the CSA of the narrowest portion of the airway using open source image analysis software. Each blinded rater measured the CSA of 79 photos. The t testing to assess for accuracy showed no difference between measured and known CSAs of the control images ( P = .86), with an average error of 1.5% (SD = 5.5%). All intraclass correlation (ICC) values for intrarater agreement showed excellent agreement (ICC > .75). Interrater reliability among all raters in control (ICC = .975; 95% CI, .817-.995) and in vivo (ICC = .846;, 95% CI, .780-.896) images showed excellent agreement. We validate a simple, accurate, and reproducible method of measuring the CSA of the airway that can be used in a clinical or research setting.
NASA Astrophysics Data System (ADS)
Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.
2015-05-01
This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.
Noll, R; Haas, C R; Weikl, B; Herziger, G
1986-03-01
Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.
Simulating and mapping spatial complexity using multi-scale techniques
De Cola, L.
1994-01-01
A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy; McCowan, Peter M.
2015-12-15
Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.« less
Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization
NASA Astrophysics Data System (ADS)
Wang, Yang; Pan, Zhibin
2017-11-01
Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.
Improved parallel image reconstruction using feature refinement.
Cheng, Jing; Jia, Sen; Ying, Leslie; Liu, Yuanyuan; Wang, Shanshan; Zhu, Yanjie; Li, Ye; Zou, Chao; Liu, Xin; Liang, Dong
2018-07-01
The aim of this study was to develop a novel feature refinement MR reconstruction method from highly undersampled multichannel acquisitions for improving the image quality and preserve more detail information. The feature refinement technique, which uses a feature descriptor to pick up useful features from residual image discarded by sparsity constrains, is applied to preserve the details of the image in compressed sensing and parallel imaging in MRI (CS-pMRI). The texture descriptor and structure descriptor recognizing different types of features are required for forming the feature descriptor. Feasibility of the feature refinement was validated using three different multicoil reconstruction methods on in vivo data. Experimental results show that reconstruction methods with feature refinement improve the quality of reconstructed image and restore the image details more accurately than the original methods, which is also verified by the lower values of the root mean square error and high frequency error norm. A simple and effective way to preserve more useful detailed information in CS-pMRI is proposed. This technique can effectively improve the reconstruction quality and has superior performance in terms of detail preservation compared with the original version without feature refinement. Magn Reson Med 80:211-223, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Carvalho, L. M. V.; Rickenbach, T.
1999-01-01
Satellite infrared (IR) and visible (VIS) images from the Tropical Ocean Global Atmosphere - Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) experiment are investigated through the use of Clustering Analysis. The clusters are obtained from the values of IR and VIS counts and the local variance for both channels. The clustering procedure is based on the standardized histogram of each variable obtained from 179 pairs of images. A new approach to classify high clouds using only IR and the clustering technique is proposed. This method allows the separation of the enhanced convection in two main classes: convective tops, more closely related to the most active core of the storm, and convective systems, which produce regions of merged, thick anvil clouds. The resulting classification of different portions of cloudiness is compared to the radar reflectivity field for intensive events. Convective Systems and Convective Tops are followed during their life cycle using the IR clustering method. The areal coverage of precipitation and features related to convective and stratiform rain is obtained from the radar for each stage of the evolving Mesoscale Convective Systems (MCS). In order to compare the IR clustering method with a simple threshold technique, two IR thresholds (Tir) were used to identify different portions of cloudiness, Tir=240K which roughly defines the extent of all cloudiness associated with the MCS, and Tir=220K which indicates the presence of deep convection. It is shown that the IR clustering technique can be used as a simple alternative to identify the actual portion of convective and stratiform rainfall.
Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.
2007-01-01
This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than adequate for the majority of sedimentological applications, especially considering that the autocorrelation technique is estimated to be at least 100 times faster than traditional methods.
[Management of Acute Type A Dissection Complicated with Acute Mesenteric Ischemia].
Abe, Tomonobu; Usui, Akihiko
2017-07-01
Acute mesenteric ischemia as malperfusion syndrome associated with acute aortic dissection is a difficult situation. The incidence is approximately 3~4% in acute type A dissection. Traditionally, most of these patients underwent immediate simple central aortic repair expecting that mesenteric artery obstruction and intestinal ischemia would be resolved by simple central aortic repair. However, short term mortality has been reported very high in this strategy. With the aid of rapidly progressing imaging techniques and newer endovascular repair techniques, results seem to be improving in recent years. Newer management strategy include aggressive and patient specific revascularization to the mesenteric arteries, delayed central aortic repair, and meticulous intensive care. Diagnosis and management of this condition require high level of expertise. Cardiac surgeons, vascular surgeons, interventional radiologists, gastroenterologists, general surgeons, anesthesiologists, intensivists must corporate to save these patients' lives. Since this is a relatively rare condition, scientific evidence is insufficient to make robust recommendations. Further studies are warranted.
Strategy and optimization of diagnostic imaging in painful hip in adults.
Blum, A; Raymond, A; Teixeira, P
2015-02-01
Diagnostic imaging strategy in painful hip depends on many factors, but in all cases, plain X-ray is the first investigation. It may be sufficient to reach diagnosis and determine treatment options. More effective but more expensive exploration is indicated in two circumstances: when plain X-ray is non-contributive, and when diagnosis has been established but more accurate imaging assessment is needed to guide treatment. Following radiography, the choice of imaging techniques depends not only on the suspected pathology but also on the availability of equipment and its performance. MRI is probably the technique that provides the most comprehensive results; recent improved accessibility has significantly simplified the diagnostic algorithm. CT remains invaluable, and current techniques have reduced patient irradiation to a level similar to that of standard X-ray. Finally, cost is an important consideration in choosing the means of exploration, but the overall financial impact of the various strategies for diagnosis of painful hip is not well established. This article aims to provide a simple and effective diagnostic strategy for the assessment of painful hip, taking account of the clinical situation, and to detail the most typical semiologic patterns of each disease affecting this joint. Copyright © 2015. Published by Elsevier Masson SAS.
Near-isotropic 3D optical nanoscopy with photon-limited chromophores
Tang, Jianyong; Akerboom, Jasper; Vaziri, Alipasha; Looger, Loren L.; Shank, Charles V.
2010-01-01
Imaging approaches based on single molecule localization break the diffraction barrier of conventional fluorescence microscopy, allowing for bioimaging with nanometer resolution. It remains a challenge, however, to precisely localize photon-limited single molecules in 3D. We have developed a new localization-based imaging technique achieving almost isotropic subdiffraction resolution in 3D. A tilted mirror is used to generate a side view in addition to the front view of activated single emitters, allowing their 3D localization to be precisely determined for superresolution imaging. Because both front and side views are in focus, this method is able to efficiently collect emitted photons. The technique is simple to implement on a commercial fluorescence microscope, and especially suitable for biological samples with photon-limited chromophores such as endogenously expressed photoactivatable fluorescent proteins. Moreover, this method is relatively resistant to optical aberration, as it requires only centroid determination for localization analysis. Here we demonstrate the application of this method to 3D imaging of bacterial protein distribution and neuron dendritic morphology with subdiffraction resolution. PMID:20472826
Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography.
Hassan, Harnani; Jaidka, Sheila; Dwyer, Vincent M; Hu, Sijung
2018-05-01
One solution to the global challenge of increasing ocular disease is a cost-effective technique for rapid screening and assessment. Current ophthalmic imaging techniques, e.g. scanning and ocular blood flow systems, are expensive, complex to operate and utilize invasive contrast agents during assessment. The work presented here demonstrates a simple retinal imaging photoplethysmography (iPPG) system with the potential to provide screening, diagnosis, monitoring and assessment that is non-invasive, painless and radiationless. Time series of individual retinal blood vessel images, captured with an eye fundus camera, are processed using standard filtering, amplitude demodulation and principle component analysis (PCA) methods to determine the values of the heart rate (HR) and respiration rate (RR), which are in compliance with simultaneously obtained measurements using commercial pulse oximetry. It also seems possible that some information on the dynamic changes in oxygen saturation levels ( SpO 2 ) in a retinal blood vessel may also be obtained. As a consequence, the retinal iPPG modality system demonstrates a potential avenue for rapid ophthalmic screening, and even early diagnosis, against ocular disease without the need for fluorescent or contrast agents.
High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.
Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi
2015-12-01
An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
WE-A-BRD-01: MR Imaging for Treatment Planning: What Every Physicist Should Know
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, K.
2015-06-15
Ever since its introduction as a diagnostic imaging modality over 30 years ago, the radiation therapy community has acknowledged the utility of MR imaging as a tool for not only improved visualization of the target volume but also for demarcation of adjacent organs at risk. However, the adaptation of MR imaging in radiation oncology has, until recently been slow due in large part to the inability to image radiation therapy patients in their treatment position. With the introduction of so-called wide bore high field MR scanners, multi element flexible receive only RF coils, high performance imaging gradients and a rangemore » of volumetric imaging sequences it is now possible to obtain both high resolution and high signal-to-noise ratio images of in-treatment radiation therapy patients within clinically feasible imaging times. As a Result, there is renewed interest in the use of MR imaging for radiation oncology treatment planning that is being translated into physical siting and integration of these systems into radiation oncology departments. As MR imaging expands into the radiation oncology domain there is a significant and unmet need for radiation therapy physicists to become educated regarding the strengths, limitations and technical challenges associated with MR imaging. The purpose of this presentation is to address this need by providing an educational overview of the techniques and challenges associated with MR imaging of patients for radiation therapy treatment planning. As such this presentation will: 1) describe the fundamental differences between imaging of patients for diagnostic and therapeutic purposes (i.e. radiation therapy planning), 2) describe most commonly used imaging sequences and contrasts for identification of disease for radiation planning, 3) identify the most common sources of image distortion and techniques to reduce their effect on spatial fidelity of the MR data, 4) describe the effects of motion and methods to quantify/correct it, and 5) identify emergent techniques for performing MR only treatment simulation. Upon completion attendees will have a working understanding of the basic methodologies associated with MR imaging in radiation oncology, the unique technical challenges imposed by MR imaging in the treatment position and techniques to address these. Learning Objectives: 1. Understand the differences between MR imaging for diagnostic imaging and for radiation therapy planning. 2. Identify the most common sources of distortion and artifacts and simple methods to correct them. 3. Understand the challenges with MR imaging in the therapy treatment position and appropriate techniques to address them.« less
Real-time Human Activity Recognition
NASA Astrophysics Data System (ADS)
Albukhary, N.; Mustafah, Y. M.
2017-11-01
The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.
Simple technique to measure toric intraocular lens alignment and stability using a smartphone.
Teichman, Joshua C; Baig, Kashif; Ahmed, Iqbal Ike K
2014-12-01
Toric intraocular lenses (IOLs) are commonly implanted to correct corneal astigmatism at the time of cataract surgery. Their use requires preoperative calculation of the axis of implantation and postoperative measurement to determine whether the IOL has been implanted with the proper orientation. Moreover, toric IOL alignment stability over time is important for the patient and for the longitudinal evaluation of toric IOLs. We present a simple, inexpensive, and precise method to measure the toric IOL axis using a camera-enabled cellular phone (iPhone 5S) and computer software (ImageJ). Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Goossens, Bart; Aelterman, Jan; Luong, Hiep; Pizurica, Aleksandra; Philips, Wilfried
2013-02-01
In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU.
NASA Astrophysics Data System (ADS)
Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar
2016-06-01
There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.
Monitoring Earth Surface Dynamics With Optical Imagery
NASA Astrophysics Data System (ADS)
Leprince, Sébastien; Berthier, Etienne; Ayoub, François; Delacourt, Christophe; Avouac, Jean-Philippe
2008-01-01
The increasing availability of high-quality optical satellite images should allow, in principle, continuous monitoring of Earth's surface changes due to geologic processes, climate change, or anthropic activity. For instance, sequential optical images have been used to measure displacements at Earth's surface due to coseismic ground deformation [e.g., Van Puymbroeck et al., 2000], ice flow [Scambos et al., 1992; Berthier et al., 2005], sand dune migration [Crippen, 1992], and landslides [Kääb, 2002; Delacourt et al., 2004]. Surface changes related to agriculture, deforestation, urbanization, and erosion-which do not involve ground displacement-might also be monitored, provided that the images can be registered with sufficient accuracy. Although the approach is simple in principle, its use is still limited, mainly because of geometric distortion of the images induced by the imaging system, biased correlation techniques, and implementation difficulties.
X-ray Moiré deflectometry using synthetic reference images
Stutman, Dan; Valdivia, Maria Pia; Finkenthal, Michael
2015-06-25
Moiré fringe deflectometry with grating interferometers is a technique that enables refraction-based x-ray imaging using a single exposure of an object. To obtain the refraction image, the method requires a reference fringe pattern (without the object). Our study shows that, in order to avoid artifacts, the reference pattern must be exactly matched in phase with the object fringe pattern. In experiments, however, it is difficult to produce a perfectly matched reference pattern due to unavoidable interferometer drifts. We present a simple method to obtain matched reference patterns using a phase-scan procedure to generate synthetic Moiré images. As a result, themore » method will enable deflectometric diagnostics of transient phenomena such as laser-produced plasmas and could improve the sensitivity and accuracy of medical phase-contrast imaging.« less
NASA Astrophysics Data System (ADS)
Vatanparast, Maryam; Vullum, Per Erik; Nord, Magnus; Zuo, Jian-Min; Reenaas, Turid W.; Holmestad, Randi
2017-09-01
Geometric phase analysis (GPA), a fast and simple Fourier space method for strain analysis, can give useful information on accumulated strain and defect propagation in multiple layers of semiconductors, including quantum dot materials. In this work, GPA has been applied to high resolution Z-contrast scanning transmission electron microscopy (STEM) images. Strain maps determined from different g vectors of these images are compared to each other, in order to analyze and assess the GPA technique in terms of accuracy. The SmartAlign tool has been used to improve the STEM image quality getting more reliable results. Strain maps from template matching as a real space approach are compared with strain maps from GPA, and it is discussed that a real space analysis is a better approach than GPA for aberration corrected STEM images.
Two-Photon Imaging with Diffractive Optical Elements
Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael
2009-01-01
Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390
Comparison of Two Simplification Methods for Shoreline Extraction from Digital Orthophoto Images
NASA Astrophysics Data System (ADS)
Bayram, B.; Sen, A.; Selbesoglu, M. O.; Vārna, I.; Petersons, P.; Aykut, N. O.; Seker, D. Z.
2017-11-01
The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utilized to extract shoreline of Riga Bay. Bend and Douglas-Peucker methods have been used to simplify the extracted shoreline to test the effect of both methods. Photogrammetrically digitized shoreline has been taken as reference data to compare obtained results. The accuracy assessment has been realised by Digital Shoreline Analysis tool. As a result, the achieved shoreline by the Bend method has been found closer to the extracted shoreline with Simple Linear Clustering method.
[Management of a breast cystic syndrome: Guidelines].
Uzan, C; Seror, J-Y; Seror, J
2015-12-01
Breast cysts are common, often discovered incidentally or subsequently to pain or palpable mass. The purpose of these recommendations is to describe the sonographic findings for classifying breast cystic lesions, to analyze the value and contribution of various imaging techniques and sampling and to provide a management strategy. Literature review conducted by a small group and then reviewed and validated by the group designated by the Collège national des gynécologues et obstétriciens français (CNGOF) to make recommendations for clinical practice for benign breast lesions. Breast cysts are classified in 3 categories: simple cysts, complicated cysts and complex cysts. For simple cysts, after ultrasound, no further imaging is necessary, cytology is to consider only as analgesic. For complicated cysts, a control at 4-6 months is recommended; the use of cytology depends on the context (familial risk, difficulty of follow-up). In case of complex cyst, sampling by cytology or biopsy is recommended. More assessments of other imaging tests are reported. The sonographic characterization is essential for management of breast cyst. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
Photographic Image Restoration
NASA Technical Reports Server (NTRS)
Hite, Gerald E.
1991-01-01
Deblurring capabilities would significantly improve the Flight Science Support Office's ability to monitor the effects of lift-off on the shuttle and landing on the orbiter. A deblurring program was written and implemented to extract information from blurred images containing a straight line or edge and to use that information to deblur the image. The program was successfully applied to an image blurred by improper focussing and two blurred by different amounts of blurring. In all cases, the reconstructed modulation transfer function not only had the same zero contours as the Fourier transform of the blurred image but the associated point spread function also had structure not easily described by simple parameterizations. The difficulties posed by the presence of noise in the blurred image necessitated special consideration. An amplitude modification technique was developed for the zero contours of the modulation transfer function at low to moderate frequencies and a smooth filter was used to suppress high frequency noise.
Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki
2016-11-01
Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.
Evaluation of Fiber Reinforced Cement Using Digital Image Correlation
Melenka, Garrett W.; Carey, Jason P.
2015-01-01
The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590
NASA Technical Reports Server (NTRS)
Siostrzonek, Peter; Zangeneh, Massoud; Gossinger, Heinz; Lang, Wilfried; Rosenmayr, Georg; Heinz, Gottfried; Stumpflen, Andreas; Zeiler, Karl; Schwarz, Martin; Mosslacher, Herbert
1991-01-01
Presence of a patent foramen ovale may indicate paradoxic embolism in patients with otherwise unexplained embolic disease. Transthoracic contrast echocardiography has been used as a simple technique for detecting patent foramen ovale. However, particularly in patients with poor transthoracic image quality, presence of a patent foramen ovale might be missed. Transesophageal contrast echocardiography provides superior visualization of the atrial septum and therefore is believed to improve diagnostic accuracy. The present study investigates the influence of image quality on the detection of a patent foramen ovale by both transthoracic and transesophageal contrast echocardiography.
Extracting hidden messages in steganographic images
Quach, Tu-Thach
2014-07-17
The eventual goal of steganalytic forensic is to extract the hidden messages embedded in steganographic images. A promising technique that addresses this problem partially is steganographic payload location, an approach to reveal the message bits, but not their logical order. It works by finding modified pixels, or residuals, as an artifact of the embedding process. This technique is successful against simple least-significant bit steganography and group-parity steganography. The actual messages, however, remain hidden as no logical order can be inferred from the located payload. This paper establishes an important result addressing this shortcoming: we show that the expected mean residualsmore » contain enough information to logically order the located payload provided that the size of the payload in each stego image is not fixed. The located payload can be ordered as prescribed by the mean residuals to obtain the hidden messages without knowledge of the embedding key, exposing the vulnerability of these embedding algorithms. We provide experimental results to support our analysis.« less
Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy
Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi
2017-01-01
Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field. PMID:28210001
NASA Astrophysics Data System (ADS)
Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.
2016-03-01
A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.
NASA Astrophysics Data System (ADS)
Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2017-10-01
Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
On-line measurement of diameter of hot-rolled steel tube
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin
2015-02-01
In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems
Scatter Reduction In Conventional Radiographic Tomography Using Rotating Apertures
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Bednarek, Daniel R.
1981-08-01
Since images in conventional radiographic tomography are in-herently low in subject contrast, it is essential that scattered radiation be prevented from reaching the image receptor. Scanning beam or slit radiographic techniques are known to be the most efficient scatter elimination methods, yet have been inapplicable to this area of radiography. In this work it is shown that the scanning beam method using rotating aperture wheel (RAW) devices can be used in conventional tomography. One coder wheel between the x-ray tube and patient and two scatter discriminator wheels between the patient and image recep-tor form sections of the RAW "projection cone" with the lines of radia-tion from the x-ray source forming the "flux pyramid." As long as the projection cone follows the motion of the x-ray flux pyramid (with the ratios of the distances between the x-ray source, RAWs, patient, and image receptor kept constant throughout the motion) any RAW pattern may be used. Simple relations are given which describe the geometric constraints for various tomographic motions. As in any application of scanning slit techniques, it is possible to use the excellent scatter elimination capabilities of a RAW device either to improve image contrast or to reduce patient dose.
Platform for intraoperative analysis of video streams
NASA Astrophysics Data System (ADS)
Clements, Logan; Galloway, Robert L., Jr.
2004-05-01
Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.
Kubo, S; Nakata, H; Sugauchi, Y; Yokota, N; Yoshimine, T
2000-05-01
The preoperative localization of superficial intracranial lesions is often necessary for accurate burr hole placement or craniotomy siting. It is not always easy, however, to localize the lesions over the scalp working only from computed tomographic images. We developed a simple method for such localization using a laser pointer during the preoperative computed tomographic examination. The angle of incidence, extending from a point on the scalp to the center of the computed tomographic image, is measured by the software included with the scanner. In the gantry, at the same angle as on the image, a laser is beamed from a handmade projector onto the patient's scalp toward the center of the gantry. The point illuminated on the patient's head corresponds to that on the image. The device and the method are described in detail herein. We applied this technique to mark the area for the craniotomy before surgery in five patients with superficial brain tumors. At the time of surgery, it was confirmed that the tumors were circumscribed precisely. The technique is easy to perform and useful in the preoperative planning for a craniotomy. In addition, the device is easily constructed and inexpensive.
Microsphere-aided optical microscopy and its applications for super-resolution imaging
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2017-12-01
The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.
Cost-effective system for facial imaging and three-dimensional reconstruction
NASA Astrophysics Data System (ADS)
Shokouhi, S. B.; Monro, D. M.; Sherlock, Barry G.
1998-06-01
Three dimensional (3-D) images have recently received wide attention in applications involving medical treatment. Most current 3-D imaging methods focus on the internal organs of the body. However, several medical image applications such as plastic surgery, body deformities, rehabilitation, dental surgery and orthodontics, make use of the surface contours of the body. Several techniques are currently available for producing 3-D images of the body surface and most of the systems which implement these techniques are expensive, requiring complex equipment with highly trained operators. The research involves the development of a simple, low cost and non-invasive contour capturing method for facial surfaces. This is achieved using the structured light technique, employing a standard commercial slide projector, CCD camera and a frame-grabber card linked to a PC. Structured light has already been used for many applications, but only to a limited extent in the clinical environment. All current implementations involve extensive manual intervention by highly skilled operators and this has proven to be a serious hindrance to clinical acceptance of 3-D imaging. A primary objective of this work is to minimize the amount of manual intervention required, so that the system can be used by clinicians who do not have specialist training in the use of this equipment. The eventual aim is to provide a software assisted surgical procedure, which by merging the facial data, allows the manipulation of soft tissue and gives the facility to predict and monitor post-surgical appearance. The research focuses on how the images are obtained using the structured light optic system and the subsequent image processing of data to give a realistic 3-D image.
[Interventional radiology for bone metastases].
Iannessi, Antoine; Garnon, Julien; Cormier, Évelyne; Clarencon, Frédéric; Chiras, Jacques
2013-11-01
The management of bone metastases requires a multidisciplinary staff to include systemic and local treatments like radiotherapy, surgery or interventional radiology (IR). Patients are often fragile. Imaging allows safe guidance to create "mini-invasive" procedures under adequate anesthesia. Patients' selection is important. If the goal is pain relief, cementoplasty provides a very effective bone consolidation and pain control. Simple and low-risk, vertebroplasty is the technique of choice in case of lytic bone metastases with spinal fracture risk or after failure of analgesic radiotherapy. If the medical project is curative, the tumor ablation procedures are realised through thermic or embolic techniques. After 60°C, the heat induces a coagulative necrose. Under -20°C, the cold leads to destroy the tissues. The major advantage of the cryotherapy is the predictibility of the ablation zone due to the well-visualized ice ball on perprocedural images. This technique is much more adapted to spare the nervous structures closed to the metastasis. The development of these new techniques of IR will treat bone metastases earlier, sometimes asymptomatic and thus improves the quality of life in patients with bone metastases.
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photobleaching correction in fluorescence microscopy images
NASA Astrophysics Data System (ADS)
Vicente, Nathalie B.; Diaz Zamboni, Javier E.; Adur, Javier F.; Paravani, Enrique V.; Casco, Víctor H.
2007-11-01
Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique.
Time-resolved brightness measurements by streaking
NASA Astrophysics Data System (ADS)
Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.
2018-03-01
Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.
Production and delivery of polarized Xenon-129 for in vivo MRS/MRI.
NASA Astrophysics Data System (ADS)
Rosen, Matthew S.; Chupp, Timothy E.; Coulter, Kevin P.; Welsh, Robert C.; Swanson, Scott
1998-05-01
Laser polarized ^129Xe can be used as an entirely new magnetic tracer, and is a powerful enhancement to currently existing MRI techniques. Inert laser polarized ^129Xe is inhaled and transported via blood flow where it is detected using MR spectroscopy and imaging techniques. The time-dependent distribution patterns of ^129Xe signal intensity directly reflect local blood volume, blood flow rates, and the efficiency of perfusion and diffusive transport in tissues. We have developed a uniquely constructed laser polarized ^129Xe production and delivery system that is used in both our in vitro and in vivo imaging experiments with rats. This reliable, effective, and relatively simple production method for large volumes of laser polarized ^129Xe is the key to all other areas of research involving use of laser polarized gases.
NASA Astrophysics Data System (ADS)
Ennevor, Sean J.; Castro, Dan J.; Girardi, Gino; Lufkin, Robert B.; Farahani, Keyvan; Cho, Richard C.; Soudant, Jacques
1993-07-01
Interstitial tumor therapy guided by imaging techniques is minimally invasive and a promising surgical approach which will become clinically practical only when effective, simple, and safe modalities for tumor excision and control of tumor vascular supply are available. In a novel experiment utilizing a 1.5 T magnetic resonance (MR) scanner, the carotid artery of a New Zealand white rabbit was identified and then clamped using the Premium Surgicliptm 9.0' disposable automatic clip applier. The magnetic resonance imager equipped with an angiography package was used to locate vasculature in the carotid triangle of the rabbit via fast scan techniques. The artery was then clamped with titanium clips, and repeat magnetic resonance angiography (MRA) clearly demonstrated the cessation of blood flow within the chosen vessel. The experimental results are promising, since the angiography package not only provided the visualization of the arterial vessel, but was also used to guide an MR compatible surgical instrument to the vessel, with no artifact seen.
Image Change Detection via Ensemble Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Benjamin W; Vatsavai, Raju
2013-01-01
The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work,more » we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.« less
Porosity and Permeability of Chondritic Materials
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Corrigan, Catherine M.; Dahl, Jason; Long, Michael
1996-01-01
We have investigated the porosity of a large number of chondritic interplanetary dust particles and meteorites by three techniques: standard liquid/gas flow techniques, a new, non-invasive ultrasonic technique, and image processing of backscattered images . The latter technique is obviously best suited to sub-kg sized samples. We have also measured the gas and liquid permeabilities of some chondrites by two techniques: standard liquid/gas flow techniques, and a new, non-destructive pressure release technique. We find that chondritic IDP's have a somewhat bimodal porosity distribution. Peaks are present at 0 and 4% porosity; a tail then extends to 53%. These values suggest IDP bulk densities of 1.1 to 3.3 g/cc. Type 1-3 chondrite matrix porosities range up to 30%, with a peak at 2%. The bulk porosities for type 1-3 chondrites have the same approximate range as exhibited by matrix, indicating that other components of the bulk meteorites (including chondrules and aggregates) have the same average porosity as matrix. These results reveal that the porosity of primitive materials at scales ranging from nanogram to kilogram are similar, implying similar accretion dynamics operated through 12 orders of size magnitude. Permeabilities of the investigated chondrites vary by several orders of magnitude, and there appears to be no simple dependence of permeability with degree of aqueous alteration, or chondrite type.
NASA Astrophysics Data System (ADS)
Littleton, Bradley; Kavanagh, Thomas; Nie, Yu; Abbate, Vincenzo; Hylands, Peter; Sturzenbaum, Stephen; Richards, David
2016-03-01
In vivo lipid saturation maps of microscopic nematodes (Caenorhabditis elegans) have been produced using our novel Spectral Interferometric Polarisation Coherent anti-Stokes Raman Scattering (SIP-CARS) imaging technique. This technique employs simple passive polarisation optics and a balanced homodyne detection scheme to exploit symmetries in the CARS polarisation response resulting in the complete cancellation of the non-resonant background (NRB) and real component of the CARS signal (with no prior or post assumptions as regards to their form). The remaining imaginary component of the CARS response is linear with analyte concentration and directly relatable to the spontaneous Raman spectrum [1]. Furthermore, the resonant CARS signal is interferometrically amplified by the non-resonant response, a necessity for rapid imaging at biologically relevant powers [2]. This technique permits acquisition of a broad NRB-free spectrum, in excess of 1800cm-1, in a single exposure at each pixel. This allows simultaneous determination of lipid droplet saturation, from the fingerprint region, and lipid order, from the C-H stretch region from which maps can be readily constructed. Additionally exploiting the dispersive nature of our signal collection two-photon autofluorescence can be isolated and images subsequently produced. We have successfully applied this technique to identify differences in lipid saturation distributions in selective C. elegans mutants and demonstrated that the technique is sufficiently sensitive to detect the effects of lipid metabolism altering drugs on wild type C. elegans. [1] Littleton et al, Phys Rev Lett, 111, 103902 (2013) [2] Parekh et al, Biophys J, 99, 2695-2704 (2010)
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications
Park, Keunyeol; Song, Minkyu
2018-01-01
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.
Park, Keunyeol; Song, Minkyu; Kim, Soo Youn
2018-02-24
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
Suprapubic Bladder Aspiration in Neonates
Akierman, Albert R.
1987-01-01
Suprapubic bladder aspiration in neonates is a simple, safe, and useful technique for collection of sterile urine. The procedure can be performed in the hospital or office. Neither sedation nor local anesthetic is required. Suprapubic bladder aspiration of urine is the preferred method of collecting urine for culture in septic neonates. The technique is also indicated to verify urinary tract infection in neonates. Suprapubic bladder aspiration is contraindicated in the presence of abdominal distension or an empty bladder. Carefully and properly performed, the risk of complications should be negligible, and the success rate in obtaining urine is 90%. ImagesFigure 1Figure 2 PMID:21263980
NASA Technical Reports Server (NTRS)
Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.
1988-01-01
Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.
Knowledge-based automated technique for measuring total lung volume from CT
NASA Astrophysics Data System (ADS)
Brown, Matthew S.; McNitt-Gray, Michael F.; Mankovich, Nicholas J.; Goldin, Jonathan G.; Aberle, Denise R.
1996-04-01
A robust, automated technique has been developed for estimating total lung volumes from chest computed tomography (CT) images. The technique includes a method for segmenting major chest anatomy. A knowledge-based approach automates the calculation of separate volumes of the whole thorax, lungs, and central tracheo-bronchial tree from volumetric CT data sets. A simple, explicit 3D model describes properties such as shape, topology and X-ray attenuation, of the relevant anatomy, which constrain the segmentation of these anatomic structures. Total lung volume is estimated as the sum of the right and left lungs and excludes the central airways. The method requires no operator intervention. In preliminary testing, the system was applied to image data from two healthy subjects and four patients with emphysema who underwent both helical CT and pulmonary function tests. To obtain single breath-hold scans, the healthy subjects were scanned with a collimation of 5 mm and a pitch of 1.5, while the emphysema patients were scanned with collimation of 10 mm at a pitch of 2.0. CT data were reconstructed as contiguous image sets. Automatically calculated volumes were consistent with body plethysmography results (< 10% difference).
Brandmeir, Nicholas; Sather, Michael
2018-02-20
One of the most effective treatments for epilepsy is resection, but it remains underutilized. Efforts must be made to increase the ease, safety, and efficacy of epilepsy resection to improve utilization. Studies have shown an improved risk profile of stereoelectroencephalography (SEEG) over subdural grids (SDG) for invasive monitoring. One limitation to increased adoption of SEEG at epilepsy centers is the theoretical difficulty of planning a delayed resection once electrodes are removed. Our objective was to develop and present a technique using readily available neuronavigation technology to guide a cortical, non-lesional epilepsy resection with co-registration of imaging during invasive monitoring to imaging in an explanted patient, allowing for virtual visualization of electrodes. An example case taking advantage of the technique described above as an adjunct for an anatomically guided resection is presented with technical details and images. Intraoperative neuronavigation was successfully used to virtually represent previously removed SEEG electrodes and accuracy could be easily verified by examining scars on the scalp, bone, dura and pia. The simple technique presented can be a useful adjunct to resection following SEEG. This may help increase the adoption of SEEG, even when resection is planned.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian
2014-03-01
Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.
NASA Astrophysics Data System (ADS)
Popescu, Dan P.; Hewko, Mark D.; Sowa, Michael G.
2007-01-01
This study demonstrates a simple method for attenuating the speckle noise generated by coherent multiple-scattered photons in optical-coherence tomography images. The method could be included among the space-diversity techniques used for speckle reduction. It relies on displacing the sample along a weakly focused beam in the sample arm of the interferometer, acquiring a coherent image for each sample position and adding the individual images to form a compounded image. It is proven that the compounded image displays a reduction in the speckle noise generated by multiple scattered photons and an enhancement in the intensity signal caused by single-backscattered photons. To evaluate its potential biomedical applications, the method is used to investigate in vitro a caries lesion affecting the enamel layer of a wisdom tooth. Because of the uncorrelated nature of the speckle noise the compounded image provides a better mapping of the lesion compared to a single (coherent) image.
Integrating user profile in medical CBIR systems to answer perceptual similarity queries
NASA Astrophysics Data System (ADS)
Bugatti, Pedro H.; Kaster, Daniel S.; Ponciano-Silva, Marcelo; Traina, Agma J. M.; Traina, Caetano, Jr.
2011-03-01
Techniques for Content-Based Image Retrieval (CBIR) have been intensively explored due to the increase in the amount of captured images and the need of fast retrieval of them. The medical field is a specific example that generates a large flow of information, especially digital images employed for diagnosing. One issue that still remains unsolved deals with how to reach the perceptual similarity. That is, to achieve an effective retrieval, one must characterize and quantify the perceptual similarity regarding the specialist in the field. Therefore, the present paper was conceived to fill in this gap creating a consistent support to perform similarity queries over medical images, maintaining the semantics of a given query desired by the user. CBIR systems relying in relevance feedback techniques usually request the users to label relevant images. In this paper, we present a simple but highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The user profiles maintain the settings desired for each user, allowing tuning the similarity assessment, which encompasses dynamically changing the distance function employed through an interactive process. Experiments using computed tomography lung images show that the proposed approach is effective in capturing the users' perception.
Screening mail for powders using terahertz technology
NASA Astrophysics Data System (ADS)
Kemp, Mike
2011-11-01
Following the 2001 Anthrax letter attacks in the USA, there has been a continuing interest in techniques that can detect or identify so-called 'white powder' concealed in envelopes. Electromagnetic waves (wavelengths 100-500 μm) in the terahertz frequency range penetrate paper and have short enough wavelengths to provide good resolution images; some materials also have spectroscopic signatures in the terahertz region. We report on an experimental study into the use of terahertz imaging and spectroscopy for mail screening. Spectroscopic signatures of target powders were measured and, using a specially designed test rig, a number of imaging methods based on reflection, transmission and scattering were investigated. It was found that, contrary to some previous reports, bacterial spores do not appear to have any strong spectroscopic signatures which would enable them to be identified. Imaging techniques based on reflection imaging and scattering are ineffective in this application, due to the similarities in optical properties between powders of interest and paper. However, transmission imaging using time-of-flight of terahertz pulses was found to be a very simple and sensitive method of detecting small quantities (25 mg) of powder, even in quite thick envelopes. An initial feasibility study indicates that this method could be used as the basis of a practical mail screening system.
Operating characteristics of tube-current-modulation techniques when scanning simple-shaped phantoms
NASA Astrophysics Data System (ADS)
Matsubara, Kosuke; Koshida, Kichiro; Lin, Pei-Jan Paul; Fukuda, Atsushi
2015-07-01
Our objective was to investigate the operating characteristics of tube current modulation (TCM) in computed tomography (CT) when scanning two types of simple-shaped phantoms. A tissueequivalent elliptical phantom and a homogeneous cylindrical step phantom comprising 16-, 24-, and 32-cm-diameter polymethyl methacrylate (PMMA) phantoms were scanned by using an automatic exposure control system with longitudinal (z-) and angular-longitudinal (xyz-) TCM and with a fixed tube current. The axial dose distribution throughout the elliptical phantom and the longitudinal dose distribution at the center of the cylindrical step phantom were measured by using a solid-state detector. Image noise was quantitatively measured at eight regions in the elliptical phantom and at 90 central regions in contiguous images over the full z extent of the cylindrical step phantom. The mean absorbed doses and the standard deviations in the elliptical phantom with z- and xyz-TCM were 12.3' 3.7 and 11.3' 3.5 mGy, respectively. When TCM was activated, some differences were observed in the absorbed doses of the left and the right measurement points. The average image noises in Hounsfield units (HU) and the standard deviations were 15.2' 2.4 and 15.9' 2.4 HU when using z- and xyz-TCM, respectively. With respect to the cylindrical step phantom under z-TCM, there were sudden decreases followed by increases in image noise at the interfaces with the 24- and 16-cm-diameter phantoms. The image noise of the 24-cm-diameter phantom was, relatively speaking, higher than those of the 16- and 32-cm-diameter phantoms. The simple-shaped phantoms used in this study can be employed to investigate the operating characteristics of automatic exposure control systems when specialized phantoms designed for that purpose are not available.
Photonic Materials and Devices for RF (mmW) Sensing and Imaging
2012-12-31
wave encoding thereby eliminating the need for bulky LO distribution cables. Also, optical processing techniques can be utilized to provide simple... optical powers, can be close to unity and low -noise photodetectors make the detection of exceedingly low power millimeter-waves practical. In... optically -filtering the modulated signal to pass only a single sideband and detecting the resultant optical signal with a low -noise photodetector we have
Brainstorm: A User-Friendly Application for MEG/EEG Analysis
Tadel, François; Baillet, Sylvain; Mosher, John C.; Pantazis, Dimitrios; Leahy, Richard M.
2011-01-01
Brainstorm is a collaborative open-source application dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data. The primary objective of the software is to connect MEG/EEG neuroscience investigators with both the best-established and cutting-edge methods through a simple and intuitive graphical user interface (GUI). PMID:21584256
Ultra-small dye-doped silica nanoparticles via modified sol-gel technique.
Riccò, R; Nizzero, S; Penna, E; Meneghello, A; Cretaio, E; Enrichi, F
2018-01-01
In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. Graphical abstractWe report a simple, cheap, reliable protocol for the synthesis and systematic tuning of ultra-small (< 10 nm) dye-doped luminescent silica nanoparticles.
NASA Astrophysics Data System (ADS)
Trusiak, M.; Patorski, K.; Tkaczyk, T.
2014-12-01
We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).
A simple anaesthetic and monitoring system for magnetic resonance imaging.
Rejger, V S; Cohn, B F; Vielvoye, G J; de Raadt, F B
1989-09-01
Clinical magnetic resonance imaging (MRI) is a digital tomographic technique which utilizes radio waves emitted by hydrogen protons in a powerful magnetic field to form an image of soft-tissue structures and abnormalities within the body. Unfortunately, because of the relatively long scanning time required and the narrow deep confines of the MRI tunnel and Faraday cage, some patients cannot be examined without the use of heavy sedation or general anaesthesia. Due to poor access to the patient and the strong magnetic field, several problems arise in monitoring and administering anaesthesia during this procedure. In this presentation these problems and their solutions, as resolved by our institution, are discussed. Of particular interest is the anaesthesia circuit specifically adapted for use during MRI scanning.
Ship dynamics for maritime ISAR imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2008-02-01
Demand is increasing for imaging ships at sea. Conventional SAR fails because the ships are usually in motion, both with a forward velocity, and other linear and angular motions that accompany sea travel. Because the target itself is moving, this becomes an Inverse- SAR, or ISAR problem. Developing useful ISAR techniques and algorithms is considerably aided by first understanding the nature and characteristics of ship motion. Consequently, a brief study of some principles of naval architecture sheds useful light on this problem. We attempt to do so here. Ship motions are analyzed for their impact on range-Doppler imaging using Inversemore » Synthetic Aperture Radar (ISAR). A framework for analysis is developed, and limitations of simple ISAR systems are discussed.« less
Penman, S
1995-01-01
Cell structure, emerging from behind the veil of conventional electron microscopy, appears far more complex than formerly realized. The standard plastic-embedded, ultrathin section can image only what is on the section surface and masks the elaborate networks of the cytoplasm and nucleus. Embedment-free electron microscopy gives clear, high-contrast micrographs of cell structure when combined with removal of obscuring material such as soluble proteins. The resinless ultrathin section is the technique of choice; it is simple and inexpensive, and it uses ordinary electron microscopes. The resulting pictures reveal a world of complex cell structure and function. These images necessarily change our conception of the cytoskeleton, nuclear matrix, mitosis, and the relation of membranes to cytostructure. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7777493
Techniques for using diazo materials in remote sensor data analysis
NASA Technical Reports Server (NTRS)
Whitebay, L. E.; Mount, S.
1978-01-01
The use of data derived from LANDSAT is facilitated when special products or computer enhanced images can be analyzed. However, the facilities required to produce and analyze such products prevent many users from taking full advantages of the LANDSAT data. A simple, low-cost method is presented by which users can make their own specially enhanced composite images from the four band black and white LANDSAT images by using the diazo process. The diazo process is described and a detailed procedure for making various color composites, such as color infrared, false natural color, and false color, is provided. The advantages and limitations of the diazo process are discussed. A brief discussion interpretation of diazo composites for land use mapping with some typical examples is included.
Time Lapse Photography From Arctic Buoys
NASA Astrophysics Data System (ADS)
Valentic, T. A.; Matrai, P.; Woods, J. E.
2013-12-01
We have equipped a number of buoys with cameras that have been deployed throughout the Arctic. These systems need to be simple, reliable and low power. The images are transmitted over an Iridium satellite link and assembled into long running movies. We have captured a number of interesting events, observed the ice dynamics through the year and visits by local wildlife. Each of the systems have been deployed for periods of up to a year, with images every hour. The cameras have proved to be a great outreach tool and are routinely watched by number of people on our websites. This talk will present the techniques used in developing these camera systems, the methods used for reliably transmitting the images and the process for generating the movies.
NASA Astrophysics Data System (ADS)
Ghaffarian, Saman; Ghaffarian, Salar
2014-11-01
This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.
NASA Technical Reports Server (NTRS)
Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan
2012-01-01
The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models
Maji, Suvrajit; Bruchez, Marcel P.
2012-01-01
Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348
Automatic Detection of Blue-White Veil and Related Structures in Dermoscopy Images
Celebi, M. Emre; Iyatomi, Hitoshi; Stoecker, William V.; Moss, Randy H.; Rabinovitz, Harold S.; Argenziano, Giuseppe; Soyer, H. Peter
2011-01-01
Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition. PMID:18804955
Diffusion processes in tumors: A nuclear medicine approach
NASA Astrophysics Data System (ADS)
Amaya, Helman
2016-07-01
The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.
Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S
2011-04-01
To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach in 100% of normal cases. In the abnormal cases, the FAST echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The swing technique was useful for demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
An HDR imaging method with DTDI technology for push-broom cameras
NASA Astrophysics Data System (ADS)
Sun, Wu; Han, Chengshan; Xue, Xucheng; Lv, Hengyi; Shi, Junxia; Hu, Changhong; Li, Xiangzhi; Fu, Yao; Jiang, Xiaonan; Huang, Liang; Han, Hongyin
2018-03-01
Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02 dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.
First cosmic-ray images of bone and soft tissue
NASA Astrophysics Data System (ADS)
Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső
2016-11-01
More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.
The influence of software filtering in digital mammography image quality
NASA Astrophysics Data System (ADS)
Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.
2009-05-01
Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.
WE-E-9A-01: Ultrasound Elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emelianov, S; Hall, T; Bouchard, R
2014-06-15
Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement and imaging can contribute to diagnosis of breast and prostate cancer, staging of liver fibrosis, age estimation of deep veinous fhrombosis, confirmation of thermal lesions in the liver after RF ablation.« less
Delora, Adam; Gonzales, Aaron; Medina, Christopher S; Mitchell, Adam; Mohed, Abdul Faheem; Jacobs, Russell E; Bearer, Elaine L
2016-01-15
Magnetic resonance imaging (MRI) is a well-developed technique in neuroscience. Limitations in applying MRI to rodent models of neuropsychiatric disorders include the large number of animals required to achieve statistical significance, and the paucity of automation tools for the critical early step in processing, brain extraction, which prepares brain images for alignment and voxel-wise statistics. This novel timesaving automation of template-based brain extraction ("skull-stripping") is capable of quickly and reliably extracting the brain from large numbers of whole head images in a single step. The method is simple to install and requires minimal user interaction. This method is equally applicable to different types of MR images. Results were evaluated with Dice and Jacquard similarity indices and compared in 3D surface projections with other stripping approaches. Statistical comparisons demonstrate that individual variation of brain volumes are preserved. A downloadable software package not otherwise available for extraction of brains from whole head images is included here. This software tool increases speed, can be used with an atlas or a template from within the dataset, and produces masks that need little further refinement. Our new automation can be applied to any MR dataset, since the starting point is a template mask generated specifically for that dataset. The method reliably and rapidly extracts brain images from whole head images, rendering them useable for subsequent analytical processing. This software tool will accelerate the exploitation of mouse models for the investigation of human brain disorders by MRI. Copyright © 2015 Elsevier B.V. All rights reserved.
Fourier-interpolation superresolution optical fluctuation imaging (fSOFi) (Conference Presentation)
NASA Astrophysics Data System (ADS)
Enderlein, Joerg; Stein, Simon C.; Huss, Anja; Hähnel, Dirk; Gregor, Ingo
2016-02-01
Stochastic Optical Fluctuation Imaging (SOFI) is a superresolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data.
Image charge multi-role and function detectors
NASA Astrophysics Data System (ADS)
Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon
2009-06-01
The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.
Deconvolution of astronomical images using SOR with adaptive relaxation.
Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J
2011-07-04
We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.
Measuring glomerular number from kidney MRI images
NASA Astrophysics Data System (ADS)
Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas
2016-03-01
Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.
Investigation of the ripeness of oil palm fresh fruit bunches using bio-speckle imaging
NASA Astrophysics Data System (ADS)
Salambue, R.; Adnan, A.; Shiddiq, M.
2018-03-01
The ripeness of the oil palm Fresh Fruit Bunches (FFB) determines the yield of the oil produced. Traditionally there are two ways to determine FFB ripeness which are the number of loose fruits and the color changes. Nevertheless, one drawback of visual determination is subjective and qualitative judgment. In this study, the FFB ripeness was investigated using laser based image processing technique. The advantages of using this technique are non-destructive, simple and quantitative. The working principle of the investigation is that a FFB is inserted into a light tight box which contains a laser diode and a CMOS camera, the FFB is illuminated, and then an image is recorded. The FFB image recorder was performed on four FFB fractions i.e. F0, F3, F4 and F5 on the front and rear surfaces at three sections. The recorded images are speckled granules that have light intensity variation (bio-speckle imaging). The feature extracted from the specked image is the contrast value obtained from the average gray value intensity and the standard deviation. Based on the contrast values, the four fractions of FFB can be grouped into three levels of ripeness of unripe (F0), ripe (F3) and overripe (F4 and F5) on the front surface of base section of FFB by 75%.
Clustering of Farsi sub-word images for whole-book recognition
NASA Astrophysics Data System (ADS)
Soheili, Mohammad Reza; Kabir, Ehsanollah; Stricker, Didier
2015-01-01
Redundancy of word and sub-word occurrences in large documents can be effectively utilized in an OCR system to improve recognition results. Most OCR systems employ language modeling techniques as a post-processing step; however these techniques do not use important pictorial information that exist in the text image. In case of large-scale recognition of degraded documents, this information is even more valuable. In our previous work, we proposed a subword image clustering method for the applications dealing with large printed documents. In our clustering method, the ideal case is when all equivalent sub-word images lie in one cluster. To overcome the issues of low print quality, the clustering method uses an image matching algorithm for measuring the distance between two sub-word images. The measured distance with a set of simple shape features were used to cluster all sub-word images. In this paper, we analyze the effects of adding more shape features on processing time, purity of clustering, and the final recognition rate. Previously published experiments have shown the efficiency of our method on a book. Here we present extended experimental results and evaluate our method on another book with totally different font face. Also we show that the number of the new created clusters in a page can be used as a criteria for assessing the quality of print and evaluating preprocessing phases.
Chandra, Rohit; Balasingham, Ilangko
2015-01-01
A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.
A Simple Model for Nonlinear Confocal Ultrasonic Beams
NASA Astrophysics Data System (ADS)
Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen
2007-01-01
A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.
False positive indium-111 white blood cell scan in a closed clavicle fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, R.J.; Gordon, L.
1988-01-01
Aggressive treatment of the multiply injured patient often requires early fixation of many fractures, some of which may be open. Often, patients develop postoperative fevers requiring a thorough workup to rule out infection. Recently, indium-111 white blood cell (WBC) imaging has become a valuable adjunct in the diagnosis of acute infection. The patient described had a simple, closed clavicle fracture with markedly increased activity on an indium-111 WBC scan obtained for fever workup. This subsequently proved to be a normal, healing, noninfected fracture by other diagnostic techniques. Noninfected, simple closed fractures should be added to the list of causes formore » a false-positive indium-111 WBC scan.« less
Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe
2015-11-01
We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.
Particle image velocimetry based on wavelength division multiplexing
NASA Astrophysics Data System (ADS)
Tang, Chunxiao; Li, Enbang; Li, Hongqiang
2018-01-01
This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.
NASA Astrophysics Data System (ADS)
Zhou, Quan; Chen, Yan; Li, Zhao; Zhou, Juan; Duan, Xiyu; Wang, Thomas D.
2017-02-01
Plasmonic gold nanoshell (GNS) probe penetrates into tumors for deep imaging, enables superior photoacoustic contrast. Glypican-3 (GPC3) specific peptide (Kd = 71 nM) conjugated gold nanoshell (λabs=770nm) was used to detect HCC xenograft tumors in mice with photoacoustic imaging. This targeting probe demonstrated tumor uptake after 1 hr and cleared in 12 hrs. Images at a mean (±SD) depth of 9.7±1.4 mm from 0 to 2.1 cm beneath the skin revealed increased PA signal from tumors. Highest tumor uptake and tumor to normal tissue ratio occurred at 2 hrs post injection (T/B = 4.45±0.22, n = 8). Molecular targeting GNS showed potential as a simple, effective and rapid technique for noninvasive in vivo monitoring HCC tumor growth and GPC3 expression.
On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision
Linder, Ewert; Grote, Anne; Varjo, Sami; Linder, Nina; Lebbad, Marianne; Lundin, Mikael; Diwan, Vinod; Hannuksela, Jari; Lundin, Johan
2013-01-01
Background Microscopy, being relatively easy to perform at low cost, is the universal diagnostic method for detection of most globally important parasitic infections. As quality control is hard to maintain, misdiagnosis is common, which affects both estimates of parasite burdens and patient care. Novel techniques for high-resolution imaging and image transfer over data networks may offer solutions to these problems through provision of education, quality assurance and diagnostics. Imaging can be done directly on image sensor chips, a technique possible to exploit commercially for the development of inexpensive “mini-microscopes”. Images can be transferred for analysis both visually and by computer vision both at point-of-care and at remote locations. Methods/Principal Findings Here we describe imaging of helminth eggs using mini-microscopes constructed from webcams and mobile phone cameras. The results show that an inexpensive webcam, stripped off its optics to allow direct application of the test sample on the exposed surface of the sensor, yields images of Schistosoma haematobium eggs, which can be identified visually. Using a highly specific image pattern recognition algorithm, 4 out of 5 eggs observed visually could be identified. Conclusions/Significance As proof of concept we show that an inexpensive imaging device, such as a webcam, may be easily modified into a microscope, for the detection of helminth eggs based on on-chip imaging. Furthermore, algorithms for helminth egg detection by machine vision can be generated for automated diagnostics. The results can be exploited for constructing simple imaging devices for low-cost diagnostics of urogenital schistosomiasis and other neglected tropical infectious diseases. PMID:24340107
Szucs, Peter; Pinto, Vitor; Safronov, Boris V
2009-03-15
Light-emitting diodes (LEDs) have recently been used for the imaging of unstained living cells in the whole brain and spinal cord preparations, in which one cut was done to remove the overlying white matter. Here we show that in many cases the neurones can be visualized through the white matter in an intact nervous tissue (rats P0-P36 and mice P0-P2). We used an upright microscope with a water immersion objective and a powerful infrared LED (emission peak, 850 nm; maximum radiant intensity, 270 mW/sr) as a source of oblique illumination. In the isolated spinal cord, we were able to visualize lamina I and II neurones as well as motoneurones. In the brainstem, the neurones from the superficial nuclei were successfully viewed. In the sensory ganglion, we obtained images of unstained cells as well as intracellular structures, like endoplasmic reticulum, nucleus and nucleolus. In isolated cerebellum, parallel fibers, Purkinje and granule cells were viewed. Whole-cell recordings were done to fill spinal lamina I neurones, motoneurones and brainstem neurones with biocytin for detailed 2D-3D reconstruction of their dendritic and axonal arbores. Our imaging technique also allowed labelling individual intact neurones by injecting biocytin through the extracellular cell-attached pipette. This imaging technique opens broad possibilities for functional studies of neurones with completely preserved anatomical structures and synaptic inputs. We also show that the application of oblique infrared LED illumination allows a construction of a simple digital videomicroscope for the high-quality living cell imaging in intact nervous tissue.
Improving human object recognition performance using video enhancement techniques
NASA Astrophysics Data System (ADS)
Whitman, Lucy S.; Lewis, Colin; Oakley, John P.
2004-12-01
Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.
NASA Astrophysics Data System (ADS)
Edward, Kert
Quantitative phase microscopy (QPM) allows for the imaging of translucent or transparent biological specimens without the need for exogenous contrast agents. This technique is usually applied towards the investigation of simple cells such as red blood cells which are typically enucleated and can be considered to be homogenous. However, most biological cells are nucleated and contain other interesting intracellular organelles. It has been established that the physical characteristics of certain subsurface structures such as the shape and roughness of the nucleus is well correlated with onset and progress of pathological conditions such as cancer. Although the acquired quantitative phase information of biological cells contains surface information as well as coupled subsurface information, the latter has been ignored up until now. A novel scanning quantitative phase imaging system unencumbered by 2pi ambiguities is hereby presented. This system is incorporated into a shear-force feedback scheme which allows for simultaneous phase and topography determination. It will be shown how subsequent image processing of these two data sets allows for the extraction of the subsurface component in the phase data and in vivo cell refractometry studies. Both fabricated samples and biological cells ranging from rat fibroblast cells to malaria infected human erythrocytes were investigated as part of this research. The results correlate quite well with that obtained via other microscopy techniques.
Rusbridge, Clare; Long, Sam; Jovanovik, Jelena; Milne, Marjorie; Berendt, Mette; Bhatti, Sofie F M; De Risio, Luisa; Farqhuar, Robyn G; Fischer, Andrea; Matiasek, Kaspar; Muñana, Karen; Patterson, Edward E; Pakozdy, Akos; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Stein, Veronika M; Tipold, Andrea; Volk, Holger A
2015-08-28
Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature.There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6-7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed.
3D endoscopic imaging using structured illumination technique (Conference Presentation)
NASA Astrophysics Data System (ADS)
Le, Hanh N. D.; Nguyen, Hieu; Wang, Zhaoyang; Kang, Jin U.
2017-02-01
Surgeons have been increasingly relying on minimally invasive surgical guidance techniques not only to reduce surgical trauma but also to achieve accurate and objective surgical risk evaluations. A typical minimally invasive surgical guidance system provides visual assistance in two-dimensional anatomy and pathology of internal organ within a limited field of view. In this work, we propose and implement a structure illumination endoscope to provide a simple, inexpensive 3D endoscopic imaging to conduct high resolution 3D imagery for use in surgical guidance system. The system is calibrated and validated for quantitative depth measurement in both calibrated target and human subject. The system exhibits a depth of field of 20 mm, depth resolution of 0.2mm and a relative accuracy of 0.1%. The demonstrated setup affirms the feasibility of using the structured illumination endoscope for depth quantization and assisting medical diagnostic assessments
Laminography using resonant neutron attenuation for detection of drugs and explosives
NASA Astrophysics Data System (ADS)
Loveman, R. A.; Feinstein, R. L.; Bendahan, J.; Gozani, T.; Shea, P.
1997-02-01
Resonant neutron attenuation has been shown to be usable for assaying elements which constitute explosives, cocaine, and heroin. By careful analysis of attenuation measurements, the determination of the presence or absence of explosives can be determined. Simple two dimensional radiographic techniques only give results for areal density and consequently will be limited in their effectiveness. Classical tomographic techniques are both computationally very intensive and place strict requirements on the quality and amount of data acquired. These requirements and computations take time and are likely to be very difficult to perform in real time. Simulation studies described in this article have shown that laminographic image reconstruction can be used effectively with resonant neutron attenuation measurements to interrogate luggage for explosives or drugs. The design of the system described in this article is capable of pseudo-three dimensional image reconstruction of all of the elemental densities pertinent to explosive and drug detection.
Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J
2013-07-01
While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.
NASA Astrophysics Data System (ADS)
Themistocleous, K.; Agapiou, A.; Hadjimitsis, D.
2016-10-01
The documentation of architectural cultural heritage sites has traditionally been expensive and labor-intensive. New innovative technologies, such as Unmanned Aerial Vehicles (UAVs), provide an affordable, reliable and straightforward method of capturing cultural heritage sites, thereby providing a more efficient and sustainable approach to documentation of cultural heritage structures. In this study, hundreds of images of the Panagia Chryseleousa church in Foinikaria, Cyprus were taken using a UAV with an attached high resolution camera. The images were processed to generate an accurate digital 3D model by using Structure in Motion techniques. Building Information Model (BIM) was then used to generate drawings of the church. The methodology described in the paper provides an accurate, simple and cost-effective method of documenting cultural heritage sites and generating digital 3D models using novel techniques and innovative methods.
The API 120: A portable neutron generator for the associated particle technique
NASA Astrophysics Data System (ADS)
Chichester, D. L.; Lemchak, M.; Simpson, J. D.
2005-12-01
The API 120 is a lightweight, portable neutron generator for active neutron interrogation (ANI) field work exploiting the associated particle technique. It incorporates a small sealed-tube accelerator, an all digital control system with smart on-board diagnostics, a simple platform-independent control interface and a comprehensive safety interlock philosophy with provisions for wireless control. The generator operates in a continuous output mode using either the D-D or D-T fusion reactions. To register the helium ion associated with fusion, the system incorporates a high resolution fiber optic imaging plate that may be coated with one of several different phosphors. The ion beam on the target measures less than 2 mm in diameter, thus making the system suitable for multi-dimensional imaging. The system is rated at 1E7 n/s for over 1000 h although higher yields are possible. The overall weight is 12 kg; power consumption is less than 50 W.
NASA Technical Reports Server (NTRS)
Haas, Evan; DeLuccia, Frank
2016-01-01
In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Domenico, Giovanni, E-mail: didomenico@fe.infn.it; Cardarelli, Paolo; Taibi, Angelo
Purpose: The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiographmore » of a simple test object, acquired with a suitable magnification. Methods: The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. Results: In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. Conclusions: The method was proven to be effective for simulated images and the results of the experimental test suggest that it could be considered as an alternative technique for focal spot distribution evaluation. The method offers the possibility to measure the actual focal spot size and emission distribution at the same exposure conditions as clinical routine, avoiding high tube loading as in the case of the pin-hole imaging technique.« less
Di Domenico, Giovanni; Cardarelli, Paolo; Contillo, Adriano; Taibi, Angelo; Gambaccini, Mauro
2016-01-01
The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. The method was proven to be effective for simulated images and the results of the experimental test suggest that it could be considered as an alternative technique for focal spot distribution evaluation. The method offers the possibility to measure the actual focal spot size and emission distribution at the same exposure conditions as clinical routine, avoiding high tube loading as in the case of the pin-hole imaging technique.
A method of solving tilt illumination for multiple distance phase retrieval
NASA Astrophysics Data System (ADS)
Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun
2018-07-01
Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.
High-speed autofocusing of a cell using diffraction pattern
NASA Astrophysics Data System (ADS)
Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi
2006-05-01
This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.
Processing of multispectral thermal IR data for geologic applications
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Madura, D. P.; Soha, J. M.
1979-01-01
Multispectral thermal IR data were acquired with a 24-channel scanner flown in an aircraft over the E. Tintic Utah mining district. These digital image data required extensive computer processing in order to put the information into a format useful for a geologic photointerpreter. Simple enhancement procedures were not sufficient to reveal the total information content because the data were highly correlated in all channels. The data were shown to be dominated by temperature variations across the scene, while the much more subtle spectral variations between the different rock types were of interest. The image processing techniques employed to analyze these data are described.
NASA Astrophysics Data System (ADS)
Zhou, Jiangying; Lopresti, Daniel P.; Tasdizen, Tolga
1998-04-01
In this paper, we consider the problem of locating and extracting text from WWW images. A previous algorithm based on color clustering and connected components analysis works well as long as the color of each character is relatively uniform and the typography is fairly simple. It breaks down quickly, however, when these assumptions are violated. In this paper, we describe more robust techniques for dealing with this challenging problem. We present an improved color clustering algorithm that measures similarity based on both RGB and spatial proximity. Layout analysis is also incorporated to handle more complex typography. THese changes significantly enhance the performance of our text detection procedure.
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.
2018-02-01
Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.
Employee resourcing strategies and universities' corporate image: A survey dataset.
Falola, Hezekiah Olubusayo; Oludayo, Olumuyiwa Akinrole; Olokundun, Maxwell Ayodele; Salau, Odunayo Paul; Ibidunni, Ayodotun Stephen; Igbinoba, Ebe
2018-06-01
The data examined the effect of employee resourcing strategies on corporate image. The data were generated from a total of 500 copies of questionnaire administered to the academic staff of the six (6) selected private Universities in Southwest, Nigeria, out of which four hundred and forty-three (443) were retrieved. Stratified and simple random sampling techniques were used to select the respondents for this study. Descriptive and Linear Regression, were used for the presentation of the data. Mean score was used as statistical tool of analysis. Therefore, the data presented in this article is made available to facilitate further and more comprehensive investigation on the subject matter.
Analysis of the multigroup model for muon tomography based threat detection
NASA Astrophysics Data System (ADS)
Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.
2014-02-01
We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.
Increasing the realism of a laparoscopic box trainer: a simple, inexpensive method.
Hull, Louise; Kassab, Eva; Arora, Sonal; Kneebone, Roger
2010-01-01
Simulation-based training in medical education is increasing. Realism is an integral element of creating an engaging, effective training environment. Although physical trainers offer a low-cost alternative to expensive virtual reality (VR) simulators, many lack in realism. The aim of this research was to enhance the realism of a laparoscopic box trainer by using a simple, inexpensive method. Digital images of the abdominal cavity were captured from a VR simulator. The images were printed onto a laminated card that lined the bottom and sides of the box-trainer cavity. The standard black neoprene material that encloses the abdominal cavity was replaced with a skin-colored silicon model. The realism of the modified box trainer was assessed by surgeons, using quantitative and qualitative methodologies. Results suggest that the modified box trainer was more realistic than a standard box trainer alone. Incorporating this technique in the training of laparoscopic skills is an inexpensive means of emulating surgical reality that may enhance the engagement of the learner in simulation.
Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins
NASA Astrophysics Data System (ADS)
Miedema, Daniël M.; Kushwaha, Vandana S.; Denisov, Dmitry V.; Acar, Seyda; Nienhuis, Bernard; Peterman, Erwin J. G.; Schall, Peter
2017-10-01
Molecular motor proteins fulfill the critical function of transporting organelles and other building blocks along the biopolymer network of the cell's cytoskeleton, but crowding effects are believed to crucially affect this motor-driven transport due to motor interactions. Physical transport models, like the paradigmatic, totally asymmetric simple exclusion process (TASEP), have been used to predict these crowding effects based on simple exclusion interactions, but verifying them in experiments remains challenging. Here, we introduce a correlation imaging technique to precisely measure the motor density, velocity, and run length along filaments under crowding conditions, enabling us to elucidate the physical nature of crowding and test TASEP model predictions. Using the kinesin motor proteins kinesin-1 and OSM-3, we identify crowding effects in qualitative agreement with TASEP predictions, and we achieve excellent quantitative agreement by extending the model with motor-specific interaction ranges and crowding-dependent detachment probabilities. These results confirm the applicability of basic nonequilibrium models to the intracellular transport and highlight motor-specific strategies to deal with crowding.
Image space subdivision for fast ray tracing
NASA Astrophysics Data System (ADS)
Yu, Billy T.; Yu, William W.
1999-09-01
Ray-tracing is notorious of its computational requirement. There were a number of techniques to speed up the process. However, a famous statistic indicated that ray-object intersections occupies over 95% of the total image generation time. Thus, it is most beneficial to work on this bottle-neck. There were a number of ray-object intersection reduction techniques and they could be classified into three major categories: bounding volume hierarchies, space subdivision, and directional subdivision. This paper introduces a technique falling into the third category. To further speed up the process, it takes advantages of hierarchy by adopting a MX-CIF quadtree in the image space. This special kind of quadtree provides simple objects allocation and ease of implementation. The text also included a theoretical proof of the expected performance. For ray-polygon comparison, the technique reduces the order of complexity from linear to square-root, O(n) -> O(2(root)n). Experiments with various shape, size and complexity were conducted to verify the expectation. Results shown that computational improvement grew with the complexity of the sceneries. The experimental improvement was more than 90% and it agreed with the theoretical value when the number of polygons exceeded 3000. The more complex was the scene, the more efficient was the acceleration. The algorithm described was implemented in the polygonal level, however, it could be easily enhanced and extended to the object or higher levels.
Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS
NASA Astrophysics Data System (ADS)
Crosetto, D. B.
2004-07-01
This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.
Techniques for automatic large scale change analysis of temporal multispectral imagery
NASA Astrophysics Data System (ADS)
Mercovich, Ryan A.
Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst's job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change.
NASA Technical Reports Server (NTRS)
Reif, John H.
1987-01-01
A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
Blast-Loading Assessment of Multi-Energy Flash Computed Tomography (MEFCT) Diagnostic
2016-08-01
Perrella JA, Sturgill JM. Design of a simple blast pressure gauge based on a heterodyne velocimetry measuring technique. Aberdeen Proving Ground (MD...position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or...of the radiation dose throughout the angular span of the 150-, 300-, and 450-kV flash X-ray sources used in the MEFCT diagnostic: left image shows
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
Inverse imaging of the breast with a material classification technique.
Manry, C W; Broschat, S L
1998-03-01
In recent publications [Chew et al., IEEE Trans. Blomed. Eng. BME-9, 218-225 (1990); Borup et al., Ultrason. Imaging 14, 69-85 (1992)] the inverse imaging problem has been solved by means of a two-step iterative method. In this paper, a third step is introduced for ultrasound imaging of the breast. In this step, which is based on statistical pattern recognition, classification of tissue types and a priori knowledge of the anatomy of the breast are integrated into the iterative method. Use of this material classification technique results in more rapid convergence to the inverse solution--approximately 40% fewer iterations are required--as well as greater accuracy. In addition, tumors are detected early in the reconstruction process. Results for reconstructions of a simple two-dimensional model of the human breast are presented. These reconstructions are extremely accurate when system noise and variations in tissue parameters are not too great. However, for the algorithm used, degradation of the reconstructions and divergence from the correct solution occur when system noise and variations in parameters exceed threshold values. Even in this case, however, tumors are still identified within a few iterations.
Hackethal, Andreas; Hirschburger, Markus; Eicker, Sven Oliver; Mücke, Thomas; Lindner, Christoph; Buchweitz, Olaf
2018-01-01
Modern surgical strategies aim to reduce trauma by using functional imaging to improve surgical outcomes. This reviews considers and evaluates the importance of the fluorescent dye indocyanine green (ICG) to visualize lymph nodes, lymphatic pathways and vessels and tissue borders in an interdisciplinary setting. The work is based on a selective search of the literature in PubMed, Scopus, and Google Scholar and the authorsʼ own clinical experience. Because of its simple, radiation-free and uncomplicated application, ICG has become an important clinical indicator in recent years. In oncologic surgery ICG is used extensively to identify sentinel lymph nodes with promising results. In some studies, the detection rates with ICG have been better than the rates obtained with established procedures. When ICG is used for visualization and the quantification of tissue perfusion, it can lead to fewer cases of anastomotic insufficiency or transplant necrosis. The use of ICG for the imaging of organ borders, flap plasty borders and postoperative vascularization has also been scientifically evaluated. Combining the easily applied ICG dye with technical options for intraoperative and interventional visualization has the potential to create new functional imaging procedures which, in future, could expand or even replace existing established surgical techniques, particularly the techniques used for sentinel lymph node and anastomosis imaging. PMID:29375146
Diagnosis of uterine cervix cancer using Müller polarimetry: a comparison with histopathology
NASA Astrophysics Data System (ADS)
Rehbinder, Jean; Deby, Stanislas; Haddad, Huda; Teig, Benjamin; Nazac, André; Pierangelo, Angelo; Moreau, François
2015-07-01
Today around 275000 women a year in the world keep dying from the cancer of uterine cervix due to the difficulty to meet the logistic requirements of an organized screening in the developing world. Polarimetric imaging is a new promising technique with a tremendous potential for applications in biomedical diagnostics: it is sensitive to slight morphological changes in tissues, can provide wide field images for the screening and requires light sources such as a LED for example. This work intends to characterize the polarimetric response of the uterine cervix in its healthy and pathological states. An extensive series of ex-vivo measurements is in progress the Kremlin Bicêtre hospital near Paris using an imaging multispectral Mueller polarimeter in backscattering configuration. The goal of this study is to evaluate the performances of polarimetric imaging technique in terms of sensitivity and specificity for the detection of healthy epithelia (Healthy Squamous epithelium and Malpighian Metaplasia) with respect to the diagnosis provided by pathologists from histology slides as the "gold standard". We show that, at λ=550nm, performances as high as 62% sensitivity and 64% specificity are achieved by optimizing a simple threshold on the scalar retardance values.
Global high-frequency source imaging accounting for complexity in Green's functions
NASA Astrophysics Data System (ADS)
Lambert, V.; Zhan, Z.
2017-12-01
The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.
Barker, John R; Martinez, Antonio
2018-04-04
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
NASA Astrophysics Data System (ADS)
Barker, John R.; Martinez, Antonio
2018-04-01
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO
NASA Astrophysics Data System (ADS)
Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.
2003-11-01
An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.
Flow Quantification by Nuclear Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Vu, Anthony Tienhuan
1994-01-01
In this dissertation, a robust method for the measurement and visualization of flow field in laminar, complex and turbulent flows by Nuclear Magnetic Resonance Imaging utilizing flow induced Adiabatic Fast Passage (AFP) principle will be presented. This dissertation focuses on the application of AFP in spatially resolvable size vessels. We first review two main flow effects in NMR: time-of-flight and phase dispersion. The discussion of NMR flow imaging application - flow measurements and NMR angiography will be given. The theoretical framework of adiabatic passage will be discussed in order to explain the principle of flow-induced adiabatic passage tagging for flow imaging applications. From a knowledge of the basic flow-induced adiabatic passage principle, we propose a multi-zone AFP excitation scheme to deal with flow in a curved tube, branches and constrictions, i.e. complex and turbulent flow regimes. The technique provides a quick and simple way to acquire flow profiles simultaneously at several locations and arbitrary orientations inside the field-of-view. The flow profile is the time-averaged evolution of the labeled flowing material. Results obtained using a carotid bifurcation and circular jet phantoms are similar to the previous experimental studies employing laser Doppler Anemometry, and other flow visualization techniques. In addition, the preliminary results obtained with a human volunteer support the feasibility of the technique for in vivo flow quantification. Finally, a quantitative comparison of flow measurement of the new proposed techniques with the more established Phase Contrast MRA was performed. The results show excellent correlation between the two methods and with the standard volumetric flow rate measurement indicating that the flow measurements obtained using this technique are reliable and accurate under various flow regimes.
Single-particle imaging for biosensor applications
NASA Astrophysics Data System (ADS)
Yorulmaz, Mustafa; Isil, Cagatay; Seymour, Elif; Yurdakul, Celalettin; Solmaz, Berkan; Koc, Aykut; Ünlü, M. Selim
2017-10-01
Current state-of-the-art technology for in-vitro diagnostics employ laboratory tests such as ELISA that consists of a multi-step test procedure and give results in analog format. Results of these tests are interpreted by the color change in a set of diluted samples in a multi-well plate. However, detection of the minute changes in the color poses challenges and can lead to false interpretations. Instead, a technique that allows individual counting of specific binding events would be useful to overcome such challenges. Digital imaging has been applied recently for diagnostics applications. SPR is one of the techniques allowing quantitative measurements. However, the limit of detection in this technique is on the order of nM. The current required detection limit, which is already achieved with the analog techniques, is around pM. Optical techniques that are simple to implement and can offer better sensitivities have great potential to be used in medical diagnostics. Interference Microscopy is one of the tools that have been investigated over years in optics field. More of the studies have been performed in confocal geometry and each individual nanoparticle was observed separately. Here, we achieve wide-field imaging of individual nanoparticles in a large field-of-view ( 166 μm × 250 μm) on a micro-array based sensor chip in fraction of a second. We tested the sensitivity of our technique on dielectric nanoparticles because they exhibit optical properties similar to viruses and cells. We can detect non-resonant dielectric polystyrene nanoparticles of 100 nm. Moreover, we perform post-processing applications to further enhance visibility.
Low-Cost Flow Visualization for a Supersonic Ejector
NASA Technical Reports Server (NTRS)
Olden, George W.; Lineberry, David M.; Linn, Christopher A. B.; Landrum, Brian D.; Hawk, Clark W.
2005-01-01
Shadowgraph techniques were applied to the cold flow ejector facility at the Propulsion Research Center at the University of Alabama in Huntsville. The setup for the experiments was relatively simple and was accomplished at very little cost. Series of shadowgraph images were taken of both dual nozzle and single nozzle strut based ejectors operating over a range of chamber pressures. The density gradient patterns in the shadowgraphs were compared to pressure data measured along the top and side walls of the mixing duct. The shadowgraph images showed the presence of barrel shocks emanating from the nozzles which at low pressures terminated in Mach disks and at higher pressures extended beyond the barrel shape and reflected off the walls of the duct. Based on pressure data from previous testing, reflected shocks were expected on the walls of the duct. The shadowgraph images confirmed the locations of these reflected shocks on the top wall of the duct. The shadowgraph images also showed the structure change which correlated to a change in pitch of the ejector noise, and corresponded to a change in trend of the duct wall pressure ratio distributions. The images produced from the setup provided insight into the complex flow behavior inside the ejector duct. In addition, the techniques were a valuable tool as an educational device for students.
NASA Astrophysics Data System (ADS)
Yusvana, Rama; Headon, Denis; Markx, Gerard H.
2009-08-01
The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Cheng, Wei-Chung; Suresh, Nitin; Hua, Hong
2016-05-01
With improved diagnostic capabilities and complex optical designs, endoscopic technologies are advancing. As one of the several important optical performance characteristics, geometric distortion can negatively affect size estimation and feature identification related diagnosis. Therefore, a quantitative and simple distortion evaluation method is imperative for both the endoscopic industry and the medical device regulatory agent. However, no such method is available yet. While the image correction techniques are rather mature, they heavily depend on computational power to process multidimensional image data based on complex mathematical model, i.e., difficult to understand. Some commonly used distortion evaluation methods, such as the picture height distortion (DPH) or radial distortion (DRAD), are either too simple to accurately describe the distortion or subject to the error of deriving a reference image. We developed the basic local magnification (ML) method to evaluate endoscope distortion. Based on the method, we also developed ways to calculate DPH and DRAD. The method overcomes the aforementioned limitations, has clear physical meaning in the whole field of view, and can facilitate lesion size estimation during diagnosis. Most importantly, the method can facilitate endoscopic technology to market and potentially be adopted in an international endoscope standard.
Optical aberration correction for simple lenses via sparse representation
NASA Astrophysics Data System (ADS)
Cui, Jinlin; Huang, Wei
2018-04-01
Simple lenses with spherical surfaces are lightweight, inexpensive, highly flexible, and can be easily processed. However, they suffer from optical aberrations that lead to limitations in high-quality photography. In this study, we propose a set of computational photography techniques based on sparse signal representation to remove optical aberrations, thereby allowing the recovery of images captured through a single-lens camera. The primary advantage of the proposed method is that many prior point spread functions calibrated at different depths are successfully used for restoring visual images in a short time, which can be generally applied to nonblind deconvolution methods for solving the problem of the excessive processing time caused by the number of point spread functions. The optical software CODE V is applied for examining the reliability of the proposed method by simulation. The simulation results reveal that the suggested method outperforms the traditional methods. Moreover, the performance of a single-lens camera is significantly enhanced both qualitatively and perceptually. Particularly, the prior information obtained by CODE V can be used for processing the real images of a single-lens camera, which provides an alternative approach to conveniently and accurately obtain point spread functions of single-lens cameras.
Mass density images from the diffraction enhanced imaging technique.
Hasnah, M O; Parham, C; Pisano, E D; Zhong, Z; Oltulu, O; Chapman, D
2005-02-01
Conventional x-ray radiography measures the projected x-ray attenuation of an object. It requires attenuation differences to obtain contrast of embedded features. In general, the best absorption contrast is obtained at x-ray energies where the absorption is high, meaning a high absorbed dose. Diffraction-enhanced imaging (DEI) derives contrast from absorption, refraction, and extinction. The refraction angle image of DEI visualizes the spatial gradient of the projected electron density of the object. The projected electron density often correlates well with the projected mass density and projected absorption in soft-tissue imaging, yet the mass density is not an "energy"-dependent property of the object, as is the case of absorption. This simple difference can lead to imaging with less x-ray exposure or dose. In addition, the mass density image can be directly compared (i.e., a signal-to-noise comparison) with conventional radiography. We present the method of obtaining the mass density image, the results of experiments in which comparisons are made with radiography, and an application of the method to breast cancer imaging.
Li, Xumeng; Wang, Xiaohui; Wei, Hailin; Zhu, Xinguang; Peng, Yulin; Li, Ming; Li, Tao; Huang, Huang
2017-01-01
This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional–structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM) for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D) digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i) simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii) computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii) a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv) computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface), and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional–structural plant models of rice and for the optimization of rice canopy types. Moreover, the technique can be easily adapted for other cereal crops such as wheat, which has numerous stems and leaves sheltering each other. PMID:28558045
NASA Astrophysics Data System (ADS)
Tingberg, Anders Martin
Optimisation in diagnostic radiology requires accurate methods for determination of patient absorbed dose and clinical image quality. Simple methods for evaluation of clinical image quality are at present scarce and this project aims at developing such methods. Two methods are used and further developed; fulfillment of image criteria (IC) and visual grading analysis (VGA). Clinical image quality descriptors are defined based on these two methods: image criteria score (ICS) and visual grading analysis score (VGAS), respectively. For both methods the basis is the Image Criteria of the ``European Guidelines on Quality Criteria for Diagnostic Radiographic Images''. Both methods have proved to be useful for evaluation of clinical image quality. The two methods complement each other: IC is an absolute method, which means that the quality of images of different patients and produced with different radiographic techniques can be compared with each other. The separating power of IC is, however, weaker than that of VGA. VGA is the best method for comparing images produced with different radiographic techniques and has strong separating power, but the results are relative, since the quality of an image is compared to the quality of a reference image. The usefulness of the two methods has been verified by comparing the results from both of them with results from a generally accepted method for evaluation of clinical image quality, receiver operating characteristics (ROC). The results of the comparison between the two methods based on visibility of anatomical structures and the method based on detection of pathological structures (free-response forced error) indicate that the former two methods can be used for evaluation of clinical image quality as efficiently as the method based on ROC. More studies are, however, needed for us to be able to draw a general conclusion, including studies of other organs, using other radiographic techniques, etc. The results of the experimental evaluation of clinical image quality are compared with physical quantities calculated with a theoretical model based on a voxel phantom, and correlations are found. The results demonstrate that the computer model can be a useful toot in planning further experimental studies.
Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.
NASA Astrophysics Data System (ADS)
Vásquez, A. M.; Frazin, R. A.
We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G
2004-11-01
We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.
A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke
Aswendt, Markus; Adamczak, Joanna; Tennstaedt, Annette
2014-01-01
Transplanted stem cells can induce and enhance functional recovery in experimental stroke. Invasive analysis has been extensively used to provide detailed cellular and molecular characterization of the stroke pathology and engrafted stem cells. But post mortem analysis is not appropriate to reveal the time scale of the dynamic interplay between the cell graft, the ischemic lesion and the endogenous repair mechanisms. This review describes non-invasive imaging techniques which have been developed to provide complementary in vivo information. Recent advances were made in analyzing simultaneously different aspects of the cell graft (e.g., number of cells, viability state, and cell fate), the ischemic lesion (e.g., blood–brain-barrier consistency, hypoxic, and necrotic areas) and the neuronal and vascular network. We focus on optical methods, which permit simple animal preparation, repetitive experimental conditions, relatively medium-cost instrumentation and are performed under mild anesthesia, thus nearly under physiological conditions. A selection of recent examples of optical intrinsic imaging, fluorescence imaging and bioluminescence imaging to characterize the stroke pathology and engrafted stem cells are discussed. Special attention is paid to novel optimal reporter genes/probes for genetic labeling and tracking of stem cells and appropriate transgenic animal models. Requirements, advantages and limitations of these imaging platforms are critically discussed and placed into the context of other non-invasive techniques, e.g., magnetic resonance imaging and positron emission tomography, which can be joined with optical imaging in multimodal approaches. PMID:25177269
Hoshino, Hiromitsu; Higuchi, Tetsuya; Achmad, Arifudin; Taketomi-Takahashi, Ayako; Fujimaki, Hiroya; Tsushima, Yoshito
2016-01-01
We developed a new quantitative interpretation technique of radioisotope cisternography (RIC) for the diagnosis of spontaneous cerebrospinal fluid hypovolemia (SCH). RIC studies performed for suspected SCH were evaluated. (111)In-DTPA RIC images were taken at 0, 1, 3, 6, and 24-h after radioisotope injection following the current protocol. Regions of interest (ROI) were selected on 3-h images to include brain, spine, bladder or the whole body. The accumulative radioactivity counts were calculated for quantitative analysis. Final diagnoses of SCH were established based on the diagnostic criteria recently proposed by Schievink and colleagues. Thirty-five patients were focused on. Twenty-one (60.0%) patients were diagnosed as having SCH according to the Schievink criteria. On the 3-h images, direct cerebrospinal fluid leakage sign was detected in nine of 21 SCH patients (42.9%), as well as three patients with suspected iatrogenic leakage. Compared to non-SCH patients, SCH patients showed higher bladder accumulation at 3-h images (P = 0.0002), and higher brain clearance between the 6- and 24-h images (P < 0.0001). In particular, the 24-h brain clearance was more conclusive for the diagnosis than 24-h whole cistern clearance. The combination of direct sign and 24-h brain accumulation resulted in 100% of accuracy in the 32 patients in whom iatrogenic leakage was not observed. 1- and 6-h images did not provide any additional information in any patients. A new simple ROI setting method, in which only the 3-h whole body and 24-h brain images were necessary, was sufficient to diagnose SCH.
Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.
2015-01-01
The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056
Sharma, Avnish Kumar; Patidar, Rajesh Kumar; Daiya, Deepak; Joshi, Anandverdhan; Naik, Prasad Anant; Gupta, Parshotam Dass
2013-04-20
In this paper, a new method for alignment of the pinhole of a spatial filter (SF) has been proposed and demonstrated experimentally. The effect of the misalignment of the pinhole on the laser beam profiles has been calculated for circular and elliptical Gaussian laser beams. Theoretical computation has been carried out to illustrate the effect of an intensity mask, placed before the focusing lens of the SF, on the spatial beam profile after the pinhole of the SF. It is shown, both theoretically and experimentally, that a simple intensity mask, consisting of a black dot, can be used to visually align the pinhole with a high accuracy of 5% of the pinhole diameter. The accuracy may be further improved using a computer-based image processing algorithm. Finally, the proposed technique has been demonstrated to align a vacuum SF of a compact 40 J Nd:phosphate glass laser system.
Computational imaging of defects in commercial substrates for electronic and photonic devices
NASA Astrophysics Data System (ADS)
Fukuzawa, Masayuki; Kashiwagi, Ryo; Yamada, Masayoshi
2012-03-01
Computational defect imaging has been performed in commercial substrates for electronic and photonic devices by combining the transmission profile acquired with an imaging type of linear polariscope and the computational algorithm to extract a small amount of birefringence. The computational images of phase retardation δ exhibited spatial inhomogeneity of defect-induced birefringence in GaP, LiNbO3, and SiC substrates, which were not detected by conventional 'visual inspection' based on simple optical refraction or transmission because of poor sensitivity. The typical imaging time was less than 30 seconds for 3-inch diameter substrate with the spatial resolution of 200 μm, while that by scanning polariscope was 2 hours to get the same spatial resolution. Since our proposed technique have been achieved high sensitivity, short imaging time, and wide coverage of substrate materials, which are practical advantages over the laboratory-scale apparatus such as X-ray topography and electron microscope, it is useful for nondestructive inspection of various commercial substrates in production of electronic and photonic devices.
Exploratory analysis of TOF-SIMS data from biological surfaces
NASA Astrophysics Data System (ADS)
Vaidyanathan, Seetharaman; Fletcher, John S.; Henderson, Alex; Lockyer, Nicholas P.; Vickerman, John C.
2008-12-01
The application of multivariate analytical tools enables simplification of TOF-SIMS datasets so that useful information can be extracted from complex spectra and images, especially those that do not give readily interpretable results. There is however a challenge in understanding the outputs from such analyses. The problem is complicated when analysing images, given the additional dimensions in the dataset. Here we demonstrate how the application of simple pre-processing routines can enable the interpretation of TOF-SIMS spectra and images. For the spectral data, TOF-SIMS spectra used to discriminate bacterial isolates associated with urinary tract infection were studied. Using different criteria for picking peaks before carrying out PC-DFA enabled identification of the discriminatory information with greater certainty. For the image data, an air-dried salt stressed bacterial sample, discussed in another paper by us in this issue, was studied. Exploration of the image datasets with and without normalisation prior to multivariate analysis by PCA or MAF resulted in different regions of the image being highlighted by the techniques.
On computer vision in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Ko, Teresa H.
Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less
Large deformation image classification using generalized locality-constrained linear coding.
Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian
2013-01-01
Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.
NASA Technical Reports Server (NTRS)
Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, Frank L.
2006-01-01
Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the recent Space Shuttle Discovery's flight. From immediately after the Columbia accident, microwave and millimeter wave nondestructive testing methods were considered as potential effective inspection tools for evaluating the integrity of the SOFI. To this end and as a result of these efforts, both real-focused, synthetic focusing and holographical techniques, at a wide range of frequencies covering 24 GHz to 150 GHz, have been developed for this purpose. Images of various complex SOFI panels with a wide range of embedded anomalies (representing real potential defects) have been produced using these techniques, including relatively small anomalies located near complex structural features representative of the external tank. These real-focused and 3D holographical images have effectively demonstrated the utility of these methods for SOFI inspection as being viable, robust, repeatable, simple, portable and relatively inexpensive (tens of $K as opposed to hundreds of $K). In addition, the potential viability of these methods for inspecting acreage heat tiles have has been demonstrated. This paper presents an overview of these activities, representative images of these panels using all of the imaging techniques used and a discussion of the practical attributes of these inspection methods.
Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review
Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha
2007-01-01
Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056
NASA Astrophysics Data System (ADS)
Reddemann, Manuel A.; Mathieu, Florian; Kneer, Reinhold
2013-11-01
Aiming at a maximum spatial resolution and a minimum motion blur, a new simple double-imaging transmitted light microscopy technique is developed in this work enabling a fundamental investigation of primary breakup of a microscale liquid jet. Contrary to conventional far-field visualization techniques, the working distance is minimized to increase the numerical aperture. The resulting images provide information about shapes, length scales and velocities of primary liquid structures. The method is applied to an optically dense spray leaving a 109-μm diesel nozzle at various injection pressures under atmospheric conditions. A phenomenological study on the temporal spray evolution is done with focus on droplet and ligament formation. Different breakup processes are identified and described. It is found that the jet is characterized by long ligaments parallel or angular to the inner jet region. These ligaments result from collapsing films developing at the spray edge. A significant influence of outlet velocity variation on shape and velocity of these ligaments is observed. The experimental results prove that a transmitted light microscopy technique with reduced working distance is an appropriate tool for a better understanding of primary breakup for small-scaled diesel nozzles and a valuable complement to highly complex measurement techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
Exploring the use of memory colors for image enhancement
NASA Astrophysics Data System (ADS)
Xue, Su; Tan, Minghui; McNamara, Ann; Dorsey, Julie; Rushmeier, Holly
2014-02-01
Memory colors refer to those colors recalled in association with familiar objects. While some previous work introduces this concept to assist digital image enhancement, their basis, i.e., on-screen memory colors, are not appropriately investigated. In addition, the resulting adjustment methods developed are not evaluated from a perceptual view of point. In this paper, we first perform a context-free perceptual experiment to establish the overall distributions of screen memory colors for three pervasive objects. Then, we use a context-based experiment to locate the most representative memory colors; at the same time, we investigate the interactions of memory colors between different objects. Finally, we show a simple yet effective application using representative memory colors to enhance digital images. A user study is performed to evaluate the performance of our technique.
Skin Temperature Recording with Phosphors
Lawson, Ray N.; Alt, Leslie L.
1965-01-01
New knowledge of temperature irregularities associated with various disease states has resulted in increasing interest in the recording of heat radiation from the human body. Infrared radiation from the skin is a surface phenomenon and the amount of such radiation increases with temperature. Previous recording techniques have been not only crude but difficult and expensive. An unconventional thermal imaging system is described which gives superior temperature patterns and is also simpler and cheaper than any of the other available procedures. This system is based on the employment of thermally sensitive phosphors which glow when exposed to ultraviolet illumination, in inverse proportion to the underlying temperature. The thermal image can be directly observed or more critically analyzed and photographed on a simple closed-circuit television monitor. ImagesFig. 3Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14270208
NASA Astrophysics Data System (ADS)
Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago
2015-11-01
Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.
Hierarchical tone mapping for high dynamic range image visualization
NASA Astrophysics Data System (ADS)
Qiu, Guoping; Duan, Jiang
2005-07-01
In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.
Large depth high-precision FMCW tomography using a distributed feedback laser array
NASA Astrophysics Data System (ADS)
DiLazaro, Thomas; Nehmetallah, George
2018-02-01
Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.
Using endmembers in AVIRIS images to estimate changes in vegetative biomass
NASA Technical Reports Server (NTRS)
Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.
1992-01-01
Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.
Macyszyn, Luke; Akbari, Hamed; Pisapia, Jared M.; Da, Xiao; Attiah, Mark; Pigrish, Vadim; Bi, Yingtao; Pal, Sharmistha; Davuluri, Ramana V.; Roccograndi, Laura; Dahmane, Nadia; Martinez-Lage, Maria; Biros, George; Wolf, Ronald L.; Bilello, Michel; O'Rourke, Donald M.; Davatzikos, Christos
2016-01-01
Background MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB). Methods One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients. Results Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy. Conclusions By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood–brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients. PMID:26188015
A Novel Image Encryption Based on Algebraic S-box and Arnold Transform
NASA Astrophysics Data System (ADS)
Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail
2017-09-01
Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.
Kim, Jin Young; Lee, Changho; Park, Kyungjin; Han, Sangyeob; Kim, Chulhong
2016-01-01
Optical-resolution photoacoustic microscopy (OR-PAM), a promising microscopic imaging technique with high ultrasound resolution and superior optical sensitivity, can provide anatomical, functional, and molecular information at scales ranging from the microvasculature to single red blood cells. In particular, real-time OR-PAM imaging with a high signal-to-noise ratio (SNR) is a prerequisite for widespread use in preclinical and clinical applications. Although several technical approaches have been pursued to simultaneously improve the imaging speed and SNR of OR-PAM, they are bulky, complex, not sensitive, and/or not actually real-time. In this paper, we demonstrate a simple and novel OR-PAM technique which is based on a typical galvanometer immersed in non-conducting liquid. Using an opto-ultrasound combiner, this OR-PAM system achieves a high SNR and fast imaging speed. It takes only 2 seconds to acquire a volumetric image with a wide field of view (FOV) of 4 × 8 mm2 along the X and Y axes, respectively. The measured lateral and axial resolutions are 6.0 and 37.7 μm, respectively. Finally, as a demonstration of the system’s capability, we successfully imaged the microvasculature in a mouse ear in vivo. Our new method will contribute substantially to the popularization and commercialization of OR-PAM in various preclinical and clinical applications. PMID:27708379
Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography
Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.
2016-01-01
Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800
Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich; Puderbach, Michael
2015-01-01
To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Readers agreed moderately to substantially concerning lesions' enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M; Setten, Lorena M
2008-10-01
During the last few years, RIMAPS technique has been used to characterize the micro-relief of metallic surfaces and recently also applied to biological surfaces. RIMAPS is an image analysis technique which uses the rotation of an image and calculates its average power spectrum. Here, it is presented as a tool for describing the morphology of the trichodium net found in some grasses, which is developed on the epidermal cells of the lemma. Three different species of grasses (herbarium samples) are analyzed: Podagrostis aequivalvis (Trin.) Scribn. & Merr., Bromidium hygrometricum (Nees) Nees & Meyen and Bromidium ramboi (Parodi) Rúgolo. Simple schemes representing the real microstructure of the lemma are proposed and studied. RIMAPS spectra of both the schemes and the real microstructures are compared. These results allow inferring how similar the proposed geometrical schemes are to the real microstructures. Each geometrical pattern could be used as a reference for classifying other species. Finally, this kind of analysis is used to determine the morphology of the trichodium net of Agrostis breviculmis Hitchc. As the dried sample had shrunk and the microstructure was not clear, two kinds of morphology are proposed for the trichodium net of Agrostis L., one elliptical and the other rectilinear, the former being the most suitable.
NASA Astrophysics Data System (ADS)
Calvisi, Michael; Liu, Yunqiao; Wang, Qianxi
2016-11-01
Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent, collapsing EMBs to cells and tissues in clinical practice have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The EMB system modeled consists of the external liquid, membrane, and internal gases. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow, and elasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency. This enriched acoustic spectrum can enhance blood-tissue contrast and improve sonographic image quality. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the EMB, thereby improving the efficacy and safety of contrast-enhanced agents.
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A
2015-01-01
High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.
2011-08-29
We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less
Personal computer (PC) based image processing applied to fluid mechanics research
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.
Personal Computer (PC) based image processing applied to fluid mechanics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
Feature extraction from multiple data sources using genetic programming
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.
2002-08-01
Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.
Ratio maps of iron ore deposits Atlantic City district, Wyoming
NASA Technical Reports Server (NTRS)
Vincent, R. K.
1973-01-01
Preliminary results of a spectral rationing technique are shown for a region at the southern end of the Wind River Range, Wyoming. Digital ratio graymaps and analog ratio images have been produced for the test site, but ground truth is not yet available for thorough interpretation of these products. ERTS analog ratio images were found generally better than either ERTS single-channel images or high altitude aerial photos for the discrimination of vegetation from non-vegetation in the test site region. Some linear geological features smaller than the ERTS spatial resolution are seen as well in ERTS ratio and single-channel images as in high altitude aerial photography. Geochemical information appears to be extractable from ERTS data. Good preliminary quantitative agreement between ERTS-derived ratios and laboratory-derived reflectance ratios of rocks and minerals encourage plans to use lab data as training sets for a simple ratio gating logic approach to automatic recognition maps.
DUV or EUV: that is the question
NASA Astrophysics Data System (ADS)
Williamson, David M.
2000-11-01
Lord Rayleigh's well-known equations for resolution and depth of focus indicate that resolution is better improved by reducing the wavelength of light rather than by increasing the numerical aperture (NA) of the projection optics, particularly when NA is approaching its physical limit of 1.0 in air (or vacuum). Vector aerial image simulations of diffraction-limited Deep Ultraviolet (DUV) and Extreme Ultraviolet (EUV) lithographic systems verify this simple view, even though Rayleigh's constants in Microlithography are not constant because of a variety of image enhancement techniques that attempt to compensate for the shortcomings of the aerial image when it is pushed to the limit. The aerial image is not the whole story, however. The competition between DUV and EUV systems will be decided more by economic and technological factors such as risk, time and cost of development and cost of ownership. These in turn depend on cost, availability and quality of light sources, refracting materials, photoresists and reticles.
Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M
2009-05-01
A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.
Comparison of ring artifact removal methods using flat panel detector based CT images
2011-01-01
Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images. Results The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested. Conclusions The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT. PMID:21846411
SU-C-19A-01: A Simple Deep Inspiration Breath Hold System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, B; Kaznowski, L; Blackburn, J
2014-06-15
Purpose: Deep Inspiration Breath Hold (DIBH) Radiation therapy for left sided breast can reduce dose to the lungs and heart. The purpose of this work is to illustrate how to implement a simple method of DIBH for simulation and treatment using equipment readily available in most radiation oncology clinics. Methods: For simulation and treatment, a foam block is placed on the patient's abdomen or chest and a horizontal laser mounted on a movable slide is aimed at the center of the foam block. After a coaching session the block is marked at the average free breathing position and average DIBHmore » position. The position of block relative to laser can be seen by the patient via prism glasses as well as the radiation therapists via a video camera system. Simulation CT scans and treatment delivery are performed under DIBH conditions. Imaging and treatment are performed by manually turning the beam on once the patient has achieved DIBH after being given verbal instructions. Results: Manually triggered imaging was used daily to verify DIBH reproducibility for all patients treated using this system. Sets of before and during port images were used to ensure patient position was appropriate for treatment. Results of the laser on block method were compared to a sister facility using surface mapping techniques for DIBH and the two methods were found to have clinically equivalent reproducibility. Conclusion: The laser and block system was found to be simple to implement and robust during patient treatment. This system can be created from readily available materials at low cost and provides adequate feedback to patient and therapists. During treatment images document the reproducibility of setup and give confidence to clinicians that this method is reproducible from day to day.« less
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
Secrets of the Chinese magic mirror replica
NASA Astrophysics Data System (ADS)
Mak, Se-yuen; Yip, Din-yan
2001-03-01
We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.
[Morphology, biology and life-cycle of Plasmodium parasites].
Hommel, Marcel
2007-10-01
Laveran first discovered that an infectious agent was responsible for malaria by using a simple microscope, without the assistance of specific stains. Our knowledge of the Plasmodium life cycle and cellular biology has progressed with each technological advance, from Romanovsky staining and histology to electron microscopy, immunocytochemistry, molecular methods and modern imaging techniques. The use of bird, primate and rodent models also made a major contribution, notably in the development of antimalarial drugs that are still in use today.
Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina
2014-01-01
Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning process was used on these simply geometric specimens that resulted in what appears to be very smooth internal surfaces, when compared to other aerospace hardware cleaning methods.
Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-04-01
Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.
Star-shaped Polymers through Simple Wavelength-Selective Free-Radical Photopolymerization.
Eibel, Anna; Fast, David E; Sattelkow, Jürgen; Zalibera, Michal; Wang, Jieping; Huber, Alex; Müller, Georgina; Neshchadin, Dmytro; Dietliker, Kurt; Plank, Harald; Grützmacher, Hansjörg; Gescheidt, Georg
2017-11-06
Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sinusoidal modulation analysis for optical system MTF measurements.
Boone, J M; Yu, T; Seibert, J A
1996-12-01
The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.
HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Daniel A.; Nugent, Peter E.
2017-01-01
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovaemore » that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.« less
How to Find Gravitationally Lensed Type Ia supernovae
Goldstein, Daniel A.; Nugent, Peter E.
2016-12-29
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H 0, w, and Ω m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear tomore » be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less