Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P
2016-10-01
The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.
SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?
NASA Astrophysics Data System (ADS)
Rührmair, Ulrich
This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.
Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng
2016-05-19
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met(5)]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met(5)]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
NASA Astrophysics Data System (ADS)
Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng
2016-05-01
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
Generating compact classifier systems using a simple artificial immune system.
Leung, Kevin; Cheong, France; Cheong, Christopher
2007-10-01
Current artificial immune system (AIS) classifiers have two major problems: 1) their populations of B-cells can grow to huge proportions, and 2) optimizing one B-cell (part of the classifier) at a time does not necessarily guarantee that the B-cell pool (the whole classifier) will be optimized. In this paper, the design of a new AIS algorithm and classifier system called simple AIS is described. It is different from traditional AIS classifiers in that it takes only one B-cell, instead of a B-cell pool, to represent the classifier. This approach ensures global optimization of the whole system, and in addition, no population control mechanism is needed. The classifier was tested on seven benchmark data sets using different classification techniques and was found to be very competitive when compared to other classifiers.
Liu, Zhaoqun; Zhou, Zhi; Jiang, Qiufen; Wang, Lingling; Yi, Qilin; Qiu, Limei; Song, Linsheng
2017-01-01
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca 2+ This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the 'nervous-haemocyte' NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network. © 2017 The Authors.
Simple biophysical model of tumor evasion from immune system control
NASA Astrophysics Data System (ADS)
D'Onofrio, Alberto; Ciancio, Armando
2011-09-01
The competitive nonlinear interplay between a tumor and the host's immune system is not only very complex but is also time-changing. A fundamental aspect of this issue is the ability of the tumor to slowly carry out processes that gradually allow it to become less harmed and less susceptible to recognition by the immune system effectors. Here we propose a simple epigenetic escape mechanism that adaptively depends on the interactions per time unit between cells of the two systems. From a biological point of view, our model is based on the concept that a tumor cell that has survived an encounter with a cytotoxic T-lymphocyte (CTL) has an information gain that it transmits to the other cells of the neoplasm. The consequence of this information increase is a decrease in both the probabilities of being killed and of being recognized by a CTL. We show that the mathematical model of this mechanism is formally equal to an evolutionary imitation game dynamics. Numerical simulations of transitory phases complement the theoretical analysis. Implications of the interplay between the above mechanisms and the delivery of immunotherapies are also illustrated.
Ecdysone mediates the development of immunity in the Drosophila embryo.
Tan, Kiri Louise; Vlisidou, Isabella; Wood, Will
2014-05-19
Beyond their role in cell metabolism, development, and reproduction, hormones are also important modulators of the immune system. In the context of inflammatory disorders, systemic administration of pharmacological doses of synthetic glucocorticoids (GCs) is widely used as an anti-inflammatory treatment [1, 2]. However, not all actions of GCs are immunosuppressive, and many studies have suggested that physiological concentrations of GCs can have immunoenhancing effects [3-7]. For a more comprehensive understanding of how steroid hormones regulate immunity and inflammation, a simple in vivo system is required. The Drosophila embryo has recently emerged as a powerful model system to study the recruitment of immune cells to sterile wounds [8] and host-pathogen dynamics [9]. Here we investigate the immune response of the fly embryo to bacterial infections and find that the steroid hormone 20-hydroxyecdysone (20-HE) can regulate the quality of the immune response and influence the resolution of infection in Drosophila embryos. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity
Aballay, Alejandro
2010-01-01
The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed. PMID:19270528
Ota, Shusuke; Kanazawa, Satoshi; Kobayashi, Masaaki; Otsuka, Takanobu; Okamoto, Takashi
2005-04-01
Antibodies to type II collagen (col II) have been detected in patients with rheumatoid arthritis and in animal models of collagen induced arthritis. Here, we describe a novel method to detect anti-col II antibodies using an immunospot assay with an infrared fluorescence imaging system. This method showed very high sensitivity and specificity, and was simple, with low background levels. It also showed higher reproducibility and linearity, with a dynamic range of approximately 500-fold, than the conventional immunospot assay with enhanced chemiluminescence detection. Using this method we were able to demonstrate the antibody affinity maturation process in mice immunized with col II. In these immunized mice, although cross-reactive antibodies reacting with other collagen species were detected in earlier stages of immunization, the titers of cross-reactive antibodies rapidly diminished after the antigen boost, concomitantly with the elevation of the anti-col II antibody. The method and its possible applications are discussed.
A minimal model for multiple epidemics and immunity spreading.
Sneppen, Kim; Trusina, Ala; Jensen, Mogens H; Bornholdt, Stefan
2010-10-18
Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases.
NASA Astrophysics Data System (ADS)
Parumasur, N.; Willie, R.
2008-09-01
We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.
Senescence in immune priming and attractiveness in a beetle.
Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Krams, I
2012-07-01
Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots
2010-09-24
system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based
Threshold for extinction and survival in stochastic tumor immune system
NASA Astrophysics Data System (ADS)
Li, Dongxi; Cheng, Fangjuan
2017-10-01
This paper mainly investigates the stochastic character of tumor growth and extinction in the presence of immune response of a host organism. Firstly, the mathematical model describing the interaction and competition between the tumor cells and immune system is established based on the Michaelis-Menten enzyme kinetics. Then, the threshold conditions for extinction, weak persistence and stochastic persistence of tumor cells are derived by the rigorous theoretical proofs. Finally, stochastic simulation are taken to substantiate and illustrate the conclusion we have derived. The modeling results will be beneficial to understand to concept of immunoediting, and develop the cancer immunotherapy. Besides, our simple theoretical model can help to obtain new insight into the complexity of tumor growth.
The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra
Schröder, Katja
2016-01-01
ABSTRACT Historically, mucosal immunity—i.e., the portion of the immune system that protects an organism’s various mucous membranes from invasion by potentially pathogenic microbes—has been studied in single-cell epithelia in the gastrointestinal and upper respiratory tracts of vertebrates. Phylogenetically, mucosal surfaces appeared for the first time about 560 million years ago in members of the phylum Cnidaria. There are remarkable similarities and shared functions of mucosal immunity in vertebrates and innate immunity in cnidarians, such as Hydra species. Here, we propose a common origin for both systems and review observations that indicate that the ultimately simple holobiont Hydra provides both a new perspective on the relationship between bacteria and animal cells and a new prism for viewing the emergence and evolution of epithelial tissue-based innate immunity. In addition, recent breakthroughs in our understanding of immune responses in Hydra polyps reared under defined short-term gnotobiotic conditions open up the potential of Hydra as an animal research model for the study of common mucosal disorders. PMID:27803185
Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K
2014-01-01
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings
NASA Astrophysics Data System (ADS)
Montechiesi, L.; Cocconcelli, M.; Rubini, R.
2016-08-01
In recent years new diagnostics methodologies have emerged, with particular interest into machinery operating in non-stationary conditions. In fact continuous speed changes and variable loads make non-trivial the spectrum analysis. A variable speed means a variable characteristic fault frequency related to the damage that is no more recognizable in the spectrum. To overcome this problem the scientific community proposed different approaches listed in two main categories: model-based approaches and expert systems. In this context the paper aims to present a simple expert system derived from the mechanisms of the immune system called Euclidean Distance Minimization, and its application in a real case of bearing faults recognition. The proposed method is a simplification of the original process, adapted by the class of Artificial Immune Systems, which proved to be useful and promising in different application fields. Comparative results are provided, with a complete explanation of the algorithm and its functioning aspects.
The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra.
Schröder, Katja; Bosch, Thomas C G
2016-11-01
Historically, mucosal immunity-i.e., the portion of the immune system that protects an organism's various mucous membranes from invasion by potentially pathogenic microbes-has been studied in single-cell epithelia in the gastrointestinal and upper respiratory tracts of vertebrates. Phylogenetically, mucosal surfaces appeared for the first time about 560 million years ago in members of the phylum Cnidaria. There are remarkable similarities and shared functions of mucosal immunity in vertebrates and innate immunity in cnidarians, such as Hydra species. Here, we propose a common origin for both systems and review observations that indicate that the ultimately simple holobiont Hydra provides both a new perspective on the relationship between bacteria and animal cells and a new prism for viewing the emergence and evolution of epithelial tissue-based innate immunity. In addition, recent breakthroughs in our understanding of immune responses in Hydra polyps reared under defined short-term gnotobiotic conditions open up the potential of Hydra as an animal research model for the study of common mucosal disorders. Copyright © 2016 Schröder and Bosch.
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Molodij, Guillaume; Kuznetsov, Yuri; Smolyakov, Yuri; Israeli, David; Meglinski, Igor; Harmelin, Alon
2016-03-01
The use of fluorescence imaging of vascular permeability becomes a golden standard for assessing the inflammation process during experimental immune response in vivo. The use of the optical fluorescence imaging provides a very useful and simple tool to reach this purpose. The motivation comes from the necessity of a robust and simple quantification and data presentation of inflammation based on a vascular permeability. Changes of the fluorescent intensity, as a function of time is a widely accepted method to assess the vascular permeability during inflammation related to the immune response. In the present study we propose to bring a new dimension by applying a more sophisticated approach to the analysis of vascular reaction by using a quantitative analysis based on methods derived from astronomical observations, in particular by using a space-time Fourier filtering analysis followed by a polynomial orthogonal modes decomposition. We demonstrate that temporal evolution of the fluorescent intensity observed at certain pixels correlates quantitatively to the blood flow circulation at normal conditions. The approach allows to determine the regions of permeability and monitor both the fast kinetics related to the contrast material distribution in the circulatory system and slow kinetics associated with extravasation of the contrast material. Thus, we introduce a simple and convenient method for fast quantitative visualization of the leakage related to the inflammatory (immune) reaction in vivo.
Eberhardt, Martin; Lai, Xin; Tomar, Namrata; Gupta, Shailendra; Schmeck, Bernd; Steinkasserer, Alexander; Schuler, Gerold; Vera, Julio
2016-01-01
The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.
Induction of mucosal IgA by a novel jet delivery technique for HIV-1 DNA.
Lundholm, P; Asakura, Y; Hinkula, J; Lucht, E; Wahren, B
1999-04-09
Novel ways of delivering plasmid DNA to elicit humoral IgA, IgG and cell-mediated immune responses in mice were investigated. Intraoral administration of DNA in the cheek, using a jet immunization technique, elicited the highest IgA mucosal responses. Intranasal immunization gave strong mucosal IgA responses and persistent systemic IgG. Immunoglobulin isotype analysis revealed an IgG1 profile for intramuscular tongue and gene gun immunizations and an IgG2a profile following oral jet injection and intranasal application. The route of delivery was of importance for the characteristics and quality of the mucosal immune response following DNA immunization. For DNA vaccine delivery, the intraoral jet injection technique has the advantages of being a simple and rapid way of administering the DNA in solution and of provoking specific mucosal IgA when administered in the mucosal associated lymphoid tissue.
Network representations of immune system complexity
Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar
2015-01-01
The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853
A cascade reaction network mimicking the basic functional steps of adaptive immune response
NASA Astrophysics Data System (ADS)
Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong
2015-10-01
Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.
Freitak, Dalial; Wheat, Christopher W; Heckel, David G; Vogel, Heiko
2007-01-01
Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ. Potential benefits of this immune system priming may outweigh the observed tradeoffs, as priming based on environmentally sensed bacterial may decrease risk of serious infection. These results show that food plant microbial communities represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores. PMID:18154650
van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J
2007-02-01
Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.
CRISPR/Cas9 Immune System as a Tool for Genome Engineering.
Hryhorowicz, Magdalena; Lipiński, Daniel; Zeyland, Joanna; Słomski, Ryszard
2017-06-01
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) adaptive immune systems constitute a bacterial defence against invading nucleic acids derived from bacteriophages or plasmids. This prokaryotic system was adapted in molecular biology and became one of the most powerful and versatile platforms for genome engineering. CRISPR/Cas9 is a simple and rapid tool which enables the efficient modification of endogenous genes in various species and cell types. Moreover, a modified version of the CRISPR/Cas9 system with transcriptional repressors or activators allows robust transcription repression or activation of target genes. The simplicity of CRISPR/Cas9 has resulted in the widespread use of this technology in many fields, including basic research, biotechnology and biomedicine.
Viral ancestors of antiviral systems.
Villarreal, Luis P
2011-10-01
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Viral Ancestors of Antiviral Systems
Villarreal, Luis P.
2011-01-01
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523
CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.
Koonin, Eugene V; Makarova, Kira S
2013-05-01
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.
An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response
Buckley, Katherine M.; Rast, Jonathan P.
2017-01-01
The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism. PMID:29109720
NASA Astrophysics Data System (ADS)
Gong, Hua; Xiang, Jian; Xu, Ligeng; Song, Xuejiao; Dong, Ziliang; Peng, Rui; Liu, Zhuang
2015-11-01
Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT:PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT:PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT:PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT:PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT:PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT:PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06081h
Making evidence-based selections of influenza vaccines.
Childress, Billy-Clyde; Montney, Joshua D; Albro, Elise A
2014-01-01
Years ago, intramuscular influenza vaccines were the only option for those who wanted to arm themselves against the flu. Today there are alternatives, including intradermal injections and intranasal sprays. In order to select the right influenza vaccine for their patients, pharmacists, and other healthcare professionals must have a basic understanding of the immune system. Influenza vaccines elicit different levels of immune response involving innate and adaptive immunity, which are critical to fighting infection. For the 2013-2014 flu season, there were 13 different formulations of influenza vaccines on the market with vast differences in indications, contraindications, and effectiveness. The CDC does not recommend one vaccine over another, but recommends that all patients be vaccinated against the flu. Preventing the spread of influenza is no simple task; however, the most recent evidence on influenza vaccines and sufficient knowledge of the immune system will allow pharmacists and other healthcare providers to better advocate for vaccines, determine which are most appropriate, and ensure their proper administration.
Using process algebra to develop predator-prey models of within-host parasite dynamics.
McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel
2013-07-21
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.
1997-02-01
In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.
Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun
2016-01-01
Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bringing DNA vaccines closer to commercial use.
Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A
2009-10-01
Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.
Reactions of immune system to physical exercises.
Pershin, Boris B; Geliev, Anatoly B; Tolstov, Dmitry V; Kovalchuk, Leonid V; Medvedev, Vladimir Ya
2002-04-01
The great attention to reactions of immune system to the physical exercises in sportsmen is linked to the growth of training volumes, to the increase of competition numbers and to the elevation of morbidity. Immune deficiency may be considered as the detonator of pathological processes among which acute respiratory diseases (ARD) are investigated most completely in sports medicine. Other pathologies require long-term observations, but it is not so simple to do due to the frequent renewal of sports groups. Besides ARD, there are reports about the growth of cases of poliomyelitis, endotoxemia, allergic and autoimmune disorders. Immune reactions in sportsmen are developed at the background of fever, impaired balance of ergotrophic hormone activity and in a number of cases under conditions of systemic endotoxemia. We have described the extreme type of immune deficiency in sportsmen, in which we could not determine different isotypes of Ig. The phenomenon of Ig disappearance is reproduced under the experimental conditions that opened the way to study its mechanisms. Physical exercises decrease function of immunocompetent cells, their antiviral resistance, antigen presentation and expression of class II MHC molecules. With the involvement of macrophages hyperproduction of IL-6 is developed in muscle tissues. After physical exercises other cytokines also change the state of immunity. Also, neuropeptides getting in touch the links between endocrine and immune systems may make a contribution to immunosuppression. The immunosuppression may be prevented by use of special carbohydrate diets and by administration of complexed preparations. The prophylaxis is capable to control the morbidity, profoundly to increase the training volumes and to enhance the labor efficiency.
Stille, C J; Christison-Lagay, J; Bernstein, B A; Dworkin, P H
2001-07-01
We sought to determine if a simple educational intervention initiated at the first well-child care visit, with reinforcement at subsequent visits, can improve inner-city infant immunization rates. We conducted a controlled trial involving 315 newborn infants and their primary caregivers in 3 inner-city primary care centers. Child health care providers gave caregivers in the intervention group an interactive graphic card with verbal reinforcement. At later visits, stickers were applied to the card when immunizations were given. Routine information was given to controls. After the trial, age-appropriate immunization rates at 7 months were 58% in each group. Intervention infants had 50% fewer missed opportunities to immunize (p=0.01) but cancelled 77% more appointments (p=0.04) than controls. We conclude that a brief educational intervention at the first well-child care visit did not boost 7-month immunization rates, although it was associated with fewer missed opportunities to immunize.
Gong, Hua; Xiang, Jian; Xu, Ligeng; Song, Xuejiao; Dong, Ziliang; Peng, Rui; Liu, Zhuang
2015-12-07
Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ( PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
Luo, Michelle L.; Mullis, Adam S.; Leenay, Ryan T.; Beisel, Chase L.
2015-01-01
CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing and transcriptional regulation. Because these RNA-directed immune systems are found in most prokaryotes, an opportunity exists to harness the endogenous systems as convenient tools in these organisms. Here, we report that the Type I-E CRISPR-Cas system in Escherichia coli can be co-opted for programmable transcriptional repression. We found that deletion of the signature cas3 gene converted this immune system into a programmable gene regulator capable of reversible gene silencing of heterologous and endogenous genes. Targeting promoter regions yielded the strongest repression, whereas targeting coding regions showed consistent strand bias. Furthermore, multi-targeting CRISPR arrays could generate complex phenotypes. This strategy offers a simple approach to convert many endogenous Type I systems into transcriptional regulators, thereby expanding the available toolkit for CRISPR-mediated genetic control while creating new opportunities for genome-wide screens and pathway engineering. PMID:25326321
Li, Hao; Qiu, Shaofu; Song, Hongbin
2013-10-04
In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.
Stabilization of Influenza Vaccine Enhances Protection by Microneedle Delivery in the Mouse Skin
Yoo, Dae-Goon; Compans, Richard W.; Prausnitz, Mark R.; Kang, Sang-Moo
2009-01-01
Background Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy. Methodology/Principal Findings Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge. Conclusions/Significance The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too. PMID:19779615
Gorantala, Jyotsna; Grover, Sonam; Rahi, Amit; Chaudhary, Prerna; Rajwanshi, Ravi; Sarin, Neera Bhalla; Bhatnagar, Rakesh
2014-04-20
In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax. Copyright © 2014 Elsevier B.V. All rights reserved.
Childs, Lauren M; Paskow, Michael; Morris, Sidney M; Hesse, Matthias; Strogatz, Steven
2011-11-01
Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur.
Paskow, Michael; Morris, Sidney M.; Hesse, Matthias; Strogatz, Steven
2011-01-01
Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur. PMID:21347813
Viral Diversity Threshold for Adaptive Immunity in Prokaryotes
Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.
2012-01-01
ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted. PMID:23221803
Paula Neto, Heitor A.; Ausina, Priscila; Gomez, Lilian S.; Leandro, João G. B.; Zancan, Patricia; Sola-Penna, Mauro
2017-01-01
Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited. PMID:29163542
Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro
2017-01-01
Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.
CCR scientists tease out mechanisms of immune cell communication | Center for Cancer Research
Researchers from the Cancer and Inflammation Program at the Center for Cancer Research and the Ben-Gurion University of the Negev in Israel have discovered that the simple processes of molecular diffusion and absorption control the spread of cytokines through dense body tissues. The simple control mechanisms enable the immune response to tailor itself to the nature and
Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology
Buchon, Nicolas
2014-01-01
ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556
Just-in-time training of dental responders in a simulated pandemic immunization response exercise.
Colvard, Michael D; Hirst, Jeremy L; Vesper, Benjamin J; DeTella, George E; Tsagalis, Mila P; Roberg, Mary J; Peters, David E; Wallace, Jimmy D; James, James J
2014-06-01
The reauthorization of the Pandemic and All-Hazards Preparedness Act in 2013 incorporated the dental profession and dental professionals into the federal legislation governing public health response to pandemics and all-hazard situations. Work is now necessary to expand the processes needed to incorporate and train oral health care professionals into pandemic and all-hazard response events. A just-in-time (JIT) training exercise and immunization drill using an ex vivo porcine model system was conducted to demonstrate the rapidity to which dental professionals can respond to a pandemic influenza scenario. Medical history documentation, vaccination procedures, and patient throughput and error rates of 15 dental responders were evaluated by trained nursing staff and emergency response personnel. The average throughput (22.33/hr) and medical error rates (7 of 335; 2.08%) of the dental responders were similar to those found in analogous influenza mass vaccination clinics previously conducted using certified public health nurses. The dental responder immunization drill validated the capacity and capability of dental professionals to function as a valuable immunization resource. The ex vivo porcine model system used for JIT training can serve as a simple and inexpensive training tool to update pandemic responders' immunization techniques and procedures supporting inoculation protocols.
Furusawa, Chikara; Yamaguchi, Tomoyuki
The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.
Furusawa, Chikara; Yamaguchi, Tomoyuki
2016-01-01
The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification. PMID:27668873
Composition of the cellular infiltrate in patients with simple and complex appendicitis.
Gorter, Ramon R; Wassenaar, Emma C E; de Boer, Onno J; Bakx, Roel; Roelofs, Joris J T H; Bunders, Madeleine J; van Heurn, L W Ernst; Heij, Hugo A
2017-06-15
It is now well established that there are two types of appendicitis: simple (nonperforating) and complex (perforating). This study evaluates differences in the composition of the immune cellular infiltrate in children with simple and complex appendicitis. A total of 47 consecutive children undergoing appendectomy for acute appendicitis between January 2011 and December 2012 were included. Intraoperative criteria were used to identify patients with either simple or complex appendicitis and were confirmed histopathologically. Immune histochemical techniques were used to identify immune cell markers in the appendiceal specimens. Digital imaging analysis was performed using Image J. In the specimens of patients with complex appendicitis, significantly more myeloperoxidase positive cells (neutrophils) (8.7% versus 1.2%, P < 0.001) were detected compared to patients with a simple appendicitis. In contrast, fewer CD8+ T cells (0.4% versus 1.3%, P = 0.016), CD20 + cells (2.9% versus 9.0%, P = 0.027), and CD21 + cells (0.2% versus 0.6%, P = 0.028) were present in tissue from patients with complex compared to simple appendicitis. The increase in proinflammatory innate cells and decrease of adaptive cells in patients with complex appendicitis suggest potential aggravating processes in complex appendicitis. Further research into the underlying mechanisms may identify novel biomarkers to be able to differentiate simple and complex appendicitis. Copyright © 2017 Elsevier Inc. All rights reserved.
Shaffer, J Scott; Moore, Penny L; Kardar, Mehran; Chakraborty, Arup K
2016-10-24
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs.
Shaffer, J. Scott; Moore, Penny L.; Kardar, Mehran; Chakraborty, Arup K.
2016-01-01
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs. PMID:27791170
Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling.
Patel, Seema; Rani, Aruna; Goyal, Arun
2017-10-01
Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Complement System Part II: Role in Immunity
Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.
2015-01-01
The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922
Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C
2015-10-27
The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative. Copyright © 2015 Chua et al.
Feces production as a form of social immunity in an insect with facultative maternal care.
Diehl, Janina M C; Körner, Maximilian; Pietsch, Michael; Meunier, Joël
2015-03-12
Social animals have the unique capability of mounting social defenses against pathogens. Over the last decades, social immunity has been extensively studied in species with obligatory and permanent forms of social life. However, its occurrence in less derived social systems and thus its role in the early evolution of group-living remains unclear. Here, we investigated whether lining nests with feces is a form of social immunity against microbial growth in the European earwig Forficula auricularia, an insect with temporary family life and facultative maternal care. Using a total of 415 inhibition zone assays, we showed that earwig feces inhibit the growth of two GRAM+ bacteria, two fungi, but not of a GRAM- bacteria. These inhibitions did not result from the consumed food or the nesting environment. We then demonstrated that the antimicrobial activity against fungus was higher in offspring than maternal feces, but that this difference was absent against bacteria. Finally, we showed that family interactions inhibited the antibacterial activity of maternal feces against one of the two GRAM+ bacteria, whereas it had no effect on the one of nymphal feces. By contrast, antifungal activities of the feces were independent of mother-offspring interactions. These results demonstrate that social immunity occurs in a species with simple and facultative social life, and thus shed light on the general importance of this process in the evolution of group-living. These results also emphasize that defecation can be under selection for other life-history traits than simple waste disposal.
A simple method for determining polymeric IgA-containing immune complexes.
Sancho, J; Egido, J; González, E
1983-06-10
A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.
CCR scientists tease out mechanisms of immune cell communication | Center for Cancer Research
Researchers from the Cancer and Inflammation Program at the Center for Cancer Research and the Ben-Gurion University of the Negev in Israel have discovered that the simple processes of molecular diffusion and absorption control the spread of cytokines through dense body tissues. The simple control mechanisms enable the immune response to tailor itself to the nature and severity of a pathogenic attack and to prevent dangerous autoimmune reactions. Read more...
A two-scale model for correlation between B cell VDJ usage in zebrafish
NASA Astrophysics Data System (ADS)
Pan, Keyao; Deem, Michael
2011-03-01
The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.
Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens.
Kaufman, Jim
2018-05-01
In comparison with the major histocompatibility complexes (MHCs) of typical mammals, the chicken MHC is simple and compact with a single dominantly expressed class I molecule that can determine the immune response. In addition to providing useful information for the poultry industry and allowing insights into the evolution of the adaptive immune system, the simplicity of the chicken MHC has allowed the discovery of phenomena that are more difficult to discern in the more complicated mammalian systems. This review discusses the new concept that poorly expressed promiscuous class I alleles act as generalists to protect against a wide variety of infectious pathogens, while highly expressed fastidious class I alleles can act as specialists to protect against new and dangerous pathogens. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.
Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer
Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros
2014-01-01
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer. PMID:24409421
Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer.
Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros
2014-01-09
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Pathogen evolution and the immunological niche
Cobey, Sarah
2014-01-01
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible–infected–recovered (SIR) model. However, there is growing evidence that the complexity of many host–pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. PMID:25040161
A methodological approach for using high-level Petri Nets to model the immune system response.
Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; Pappalardo, Francesco
2016-12-22
Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the same technique and software.
Evaluation of invertebrate infection models for pathogenic corynebacteria.
Ott, Lisa; McKenzie, Ashleigh; Baltazar, Maria Teresa; Britting, Sabine; Bischof, Andrea; Burkovski, Andreas; Hoskisson, Paul A
2012-08-01
For several pathogenic bacteria, model systems for host-pathogen interactions were developed, which provide the possibility of quick and cost-effective high throughput screening of mutant bacteria for genes involved in pathogenesis. A number of different model systems, including amoeba, nematodes, insects, and fish, have been introduced, and it was observed that different bacteria respond in different ways to putative surrogate hosts, and distinct model systems might be more or less suitable for a certain pathogen. The aim of this study was to develop a suitable invertebrate model for the human and animal pathogens Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis, and Corynebacterium ulcerans. The results obtained in this study indicate that Acanthamoeba polyphaga is not optimal as surrogate host, while both Caenorhabtitis elegans and Galleria larvae seem to offer tractable models for rapid assessment of virulence between strains. Caenorhabtitis elegans gives more differentiated results and might be the best model system for pathogenic corynebacteria, given the tractability of bacteria and the range of mutant nematodes available to investigate the host response in combination with bacterial virulence. Nevertheless, Galleria will also be useful in respect to innate immune responses to pathogens because insects offer a more complex cell-based innate immune system compared with the simple innate immune system of C. elegans. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
A Very Low Cost BCH Decoder for High Immunity of On-Chip Memories
NASA Astrophysics Data System (ADS)
Seo, Haejun; Han, Sehwan; Heo, Yoonseok; Cho, Taewon
BCH(Bose-Chaudhuri-Hoquenbhem) code, a type of block codes-cyclic codes, has very strong error-correcting ability which is vital for performing the error protection on the memory system. BCH code has many kinds of dual algorithms, PGZ(Pererson-Gorenstein-Zierler) algorithm out of them is advantageous in view of correcting the errors through the simple calculation in t value. However, this is problematic when this becomes 0 (divided by zero) in case ν ≠ t. In this paper, the circuit would be simplified by suggesting the multi-mode hardware architecture in preparation that v were 0~3. First, production cost would be less thanks to the smaller number of gates. Second, lessening power consumption could lengthen the recharging period. The very low cost and simple datapath make our design a good choice in small-footprint SoC(System on Chip) as ECC(Error Correction Code/Circuit) in memory system.
Cytotoxic Killing and Immune Evasion by Repair
NASA Astrophysics Data System (ADS)
Chan, Cliburn; George, Andrew J. T.; Stark, Jaroslav
2007-07-01
The interaction between the immune system and pathogens is a complex one, with pathogens constantly developing new ways of evading destruction by the immune system. The immune system's task is made even harder when the pathogen in question is an intra-cellular one (such as a virus or certain bacteria) and it is necessary to kill the infected host cell in order to eliminate the pathogen. This causes damage to the host, and such killing therefore needs to be carefully controlled, particularly in tissues with poor regenerative potential, or those involved in the immune response itself. Host cells therefore possess repair mechanisms which can counteract killing by immune cells. These in turn can be subverted by pathogens which up-regulate the resistance of infected cells to killing. In this paper, we explore the hypothesis that this repair process plays an important role in determining the efficacy of evasion and escape from immune control. We model a situation where cytotoxic T lymphocytes (CTL) and natural killer (NK) cells kill pathogen-infected and tumour cells by directed secretion of preformed granules containing perforin and granzymes. Resistance to such killing can be conferred by the expression of serine protease inhibitors (serpins). These are utilized by several virally infected and tumour cells, as well as playing a role in the protection of host bystander, immune and immuneprivileged cells. We build a simple stochastic model of cytotoxic killing, where serpins can neutralize granzymes stoichiometrically by forming an irreversible complex, and the survival of the cell is determined by the balance between serpin depletion and replenishment, which in its simplest form is equivalent to the well known shot noise process. We use existing analytical results for this process, and additional simulations to analyse the effects of repair on cytotoxic killing. We then extend the model to the case of a replicating target cell population, which gives a branching process coupled to shot noise. We show how the process of repair can have a major impact on the dynamics of pathogen evasion and escape of tumour cells from immune surveillance
Accuracy of a state immunization registry in the pediatric emergency department.
Stecher, Dawn S; Adelman, Raymond; Brinkman, Traci; Bulloch, Blake
2008-02-01
The purpose of this study was to ascertain whether either parental recall or a state immunization registry was as accurate as the medical record in determining immunization status in the emergency department (ED). A convenience sample of children younger than 5 years who presented to the ED between July 2004 and May 2005 were enrolled prospectively. After obtaining informed consent, parents were asked about their child's immunization status. All children then had their immunization data accessed in the Arizona State Immunization Information System. The information obtained from the state registry, as well as the information from the parental interview, was then compared with the information on the medical record obtained from the primary care physician (PCP). Data were analyzed using simple descriptive statistics. A total of 332 children were enrolled in the study. A total of 302 (91%) children enrolled were found in the state database, and 222 (74%) of these had a medical record available for comparison. The database agreed with the PCP record in 130 (59%) cases; parental report agreed with the PCP record in 149 (62%) cases. Although most children can be found in the state immunization registry, it seems to be similar in accuracy to parental recall of immunization status when each is compared with the medical record. This may have been due to either underreporting of immunizations from the community or a delay in updating the state database. At this time, neither parental recall nor the database would accurately determine a child's immunization status during an ED visit.
Gupta, Vinita; Davancaze, Teresa; Good, Jeremy; Kalia, Navdeep; Anderson, Michael; Wallin, Jeffrey J; Brady, Ann; Song, An; Xu, Wenfeng
2016-12-01
Immune-checkpoint inhibitors are presumed to break down the tolerogenic state of immune cells by activating T-lymphocytes that release cytokines and enhance effector cell function for elimination of tumors. Measurement of cytokines is being pursued for better understanding of the mechanism of action of immune-checkpoint inhibitors, as well as to identify potential predictive biomarkers. In this study, we show bioanalytical qualification of cytokine assays in plasma on a novel multi-analyte immunoassay platform, Simple Plex ™ . The qualified assays exhibited excellent sensitivity as evidenced by measurement of all samples within the quantifiable range. The accuracy and precision were 80-120% and 10%, respectively. The qualified assays will be useful in assessing mechanism of action cancer immunotherapies.
Microneedle and mucosal delivery of influenza vaccines
Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun
2017-01-01
In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052
Parasitism and calfhood diseases.
Herlich, H; Douvres, F W
1977-02-01
That animals can and do acquire an effective immunity against helminth parasites has been demonstrated extensively experimentally, and the fact that domestic animals such as cattle, sheep, and horses become adults while maintaining good health in spite of constant exposure to reinfection long has suggested that immunity must be important to such survival. Although our attempts to date to vaccinate calves against helminth parasites have either failed or been unsatisfactory because of the pathosis induced by the experimental vaccines, the results are not surprising or discouraging. In contrast to the long history of immunization research on bacterial and viral diseases, only within a relatively short time have serious efforts been directed at exploiting hostal immunity for prevention and control of helminthic diseases. Unlike the comparatively simple structures of viruses and bacteria, helminths are complex multicellular animals with vast arrays of antigens and complicated physiological and immunological interactions with their hosts. Much more fundamental information on helminth-bovine interactions, on helminth antigens, and on cattle antibody systems must be developed before progress on control of cattle helminths by vaccination can be meaningful.
Tiling solutions for optimal biological sensing
NASA Astrophysics Data System (ADS)
Walczak, Aleksandra M.
2015-10-01
Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.
Russo, Roberta; Chiaramonte, Marco; Matranga, Valeria; Arizza, Vincenzo
2015-08-01
The innate immune response involves proteins such as the membrane receptors of the Toll-like family (TLRs), which trigger different intracellular signalling pathways that are dependent on specific stimulating molecules. In sea urchins, TLR proteins are encoded by members of a large multigenic family composed of 60-250 genes in different species. Here, we report a newly identified mRNA sequence encoding a TLR protein (referred to as Pl-Tlr) isolated from Paracentrotus lividus immune cells. The partial protein sequence contained the conserved Toll/IL-1 receptor (TIR) domain, the transmembrane domain and part of the leucine repeats. Phylogenetic analysis of the Pl-Tlr protein was accomplished by comparing its sequence with those of TLRs from different classes of vertebrates and invertebrates. This analysis was suggestive of an evolutionary path that most likely represented the course of millions of years, starting from simple organisms and extending to humans. Challenge of the sea urchin immune system with poly-I:C, a chemical compound that mimics dsRNA, caused time-dependent Pl-Tlr mRNA up-regulation that was detected by QPCR. In contrast, bacterial LPS injury did not affect Pl-Tlr transcription. The study of the Tlr genes in the sea urchin model system may provide new perspectives on the role of Tlrs in the invertebrate immune response and clues concerning their evolution in a changing world. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coviello, Silvina; Wimmenauer, Vera; Polack, Fernando P; Irusta, Pablo M
2014-01-01
Respiratory viruses cause significant morbidity and mortality in infants and young children worldwide. Current strategies to modulate the immune system and prevent or treat respiratory viral infections in this age group have shown limited success. Here, we demonstrate that a lysate derived from Gram-positive and Gram-negative organisms positively modulates protective antibody responses against both respiratory syncytial virus (RSV) and influenza virus in murine models of infection. Interestingly, despite the complex mixture of Toll-like receptor (TLR) agonists present in the bacterial lysate, the modulatory effects were mostly dependent on TLR4 signaling. Our results indicate that the use of simple formulations of TLR-agonists can significantly improve the immune response against critical pediatric respiratory pathogens. PMID:25483455
Balance of flora, galt, and mucosal integrity.
Hanaway, Patrick
2006-01-01
It is clear that there is a dynamic relationship involving the gastrointestinal flora, environmental inputs (food and other nutrients), and the health of the immune system. Recent research has taught us a great deal about the role of diet and commensal bacteria in promoting health. It appears that Nobel Laureate Eli Metchnikov may have been correct in his assertion that live bacterial cultures are "the elixir of life". We are unlocking a number of secrets about immune system functioning, but we keep coming back to a simple intervention that has an ever-expanding opus of research to support it, and an extremely low toxicity ratio. Future studies will help us to clarify the best strains and the best dosages for individual patients and specific conditions. Assessment of commensal flora and a genomic scan for markers of immunologic dysregulation will be more accurate and more widely available. It appears, however, that the diagnostic and therapeutic tools we have to work with today can make a tremendous difference in reducing the burden of suffering for our patients. If "form follows function," as Buckminster Fuller was fond of saying, then the form of our immune system may be following the precise functions that our commensal flora is dictating. We have the opportunity to encourage breastfeeding, decrease unnecessary antibiotic and antimicrobial usage (especially in the first two years of life), improve oral tolerance with a healthy n-6/n-3 fatty acid ratio, and support the development of a healthy commensal flora. These actions on behalf of our immune systems will pay dividends for years to come.
Image-Based Quantification of Plant Immunity and Disease.
Laflamme, Bradley; Middleton, Maggie; Lo, Timothy; Desveaux, Darrell; Guttman, David S
2016-12-01
Measuring the extent and severity of disease is a critical component of plant pathology research and crop breeding. Unfortunately, existing visual scoring systems are qualitative, subjective, and the results are difficult to transfer between research groups, while existing quantitative methods can be quite laborious. Here, we present plant immunity and disease image-based quantification (PIDIQ), a quantitative, semi-automated system to rapidly and objectively measure disease symptoms in a biologically relevant context. PIDIQ applies an ImageJ-based macro to plant photos in order to distinguish healthy tissue from tissue that has yellowed due to disease. It can process a directory of images in an automated manner and report the relative ratios of healthy to diseased leaf area, thereby providing a quantitative measure of plant health that can be statistically compared with appropriate controls. We used the Arabidopsis thaliana-Pseudomonas syringae model system to show that PIDIQ is able to identify both enhanced plant health associated with effector-triggered immunity as well as elevated disease symptoms associated with effector-triggered susceptibility. Finally, we show that the quantitative results provided by PIDIQ correspond to those obtained via traditional in planta pathogen growth assays. PIDIQ provides a simple and effective means to nondestructively quantify disease from whole plants and we believe it will be equally effective for monitoring disease on excised leaves and stems.
The Immune System as a Model for Pattern Recognition and Classification
Carter, Jerome H.
2000-01-01
Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961
Measurement and Characterization of Apoptosis by Flow Cytometry.
Telford, William; Tamul, Karen; Bradford, Jolene
2016-07-01
Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Advances in cholangiocyte immunobiology
Syal, Gaurav; Fausther, Michel
2012-01-01
Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis. PMID:22961800
Advances in cholangiocyte immunobiology.
Syal, Gaurav; Fausther, Michel; Dranoff, Jonathan A
2012-11-15
Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis.
Pathogen evolution and the immunological niche.
Cobey, Sarah
2014-07-01
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Simple model of epidemics with pathogen mutation.
Girvan, Michelle; Callaway, Duncan S; Newman, M E J; Strogatz, Steven H
2002-03-01
We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals; (2) endemic infection; (3) periodic epidemic outbreaks; and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.
Liu, Hui; Jia, Zhenghu; Yang, Chengmao; Song, Mei; Jing, Zhe; Zhao, Yapu; Wu, Zhenzhou; Zhao, Liqing; Wei, Dongsheng; Yin, Zhinan; Hong, Zhangyong
2018-06-01
Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optical fiber sensors for the non-destructive evaluation of materials
NASA Technical Reports Server (NTRS)
1986-01-01
The operation of the modal domain vibration sensor was demonstrated in several simple vibrational systems. Two apparent advantages are the sensors bandwidth and sensitivity. An inherent drawback of standard vibration detection devices is their rapid cost increase with high frequency bandwidth. This sensor showed consistent response in the freqency range of 1.5 to 400 Hz. By imparting very small but measurable excitations in the structures, the sensors ability to respond to very low order vibration induced strain was established. Dynamic ranges on the order of 18 to 22 dB for the CF beam and string systems respectively were observed. The sensor itself represents a very simple system: a coherent source, a single fiber and a low bandwidth detector. The inherent advantages of ruggedness and immunity to external radiation can also be added. Finally, the sensor minimally impairs structural motion through loading, an advantage in monitoring small vibrations or lightweight structures. Some drawbacks of the sensor are also noted.
Biomimetic structural engineering of P22 virus-like particles for catalysis and immune modulation
NASA Astrophysics Data System (ADS)
Schwarz, Benjamin
Within biology molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nano-systems that exist at the interface of living organisms and non-living biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. In this work I have utilized the VLP derived from the bacteriophage P22 as a platform for the organization of enzymes, antigens, and immune-stimulating proteins inside and outside the capsid through purely genetic means. In the case of enzymes, encapsulation of a two-enzyme pathway has led to the development of metabolic nanoparticle catalysts and an expanded understanding of the control that structure exerts on metabolic flux. These same structural elements applied to the delivery of protein subunit antigens directed at cytotoxic T cell immunity result in drastically enhanced antigen processing and lasting immunological memory. Lastly, presentation of immune-stimulating proteins from the Tumor Necrosis Factor Super Family on the surface of the P22 VLP enhances the cell signaling efficiency of these compounds 50-fold and provides strategies for the application of these proteins as immune modulatory oncology therapeutics. In all of these cases, the reintroduction of nanostructure to these protein systems, reminiscent of their natural environment, has led to both new technologies and a better understanding of the role of structure in biological processes.
Immunization of Epidemics in Multiplex Networks
Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo
2014-01-01
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755
Immunization of epidemics in multiplex networks.
Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo
2014-01-01
Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.
Laser initiation of explosives
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Sethi, V. S.
2002-09-01
Through laser initiation of explosives offers many advantages like controlled threshold energy over wide range, replacement of complicated safety arming mechanisms to simple and better system, immunity to RF/EMI environment etc, but there is greater difficulty to build detonator for all purpose applications and regular field trials. The challenges are to understand the interaction of laser radiation or its induced plasma with explosives, launching and transmission of high power laser beam, coupling and focussing to desired target area. This paper looks into the details of those facts.
Computer simulation of a cellular automata model for the immune response in a retrovirus system
NASA Astrophysics Data System (ADS)
Pandey, R. B.
1989-02-01
Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B ca ( B cq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B ca ( B cq).
Non-Hermitian bidirectional robust transport
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2017-01-01
Transport of quantum or classical waves in open systems is known to be strongly affected by non-Hermitian terms that arise from an effective description of system-environment interaction. A simple and paradigmatic example of non-Hermitian transport, originally introduced by Hatano and Nelson two decades ago [N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996), 10.1103/PhysRevLett.77.570], is the hopping dynamics of a quantum particle on a one-dimensional tight-binding lattice in the presence of an imaginary vectorial potential. The imaginary gauge field can prevent Anderson localization via non-Hermitian delocalization, opening up a mobility region and realizing robust transport immune to disorder and backscattering. Like for robust transport of topologically protected edge states in quantum Hall and topological insulator systems, non-Hermitian robust transport in the Hatano-Nelson model is unidirectional. However, there is not any physical impediment to observe robust bidirectional non-Hermitian transport. Here it is shown that in a quasi-one-dimensional zigzag lattice, with non-Hermitian (imaginary) hopping amplitudes and a synthetic gauge field, robust transport immune to backscattering can occur bidirectionally along the lattice.
Zvanaka, Sithole; Tsitsi, Juru; Chonzi, Prosper; Shambira, Gerald; Gombe, Notion Tafara; Tshimanga, Mufuta
2017-01-01
Vaccines safety are monitored by looking for Adverse Events Following Immunizations (AEFIs). A review of the 2014 Harare City consolidated monthly return form (T5) revealed that 28 AEFIs were seen in 2014. However, only 21 were reported through the system. We therefore evaluated the Harare City AEFI surveillance system to assess its usefulness. A descriptive cross sectional study was conducted. Twenty one of 41 clinics were randomly selected and 51 health workers were randomly recruited. Interviewer administered questionnaires were used to collect data. Epi info 7 was used to generate frequencies, means and proportions. Out of 51 respondents, 50 (98%) knew the purpose of AEFI system, 48 (94%) knew at least two presenting symptoms of AEFIs and 39 (77%) knew the correct date of form submission to the next level. Receiving no feedback 24 (47.1%), fear of victimisation 16 (31.4%) and work overload 11 (21.6%) were the major reasons for under reporting. Eighty six percent perceived the system to be simple and 43 (84%) were willing to continue participating. Fifty three percent (27) reported taking public health actions (such as awareness campaigns & making follow ups) basing on AEFI data collected. All 46 reviewed forms were completely filled and submitted in time. All 21 clinics had written AEFI guidelines and case definitions. Only 14 of 21 clinics had adequately stocked emergency drugs. The total cost for a single notification was estimated at US$22.30. The system was useful, simple, acceptable, timely, stable, representative but costly. The good performance of the system reported in this evaluation could be attributed to high health worker knowledge. Following this evaluation, replenishment of out of stock drugs and follow up of missing 2014 AEFI feedback from MCAZ were done. In addition, making the system electronic is recommended.
Mechanisms Underlying Helper T cell Plasticity: Implications for Immune-mediated Disease
Hirahara, Kiyoshi; Poholek, Amanda; Vahedi, Golnaz; Laurence, Arian; Kanno, Yuka; Milner, Joshua D.; O’Shea, John J.
2013-01-01
CD4 helper T cells are critical for proper immune cell homeostasis and host defense, but are also major contributes to immune and inflammatory disease. Arising from a simple, biphasic model of differentiation, Th1 and Th2 cells, a bewildering number of fates seem to possible for helper T cells. To what extent different helper cell subsets maintain their characteristic gene expression profiles or exhibit functional plasticity is a hotly debated topic. In this review, we will discuss how the expression of “signature cytokines” and “master regulator” transcription factors do not neatly conform to a simple T helper paradigm. While this may seem confusing, the good news is that the newly recognized complexity fits better with our understanding of immunopathogenesis. Finally, we will discuss factors include epigenetic regulation and metabolic alterations that contribute to helper cell specific and plasticity. PMID:23622118
Firouzmand, Hengameh; Badiee, Ali; Khamesipour, Ali; Heravi Shargh, Vahid; Alavizadeh, Seyedeh Hoda; Abbasi, Azam; Jaafari, Mahmoud Reza
2013-12-01
A suitable adjuvant and delivery system are needed to develop an effective vaccine against leishmaniasis. To induce a Th1 type of response and protection in BALB/c mice against Leishmania major infection, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) nanoliposomes bearing an intrinsic adjuvanticity, were used as an antigen delivery system and immunoadjuvant for soluble Leishmania antigens (SLA). DOTAP liposomes containing different concentrations of SLA were prepared by using lipid film method followed by sonication. The prepared vesicles showed a diameter of about 100nm, a positive zeta potential and approximately 70% encapsulation efficiency of SLA. BALB/c mice were immunized subcutaneously (SC), three times in a 3-week interval with different concentrations of liposomal SLA (12.5, 25, and 50μg of SLA/50μl/mice), free SLA and as well as free liposome. The group of mice received 50μg of SLA in DOTAP-nanoliposomes showed a significantly (p<0.001) smaller footpad swelling and the lowest spleen and footpad parasite burden after the challenge. This group also showed the highest IFN-γ production compared to the other groups, lower IL-4 level and higher IgG2a antibody titer. Taken together, the results indicated that simple DOTAP nanoliposome containing 1μg/μl SLA are appropriate delivery systems to induce a Th1 type of immune response and protection against L. major infection in BALB/c mice. Copyright © 2013 Elsevier B.V. All rights reserved.
Pyrohova, L V; Starodub, M F; Nahaeva, L I
2005-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. Sensor used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the milk serum. It was shown that immune sensor analysis is more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor may be used for performance of screening of bovine leucosis at the farms and the minimal dilution of the milk serum should be 1:20.
Huang, Lin; Li, Guiyang; Mo, Zhaolan; Xiao, Peng; Li, Jie; Huang, Jie
2015-01-01
Background Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. Methodology/Principal Findings A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. Conclusions/Significance The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder. PMID:25723398
Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro
2014-10-01
Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.
Chen, Shuliang; Yu, Xiao; Guo, Deyin
2018-01-16
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Bo, Ruonan; Sun, Yaqin; Zhou, Shuzhen; Ou, Ning; Gu, Pengfei; Liu, Zhenguang; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun
2017-01-01
The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4 + and CD8 + T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.
[Express diagnostics of bovine leucosis by immune sensor based on surface plasmon resonance].
Pyrohova, L V; Starodub, M F; Artiukh, V P; Nahaieva, L I; Dobrosol, H I
2002-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. The sensor was used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the blood serum. The industrially manufactured BLV antigen for screening test in the agar gel immunodiffusion (AGID) required the additional purification in order to be used in immune sensor analysis. It was shown that immune sensor analysis was more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor was capable to be used for performance of bovine leucosis screening at the farms and the minimal dilution of the serum should be 1:500.
Towards a paradigm shift in innate immunity-seminal work by Hans G. Boman and co-workers.
Faye, Ingrid; Lindberg, Bo G
2016-05-26
Four decades ago, immunological research was dominated by the field of lymphoid biology. It was commonly accepted that multicellular eukaryotes defend themselves through phagocytosis. The lack of lymphoid cells in insects and other simpler animals, however, led to the common notion that they might simply lack the capacity defend themselves with humoral factors. This view was challenged by microbiologist Hans G. Boman and co-workers in a series of publications that led to the advent of antimicrobial peptides as a universal arm of the immune system. Besides ingenious research, Boman ignited his work by posing the right questions. He started off by asking himself a simple question: 'Antibodies take weeks to produce while many microbes divide hourly; so how come we stay healthy?'. This led to two key findings in the field: the discovery of an inducible and highly potent antimicrobial immune response in Drosophila in 1972, followed by the characterization of cecropin in 1981. Despite broadly being considered an insect-specific response at first, the work of Boman and co-workers eventually created a bandwagon effect that unravelled various aspects of innate immunity.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).
Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.
Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno
2014-05-27
To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model. Copyright © 2014 Broderick et al.
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications.
Pyzocha, Neena K; Chen, Sidi
2018-02-16
CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by making targeted DNA edits simple and scalable. These technologies are developed by domesticating naturally occurring microbial adaptive immune systems that display wide diversity of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes have been characterized and engineered for use in mammalian cells. The unique properties of the single effector enzymes can make a critical difference in experimental use or targeting specificity. This review describes known single effector enzymes and discusses their use in genome engineering applications.
Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals
NASA Astrophysics Data System (ADS)
Chang, Ming-Li; Xiao, Meng; Chen, Wen-Jie; Chan, C. T.
2017-03-01
We show that Weyl points with topological charges 1 and 2 can be found in very simple chiral woodpile photonic crystals and the distribution of the charges can be changed by changing the material parameters without altering space-group symmetry. The underlying physics can be understood through a tight-binding model. Gapless surface states and their backscattering immune properties also are demonstrated in these systems. Obtaining Weyl points in these easily fabricated woodpile photonic crystals will facilitate the realization of Weyl point physics in optical and IR frequencies.
Uncovering Common Sleep Disorders and Their Impacts on Occupational Performance.
Judd, Sylvia R
2017-05-01
Sleep is an active process; the body undergoes restoration and regeneration. Adequate sleep is essential to health and cognitive function. Sleep is critical for cell repair, a healthy immune system, and hormonal regulation, and aids in the process of learning, memory, and emotion. Inadequate sleep can lead to multiple chronic health and mental conditions over time. The occupational health nurse can be instrumental in screening for two of the most common sleep disorders, insomnia and obstructive sleep apnea, by asking workers key questions and using simple screening tools.
A Universal Biosensor for Infectious Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Harshini
With increased travel and globalization, the spread of new diseases has become a threat to global health—and global security. Whether in a rural village or an urban medical clinic, healthcare workers need diagnostics that provide answers then and there, for any disease, in order to effectively treat individual patients or widespread outbreaks. That’s why Harshini Mukundan and her team at Los Alamos National Laboratory are working to develop a universal biosensor. “If we are able to mimic the body’s immune recognition in the laboratory, we could have a universal strategy for the early diagnosis of all infections,” said Mukundan. Ourmore » immune system recognizes pathogens, regardless of their origin, by identifying discrete signatures in the human host. Mukundan's team is working to imitate this ability in the laboratory, which could lead to a simple solution to diagnose all diseases and improve lives across the world.« less
Transmembrane mucins as novel therapeutic targets.
Constantinou, Pamela E; Danysh, Brian P; Dharmaraj, Neeraja; Carson, Daniel D
2011-11-01
Membrane-tethered mucin glycoproteins are abundantly expressed at the apical surfaces of simple epithelia, where they play important roles in lubricating and protecting tissues from pathogens and enzymatic attack. Notable examples of these mucins are MUC1, MUC4 and MUC16 (also known as cancer antigen 125). In adenocarcinomas, apical mucin restriction is lost and overall expression is often highly increased. High-level mucin expression protects tumors from killing by the host immune system, as well as by chemotherapeutic agents, and affords protection from apoptosis. Mucin expression can increase as the result of gene duplication and/or in response to hormones, cytokines and growth factors prevalent in the tumor milieu. Rises in the normally low levels of mucin fragments in serum have been used as markers of disease, such as tumor burden, for many years. Currently, several approaches are being examined that target mucins for immunization or nanomedicine using mucin-specific antibodies.
Diagnostic Approach to Ocular Toxoplasmosis
Garweg, Justus G; de Groot-Mijnes, Jolanda DF; Montoya, Jose G
2011-01-01
Toxoplasmic retinochoroiditis is deemed a local event, which may fail to evoke a detectable systemic immune response. A correct diagnosis of the disease is a necessary basis for estimating its clinical burden. This is not so difficult in a typical clinical picture. In atypical cases, further diagnostic efforts are to be installed. Although the aqueous humor may be analyzed for specific antibodies or the presence of parasitic DNA, the DNA burden therein is low, and in rare instances a confirmation would necessitate vitreous sampling. A laboratory confirmation of the diagnosis is frustrated by individual differences in the time elapsing between clinical symptoms and activation of specific antibody production, which may result in false negatives. In congenital ocular toxoplasmosis, a delay in the onset of specific local antibody production could reflect immune tolerance. Herein, the authors attempt to provide a simple and practicable algorithm for a clinically tailored diagnostic approach in atypical instances. PMID:21770803
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.
Baran, Arkadiusz; Jakiel, Grzegorz; Wójcik, Grazyna
2008-01-01
The adaptation of an organism to a change in environmental conditions is a complex and in some aspects a poorly understood physiological process. The activating influence of stress on the sympathetic nervous system, the hypothalamic - pituitary - adrenal axis and the suppression of TSH, LH, FSH release is well known. The interplay of communication between the endocrine and immune systems plays an essential role in modulating the response to stress related mediators. The basis of many contradictory and incoherent results of experiments is due to the various methodologies of creating changes in environmental conditions, the way of collecting blood samples which influence stress mediators, the case of assessing the influence of many factors on reproductive functions and the performance of experiments without synchronization with the reproductive cycle. The review will focus on the presentation of simple and repeatable methods of development of an adaptation stress to changed environmental conditions (temperature, oxygenation, humidity) and the technique of blood collection during hour-long estimation of interactions between the endocrine, nervous and immune systems. We would like to place emphasis on appropriate ways of performing experiments on female rats, with regards to the choice of a suitable phase of the reproductive cycle. Also on ways of anaesthesia and microsurgical techniques of vein catheterisation for repeated blood sampling. The performance of all phases of the experiment allow us to estimate only the influence of environmental conditions and eliminate interfering factors during the process of preparing animal for the experiment.
Noonin, Chadanat; Lin, Xionghui; Jiravanichpaisal, Pikul; Söderhäll, Kenneth; Söderhäll, Irene
2012-11-20
During evolution, the innate and adaptive immune systems were developed to protect organisms from non-self substances. The innate immune system is phylogenetically more ancient and is present in most multicellular organisms, whereas adaptive responses are restricted to vertebrates. Arthropods lack the blood cells of the lymphoid lineage and oxygen-carrying erythrocytes, making them suitable model animals for studying the regulation of the blood cells of the innate immune system. Many crustaceans have a long life span and need to continuously synthesize blood cells, in contrast to many insects. The hematopoietic tissue (HPT) of Pacifastacus leniusculus provides a simple model for studying hematopoiesis, because the tissue can be isolated, and the proliferation of stem cells and their differentiation can be studied both in vivo and in vitro. Here, we demonstrate new findings of a physical link between the HPT and the brain. Actively proliferating cells were localized to an anterior proliferation center (APC) in the anterior part of the tissue near the area linking the HPT to the brain, whereas more differentiated cells were detected in the posterior part. The central areas of HPT expand in response to lipopolysaccharide-induced blood loss. Cells isolated from the APC divide rapidly and form cell clusters in vitro; conversely, the cells from the remaining HPT form monolayers, and they can be induced to differentiate in vitro. Our findings offer an opportunity to learn more about invertebrate hematopoiesis and its connection to the central nervous system, thereby obtaining new information about the evolution of different blood and nerve cell lineages.
Pseudo-cat's eye for improved tilt-immune interferometry.
Speake, Clive C; Bradshaw, Miranda J
2015-08-20
We present a new simple optical design for a cat's eye retroreflector. We describe the design of the new optical configuration and its use in tilt-immune interferometry where it enables the tracking of the displacement of a plane target mirror with minimum sensitivity to its tilt about axes orthogonal to the interferometer's optical axis. In this application the new cat's eye does not behave as a perfect retroreflector and we refer to it as a "pseudo"-cat's eye (PCE). The device allows, for the first time, tilt-immune interferometric displacement measurements in cases where the nominal distance to the target mirror is significantly larger than the length of the cat's eye. We describe the general optical characteristics of the PCE and compare its performance in our application with that of a conventional cat's eye optical configuration using ABCD matrices and Zemax analyses. We further suggest a simple modification to the design that would enable the PCE to behave as a perfect cat's eye, and this design may provide an advantageous solution for other applications.
The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection.
Jain, Charu; Pastor, Kelly; Gonzalez, Arely Y; Lorenz, Michael C; Rao, Reeta P
2013-01-01
Candida albicans is a major fungal pathogen of humans, causing mucosal infections that are difficult to eliminate and systemic infections that are often lethal primarily due to defects in the host's innate status. Here we demonstrate the utility of Caenorhabditis elegans, a model host to study innate immunity, by exploring the role of reactive oxygen species (ROS) as a critical innate response against C. albicans infections. Much like a human host, the nematode's innate immune response is activated to produce ROS in response to fungal infection. We use the C. albicans cap1 mutant, which is susceptible to ROS, as a tool to dissect this physiological innate immune response and show that cap1 mutants fail to cause disease and death, except in bli-3 mutant worms that are unable to produce ROS because of a defective NADPH oxidase. We further validate the ROS-mediated host defense mechanism in mammalian phagocytes by demonstrating that chemical inhibition of the NADPH oxidase in cultured macrophages enables the otherwise susceptible cap1 mutant to resists ROS-mediated phagolysis. Loss of CAP1 confers minimal attenuation of virulence in a disseminated mouse model, suggesting that CAP1-independent mechanisms contribute to pathogen survival in vivo. Our findings underscore a central theme in the process of infection-the intricate balance between the virulence strategies employed by C. albicans and the host's innate immune system and validates C. elegans as a simple model host to dissect this balance at the molecular level.
Code-division multiple-access protocol for active RFID systems
NASA Astrophysics Data System (ADS)
Mazurek, Gustaw; Szabatin, Jerzy
2008-01-01
Most of the Radio Frequency Identification (RFID) systems operating in HF and UHF bands employ narrowband modulations (FSK or ASK) with Manchester coding. However, these simple transmission schemes are vulnerable to narrowband interference (NBI) generated by other radio systems working in the same frequency band, and also suffer from collision problem and need special anti-collision procedures. This becomes especially important when operating in a noisy, crowded industrial environment. In this paper we show the performance of RFID system with DS-CDMA transmission in comparison to a standard system with FSK modulation defined in ISO 18000-7. Our simulation results show that without any bandwidth expansion the immunity against NBI can be improved by 8 dB and the system capacity can be 7 times higher when using DS-CDMA transmission instead of FSK modulation with Manchester coding.
Guimarães, Tânia Maria Rocha; Alves, João Guilherme Bezerra; Tavares, Márcia Maia Ferreira
2009-04-01
This article analyzes the impact of the Family Health Program (FHP) on infant health in Olinda, Pernambuco State, Brazil, evaluating immunization and infant mortality from vaccine-preventable diseases. A time-series study was conducted with data from the principal health information systems, analyzing indicators before and after implementation of the FHP in 1995. The independent variable was year of birth, related to degree of population coverage by the FHP. Three periods were analyzed: 1990-1994 (prior), 1995-1996 (implementation phase: 0 to 30% coverage), and 1997-2002 (intervention: coverage of 38.6% to 54%). Trends in the indicators were analyzed by simple linear regression, testing significance with the t test. During the implementation period there was an increase in all the vaccination coverage rates (176% BCG, 223% polio, 52% DPT, 61% measures) and a decrease in infant mortality from preventable diseases (12.7 deaths/year), even without a decrease in absolute poverty in the municipality or an increase in either coverage by the public health care system or the sewage system. Improvement in the indicators demonstrates the effectiveness of FHP actions in the municipality.
A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells
2012-01-01
Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results. Mathematical models based on the framework make specific testable predictions that may improve our understanding of this differentiation system. PMID:22697466
Wenne, Roman; Burzynski, Artur
2017-01-01
In fish, the skin is a multifunctional organ and the first barrier against pathogens. Salmonids differ in their susceptibility to microorganisms due to varied skin morphology and gene expression patterns. The brown trout is a salmonid species with important commercial and ecological value in Europe. However, there is a lack of knowledge regarding the genes involved in the immune response and mucus secretion in the skin of this fish. Thus, we characterized the skin transcriptome of anadromous brown trout using next-generation sequencing (NGS). A total of 1,348,306 filtered reads were obtained and assembled into 75,970 contigs. Of these contigs 48.57% were identified using BLAST tool searches against four public databases. KEGG pathway and Gene Ontology analyses revealed that 13.40% and 34.57% of the annotated transcripts, respectively, represent a variety of biological processes and functions. Among the identified KEGG Orthology categories, the best represented were signal transduction (23.28%) and immune system (8.82%), with a variety of genes involved in immune pathways, implying the differentiation of immune responses in the trout skin. We also identified and transcriptionally characterized 8 types of mucin proteins–the main structural components of the mucosal layer. Moreover, 140 genes involved in mucin synthesis were identified, and 1,119 potential simple sequence repeats (SSRs) were detected in 3,134 transcripts. PMID:28212382
Computer simulation of a cellular automata model for the immune response in a retrovirus system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, R.B.
1989-02-01
Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viralmore » cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B/sub ca/ (B/sub cq/). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B/sub ca/ (B/sub cq/).« less
Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke
2018-03-29
Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.
Vaccinovigilance in Europe--need for timeliness, standardization and resources.
Lankinen, Kari S.; Pastila, Satu; Kilpi, Terhi; Nohynek, Hanna; Mäkelä, P. Helena; Olin, Patrick
2004-01-01
OBJECTIVE: To identify gaps in the systems for reporting adverse events following immunization (AEFI) in Europe by means of an interactive database constructed using a standardized approach. METHODS: A comparative survey was conducted in 1999-2000, using structured questionnaires addressed to the government authorities responsible for national immunization programmes and drug safety surveillance in all European Union (EU) Member States and in Norway and Switzerland. FINDINGS: The reporting of adverse vaccine reactions (AVRs) is covered by regulations in 13 of the 17 countries. Four countries have a specialized expert group with responsibility for vaccine safety. Only six professionals work full-time on vaccine safety in the 17 countries; in four of these countries the person is medically qualified. Fourteen countries have centralized reporting systems; in 14 countries the responsible authority is the drug regulatory agency. AEFI are reported using the procedure used for adverse drug reactions (ADRs) in all except four countries. The reporting form is not usually designed for vaccines and important details may therefore not be requested. Clinical definitions for vaccine reactions are not available. Twelve countries have appropriate official definitions for events or reactions, but the list of reportable events varies considerably between countries. The assessment of adverse vaccine reactions (AVRs) is hampered by lack of exact denominator data. Feedback to the rapporteurs was provided in 13 countries, but its quality was highly variable. CONCLUSION: The database facilitated a simple comparison of vaccinovigilance systems across participating countries. Most of the problems identified related to the reporting and analysis of AEFI could be solved through standardization and intensified international collaboration. On a national level, functional vaccinovigilance systems should be the shared responsibility of the drug regulatory authority and the national immunization programme. The resources for development and management of vaccine safety systems should be urgently improved. PMID:15640918
NASA Astrophysics Data System (ADS)
Khodabakhsh, Amir; Johansson, Alexandra C.; Foltynowicz, Aleksandra
2015-04-01
Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS) and validate the model by comparing it to experimental CO2 spectra around 1,575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long-term stability of the system, allowing averaging times on the order of minutes. Using a cavity with a finesse of ~9,000, we obtain absorption sensitivity of 6.4 × 10-11 cm-1 Hz-1/2 per spectral element and concentration detection limit for CO2 of 450 ppb Hz-1/2, determined by multiline fitting.
[Restriction of virus infection by plants: Annual report, 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruening, G.
1986-12-05
This research concerns the strong resistance, or even immunity, against a specific virus that is exhibited by one or a few lines of a plant species, in contrast to the general susceptibility of most lines of that species. The contrast between the reactions to virus inoculation of different lines of one species implies that a single gene or a very few genes may mediate the resistance or immunity. The prospects for isolating, studying and transferring such a gene should be good for a system with these characteristics. Seedlings of a line Arlington of the cowpea (Vigna unguiculata) fail to supportmore » the replication of cowpea mosaic virus strain SB (CPMV-SB). Genetic crosses of Arlington cowpea to the systemic host Blackeye 5 cowpea show that the immunity is inherited as a simple dominant gene. In contrast to the seedlings, the protoplasts of the Arlington cowpea support CPMV-SB replication, but only to a very low level compared to protoplasts of Blackeye 5 cowpeas. From evidence reported earlier we concluded that Arlington cowpea protoplasts restrict the production of CPMV-SB proteins. We postulated, and obtained evidence for, a proteinase inhibitor that is specific for a CPMV-SB proteinase. This proteinase inhibitor is our prime candidate for the mediator of the resistance of Arlington protoplasts to CPMV-SB. Progress to date is described.« less
(Restriction of virus infection by plants: Annual report, 1986)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruening, G.
1986-12-05
This research concerns the strong resistance, or even immunity, against a specific virus that is exhibited by one or a few lines of a plant species, in contrast to the general susceptibility of most lines of that species. The contrast between the reactions to virus inoculation of different lines of one species implies that a single gene or a very few genes may mediate the resistance or immunity. The prospects for isolating, studying and transferring such a gene should be good for a system with these characteristics. Seedlings of a line Arlington of the cowpea (Vigna unguiculata) fail to supportmore » the replication of cowpea mosaic virus strain SB (CPMV-SB). Genetic crosses of Arlington cowpea to the systemic host Blackeye 5 cowpea show that the immunity is inherited as a simple dominant gene. In contrast to the seedlings, the protoplasts of the Arlington cowpea support CPMV-SB replication, but only to a very low level compared to protoplasts of Blackeye 5 cowpeas. From evidence reported earlier we concluded that Arlington cowpea protoplasts restrict the production of CPMV-SB proteins. We postulated, and obtained evidence for, a proteinase inhibitor that is specific for a CPMV-SB proteinase. This proteinase inhibitor is our prime candidate for the mediator of the resistance of Arlington protoplasts to CPMV-SB. Progress to date is described.« less
Cutaneous immunology: basics and new concepts.
Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran
2016-01-01
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Tayebati, Seyed Khosrow; Amenta, Francesco
2008-01-01
Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.
The Immune System: Basis of so much Health and Disease: 2. Innate Immunity.
Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan
2017-03-01
The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covering innate immunity. Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.
The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.
Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan
2017-04-01
The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.
A simple mechanistic explanation for original antigenic sin and its alleviation by adjuvants.
Ndifon, Wilfred
2015-11-06
A large number of published studies have shown that adaptive immunity to a particular antigen, including pathogen-derived, can be boosted by another, cross-reacting antigen while inducing suboptimal immunity to the latter. Although this phenomenon, called original antigenic sin (OAS), was first reported approximately 70 years ago (Francis et al. 1947 Am. J. Public Health 37, 1013-1016 (doi:10.2105/AJPH.37.8.1013)), its underlying biological mechanisms are still inadequately understood (Kim et al. Proc. Natl Acad. Sci. USA 109, 13 751-13 756 (doi:10.1073/pnas.0912458109)). Here, focusing on the humoral aspects of adaptive immunity, I propose a simple and testable mechanism: that OAS occurs when T regulatory cells induced by the first antigen decrease the dose of the second antigen that is loaded by dendritic cells and available to activate naive lymphocytes. I use both a parsimonious mathematical model and experimental data to confirm the deductive validity of this proposal. This model also explains the puzzling experimental observation that administering certain dendritic cell-activating adjuvants during antigen exposure alleviates OAS. Specifically, the model predicts that such adjuvants will attenuate T regulatory suppression of naive lymphocyte activation. Together, these results suggest additional strategies for redeeming adaptive immunity from the destructive consequences of antigenic 'sin'. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Komarova, Natalia L.; Barnes, Eleanor; Klenerman, Paul; Wodarz, Dominik
2003-02-01
Drug therapies against persistent human infections such as hepatitis C virus, hepatitis B virus, and HIV fail to consistently eradicate the infection from the host. Hence, recent emphasis has shifted to the study of antiviral therapy aimed at boosting specific immune responses. It was argued that structured therapy interruptions were required to achieve this, because such regimes have shown promising results in early HIV infection. Using mathematical models, we show that, contrary to this notion, a single phase of drug therapy can result in the establishment of sustained immunity. We present a simple relationship between timing of therapy and efficacy of the drugs required for success. In the presence of strong viral suppression, we show that therapy should be stopped relatively early, and that a longer duration of treatment leads to failure. On the other hand, in the presence of weaker viral suppression, stopping treatment too early is detrimental, and therapy has to be continued beyond a time threshold. We discuss our modeling results primarily in the context of HCV therapy during chronic infection. Although the therapy regimes explored here also have implications for HIV, virus-mediated destruction of specific immune cells renders success unlikely during the chronic phase of the infection.
How do plants achieve immunity? Defence without specialized immune cells.
Spoel, Steven H; Dong, Xinnian
2012-01-25
Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
Nakayama, Manabu; Oda, Hirotsugu; Nakagawa, Kenji; Yasumi, Takahiro; Kawai, Tomoki; Izawa, Kazushi; Nishikomori, Ryuta; Heike, Toshio; Ohara, Osamu
2017-03-01
Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID). In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program-which detects and avoids common SNPs in gene-specific PCR primers-we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of somatic mosaic mutations.
The Bacterium Frischella perrara Causes Scab Formation in the Gut of its Honeybee Host
Bartlett, Kelsey D.; Moran, Nancy A.
2015-01-01
ABSTRACT Honeybees harbor well-defined bacterial communities in their guts. The major members of these communities appear to benefit the host, but little is known about how they interact with the host and specifically how they interface with the host immune system. In the pylorus, a short region between the midgut and hindgut, honeybees frequently exhibit scab-like structures on the epithelial gut surface. These structures are reminiscent of a melanization response of the insect immune system. Despite the wide distribution of this phenotype in honeybee populations, its cause has remained elusive. Here, we show that the presence of a common member of the bee gut microbiota, the gammaproteobacterium Frischella perrara, correlates with the appearance of the scab phenotype. Bacterial colonization precedes scab formation, and F. perrara specifically localizes to the melanized regions of the host epithelium. Under controlled laboratory conditions, we demonstrate that exposure of microbiota-free bees to F. perrara but not to other bacteria results in scab formation. This shows that F. perrara can become established in a spatially restricted niche in the gut and triggers a morphological change of the epithelial surface, potentially due to a host immune response. As an intermittent colonizer, this bacterium holds promise for addressing questions of community invasion in a simple yet relevant model system. Moreover, our results show that gut symbionts of bees engage in differential host interactions that are likely to affect gut homeostasis. Future studies should focus on how these different gut bacteria impact honeybee health. PMID:25991680
Emerging biomedical applications of synthetic biology.
Weber, Wilfried; Fussenegger, Martin
2011-11-29
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Eisenthal, A; Ramakrishna, V; Skornick, Y; Shinitzky, M
1993-05-01
In the preceding paper we have demonstrated an increase in presentation of both major histocompatibility complex antigens (MHC) and a tumor-associated antigen of the weakly immunogenic B16 melanoma by a straight-forward technique. The method consists in modulating the tumor cell membrane by hydrostatic pressure and simultaneous chemical crosslinking of the cell-surface proteins. In B16-BL6 melanoma, the induced antigenic modulation was found to persist for over 48 h, which permitted the evaluation of the ability of modified B16-BL6 cells to induce immunity against unmodified B16-BL6 cells. In the present study, we have shown that a significant systemic immunity was induced only in mice that were immunized with modified B16-BL6 melanoma cells, whereas immunization with unmodified B16-BL6 cells had only a marginal effect when compared to the results in control sham-immunized mice. The induced immunity was specific since a single immunization affected the growth of B16-BL6 tumors but had no effect on MCA 106, an antigenically unrelated tumor. The addition of interleukin-2 to the immunization regimen had no effect on the antitumor responses induced by the modified B16-BL6 cells. The cell-mediated immunity conferred by immunization with treated B16-BL6 cells was confirmed in experiments in vitro where splenocytes from immunized mice could be sensitized to proliferate by the presence of B16-BL6 cells. In addition, the altered antigenicity of these melanoma cells appeared to correlate with their increased susceptibility to specific effectors. Thus, 51Cr-labeled B16-BL6 target cells, modified by pressure and crosslinking, in comparison to control labeled target cells, were lysed in much greater numbers by effectors such as lymphokine-activated killer cells and allogeneic cytotoxic lymphocytes (anti-H-2b), while such cells remained resistant to lysis by natural killer cells. Our findings indicate that the physical and chemical modifications of the tumor cells that are described here may be considered as a simple yet effective method for the preparation of tumor vaccines, which could be applied in tumor-bearing hosts.
2011-01-01
Background Primary health care is recognized as a main driver of equitable health service delivery. For it to function optimally, routine health information systems (HIS) are necessary to ensure adequate provision of health care and the development of appropriate health policies. Concerns about the quality of routine administrative data have undermined their use in resource-limited settings. This evaluation was designed to describe the availability, reliability, and validity of a sample of primary health care HIS data from nine health facilities across three districts in Sofala Province, Mozambique. HIS data were also compared with results from large community-based surveys. Methodology We used a methodology similar to the Global Fund to Fight AIDS, Tuberculosis and Malaria data verification bottom-up audit to assess primary health care HIS data availability and reliability. The quality of HIS data was validated by comparing three key indicators (antenatal care, institutional birth, and third diptheria, pertussis, and tetanus [DPT] immunization) with population-level surveys over time. Results and discussion The data concordance from facility clinical registries to monthly facility reports on five key indicators--the number of first antenatal care visits, institutional births, third DPT immunization, HIV testing, and outpatient consults--was good (80%). When two sites were excluded from the analysis, the concordance was markedly better (92%). Of monthly facility reports for immunization and maternity services, 98% were available in paper form at district health departments and 98% of immunization and maternity services monthly facility reports matched the Ministry of Health electronic database. Population-level health survey and HIS data were strongly correlated (R = 0.73), for institutional birth, first antenatal care visit, and third DPT immunization. Conclusions Our results suggest that in this setting, HIS data are both reliable and consistent, supporting their use in primary health care program monitoring and evaluation. Simple, rapid tools can be used to evaluate routine data and facilitate the rapid identification of problem areas. PMID:21569533
Random Evolution of Idiotypic Networks: Dynamics and Architecture
NASA Astrophysics Data System (ADS)
Brede, Markus; Behn, Ulrich
The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.
The twilight of immunity: emerging concepts in aging of the immune system.
Nikolich-Žugich, Janko
2018-01-01
Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.
Su, Quan-Ping; Wen, De-Zhong; Yang, Qiong; Zhang, Yan-Hui; Liu, Chong; Wang, Li
2007-01-22
We have demonstrated that phage display Candida albicans (C. albicans) LKVIRK epitope was protective in systemically infected C57BL/6J mice. The different development from precursor Ths, Th1 or Th2, will result in a protective or nonprotective immune response. To compare the types of cytokines induced by biologically and chemically synthesized vectors, C57BL/6J mice were immunized with hybrid phage displaying the epitope of LKVIRK and by synthesized peptide epitope LKVIRKNIVKKMIE conjugated through cysteine to keyhole limpet haemocyanin (KLH). The production of cytokines in spleens of immunized mice and in splenocytes culture supernatants stimulated by homologous immunogen in vitro was studied by RT-PCR and quantitative sandwich ELISA. The results showed that, compared to Tris-EDTA buffer (TE, 1 mM Tris, 0.1 mM EDTA, pH 8.0) injected mice, the expressions of Th1 type cytokine IFN-gamma, IL-2 and IL-12 were increased in hybrid phage, KLH-C, and wild phage immunized mice, and there were no differences between mice immunized with hybrid phage and KLH-C. While the expression of Th2 type cytokine IL-10 was similar in all mice, IL-4 was not detected. We obtained the same results in mRNA and protein level. These findings indicated that as carriers, phage and KLH were similar in inducing the Th1 type cytokines expression. Comparing to peptide synthesis couple with a carrier protein for injection, phage may be an inexpensive and simple route to the production of effective vaccines.
Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E.
2014-01-01
Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information. PMID:25954452
Hosseini, Masoud; Ahmadi, Maryam; Dixon, Brian E
2014-01-01
Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information.
Chronic infection and the origin of adaptive immune system.
Usharauli, David
2010-08-01
It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.
The Immune System: Basis of so much Health and Disease: 4. Immunocytes.
Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan
2017-05-01
The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system, this article covers cells of the immune system (immunocytes). Clinical relevance: Modern dental clinicians need a basic understanding of the immune system as it underlies health and disease.
Approaches Mediating Oxytocin Regulation of the Immune System.
Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng
2016-01-01
The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.
Developing a national system for dealing with adverse events following immunization.
Mehta, U.; Milstien, J. B.; Duclos, P.; Folb, P. I.
2000-01-01
Although vaccines are among the safest of pharmaceuticals, the occasional severe adverse event or cluster of adverse events associated with their use may rapidly become a serious threat to public health. It is essential that national monitoring and reporting systems for vaccine safety are efficient and adequately coordinated with those that conventionally deal with non-vaccine pharmaceuticals. Equally important is the need for an enlightened and informed national system to be in place to deal with public concerns and rapid evaluation of the risk to public safety when adverse events occur. Described in this article is the outcome of efforts by the WHO Global Training Network to describe a simple national system for dealing with vaccine safety and with emergencies as they arise. The goals of a training programme designed to help develop such a system are also outlined. PMID:10743281
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations.
Fynan, E F; Webster, R G; Fuller, D H; Haynes, J R; Santoro, J C; Robinson, H L
1993-01-01
Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 micrograms of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 micrograms of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines. Images Fig. 1 PMID:8265577
Protection from JP-8 jet fuel induced immunotoxicity by administration of aerosolized substance P.
Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M
1997-01-01
Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and decreased sensorimotor speed. The United States Air Force has decided to implement the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Exposure to potential environment toxicants such as JP-8 may have significant effects on host physiology. Previous studies in mice have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system; e.g., decreased viable immune cell numbers, decreased immune organ weights, and loss on immune function that persisted for extended periods of time (i.e., up to 4 weeks post-exposure). Previous studies have shown that JP-8 induced pulmonary dysfunction was associated with a decrease in levels of the neuropeptide substance P (SP) in lung lavage fluids. It was found that administration of aerosolized SP was able to protect exposed animals from such JP-8 induced pulmonary changes. In the current study, aerosolized SP was analyzed for its effects on JP-i induced immunotoxicity in exposed mice. It was observed that SP administration could protect JP-8 exposed animals from losses of viable immune cell numbers, but not losses in immune organ weights. Further, exposure of animals to SP inhibitors generally increased the immunotoxicity of JP-8 exposure. SP appeared to act on all immune cell populations equally as analyzed by flow cytometry, as no one immune cell population appeared to be preferentially protected by SP. Also, SP administration was capable of protecting JP-8 exposed animals from loss of immune function at all concentrations of JP-8 utilized (250-2500 mg/m3). Significantly, SP only needed to be administered for 15 minutes after JP-8 exposure, and was active at both 1 microM and 1 nM concentrations. Thus, SP administration appears to be a relatively simple and efficient means to reverse the immunotoxicity due to hydrocarbon exposure.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
Systems vaccinology: Probing humanity’s diverse immune systems with vaccines
Pulendran, Bali
2014-01-01
Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102
Systems vaccinology: probing humanity's diverse immune systems with vaccines.
Pulendran, Bali
2014-08-26
Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.
CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy
Chen, Shuliang; Yu, Xiao; Guo, Deyin
2018-01-01
Currently, a new gene editing tool—the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system—is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy. PMID:29337866
NASA Astrophysics Data System (ADS)
Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.
1999-04-01
Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.
The Role of the Immune System Beyond the Fight Against Infection.
Sattler, Susanne
2017-01-01
The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.
Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin
2013-01-01
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus. PMID:23437293
Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin
2013-01-01
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus.
Bergmann-Leitner, Elke S.; Leitner, Wolfgang W.
2014-01-01
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This “depot” was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner. PMID:26344620
Sim, Dawn A; Chu, Colin J; Selvam, Senthil; Powner, Michael B; Liyanage, Sidath; Copland, David A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Bainbridge, James W B; Lee, Richard W; Dick, Andrew D; Fruttiger, Marcus
2015-11-01
We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. © 2015. Published by The Company of Biologists Ltd.
Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro
2017-06-01
Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.
JAKs and STATs in Immunoregulation and Immune-Mediated Disease
O’Shea, John J.; Plenge, Robert
2012-01-01
Summary A landmark in cell biology, the discovery of the JAK-STAT pathway provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genomewide views. As we celebrate the 20th anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genomewide association studies demonstrated that this pathway is highly relevant to human autoimmunity but targeting JAKs is now a reality in immune-mediated disease. PMID:22520847
Review of the systems biology of the immune system using agent-based models.
Shinde, Snehal B; Kurhekar, Manish P
2018-06-01
The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.
Elemental investigation of Syrian medicinal plants using PIXE analysis
NASA Astrophysics Data System (ADS)
Rihawy, M. S.; Bakraji, E. H.; Aref, S.; Shaban, R.
2010-09-01
Particle induced X-ray emission (PIXE) technique has been employed to perform elemental analysis of K, Ca, Mn, Fe, Cu, Zn, Br and Sr for Syrian medicinal plants used traditionally to enhance the body immunity. Plant samples were prepared in a simple dried base. The results were verified by comparing with those obtained from both IAEA-359 and IAEA-V10 reference materials. Relative standard deviations are mostly within ±5-10% suggest good precision. A correlation between the elemental content in each medicinal plant with its traditional remedial usage has been proposed. Both K and Ca are found to be the major elements in the samples. Fe, Mn and Zn have been detected in good levels in most of these plants clarifying their possible contribution to keep the body immune system in good condition. The contribution of the elements in these plants to the dietary recommended intakes (DRI) has been evaluated. Advantages and limitations of PIXE analytical technique in this investigation have been reviewed.
Sun, Xiaoning; Cai, Ruibo; Jin, Xuelin; Shafer, Aaron B A; Hu, Xiaolong; Yang, Shuang; Li, Yimeng; Qi, Lei; Liu, Shuqiang; Hu, Defu
2018-01-12
Forest musk deer (Moschus berezovskii; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.
A Universal Biosensor for Infectious Disease
Mukundan, Harshini
2018-05-31
With increased travel and globalization, the spread of new diseases has become a threat to global healthâand global security. Whether in a rural village or an urban medical clinic, healthcare workers need diagnostics that provide answers then and there, for any disease, in order to effectively treat individual patients or widespread outbreaks. Thatâs why Harshini Mukundan and her team at Los Alamos National Laboratory are working to develop a universal biosensor. âIf we are able to mimic the bodyâs immune recognition in the laboratory, we could have a universal strategy for the early diagnosis of all infections,â said Mukundan. Our immune system recognizes pathogens, regardless of their origin, by identifying discrete signatures in the human host. Mukundan's team is working to imitate this ability in the laboratory, which could lead to a simple solution to diagnose all diseases and improve lives across the world.
... Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...
Immune System Dysfunction in the Elderly.
Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván
2017-01-01
Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.
Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.
Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C
2015-03-15
Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. Copyright © 2015 by The American Association of Immunologists, Inc.
Innate immune memory in plants.
Reimer-Michalski, Eva-Maria; Conrath, Uwe
2016-08-01
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Terme, Magali; Tanchot, Corinne
2017-02-01
Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.
Engineering parvovirus-like particles for the induction of B-cell, CD4(+) and CTL responses.
Rueda, P; Martínez-Torrecuadrada, J L; Sarraseca, J; Sedlik, C; del Barrio, M; Hurtado, A; Leclerc, C; Casal, J I
1999-09-01
An antigen delivery system based on hybrid recombinant parvovirus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine (PPV) or canine parvovirus (CPV) expressed in insect cells with the baculovirus system has been developed. PPV:VLPs containing a CD8(+) epitope from the LCMV nucleoprotein evoked a potent CTL response and were able to protect mice against a lethal infection with the virus. Also, PPV:VLPs containing the C3:T epitope from poliovirus elicited a CD4(+)3 log(10) units) against poliovirus. The possibility of combining different types of epitopes in different positions of a single particle to stimulate different branches of the immune system paves the way to the production of more potent vaccines in a simple and cheap way.
[Application of CRISPR/Cas9 mediated genome editing in farm animals].
Xing, Yu-yun; Yang, Qiang; Ren, Jun
2016-03-01
CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is an acquired immune system found in bacteria and archaea that fight against invasion of viruses or plasmids. CRISPR/Cas systems are currently classified into three main types: I, II and III, of which type II has relatively simple components. The CRISPR/Cas9 technology modified from type II CRISPR/Cas system has been developed as an efficient genome editing tool. Since the initial application of the CRISPR/Cas9 technology in mammals in 2013, the reports of this system for genomic editing has skyrocketed. Farm animals are not only economically important animals, but also ideal animal models for human diseases and biomedical studies. In this review, we summarize the applications of CRISPR/Cas9 in farm animals, briefly describe the off-target effects and the main solutions, and finally highlight the future perspectives of this technology.
Exploring the Homeostatic and Sensory Roles of the Immune System.
Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins
2016-01-01
Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.
Day, Michael J
2016-09-20
It is widely recognized that cats appear to be less frequently affected by arthropod-borne infectious diseases than dogs and share fewer zoonotic pathogens with man. This impression is supported by the relative lack of scientific publications related to feline vector-borne infections. This review explores the possible reasons for the difference between the two most common small companion animal species, including the hypothesis that cats might have a genetically-determined immunological resistance to arthropod vectors or the microparasites they transmit. A number of simple possibilities might account for the lower prevalence of these diseases in cats, including factors related to the lifestyle and behaviour of the cat, lesser spend on preventative healthcare for cats and reduced opportunities for research funding for these animals. The dog and cat have substantially similar immune system components, but differences in immune function might in part account for the markedly distinct prevalence and clinicopathological appearance of autoimmune, allergic, idiopathic inflammatory, immunodeficiency, neoplastic and infectious diseases in the two species. Cats have greater genetic diversity than dogs with much lower linkage disequilibrium in feline compared with canine breed groups. Immune function is intrinsically related to the nature of the intestinal microbiome and subtle differences between the canine and feline microbial populations might also impact on immune function and disease resistance. The reasons for the apparent lesser susceptibility of cats to arthropod-borne infectious diseases are likely to be complex, but warrant further investigation.
Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy
2016-01-01
Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muscoplat, Miriam Halstead; Rajamani, Sripriya
2017-01-01
The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.
In immune defense: redefining the role of the immune system in chronic disease.
Rubinow, Katya B; Rubinow, David R
2017-03-01
The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.
Roles of microRNA in the immature immune system of neonates.
Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou
2018-06-13
Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.
Strengthening health system to improve immunization for migrants in China.
Fang, Hai; Yang, Li; Zhang, Huyang; Li, Chenyang; Wen, Liankui; Sun, Li; Hanson, Kara; Meng, Qingyue
2017-07-01
Immunization is the most cost-effective method to prevent and control vaccine-preventable diseases. Migrant population in China has been rising rapidly, and their immunization status is poor. China has tried various strategies to strengthen its health system, which has significantly improved immunization for migrants. This study applied a qualitative retrospective review method aiming to collect, analyze and synthesize health system strengthening experiences and practices about improving immunizations for migrants in China. A conceptual framework of Theory of Change was used to extract the searched literatures. 11 searched literatures and 4 national laws and policies related to immunizations for migrant children were carefully studied. China mainly employed 3 health system strengthening strategies to significantly improve immunization for migrant population: stop charging immunization fees or immunization insurance, manage immunization certificates well, and pay extra attentions on immunization for special children including migrant children. These health system strengthening strategies were very effective, and searched literatures show that up-to-date and age-appropriate immunization rates were significantly improved for migrant children. Economic development led to higher migrant population in China, but immunization for migrants, particularly migrant children, were poor. Fortunately various health system strengthening strategies were employed to improve immunization for migrants in China and they were rather successful. The experiences and lessons of immunization for migrant population in China might be helpful for other developing countries with a large number of migrant population.
Stress proteins and the immune response.
Moseley, P
2000-07-25
The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282.]. This importance in immune regulation is best addressed using Matzinger's model of the immune response - The Danger Theory of Immunity [Matzinger, P., Fuchs, E.J., 1996. Beyond self and non-self: immunity is a conversation, not a war. J. NIH Res. 8, 35-39.]. Matzinger suggests that an immune system model based on the differentiation between "self and non-self" does not easily account for the changes that occur in the organism with growth and development. Why, for example does an organism not self-destruct when the immune system encounters the myriad of new peptides generated at puberty? Instead, she proposes a model of immune function based on the ability to detect and address dangers. This model states that the basic function of all cells of the organism is appropriately timed death "from natural causes". This type of cell death, or apoptosis, generates no stress signals. If, on the other hand, a cell is "murdered" by an infectious agent or dies an untimely death due to necrosis or ischemia, the cell undergoes a stress response with the liberation of stress protein-peptide complexes into the extracellular environment upon cell lysis. Not only do they serve as a "danger signal" to alert the immune system to the death of a cell under stress, but their role as protein carriers allows the immune effector cells to survey the peptides released by this stressed cell and to activate against new or unrecognized peptides carried by the stress protein. Matzinger bases the Danger Theory of Immunity on three "Laws of Lymphotics". These laws state that: (1) resting T lymphocytes require both antigen stimulation by an antigen-presenting cell (APC) and co-stimulation with a danger signal to become activated; (2) the co-stimulatory signal must be received through the APC; and (3) T cells receiving only antigen stimulation without the co-stimulatory signal undergo apoptosis. The Danger Theory gives a simple model for both tolerance and activation. (ABSTRACT TRUNCATED)
Coutinho, Rita; Clear, Andrew J.; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G.
2015-01-01
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. PMID:25425693
Coutinho, Rita; Clear, Andrew J; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G
2015-03-01
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. Copyright© Ferrata Storti Foundation.
Ancient Origins of Vertebrate-Specific Innate Antiviral Immunity
Mukherjee, Krishanu; Korithoski, Bryan; Kolaczkowski, Bryan
2014-01-01
Animals deploy various molecular sensors to detect pathogen infections. RIG-like receptor (RLR) proteins identify viral RNAs and initiate innate immune responses. The three human RLRs recognize different types of RNA molecules and protect against different viral pathogens. The RLR protein family is widely thought to have originated shortly before the emergence of vertebrates and rapidly diversified through a complex process of domain grafting. Contrary to these findings, here we show that full-length RLRs and their downstream signaling molecules were present in the earliest animals, suggesting that the RLR-based immune system arose with the emergence of multicellularity. Functional differentiation of RLRs occurred early in animal evolution via simple gene duplication followed by modifications of the RNA-binding pocket, many of which may have been adaptively driven. Functional analysis of human and ancestral RLRs revealed that the ancestral RLR displayed RIG-1-like RNA-binding. MDA5-like binding arose through changes in the RNA-binding pocket following the duplication of the ancestral RLR, which may have occurred either early in Bilateria or later, after deuterostomes split from protostomes. The sensitivity and specificity with which RLRs bind different RNA structures has repeatedly adapted throughout mammalian evolution, suggesting a long-term evolutionary arms race with viral RNA or other molecules. PMID:24109602
Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Abu-Asab, Mones S; Tsokos, Maria; Morris, John C; Kalle, Wouter H J
2007-04-01
We aimed to increase the efficiency of adenoviral vectors by limiting adenoviral spread from the target site and reducing unwanted host immune responses to the vector. We complexed adenoviral vectors with DDAB-DOPE liposomes to form adenovirus-liposomal (AL) complexes. AL complexes were delivered by intratumoral injection in an immunocompetent subcutaneous rat tumor model and the immunogenicity of the AL complexes and the expression efficiency in the tumor and other organs was examined. Animals treated with the AL complexes had significantly lower levels of beta-galactosidase expression in systemic tissues compared to animals treated with the naked adenovirus (NA) (P<0.05). The tumor to non-tumor ratio of beta-galactosidase marker expression was significantly higher for the AL complex treated animals. NA induced significantly higher titers of adenoviral-specific antibodies compared to the AL complexes (P<0.05). The AL complexes provided protection (immunoshielding) to the adenovirus from neutralizing antibody. Forty-seven percent more beta-galactosidase expression was detected following intratumoral injection with AL complexes compared to the NA in animals pre-immunized with adenovirus. Complexing of adenovirus with liposomes provides a simple method to enhance tumor localization of the vector, decrease the immunogenicity of adenovirus, and provide protection of the virus from pre-existing neutralizing antibodies.
Towards a paradigm shift in innate immunity—seminal work by Hans G. Boman and co-workers
2016-01-01
Four decades ago, immunological research was dominated by the field of lymphoid biology. It was commonly accepted that multicellular eukaryotes defend themselves through phagocytosis. The lack of lymphoid cells in insects and other simpler animals, however, led to the common notion that they might simply lack the capacity defend themselves with humoral factors. This view was challenged by microbiologist Hans G. Boman and co-workers in a series of publications that led to the advent of antimicrobial peptides as a universal arm of the immune system. Besides ingenious research, Boman ignited his work by posing the right questions. He started off by asking himself a simple question: ‘Antibodies take weeks to produce while many microbes divide hourly; so how come we stay healthy?’. This led to two key findings in the field: the discovery of an inducible and highly potent antimicrobial immune response in Drosophila in 1972, followed by the characterization of cecropin in 1981. Despite broadly being considered an insect-specific response at first, the work of Boman and co-workers eventually created a bandwagon effect that unravelled various aspects of innate immunity. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160604
Immune System Toxicity and Immunotoxicity Hazard Identification
Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...
Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke
2017-02-06
In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.
Conceptual Spaces of the Immune System.
Fierz, Walter
2016-01-01
The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.
Mannala, Gopala K.; Izar, Benjamin; Rupp, Oliver; Schultze, Tilman; Goesmann, Alexander; Chakraborty, Trinad; Hain, Torsten
2017-01-01
microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates. PMID:29312175
Testicular defense systems: immune privilege and innate immunity
Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu
2014-01-01
The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222
Natural evolution, disease, and localization in the immune system
NASA Astrophysics Data System (ADS)
Deem, Michael
2004-03-01
Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101
Role of the immune system in regeneration and its dynamic interplay with adult stem cells.
Abnave, Prasad; Ghigo, Eric
2018-04-09
The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile
2016-06-01
To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.
From birth to ‘immuno-health’, allergies and enterocolitis
Houghteling, Pearl D.; Walker, W. Allan
2015-01-01
Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970
Control of adaptive immunity by the innate immune system.
Iwasaki, Akiko; Medzhitov, Ruslan
2015-04-01
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Microbiota regulate the development and function of the immune cells.
Yu, Qing; Jia, Anna; Li, Yan; Bi, Yujing; Liu, Guangwei
2018-03-04
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
The role of the immune system in Alzheimer disease: Etiology and treatment.
Jevtic, Stefan; Sengar, Ameet S; Salter, Michael W; McLaurin, JoAnne
2017-11-01
The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets. Copyright © 2017. Published by Elsevier B.V.
The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.
Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca
2015-01-01
One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.
Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe
2018-01-01
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?
Ameri, Pietro; Ferone, Diego
2012-01-01
During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.
The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.
Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng
2016-02-01
As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Innate immune system and tissue regeneration in planarians: an area ripe for exploration.
Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J
2014-08-01
The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Cancer immunotherapy. Importance of overcoming immune suppression].
Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo
2010-01-01
Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.
HIV-1 and hijacking of the host immune system: the current scenario.
Imran, Muhammad; Manzoor, Sobia; Saalim, Muhammad; Resham, Saleha; Ashraf, Javed; Javed, Aneela; Waqar, Ahmed Bilal
2016-10-01
Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Stipić, Filip; Pletikapić, Galja; Jakšić, Željko; Frkanec, Leo; Zgrablić, Goran; Burić, Petra; Lyons, Daniel M
2015-01-29
Marine biotoxins are widespread in the environment and impact human health via contaminated shellfish, causing diarrhetic, amnesic, paralytic, or neurotoxic poisoning. In spite of this, methods for determining if poisoning has occurred are limited. We show the development of a simple and sensitive luminescence resonance energy transfer (LRET)-based concept which allows the detection of anti-okadaic acid rabbit polyclonal IgG (mouse monoclonal IgG1) using functionalized lanthanide-based nanoparticles. Upon UV excitation, the functionalized nanoparticles were shown to undergo LRET with fluorophore-labeled anti-okadaic acid antibodies which had been captured and bound by okadaic acid-decorated nanoparticles. The linear dependence of fluorescence emission intensity with antigen-antibody binding events was recorded in the nanomolar to micromolar range, while essentially no LRET signal was detected in the absence of antibody. These results may find applications in new, cheap, and robust sensors for detecting not only immune responses to biotoxins but also a wide range of biomolecules based on antigen-antibody recognition systems. Further, as the system is based on solution chemistry it may be sufficiently simple and versatile to be applied at point-of-care.
Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.
2014-01-01
Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505
The role of the immune system in kidney disease.
Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M
2018-05-01
The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.
Resilience of biochemical activity in protein domains in the face of structural divergence.
Zhang, Dapeng; Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L
2014-06-01
Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function. Published by Elsevier Ltd.
Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network
NASA Astrophysics Data System (ADS)
Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan
2015-01-01
This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.
Regulatory dendritic cells: there is more than just immune activation.
Schmidt, Susanne V; Nino-Castro, Andrea C; Schultze, Joachim L
2012-01-01
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Regulatory dendritic cells: there is more than just immune activation
Schmidt, Susanne V.; Nino-Castro, Andrea C.; Schultze, Joachim L.
2012-01-01
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies. PMID:22969767
Impact of aging immune system on neurodegeneration and potential immunotherapies.
Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong
2017-10-01
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robustness trade-offs and host–microbial symbiosis in the immune system
Kitano, Hiroaki; Oda, Kanae
2006-01-01
The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567
Bayoumi, R A
1987-03-01
It is proposed that the in vivo mechanism of protection against falciparum malaria in individuals of the Hb AS genotype is not due solely to the adverse influence of Hb AS erythrocytes on the intraerythrocytic growth and development of P. falciparum. Instead, the simple physiological effect of Hb S on parasite growth appears to trigger an in vivo process of enhancement of the intensity and/or specificity of the host immune response, leading to acquired protective immunity, in a process simulating vaccination. Testing the hypothesis may lead to the identification of plasmodial antigens that induce protective responses in the human host and distinguish them from non-protective, immunosuppressive or decoy antigens that promote parasite survival. This may ultimately help in the selection of candidate antigens for a malaria blood-stage vaccine.
Ocular surgical models for immune and angiogenic responses
Inomata, Takenori; Mashaghi, Alireza; Di Zazzo, Antonio; Dana, Reza
2015-01-01
Corneal transplantation serves as a reproducible and simple surgical model to study mechanisms regulating immunity and angiogenesis. The simplicity of the model allows for systematic analysis of different mechanisms involved in immune and angiogenic privilege and their failures. This protocol describes how to induce neovessels and inflammation in an actively regulated avascular and immune-privileged site. This involves placing intra-stromal corneal sutures for two weeks, disrupting the privileges, and performing corneal transplantation subsequently. Privileged and non-privileged recipient responses to donor cornea can be compared to identify key immunological mechanisms that underlie angiogenesis and graft rejection. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and is a valuable tool to elucidate molecular mechanisms mediating acceptance or failure of corneal graft. The model could be used to assess the potential of therapeutic molecules to enhance graft survival in vivo. PMID:26550579
Invited essay: Cognitive influences on the psychological immune system.
Rachman, S J
2016-12-01
The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training. Copyright © 2016 Elsevier Ltd. All rights reserved.
Local and systemic tumor immune dynamics
NASA Astrophysics Data System (ADS)
Enderling, Heiko
Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.
Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors
2016-06-01
BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions on central...primitive innate immune system is the first line of defense against pathogens and toxins; it is always present and it depends upon diverse cell types that...adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two innate immune
Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe
2015-02-01
There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plant innate immunity: an updated insight into defense mechanism.
Muthamilarasan, Mehanathan; Prasad, Manoj
2013-06-01
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido
2012-01-01
Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.
Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten
2016-10-01
The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.
Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein.
Pham, Ngoc Bich; Ho, Thuong Thi; Nguyen, Giang Thu; Le, Thuy Thi; Le, Ngoc Thu; Chang, Huan-Cheng; Pham, Minh Dinh; Conrad, Udo; Chu, Ha Hoang
2017-10-05
The continuing spread of the newly emerged H7N9 virus among poultry in China, as well as the possibility of human-to-human transmission, has attracted numerous efforts to develop an effective vaccine against H7N9. The use of nanoparticles in vaccinology is inspired by the fact that most pathogens have a dimension within the nano-size range and therefore can be processed efficiently by the immune system, which leads to a potent immune response. Herein, we report a facile approach to increase antigen size to achieve not only fast but also effective responses against the recombinant HA/H7N9 protein via a simple conjugation of the protein onto the surface of nanodiamond particles. In this study, trimeric Haemagglutinin (H7) that is transiently expressed in N. benthamiana was purified using affinity chromatography, and its trimeric state was revealed successfully by the cross-linking reaction. The trimeric H7 solution was subsequently mixed with a nanodiamond suspension in different ratios. The successful conjugation of the trimeric H7 onto the surface of nanodiamond particles was demonstrated by the changes in size and Zeta-potential of the particles before and after protein coating, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Western-blot analysis. Next, biofunction of the protein-nanodiamond conjugates was screened using a haemagglutination assay. A mixture containing 5 µg of trimeric H7 and 60 µg of nanodiamond corresponds to a ratio of 1:12 (w/w) of agglutinated chicken red blood cells at HA titer of 1024, which is 512-fold higher than the HA titer of free trimeric H7. After the 2nd and 3rd immunization in mice, ELISA and Western blot analyses demonstrated that the physical mixture of trimeric H7 protein and nanodiamond (1:12, w/w) elicited statistically significant stronger H7-specific-IgG response demonstrated by higher amounts of H7N9-specific IgG (over 15.4-fold with P < 0.05 after the second immunization). These results indicated a potential effect inherent to nanodiamond towards modulating immune systems, which should be further evaluated and broadly applied in nanovaccine development.
Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred
2008-01-01
During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.
Image restoration method based on Hilbert transform for full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2008-01-01
A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.
Adamo, Shelley A
2017-02-01
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Vitamin E, immunity, and infection
USDA-ARS?s Scientific Manuscript database
A normally functioning immune system is critical for the body to fight and eliminate invading pathogens from the environment. On the other hand, the immune system also protects the body from internal risks such as neoplasia growing within and autoimmune responses that attack self. The immune system ...
Turvey, Stuart E.; Broide, David H.
2009-01-01
Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920
Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.
Hsu, Peter; Nanan, Ralph
2014-10-01
In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Analysis of PAMP-Triggered ROS Burst in Plant Immunity.
Sang, Yuying; Macho, Alberto P
2017-01-01
The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.
De Rose, Robert; Fernandez, Caroline S.; Smith, Miranda Z.; Batten, C. Jane; Alcântara, Sheilajen; Peut, Vivienne; Rollman, Erik; Loh, Liyen; Mason, Rosemarie D.; Wilson, Kim; Law, Matthew G.; Handley, Amanda J.; Kent, Stephen J.
2008-01-01
Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIVmac251 replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably ∼10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans. PMID:18451982
Physical Theory of the Competition that Allows HIV to Escape from the Immune System
NASA Astrophysics Data System (ADS)
Wang, Guanyu; Deem, Michael W.
2006-11-01
Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.
A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions.
Moore, N; Doty, D; Zielstorff, M; Kariv, I; Moy, L Y; Gimbel, A; Chevillet, J R; Lowry, N; Santos, J; Mott, V; Kratchman, L; Lau, T; Addona, G; Chen, H; Borenstein, J T
2018-05-25
Recapitulation of the tumor microenvironment is critical for probing mechanisms involved in cancer, and for evaluating the tumor-killing potential of chemotherapeutic agents, targeted therapies and immunotherapies. Microfluidic devices have emerged as valuable tools for both mechanistic studies and for preclinical evaluation of therapeutic agents, due to their ability to precisely control drug concentrations and gradients of oxygen and other species in a scalable and potentially high throughput manner. Most existing in vitro microfluidic cancer models are comprised of cultured cancer cells embedded in a physiologically relevant matrix, collocated with vascular-like structures. However, the recent emergence of immune checkpoint inhibitors (ICI) as a powerful therapeutic modality against many cancers has created a need for preclinical in vitro models that accommodate interactions between tumors and immune cells, particularly for assessment of unprocessed tumor fragments harvested directly from patient biopsies. Here we report on a microfluidic model, termed EVIDENT (ex vivo immuno-oncology dynamic environment for tumor biopsies), that accommodates up to 12 separate tumor biopsy fragments interacting with flowing tumor-infiltrating lymphocytes (TILs) in a dynamic microenvironment. Flow control is achieved with a single pump in a simple and scalable configuration, and the entire system is constructed using low-sorption materials, addressing two principal concerns with existing microfluidic cancer models. The system sustains tumor fragments for multiple days, and permits real-time, high-resolution imaging of the interaction between autologous TILs and tumor fragments, enabling mapping of TIL-mediated tumor killing and testing of various ICI treatments versus tumor response. Custom image analytic algorithms based on machine learning reported here provide automated and quantitative assessment of experimental results. Initial studies indicate that the system is capable of quantifying temporal levels of TIL infiltration and tumor death, and that the EVIDENT model mimics the known in vivo tumor response to anti-PD-1 ICI treatment of flowing TILs relative to isotype control treatments for syngeneic mouse MC38 tumors.
Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.
2015-01-01
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788
Psychoneuroimmunology - psyche and autoimmunity.
Ziemssen, Tjalf
2012-01-01
Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.
The discontinuity theory of immunity
Pradeu, Thomas; Vivier, Eric
2017-01-01
Some biological systems detect the rate of change in a stimulus rather than the stimulus itself only. We suggest that the immune system works in this way. According to the discontinuity theory of immunity, the immune system responds to sudden changes in antigenic stimulation and is rendered tolerant by slow or continuous stimulation. This basic principle, which is supported by recent data on immune checkpoints in viral infections, cancers, and allergies, can be seen as a unifying framework for diverse immune responses. PMID:28239677
Grille, Sofía; Brugnini, Andreína; Nese, Martha; Corley, Esteban; Falkenberg, Frank W; Lens, Daniela; Chabalgoity, José A
2010-04-01
Therapeutic vaccination holds great potential as complementary treatment for non-Hodgkin's lymphoma. Here, we report that a therapeutic whole cell vaccine formulated with IL-2 adsorbed onto aluminum hydroxide as cytokine-depot formulation elicits potent antitumor immunity and induces delayed tumor growth, control of tumor dissemination and longer survival in mice challenged with A20-lymphoma. Therapeutic vaccination induced higher numbers of tumor's infiltrating lymphocytes (CD4(+) and CD8(+) T cells and NK cells), and the production of IFN-gamma and IL-4 by intratumoral CD4(+) T cells. Further, strong tumor antigen-specific cellular responses were detected at systemic level. Both the A20-derived antigenic material and the IL-2 depot formulation were required for induction of an effective immune response that impacted on cancer progression. All mice receiving any form of IL-2, either as part of the vaccine or alone as control, showed higher numbers of CD4(+)CD25(+/high)Foxp3(+) regulatory T cells (Treg) in the tumor, which might have a role in tumor progression in these animals. Nevertheless, for those animals that received the cytokine as part of the vaccine formulation, the overall effect was improved immune response and less disseminated disease, suggesting that therapeutic vaccination overcomes the potential detrimental effect of intratumoral Treg cells. Overall, the results presented here show that a simple vaccine formulation, that can be easily prepared under GMP conditions, is a promising strategy to be used in B-cell lymphoma and may have enough merit to be tested in clinical trials.
Reciprocal Interactions of the Intestinal Microbiota and Immune System
Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.
2013-01-01
Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296
Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.
2012-01-01
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795
Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead
2016-01-01
Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.
Stimulation of TLRs by LMW-HA induces self-defense mechanisms in vaginal epithelium.
Dusio, Giuseppina F; Cardani, Diego; Zanobbio, Laura; Mantovani, Martina; Luchini, Patrizia; Battini, Lorenzo; Galli, Valentina; Diana, Angela; Balsari, Andrea; Rumio, Cristiano
2011-07-01
The innate immune system is present throughout the female reproductive tract and functions in synchrony with the adaptive immune system to provide protection in a way that enhances the chances for fetal survival, while protecting against potential pathogens. Recent data show that activation of Toll-like receptor (TLR)2 and 4 by low-molecular weight hyaluronic acid (LMW-HA) in the epidermis induces secretion of the antimicrobial peptide β-defensin 2. In the present work, we show that LMW-HA induces vaginal epithelial cells to release different antimicrobial peptides, via activation of TLR2 and TLR4. Further, we found that LMW-HA favors repair of vaginal epithelial injury, involving TLR2 and TLR4, and independently from its classical receptor CD44. This wound-healing activity of LMW-HA is dependent from an Akt/phosphatidylinositol 3 kinase pathway. Therefore, these findings suggest that the vaginal epithelium is more than a simple physical barrier to protect against invading pathogens: on the contrary, this surface acts as efficient player of innate host defense, which may modulate its antimicrobial properties and injury restitution activity, following LMW-HA stimulation; this activity may furnish an additional protective activity to this body compartment, highly and constantly exposed to microbiota, ameliorating the self-defense of the vaginal epithelium in both basal and pathological conditions.
Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina
2014-12-01
Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.
Immunotherapy: How the Immune System Fights Cancer
Immunotherapy uses the body’s immune system to fight cancer. This animation explains three types of immunotherapy used to treat cancer: nonspecific immune stimulation, T-cell transfer therapy, and immune checkpoint inhibitors.
Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.
Buchon, Nicolas; Silverman, Neal; Cherry, Sara
2014-12-01
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.
Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund
2017-04-01
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Array-Based Rational Design of Short Peptide Probe-Derived from an Anti-TNT Monoclonal Antibody.
Okochi, Mina; Muto, Masaki; Yanai, Kentaro; Tanaka, Masayoshi; Onodera, Takeshi; Wang, Jin; Ueda, Hiroshi; Toko, Kiyoshi
2017-10-09
Complementarity-determining regions (CDRs) are sites on the variable chains of antibodies responsible for binding to specific antigens. In this study, a short peptide probe for recognition of 2,4,6-trinitrotoluene (TNT), was identified by testing sequences derived from the CDRs of an anti-TNT monoclonal antibody. The major TNT-binding site in this antibody was identified in the heavy chain CDR3 by antigen docking simulation and confirmed by an immunoassay using a spot-synthesis based peptide array comprising amino acid sequences of six CDRs in the variable region. A peptide derived from heavy chain CDR3 (RGYSSFIYWF) bound to TNT with a dissociation constant of 1.3 μM measured by surface plasmon resonance. Substitution of selected amino acids with basic residues increased TNT binding while substitution with acidic amino acids decreased affinity, an isoleucine to arginine change showed the greatest improvement of 1.8-fold. The ability to create simple peptide binders of volatile organic compounds from sequence information provided by the immune system in the creation of an immune response will be beneficial for sensor developments in the future.
Synthetic immunology: modulating the human immune system.
Geering, Barbara; Fussenegger, Martin
2015-02-01
Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.
The deconvolution of complex spectra by artificial immune system
NASA Astrophysics Data System (ADS)
Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.
2017-11-01
An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.
Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D
2017-05-17
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Role of the immune system in cardiac tissue damage and repair following myocardial infarction.
Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya
2017-09-01
The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.
Evolution of complement as an effector system in innate and adaptive immunity.
Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina
2003-01-01
For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.
Anti-Immune Strategies of Pathogenic Fungi
Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.
2016-01-01
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220
Effects of engineered nanoparticles on the innate immune system.
Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M
2017-12-01
Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
REVIEW ARTICLE: Oscillations and temporal signalling in cells
NASA Astrophysics Data System (ADS)
Tiana, G.; Krishna, S.; Pigolotti, S.; Jensen, M. H.; Sneppen, K.
2007-06-01
The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show 'ultradian' oscillations, with a time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NF-κB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour.
Mind-body hypnotic imagery in the treatment of auto-immune disorders.
Torem, Moshe S
2007-10-01
For many years Western Medicine has considered the immune system to be separate and independent from the central nervous system. However, significant scientific advances and research discoveries that occurred during the past 50 years have presented additional facts that the immune system does interact with the central nervous system with mutual influence. This article provides a systematic review of the literature on the connection between the brain and the immune system and its clinical implications. It then provides a rational foundation for the role of using hypnosis and imagery to therapeutically influence the immune system. Five case examples are provided with illustrated instructions for clinicians on how hypnosis and imagery may be utilized in the treatment of patients with auto-immune disorders. Suggestions for future research in this field are included.
Mold, Jeff E; McCune, Joseph M
2011-04-01
"We do not grow absolutely, chronologically. We grow sometimes in one dimension, and not in another; unevenly. We grow partially. We are relative. We are mature in one realm, childish in another. The past, present and future mingle and pull us backward, forward, or fix us in the present. We are made up of layers, cells, constellations."-Anaïs NinIt has long been recognized that the developing immune system exhibits certain peculiarities when compared to the adult immune system. Nonetheless, many still regard the fetal immune system as simply being an immature version of the adult immune system. Here we discuss historical evidence as well as recent findings, which suggest that the human immune system may develop in distinct layers with specific functions at different stages of development.
Awadh, Ammar Ihsan; Hassali, Mohamed Azmi; Al-Lela, Omer Qutaiba; Bux, Siti Halimah; Elkalmi, Ramadan M; Hadi, Hazrina
2014-10-06
Parents' knowledge about immunization is an important predictor factor for their children's immunization status. The aims of this study were to assess parents' knowledge and to evaluate the effect of a short educational intervention on improving parents' knowledge of childhood immunization. A cross-sectional study using a pre- and post-test intervention survey of a single group was conducted among Malaysian parents. Changes in total knowledge score before and after the intervention were measured using a validated questionnaire. The intervention consisted of an animated movie and lecture using simple understandable language. Wilcoxon signed ranks test and the McNemar x2 test were applied to compare the differences in knowledge before and after the intervention. Seventy-three parents were enrolled in this study; the majority were mothers (n = 64, 87.7%). Parents' knowledge about childhood immunization increased significantly after the intervention compared to the baseline results (p < 0.001). There were significant differences between parents' knowledge and their educational level and monthly income (p < 0.001 and p = 0.005), respectively. A short educational intervention designed for parents had a positive effect on their knowledge about immunization. Educational interventions targeting parents with low levels of education and income are needed. Further studies investigating the actual effectiveness of such interventions on immunization rates and statuses are required.
St Pierre, Cristina; Guo, Jane; Shin, John D; Engstrom, Laura W; Lee, Hyun-Hee; Herbert, Alan; Surdi, Laura; Baker, James; Salmon, Michael; Shah, Sanjiv; Ellis, J Michael; Houshyar, Hani; Crackower, Michael A; Kleinschek, Melanie A; Jones, Dallas C; Hicks, Alexandra; Zaller, Dennis M; Alves, Stephen E; Ramadas, Ravisankar A
2017-01-01
While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.
Gap junction-mediated intercellular communication in the immune system.
Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques
2007-01-01
Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.
The effects of early life adversity on the immune system.
Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D
2017-08-01
Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Positional linker effects in haptens for cocaine immunopharmacotherapy.
Ino, Akira; Dickerson, Tobin J; Janda, Kim D
2007-08-01
Cocaine use remains a serious problem, despite intensive efforts to curb abuse. Given the lack of effective pharmacotherapeutics for the treatment of cocaine addiction, research groups have targeted immunopharmacotherapy in which the drug user's immune system is trained to recognize and remove cocaine prior to entry into the central nervous system. Antibody cocaine esterases and simple binders have been procured, however, rates and/or affinities still need improvement before clinical trials are warranted. Herein, we report the synthesis and testing of two new haptens for the procurement of cocaine binding antibodies and cocaine esterase catalytic antibodies. Central in the design of these haptens was the placement of the linker functionality distal from the anticipated cocaine epitopes in an attempt to bury the hapten deep within an antibody combining site to gain possible entropic and enthalpic advantages.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.
2013-01-01
Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724
Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S
2013-02-19
Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.
Production and purification of non replicative canine adenovirus type 2 derived vectors.
Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard
2013-12-03
Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.
Interplay Between Innate Immunity and the Plant Microbiota.
Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul
2017-08-04
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Falcao‐Pires, Ines; Balligand, Jean‐Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J.; Giacca, Mauro; Hamdani, Nazha; Hilfiker‐Kleiner, Denise; Hirsch, Emilio; Leite‐Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G.; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane
2018-01-01
Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. PMID:29333691
Recent Advances in Aptamers Targeting Immune System.
Hu, Piao-Ping
2017-02-01
The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.
ERIC Educational Resources Information Center
Littrell, Jill
1996-01-01
Discusses the psychological states associated with enhanced immune system functioning and those associated with suppressed immune functioning. Reviews studies of psychological and behavioral interventions to boost the immune systems of people who are HIV positive. Suggests that group interventions can enhance psychological states associated with…
Ageing and the immune system: focus on macrophages.
Linehan, E; Fitzgerald, D C
2015-03-01
A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.
Neuro-immune interactions in inflammation and host defense: Implications for transplantation.
Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M
2018-03-01
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Immune System and Kidney Transplantation.
Shrestha, Badri Man
2017-01-01
The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.
Immune system and melanoma biology: a balance between immunosurveillance and immune escape.
Passarelli, Anna; Mannavola, Francesco; Stucci, Luigia Stefania; Tucci, Marco; Silvestris, Francesco
2017-12-01
Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.
Cryptosporidium: Infection - Immunocompromised Persons
... might be immunocompromised or have a weakened immune system? Examples of persons with weakened immune systems include ... How does cryptosporidiosis affect you if your immune system is severely weakened? In persons with AIDS and ...
Hughes, A L
1998-03-01
Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well.
Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching
2018-03-01
The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissecting innate immune responses with the tools of systems biology.
Smith, Kelly D; Bolouri, Hamid
2005-02-01
Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.
Neuroimmunologic aspects of sleep and sleep loss
NASA Technical Reports Server (NTRS)
Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.
2001-01-01
The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.
NASA Astrophysics Data System (ADS)
Salamatova, T.; Zhukov, V.
2017-02-01
The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.
Vangangelt, K M H; van Pelt, G W; Engels, C C; Putter, H; Liefers, G J; Smit, V T H B M; Tollenaar, R A E M; Kuppen, P J K; Mesker, W E
2018-04-01
Complex interactions occur between cancer cells and cells in the tumor microenvironment. In this study, the prognostic value of the interplay between tumor-stroma ratio (TSR) and the immune status of tumors in breast cancer patients was evaluated. A cohort of 574 breast cancer patients was analyzed. The percentage of tumor stroma was visually estimated on Hematoxylin and Eosin (H&E) stained histological tumor tissue sections. Immunohistochemical staining was performed for classical human leukocyte antigen (HLA) class I, HLA-E, HLA-G, markers for regulatory T (Treg) cells, natural killer (NK) cells and cytotoxic T-lymphocytes (CTLs). TSR (P < .001) and immune status of tumors (P < .001) were both statistically significant for recurrence free period (RFP) and both independent prognosticators (P < .001) in which tumors with a high stromal content behave more aggressively as well as tumors with a low immune status. Ten years RFP for patients with a stroma-low tumor and high immune status profile was 87% compared to 17% of patients with a stroma-high tumor combined with low immune status profile (P < .001). Classical HLA class I is the most prominent immune marker in the immune status profiles. Determination of TSR is a simple, fast and cheap method. The effect on RFP of TSR when combined with immune status of tumors or expression of classical HLA class I is even stronger. Both are promising for further prediction and achievement of tailored treatment for breast cancer patients.
Hepatitis A and B immunization for individuals with inherited bleeding disorders.
Steele, M; Cochrane, A; Wakefield, C; Stain, A-M; Ling, S; Blanchette, V; Gold, R; Ford-Jones, L
2009-03-01
Hepatitis A and B vaccines are highly effective tools that can greatly reduce infection risk in the bleeding disorder population. Although hepatitis A and B immunization for individuals with bleeding disorders is universally recommended, various advisory bodies often differ with respect to many practical aspects of vaccination. To review the published literature and guidelines and form a practical, comprehensive and consistent approach to hepatitis A and B immunization for individuals with bleeding disorders. We reviewed published immunization guidelines from North American immunization advisory bodies and published statements from North American and international haemophilia advisory bodies. A search of the MEDLINE database was performed to find original published literature pertaining to hepatitis A or B immunization of patients with haemophilia or bleeding disorder patients that provided supporting or refuting evidence for advisory body guidelines. Various advisory bodies' immunization guidelines regarding individuals with bleeding disorders have contradictory statements and often did not clarify issues (e.g. post vaccination surveillance). Published literature addressing immunization in bleeding disorder patients is sparse and mostly examines route of vaccine administration, complications and corresponding antibody response. Although the risk of hepatitis A and B infection is low, the use of simple measures such as vaccination is reasonable and advocated by haemophilia advisory bodies. Following our review of the available literature and North American guidelines, we have developed comprehensive and practical recommendations addressing hepatitis A and B immunization for the bleeding disorder population that may be applicable in Bleeding Disorder clinics.
... can also happen in people without weak immune systems Fungal infections that are not life-threatening, such ... to cause an infection. People with weak immune systems Infections that happen because a person’s immune system ...
The Immune System and Developmental Programming of Brain and Behavior
Bilbo, Staci D.; Schwarz, Jaclyn M.
2012-01-01
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535
Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.
Cooper, Dustin; Eleftherianos, Ioannis
2017-01-01
The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.
An immunity-based anomaly detection system with sensor agents.
Okamoto, Takeshi; Ishida, Yoshiteru
2009-01-01
This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.
Weakened Immune System and Adult Vaccination
... Adult Vaccination Resources for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share ... with health conditions such as a weakened immune system. If you have cancer or other immunocompromising conditions, ...
[The role of immune system in the control of cancer development and growth].
Sütő, Gábor
2016-06-01
The role of immune system is the maintenace of the integritiy of the living organism. The elements of the immune system are connected by several ways forming a complex biological network. This network senses the changes of the inner and outer environment and works out the most effective response against infections and tumors. Dysfunction of the immune system leads to the development of cancer development and chronic inflammatory diseases. Modulation of the checkpoints of the immune system opened new perspecitves in the treatment of rheumatological and oncological diseases as well. Beside the potent antiinflammatory activity, new therapies are able to stimulate anticancer activity of the immune system. The result of these recent developments is a better outcome of malignant diseases, which had an unfavorable outcome in the past. Orv. Hetil., 2016, 157(Suppl. 2), 3-8.
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Unique aspects of the perinatal immune system.
Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard
2017-08-01
The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.
A Physical Theory of the Competition that Allows HIV to Escape from the Immune System
NASA Astrophysics Data System (ADS)
Deem, Michael
2007-03-01
Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies [1]. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1. 1) G. Wang and M. W. Deem, Phys. Rev. Lett. 97 (2006) 188106.
The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths.
Agrawal, Madhur; Kern, Philip A; Nikolajczyk, Barbara S
2017-08-15
Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.
The immune-neuro-endocrine interactions.
Tomaszewska, D; Przekop, F
1997-06-01
This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.
Burkhardt, Tobias
2016-01-01
Immunization coverage throughout the Swiss population is still not optimal and therefore preventable diseases such as measles have not been eliminated in Switzerland yet. In addition, new vaccination protocols are available and official recommendations are becoming increasingly complex. The website www.myvaccines.ch has been in use since 2011 with the primary goal to increase immunization coverage. This service was established by Vaccinologist Professor Claire-Anne Siegrist from the University of Geneva and is free of charge for all Swiss doctors and pharmacists. It enables general practitioners and pediatricians to document the vaccination history of their patients in a new electronic immunization record. After a simple and quick process, the web-based software proposes up-to-date recommendations of new or follow-up vaccinations following the current Swiss Immunization Plan by the Federal Department of Health. Within this single practice, 1446 files have been recorded within the past three years. As a consequence, a total of 4378 immunizations have been administered, leading to a mean of 3.03 immunizations per patient. After introducing the electronic immunization record, the rates of immunizations have increased dramatically for all antigens (factor 2.1 to 41.5). Overall, patient acceptance was high – the doctor’s investment was positively recognized and his approach to patient care was perceived as modern. As a result, the practice has become competent in immunization. In summary, the positive outcome of using the electronic record highly supports the free program www.myvaccines.ch to all general practitioners and pediatricians in Switzerland.
NASA Technical Reports Server (NTRS)
Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra
2008-01-01
Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence
2007-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. Following completion of the SMO the data will be evaluated to determine the optimal set of assays for routine monitoring of crewmember immune system function, should the clinical risk warrant such monitoring.
Plasmid fermentation process for DNA immunization applications.
Carnes, Aaron E; Williams, James A
2014-01-01
Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.
Dendritic cells: importance in allergy.
Aiba, Setsuya
2007-09-01
In this review we discuss the role of dendritic cells (DC) in the pathogenesis of allergic contact hypersensitivity (ACH) and atopic disorders, such as asthma and atopic eczema. In ACH patients, DC recognize the invasion of simple chemicals such as haptens, and trigger antigen-specific T cell responses leading to the characteristic histological and clinical changes such as spongiosis and papulovesicular eruptions. During atopic disorders, it is well known that the Th2-deviated immune response plays a crucial role in their pathogenesis. DC provide T cells with antigen and costimulatory signals (signals 1 and 2, respectively), as well as with a polarizing signal (signal 3). When studying ACH, it is important to understand how simple chemicals induce the activation of DC and their migration to the draining lymph nodes where they supply signals 1 and 2 to naive T cells. The mechanisms by which DC induce the Th2-deviated immune response, namely via the Th2-deviated signal 3, are central topics in the pathogenesis of atopic disorders.
Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It helps ... to find and destroy them. If your immune system cannot do its job, the results can be ...
Heuts, Frank; Nagy, Noemi
2017-01-01
Recent developments in mouse models that harbor part of a human immune system have proved extremely valuable to study the in vivo immune response to human specific pathogens such as Epstein-Barr virus. Over the last decades, advances in immunodeficient mouse strains that can be used as recipients for human immune cells have greatly enhanced the use of these models. Here, we describe the generation of mice with reconstituted human immune system (HIS mice) using immunocompromised mice transplanted with human CD34 + hematopoietic stem cells. We will also describe how such mice, in which human immune cells are generated de novo, can be used to study EBV infection.
Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan
2006-11-01
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon
2012-03-01
We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d
Shirasaki, Yoshitaka; Yamagishi, Mai; Shimura, Nanako; Hijikata, Atsushi; Ohara, Osamu
2013-01-01
The immune system is a very complex and dynamic cellular system, and its intricacies are considered akin to those of human society. Disturbance of homeostasis of the immune system results in various types of diseases; therefore, the homeostatic mechanism of the immune system has long been a subject of great interest in biology, and a lot of information has been accumulated at the cellular and the molecular levels. However, the sociological aspects of the immune system remain too abstract to address because of its high complexity, which mainly originates from a large number and variety of cell-cell interactions. As long-range interactions mediated by cytokines play a key role in the homeostasis of the immune system, cytokine secretion analyses, ranging from analyses of the micro level of individual cells to the macro level of a bulk of cell ensembles, provide us with a solid basis of a sociological viewpoint of the immune system. In this review, as the first step toward a comprehensive understanding of immune cell sociology, cytokine secretion of immune cells is surveyed with a special emphasis on the single-cell level, which has been overlooked but should serve as a basis of immune cell sociology. Now that it has become evident that large cell-to-cell variations in cytokine secretion exist at the single-cell level, we face a tricky yet interesting question: How is homeostasis maintained when the system is composed of intrinsically noisy agents? In this context, we discuss how the heterogeneity of cytokine secretion at the single-cell level affects our view of immune cell sociology. While the apparent inconsistency between homeostasis and cell-to-cell heterogeneity is difficult to address by a conventional reductive approach, comparison and integration of single-cell data with macroscopic data will offer us a new direction for the comprehensive understanding of immune cell sociology. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Hendrickson, Bryan K; Panchanathan, Sarada S; Petitti, Diana
2015-01-01
Information systems are used by most states to maintain registries of immunization data both for monitoring population-level adherence and for use in clinical practice and research. Direct data exchange between such systems and electronic health record systems presents an opportunity to improve the completeness and quality of information available. Our goals were to describe and compare the completeness of the Arizona State Immunization System, the electronic health record at a large community health provider in Arizona exchanging electronic data with the Arizona system, and personal immunization records in an effort to contribute to the discussion on the completeness of state-run immunization registries and data exchange with these registries. Immunization histories from these sources were collected and reviewed sequentially. Unique dates of vaccination administrations were counted for each patient and tagged on the basis of comparisons across sources. We quantified completeness by combining information from all 3 sources and comparing each source with the complete set. We determined that the state registry was 71.8% complete, the hospital electronic health record was 81.9% complete, and personal records were 87.8% complete. Of the 2017 unique vaccination administrations, 65% were present in all 3 sources, 24.6% in 2 of the 3 sources, and 10.4% in only 1 source. Only 11% of patients had records in complete agreement across the 3 sources. This study highlights issues related to data completeness, exchange, and reporting of immunization information to state registries and suggests that there is some degree of deficiency in completeness of immunization registries and other sources. This study indicates that there is a need to strengthen links between electronic data sources with immunization information and describes potential improvements in completeness that such efforts could provide, enabling providers to better rely on state immunization registries and to improve research utilization of immunization information systems.
Erchick, Daniel J.; George, Asha S.; Umeh, Chukwunonso; Wonodi, Chizoba
2017-01-01
Background: Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. Methods: A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Results: Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Conclusion: Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. PMID:28812836
Genetic selection of cattle for improved immunity and health.
Mallard, Bonnie A; Emam, Mehdi; Paibomesai, Marlene; Thompson-Crispi, Kathleen; Wagter-Lesperance, Lauraine
2015-02-01
The immune system is a sensing structure composed of tissues and molecules that are well integrated with the neuroendocrine system. This integrate system ensures non-self from self-discrimination. In this capacity the immune system provides detection and protection from a wide range of pathogens. In mammals, the immune system is regulated by several thousand genes (8-9% of the genome) which indicate its high genetic priority as a critical fitness trait providing survival of the species. Identifying and selectively breeding livestock with the inherent ability to make superior immune responses can reduce disease occurrence, improve milk quality and increase farm profitability. Healthier animals also may be expected to demonstrate improvements in other traits, including reproductive fitness. Using the University of Guelph's patented High Immune Response technology it is possible to classify animals as high, average, or low responders based on their genetic estimated breeding value for immune responsiveness. High responders have the inherent ability to produce more balanced and robust immune responses compared with average or low responders. High responders dairy cattle essentially have about one-half the disease occurrence of low responders, and can pass their superior immune response genes on to future generations thereby accumulating health benefits within the dairy herd.
Balzar, Silvana
2017-01-01
Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.
Use of parvovirus-like particles for vaccination and induction of multiple immune responses.
Casal, J I
1999-04-01
Expression of the VP2 gene of autonomous parvoviruses in insect cells with the use of the baculovirus system has led to the production of virus-like particles (VLPs) formed by the self-assembly of VP2. These VLPs are expressed at high levels and can easily be purified by salt fractionation. They are highly immunogenic in the corresponding host, being fully protective at doses as low as 1-2 microg of purified material per animal. No special adjuvants are required. An interesting property of these particles is their usefulness as a diagnostic reagent for ELISA kits, which have successfully replaced conventional methods for parvovirus diagnostics based on haemagglutination. Another application of the hybrid recombinant parvovirus-like particles of pig parvovirus (PPV) and canine parvovirus (CPV) is its use as an antigen delivery system. PPV:VLPs containing a CD8(+) epitope from the lymphocytic choriomeningitis virus (LCMV) nucleoprotein are able to evoke a potent cytolytic T-lymphocyte response and to protect mice against a lethal infection with LCMV. Also, PPV:VLPs containing the C3:T epitope from poliovirus elicited a T helper response in mice. These T-cell epitopes were inserted into the N-terminus of the VP2 protein. Unfortunately, the N-terminus is not adequate for antibody responses because it is inside the particle. Recent findings have shown that fine tailoring of the point of insertion around the tip of loop 2 of the surface of CPV allowed the elicitation of a potent antibody response. Thus mice immunized with chimaeric C3:B CPV:VLPs were able to elicit a strong neutralizing antibody response (>3 log10 units) against poliovirus. We now have the possibility of using these particles to elicit different immune responses against single or multiple pathogens in a simple and economic way.
The immune system: a target for functional foods?
Calder, Philip C; Kew, Samantha
2002-11-01
The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies in one or more of these nutrients. Animal and human studies have demonstrated that adding the deficient nutrient back to the diet can restore immune function and resistance to infection. Among the nutrients studied most in this regard are vitamin E and Zn. Increasing intakes of some nutrients above habitual and recommended levels can enhance some aspects of immune function. However, excess amounts of some nutrients also impair immune function. There is increasing evidence that probiotic bacteria improve host immune function. The effect of enhancing immune function on host resistance to infection in healthy individuals is not clear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelson, A.S.; Weisbuch, G.
1997-10-01
The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less
... Weak immune system. People with a weak immune system are at greater risk of septic arthritis. This includes people with diabetes, kidney and liver problems, and those taking drugs that suppress their immune systems. Joint trauma. Animal bites, puncture woods or cuts ...
[Regulatory role of the immune system in the organism].
Alekseev, L P; Khaitov, R M
2010-08-01
The paper presents modern idea of regulatory role of the human immune system in performing a number of physiological functions including intercellular interactions, reproductive process, and forming of protection against external and internal aggression. Significance of the immune system is considered and substantiated, that of genes of the human immune response in particular in provision of human survival as a biological species.
NASA Technical Reports Server (NTRS)
Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece
2010-01-01
This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.
Trained immunity in newborn infants of HBV-infected mothers
Hong, Michelle; Sandalova, Elena; Low, Diana; Gehring, Adam J.; Fieni, Stefania; Amadei, Barbara; Urbani, Simonetta; Chong, Yap-Seng; Guccione, Ernesto; Bertoletti, Antonio
2015-01-01
The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero. PMID:25807344
Frantz, Stefan; Falcao-Pires, Ines; Balligand, Jean-Luc; Bauersachs, Johann; Brutsaert, Dirk; Ciccarelli, Michele; Dawson, Dana; de Windt, Leon J; Giacca, Mauro; Hamdani, Nazha; Hilfiker-Kleiner, Denise; Hirsch, Emilio; Leite-Moreira, Adelino; Mayr, Manuel; Thum, Thomas; Tocchetti, Carlo G; van der Velden, Jolanda; Varricchi, Gilda; Heymans, Stephane
2018-03-01
Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies. © 2018 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
The mucosal immune system: From dentistry to vaccine development
KIYONO, Hiroshi; AZEGAMI, Tatsuhiko
2015-01-01
The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases. PMID:26460320
Activation of the immune system by bacterial CpG-DNA
Häcker, Georg; Redecke, Vanessa; Häcker, Hans
2002-01-01
The past decade has seen a remarkable process of refocusing in immunology. Cells of the innate immune system, especially macrophages and dendritic cells, have been at the centre of this process. These cells had been regarded by some scientists as non-specific, sometimes perhaps even confined to the menial job of serving T cells by scavenging antigen and presenting it to the sophisticated adaptive immune system. Only over the last few years has it become unequivocally clear that cells of the innate immunity hold, by variation of context and mode of antigen presentation, the power of shaping an adaptive immune response. The innate immune response, in turn, is to a significant degree the result of stimulation by so-called pathogen-associated molecular patterns (PAMPs). One compound with high stimulatory potential for the innate immune system is bacterial DNA. Here we will review recent evidence that bacterial DNA should be ranked with other PAMPs such as lipopolysaccharide (LPS) and lipoteichoic acid. We will further review our present knowledge of DNA recognition and DNA-dependent signal transduction in cells of the immune system. PMID:11918685
Promoting tissue regeneration by modulating the immune system.
Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M
2017-04-15
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Learning and Memory... and the Immune System
ERIC Educational Resources Information Center
Marin, Ioana; Kipnis, Jonathan
2013-01-01
The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…
Tissue homeostasis and immunity--more on models.
Cunliffe, J
2006-09-01
This article continues the ongoing debate around models of the immune system. Earlier contributors have paid much attention to the various processes that lead to adaptive immune system aggression or tolerance. They have often based their discussions around facts that have been established by experimental investigation. However, both the observation and interpretation of these facts have been influenced by the function--or system goal--that is believed to have generated them. The perception of this function (of all or part of the immune system) is influenced by long established theories in immunology (e.g. horror autotoxicus, clonal deletion in utero, pathogen elimination, clonal selection, auto-immunity and so on) which, for many, have become enshrined as facts. One function that has had less consideration and has not been extensively investigated is the maintenance of tissue homeostasis. When the immune system is viewed from this perspective, the facts invite alternative interpretations. Whilst this perspective may not necessarily be the only valid one, let alone a correct one, viewing things this way--at least briefly--might help to expose hidden assumptions. It also emphasizes that the immune system is a system and, as such, it can by analysed through the principles of general systems theory.
Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael
2009-04-01
Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.
The S(c)ensory Immune System Theory.
Veiga-Fernandes, Henrique; Freitas, António A
2017-10-01
Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Novel vaccine development strategies for inducing mucosal immunity
Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro
2012-01-01
To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827
Host Immune Response to Influenza A Virus Infection.
Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long
2018-01-01
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
Cho, Suhyung; Shin, Jongoh; Cho, Byung-Kwan
2018-04-05
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi) system including deactivated Cas9 (dCas9) with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli . Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.
Niedrig, M; Stolte, N; Fuchs, D; Hunsmann, G; Stahl-Hennig, C
1999-03-05
Investigating new and simple application routes for YF vaccine, four groups of 4-6 rhesus monkeys were vaccinated with live attenuated 17D YF-vaccine. In two groups the vaccine was administered either as spray into the oral cavity, or as an encapsulated form directly into the stomach. Only one out of eight animals developed a humoral immune response against 17D. In the third group receiving the vaccine intranasally by spray and in the fourth group serving as control all ten monkeys developed an immune response. From all except one of these seroconverted monkeys virus could be detected either by virus reisolation or RT-PCR. All these animals showed a serological immune response in immunofluorescence and neutralisation test. Parallel to viremia, an increase of neopterin as an unspecified immune activation marker could be demonstrated for these animals. Intra-nasal application of 17D-vaccine seems to be a good alternative to subcutaneous immunisation in mass vaccination campaigns.
[Focus on the Immunoscore and its potential clinical implications].
El Sissy, Carine; Marliot, Florence; Haicheur, Nacilla; Kirilovsky, Amos; Scripcariu, Dragos; Lagorce-Pagès, Christine; Galon, Jérôme; Pagès, Franck
2017-02-01
The role of the immune response at the tumor site is now recognized as crucial in the clinical course of patients with cancer. The importance of the immune cell type, their functional orientation, their density and location within the tumor's regions (tumor/invasion margin) has recently been shown and were grouped together under the term "immune contexture". A strong infiltration by cytotoxic and memory T cells in a Th1-polarized tumor microenvironment appears to have a major prognosis impact. A test called Immunoscore taking into account these various parameters has been suggested to measure in a simple, reproducible and robust manner the intra- and peritumoral immune response. The prognostic value of Immunoscore has recently been validated in colon cancers by a large international retrospective study under the aegis of the Society for Immunotherapy of Cancer (SITC). The Immunoscore could have several potential clinical applications such as prognostic as well as theranostic. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma
2016-01-01
Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024
The diversity and evolution of anuran skin peptides.
König, Enrico; Bininda-Emonds, Olaf R P; Shaw, Chris
2015-01-01
Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit. Copyright © 2014 Elsevier Inc. All rights reserved.
Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.
Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N
2006-02-01
Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.
A benign helminth alters the host immune system and the gut microbiota in a rat model system.
Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina
2017-01-01
Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.
A benign helminth alters the host immune system and the gut microbiota in a rat model system
Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina
2017-01-01
Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach. PMID:28771620
Wilson, Kumanan; Atkinson, Katherine M; Deeks, Shelley L; Crowcroft, Natasha S
2016-01-01
Immunization registries or information systems are critical to improving the quality and evaluating the ongoing success of immunization programs. However, the completeness of these systems is challenged by a myriad of factors including the fragmentation of vaccine administration, increasing mobility of individuals, new vaccine development, use of multiple products, and increasingly frequent changes in recommendations. Mobile technologies could offer a solution, which mitigates some of these challenges. Engaging individuals to have more control of their own immunization information using their mobile devices could improve the timeliness and accuracy of data in central immunization information systems. Other opportunities presented by mobile technologies that could be exploited to improve immunization information systems include mobile reporting of adverse events following immunization, the capacity to scan 2D barcodes, and enabling bidirectional communication between individuals and public health officials. Challenges to utilizing mobile solutions include ensuring privacy of data, access, and equity concerns, obtaining consent and ensuring adoption of technology at sufficiently high rates. By empowering individuals with their own health information, mobile technologies can also serve as a mechanism to transfer immunization information as individuals cross local, regional, and national borders. Ultimately, mobile enhanced immunization information systems can help realize the goal of the individual, the healthcare provider, and public health officials always having access to the same immunization information. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ginaldi, Lia; De Martinis, Massimo
2016-01-01
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity. PMID:27604089
Immunotoxicological effects of JP-8 jet fuel exposure.
Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M
1997-01-01
Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.
Immune mediators in the brain and peripheral tissues in autism spectrum disorder
Estes, Myka L.; McAllister, A. Kimberley
2017-01-01
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and animal models of this disorder. Recently, several molecular signalling pathways have been identified that link immune activation to ASD phenotypes, including pathways downstream of cytokines, hepatocyte growth factor receptor (MET), MHCI molecules, microglia and complement factors. These findings indicate that the immune system is a point of convergence for various ASD-related genetic and environmental risk factors. PMID:26189694
Modernizing Immunization Practice Through the Use of Cloud Based Platforms.
Bell, Cameron; Atkinson, Katherine M; Wilson, Kumanan
2017-04-01
Collection of timely and accurate immunization information is essential for effective immunization programs. Current immunization information systems have important limitations that impact the ability to collect this data. Based on our experience releasing a national immunization app we describe a cloud-based platform that would allow individuals to store their records digitally and exchange these records with public health information systems thus improving the quality of immunization information held by individuals and public health officials.
Ren, Yipeng; Xue, Junli; Yang, Huanhuan; Pan, Baoping; Bu, Wenjun
2017-05-01
The Manila clam, Ruditapes philippinarum, is one of the most economically important aquatic clams that are harvested on a large scale by the mariculture industry in China. However, increasing reports of bacterial pathogenic diseases have had a negative effect on the aquaculture industry of R. philippinarum. In the present study, the two transcriptome libraries of untreated (termed H) and challenged Vibrio anguillarum (termed HV) hepatopancreas were constructed and sequenced from Manila clam using an Illumina-based paired-end sequencing platform. In total, 75,302,886 and 66,578,976 high-quality clean reads were assembled from 101,080,746 and 99,673,538 raw data points from the two transcriptome libraries described above, respectively. Furthermore, 156,116 unigenes were generated from 210,685 transcripts, with an N50 length of 1125 bp, and from the annotated SwissProt, NR, NT, KO, GO, KOG and KEGG databases. Moreover, a total of 4071 differentially expressed unigenes (HV vs H) were detected, including 903 up-regulated and 3168 down-regulated genes. Among these differentially expressed unigenes, 226 unigenes were annotated using KEGG annotation in 16 immune-related signaling pathways, including Toll-like receptor, NF-kappa B, MAPK, NOD-like receptor, RIG-I-like receptor, and the TNF and chemokine signaling pathways. Finally, 20,341 simple sequence repeats (SSRs) and 214,430 potential single nucleotide polymorphisms (SNPs) were detected from the H and HV transcriptome libraries. In conclusion, these studies identified many candidate immune-related genes and signaling pathways and conducted a comparative analysis of the differentially expressed unigenes from Manila clam hepatopancreas in response to V. anguillarum stimulation. These data laid the foundation for studying the innate immune systems and defense mechanisms in R. philippinarum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Breast Milk and Solid Food Shaping Intestinal Immunity
Parigi, Sara M.; Eldh, Maria; Larssen, Pia; Gabrielsson, Susanne; Villablanca, Eduardo J.
2015-01-01
After birth, the intestinal immune system enters a critical developmental stage, in which tolerogenic and pro-inflammatory cells emerge to contribute to the overall health of the host. The neonatal health is continuously challenged by microbial colonization and food intake, first in the form of breast milk or formula and later in the form of solid food. The microbiota and dietary compounds shape the newborn immune system, which acquires the ability to induce tolerance against innocuous antigens or induce pro-inflammatory immune responses against pathogens. Disruption of these homeostatic mechanisms might lead to undesired immune reactions, such as food allergies and inflammatory bowel disease. Hence, a proper education and maturation of the intestinal immune system is likely important to maintain life-long intestinal homeostasis. In this review, the most recent literature regarding the effects of dietary compounds in the development of the intestinal immune system are discussed. PMID:26347740
Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa
2017-01-01
According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acute and Subacute Oral Toxicity of Periodate in Rats
2014-11-17
presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram
Madhwani, Tejal; McBain, Andrew J
2016-01-01
The effect of humoral immunity on the composition of the oral microbiota is less intensively investigated than hygiene and diet, in part due to a lack of simple and robust systems for investigating interactions between salivary immunoglobulins and oral bacteria. Here we report the application of an ex situ method to investigate the specificity of salivary immunoglobulins for salivary bacteria. Saliva collected from six volunteers was separated into immunoglobulin and microbial fractions, and the microbial fractions were then directly exposed to salivary immunoglobulins of "self" and "non-self" origin. Antibody-selected bacteria were separated from their congeners using a magnetic bead system, selective for IgA or IgG isotypes. The positively selected fractions were then characterized using gel-based eubacterial-specific DNA profiling. The eubacterial profiles of positively selected fractions diverged significantly from profiles of whole salivary consortia based on volunteer (P≤ 0.001%) and immunoglobulin origin (P≤ 0.001%), but not immunoglobulin isotype (P = 0.2). DNA profiles of separated microbial fractions were significantly (p≤ 0.05) less diverse than whole salivary consortia and included oral and environmental bacteria. Consortia selected using self immunoglobulins were generally less diverse than those selected with immunoglobulins of non-self origin. Magnetic bead separation facilitated the testing of interactions between salivary antibodies and oral bacteria, showing that these interactions are specific and may reflect differences in recognition by self and non-self immunoglobulins. Further development of this system could improve understanding of the relationship between the oral microbiota and the host immune system and of mechanisms underlying the compositional stability of the oral microbiota.
Jet fuel-induced immunotoxicity.
Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M
2000-09-01
Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.
Abrams, Elizabeth T; Miller, Elizabeth M
2011-01-01
Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.
Sexual dimorphism in immune function changes during the annual cycle in house sparrows
NASA Astrophysics Data System (ADS)
Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis
2010-10-01
Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.
The University Immune System: Overcoming Resistance to Change
ERIC Educational Resources Information Center
Gilley, Ann; Godek, Marisha; Gilley, Jerry W.
2009-01-01
A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.
Park, Sung Kwon; Lee, Myung Hoon; Cho, Soo Hyun
2014-01-01
This study was performed to develop a rapid immuno-assay kit, by using a specific antigen to detect Hanwoo brand meat. We selected a synthetic antigen specific to our target antibody, named BIO-TAG (Tyr-D-Ala-Phe), by utilizing a computer-based analysis and literature review. BIO-TAG tagged with adjuvant was subcutaneously injected in sheep and Hanwoo. The serum and meat juice of the immunized or non-immunized animal were then analyzed, to measure the titer of antibody by ELISA and Western blot. The amount of antibodies against the BIO-TAG increased (p<0.05) in serum by vaccination. Furthermore, meat juice from the immunized Hanwoo showed greater (p<0.05) antibody titer, compared with those from non-immunized groups. To optimze the dilution factor, we performed dot-ELISA, with various combination levels of BIO-TAG. Results from dot-ELISA showed that 2 mg/mL BIO-TAG was sufficient to distinguish the immunized meat from non-immunized groups. These results support our hypothesis that simple immunization of Hanwoo generates a sufficient amount of antibodies to be detectable in the meat juice by means of the immune-assay. Therefore, specific Hanwoo brand meat can be more precisely identified by our rapid diagnostic kit. This technology can deter possible fraud of counterfeit meat brands in the Korean domestic market with ease and rapidity; and offers a new tool that guarantees consumers high quality Hanwoo brand beef. PMID:26761175
Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A
2018-04-01
Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Aging of the Immune System. Mechanisms and Therapeutic Targets.
Weyand, Cornelia M; Goronzy, Jörg J
2016-12-01
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Evolution of immune systems from self/not self to danger to artificial immune systems (AIS).
Cooper, Edwin L
2010-03-01
This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.
Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)
NASA Astrophysics Data System (ADS)
Cooper, Edwin L.
2010-03-01
This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.
Stoll, Matthew L
2011-01-01
The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarize evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions. PMID:21269576
Adverse child health impacts resulting from food adulterations in the Greater China Region.
Li, Wai Chin; Chow, Chin Fung
2017-09-01
Food adulteration has a long history in human society, and it still occurs in modern times. Because children are relatively vulnerable to food adulterants, studying the health impacts of food adulteration on children is important. This article provides an overview of the child health impacts of food adulterants in two recent food adulteration incidents in the Greater China Region: (1) a plasticizer incident in Taiwan and (2) a 2,4,6-triamino-1,3,5-triazine (melamine)-tainted milk incident in China. The involved food adulterants, di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP) and melamine, are harmful to the hippocampus, kidneys, reproductive organs and immune system of children, and they also increase the risk of cancer. To detect food adulteration and to avoid further harm caused by food adulteration, simple screening methods have been developed, and they have recently emerged as a new focus area for research. This article also summarizes the simple screening methods used to analyse the aforementioned food adulterants and reports how governments reacted to the recent food incidents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Combining evidence and diffusion of innovation theory to enhance influenza immunization.
Britto, Maria T; Pandzik, Geralyn M; Meeks, Connie S; Kotagal, Uma R
2006-08-01
Children and adolescents with chronic conditions such as asthma, diabetes, and HIV are at high risk of influenza-related morbidity, and there are recommendations to immunize these populations annually. At Cincinnati Children's Hospital Medical Center, the influenza immunization rate increased to 90.4% (5% declined) among 200 patients with cystic fibrosis (CF). Diffusion of innovation theory was used to guide the design and implementation of spread to other clinics. The main intervention strategies were: (1) engagement of interested, nurse-led teams, (2) A collaborative learning session, (3) A tool kit including literature, sample goals, reminder postcards, communication strategies, and team member roles and processes, (4) open-access scheduling and standing orders (5) A simple Web-based registry, (6) facilitated vaccine ordering, (7) recall phone calls, and (8) weekly results posting. Clinic-specific immunization rates ranged from 32.7% to 92.8%, with the highest rate reported in the CF clinic. All teams used multiple strategies; with six of the seven using four or more. Overall, 60.0% (762/1,269) of the population was immunized. Barriers included vaccine shortages, lack of time for reminder calls, and lack of physician support in one clinic. A combination of interventions, guided by evidence and diffusion of innovation theory, led to immunization rates higher than those reported in the literature.
Treatment of diseases due to infections and old age using anti-foaming agents.
Reinemann, Peter Joachim
2003-06-01
The biochemical changes taking place in the organism in the course of ageing and infectious processes result in substantial catabolic processes during which a variety of gases are created (in addition to carbon dioxide and nitrogen, depending on the conditions, methane, ammonia, hydrogen sulphide, mercaptan, etc. are also created) in addition to peptides and low molecular organic compounds. These gases are dispersed in the extra-cellular space and in the capillary system of blood and lymph in the form of micro-foam. The accompanied disturbance in the ability to flow considerably impairs the immune defence system which is inseparably connected to the transport of catabolic products. Any resulting diseases can be alleviated or even removed by the application of a simple physical-chemical principle. Anti-foaming agents (solutions, all types of dispersions, micro-emulsions) based on polydimethylsiloxane but also based on fatty acid esters (preferably unsaturated fatty acids) are proposed for treatment purposes.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System.
Díaz-Muñoz, Manuel D; Turner, Martin
2018-01-01
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System
Symowski, Cornelia; Voehringer, David
2017-01-01
Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497
Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.
Symowski, Cornelia; Voehringer, David
2017-01-01
Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.
Pavlov, Valentin A.; Tracey, Kevin J.
2015-01-01
Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000
ERIC Educational Resources Information Center
Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.
2015-01-01
We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…
Patient reminder and recall interventions to improve immunization rates.
Jacobson Vann, Julie C; Jacobson, Robert M; Coyne-Beasley, Tamera; Asafu-Adjei, Josephine K; Szilagyi, Peter G
2018-01-18
Immunization rates for children and adults are rising, but coverage levels have not reached optimal goals. As a result, vaccine-preventable diseases still occur. In an era of increasing complexity of immunization schedules, rising expectations about the performance of primary care, and large demands on primary care providers, it is important to understand and promote interventions that work in primary care settings to increase immunization coverage. One common theme across immunization programs in many nations involves the challenge of implementing a population-based approach and identifying all eligible recipients, for example the children who should receive the measles vaccine. However, this issue is gradually being addressed through the availability of immunization registries and electronic health records. A second common theme is identifying the best strategies to promote high vaccination rates. Three types of strategies have been studied: (1) patient-oriented interventions, such as patient reminder or recall, (2) provider interventions, and (3) system interventions, such as school laws. One of the most prominent intervention strategies, and perhaps best studied, involves patient reminder or recall systems. This is an update of a previously published review. To evaluate and compare the effectiveness of various types of patient reminder and recall interventions to improve receipt of immunizations. We searched CENTRAL, MEDLINE, Embase and CINAHL to January 2017. We also searched grey literature and trial registers to January 2017. We included randomized trials, controlled before and after studies, and interrupted time series evaluating immunization-focused patient reminder or recall interventions in children, adolescents, and adults who receive immunizations in any setting. We included no-intervention control groups, standard practice activities that did not include immunization patient reminder or recall, media-based activities aimed at promoting immunizations, or simple practice-based awareness campaigns. We included receipt of any immunizations as eligible outcome measures, excluding special travel immunizations. We excluded patients who were hospitalized for the duration of the study period. We used the standard methodological procedures expected by Cochrane and the Cochrane Effective Practice and Organisation of Care (EPOC) Group. We present results for individual studies as relative rates using risk ratios, and risk differences for randomized trials, and as absolute changes in percentage points for controlled before-after studies. We present pooled results for randomized trials using the random-effects model. The 75 included studies involved child, adolescent, and adult participants in outpatient, community-based, primary care, and other settings in 10 countries.Patient reminder or recall interventions, including telephone and autodialer calls, letters, postcards, text messages, combination of mail or telephone, or a combination of patient reminder or recall with outreach, probably improve the proportion of participants who receive immunization (risk ratio (RR) of 1.28, 95% confidence interval (CI) 1.23 to 1.35; risk difference of 8%) based on moderate certainty evidence from 55 studies with 138,625 participants.Three types of single-method reminders improve receipt of immunizations based on high certainty evidence: the use of postcards (RR 1.18, 95% CI 1.08 to 1.30; eight studies; 27,734 participants), text messages (RR 1.29, 95% CI 1.15 to 1.44; six studies; 7772 participants), and autodialer (RR 1.17, 95% CI 1.03 to 1.32; five studies; 11,947 participants). Two types of single-method reminders probably improve receipt of immunizations based on moderate certainty evidence: the use of telephone calls (RR 1.75, 95% CI 1.20 to 2.54; seven studies; 9120 participants) and letters to patients (RR 1.29, 95% CI 1.21 to 1.38; 27 studies; 81,100 participants).Based on high certainty evidence, reminders improve receipt of immunizations for childhood (RR 1.22, 95% CI 1.15 to 1.29; risk difference of 8%; 23 studies; 31,099 participants) and adolescent vaccinations (RR 1.29, 95% CI 1.17 to 1.42; risk difference of 7%; 10 studies; 30,868 participants). Reminders probably improve receipt of vaccinations for childhood influenza (RR 1.51, 95% CI 1.14 to 1.99; risk difference of 22%; five studies; 9265 participants) and adult influenza (RR 1.29, 95% CI 1.17 to 1.43; risk difference of 9%; 15 studies; 59,328 participants) based on moderate certainty evidence. They may improve receipt of vaccinations for adult pneumococcus, tetanus, hepatitis B, and other non-influenza vaccinations based on low certainty evidence although the confidence interval includes no effect of these interventions (RR 2.08, 95% CI 0.91 to 4.78; four studies; 8065 participants). Patient reminder and recall systems, in primary care settings, are likely to be effective at improving the proportion of the target population who receive immunizations.
The developing immune system - from foetus to toddler.
Ygberg, Sofia; Nilsson, Anna
2012-02-01
During foetal development, neonatal period and childhood, the immune system is constantly maturing. In the foetus, infection responsiveness is low and associates with spontaneous abortion. During the neonatal period, the infection response shifts towards a more pro-inflammatory response. The immune system of the newborn acquires adaptive features as a result of exposure to microbes. The development of the human immune system is a continuous process where both accelerated and retarded development is deleterious. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
An Investigation of the Memory Response of the Local Immune System to Shigella Antigens.
1985-12-31
kAD-A±75 215 AN INVESTIOATION OF THE MEMORY RESPONSE OF THE LOCAL L/1 I IMMUNE SYSTEM TO SHIGELLA ANTIGENS(U) MICHIGAN UNIV ANN I RBOR D F KEREN 31...IMMUNE SYSTEM TO SHIGELLA ANTIGENS ANNUAL REPORT DAVID F. KEREN, M.D. DECEMBER 31, 1985 FOR THE PERIOD DECEMBER 1, 1984 - NOVEMBER 30, 1985 SUPPORTED...Security Classification) An Investigation of the Memory Response of the Local Immune System to Shigella Antigens 12 PERSONAL AUTHOR(S) Keren, David F
Alcohol and HIV Effects on the Immune System.
Bagby, Gregory J; Amedee, Angela M; Siggins, Robert W; Molina, Patricia E; Nelson, Steve; Veazey, Ronald S
2015-01-01
HIV disease and alcohol independently influence the human immune system, so it stands to reason that, together, their influence may be additive. Here, we review the evidence that alcohol can exacerbate HIV's influence on the immune system, thereby affecting disease progression and transmission. We focus particularly on alcohol's effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract and the lungs, all of which play a role in transmission and progression of HIV disease.
Alcohol and HIV Effects on the Immune System
Bagby, Gregory J.; Amedee, Angela M.; Siggins, Robert W.; Molina, Patricia E.; Nelson, Steve; Veazey, Ronald S.
2015-01-01
HIV disease and alcohol independently influence the human immune system, so it stands to reason that, together, their influence may be additive. Here, we review the evidence that alcohol can exacerbate HIV’s influence on the immune system, thereby affecting disease progression and transmission. We focus particularly on alcohol’s effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract and the lungs, all of which play a role in transmission and progression of HIV disease. PMID:26695751
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Modulating the function of the immune system by thyroid hormones and thyrotropin.
Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A
2017-04-01
Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Autobalanced Ramsey Spectroscopy
NASA Astrophysics Data System (ADS)
Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard
2018-01-01
We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone
All-optical phase modulation for integrated interferometric biosensors.
Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M
2012-03-26
We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.
Letting Our Cells Do the Fighting: Flight-Induced Changes in the Immune Response
NASA Technical Reports Server (NTRS)
Pierson, Duane; Bloomberg, Jacob; Lee, Angie (Technical Monitor)
2002-01-01
The organisms that make us ill, such as bacteria, viruses, and fungi, are like attacking armies. We now know a great deal more about this unseen world of microscopic invaders. Fortunately for us, the human immune system is ever vigilant against them. Microorganisms such as bacteria, viruses, and fungi occupy almost every corner of the Earth, and even parts of the human body. Some organisms are beneficial to us, helping to produce milk, cheese or yogurt. Others are potentially harmful, yet we don#t always develop illnesses from them; they are kept in check by the sentinels of our immune system. Our immune system is routinely challenged by these organisms every day. When the immune response is diminished, our ability to fight off these "bugs" is lowered. And that's when we become ill. Space flight presents a challenge to the immune system. Scientists believe that the stressful conditions of space flight - launch into orbit, adapting to microgravity, heavy workloads, and isolation from family and friends, to name but a few - reduce the astronauts' immunity. This immune suppression makes them more susceptible to common illnesses from bacteria and to re-infections from latent viruses in the body. In addition, risk of spreading illness in the confined environment of the Space Shuttle is high. Understanding changes in immune function will help scientists develop ways to keep astronauts healthy in space. This knowledge can also benefit earthbound populations. This experiment will give scientists insight into the immune system by comparing how certain cells of astronauts' innate immune system - the first line of defense against invaders - function after flight compared to before flight.
Web-based e-learning and virtual lab of human-artificial immune system.
Gong, Tao; Ding, Yongsheng; Xiong, Qin
2014-05-01
Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.
Levy, Ofer; Netea, Mihai G.
2014-01-01
Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named “trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases. PMID:24352476
Lutwak, Nancy; Dill, Curt
2012-01-01
Herpes zoster is a common illness that can lead to serious morbidity. There is now evidence that HIV-infected patients who have been treated with antiretroviral therapy are at greater risk of developing herpes zoster not when they are severely immunocompromised but, paradoxically, when their immune system is recovering. This is a manifestation of the immune reconstitution inflammatory syndrome. The objectives of this report are to (1) inform health care providers that HIV-infected patients may develop multiple infectious, autoimmune, and oncological manifestations after treatment with antiretroviral medication, as they have immune system reconstitution, and (2) discuss herpes zoster, one of the possible manifestations. The patient is a 68-year-old HIV-positive man who presented with herpes zoster after being treated with highly active antiretroviral therapy (HAART) when his immune system was recovering, not when he was most immunosuppressed. Emergency department physicians should be aware that HIV-infected patients treated with HAART may have clinical deterioration despite immune system strengthening. This immune reconstitution inflammatory syndrome can present with infectious, autoimmune, or oncological manifestations. Our case patient, an HIV-positive man with immune system recovery after treatment with HAART, presented with an infectious manifestation, herpes zoster.
Insect Immunity to Entomopathogenic Fungi.
Lu, H-L; St Leger, R J
2016-01-01
The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cohen, Luchino
Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.
Effects of surgery, immunization, and laser immunotherapy on a non-immunogenic metastic tumor model
NASA Astrophysics Data System (ADS)
Chen, Wei R.; Huang, Zheng; Andrienko, Kirill; Stefanov, Stefan; Wolf, Roman F.; Liu, Hong
2006-08-01
Traditional local cancer treatment modalities include surgery and radiation, which has the immediate tumor response due to tumor removal or radiation induced cell death. However, such therapeutic approaches usually do not result in eradiation of tumors, particularly when treating metastatic tumors. In fact, local treatment of primary tumors may stimulate the growth and spread of remote metastasis. Commonly used systemic therapies include chemotherapy and immunotherapy, which target the dividing cells or the immune systems. However, in addition to the severe side effects, chemotherapy often suppresses the immune systems, hence lessening the host's ability to fight the disease. Immunotherapy, on the other hand, aims at educating and stimulating immune systems using either general immune enhancements or antigen-oriented specific immune stimulation. However, so far, the traditional immunotherapy has yielded only limited success in treating cancer patients. A different approach is needed. To combine the advantages of both local therapies for acute and targeted treatment responses and the systemic therapies for stimulation of the immune systems, laser immunotherapy was proposed to use selective photothermal therapy as the local treatment modality and the adjuvant-assisted immunotherapy for systemic control. Laser immunotherapy has show positive results in treating metastatic tumors. In this study, we conducted a comparative study using surgery, freeze-thaw immunization and laser immunotherapy in the treatment of metastatic rat mammary tumors. Our results showed that removal of the primary tumors was unsuccessful at changing the course of tumor progression. The tumor cell lysate immunization delayed the emergence of metastases but did not provide immunity against the tumor challenge. Laser immunotherapy, on the other hand, resulted in regression and eradication.
Jafri, Salema; Ormiston, Mark L
2017-12-01
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.
Improving Collaboration between Public Health and Family Health Teams in Ontario
Green, Michael E.; Weir, Erica; Hogg, William; Etches, Vera; Moore, Kieran; Hunter, Duncan; Birtwhistle, Richard
2013-01-01
Objectives: To identify and explore areas where responsibilities may overlap between family health teams (FHTs) and public health units (PHUs); to identify facilitators or barriers to collaboration; and to identify priority areas for increased collaboration. Design and context: Cross-sectional mixed-methods study of FHTs and PHUs in Ontario, Canada, consisting of a postal survey, key informant interviews and a roundtable meeting. Results: The survey response rate was 46%. Direct client-based services such as giving immunizations, promoting prenatal health and nutrition, and counselling related to smoking cessation were identified as the top three areas of perceived overlap. The greatest interest in collaboration was expressed in the areas of emergency planning and preparedness, immunization, and prenatal health and nutrition. Good communication with a clear understanding of roles and functions was the most important facilitator, and lack of resources and absence of a clear provincial mandate and direction to collaborate were identified as significant barriers. Conclusions: Small, simple client-based projects of interest to both kinds of organization would be the best way to move forward in the short term. Improving communication between FHTs and PHUs, understanding of roles and functions, the use of shared or interoperable information systems and greater clarity from government on the ways in which these two key sectors of the healthcare system are intended to work together were identified as important for the success of increased collaboration. PMID:23968630
Shariat, Sheida; Badiee, Ali; Jalali, Seyed Amir; Mansourian, Mercedeh; Yazdani, Mona; Mortazavi, Seyed Alireza; Jaafari, Mahmoud Reza
2014-12-01
Vaccines containing synthetic peptides derived from tumor-associated antigens (TAA) can elicit potent cytotoxic T lymphocyte (CTL) response if they are formulated in an optimal vaccine delivery system. The aim of this study was to develop a simple and effective lipid-based vaccine delivery system using P5 HER2/neu-derived peptide conjugated to Maleimide-PEG2000-DSPE. The conjugated lipid was then incorporated into liposomes composed of DMPC:DMPG:Chol:DOPE containing Monophosphoryl lipid A (MPL) (Lip-DOPE-P5-MPL). Different liposome formulations were prepared and characterized for their physicochemical properties. To evaluate anti-tumoral efficacy, BALB/c mice were immunized subcutaneously 3 times in two-week intervals and the generated immune response was studied. The results demonstrated that Lip-DOPE-P5-MPL induced a significantly higher IFN-γ production by CD8+ T cells intracellularly which represents higher CTL response in comparison with other control formulations. CTL response induced by this formulation caused the lowest tumor size and the longest survival time in a mice model of TUBO tumor. The encouraging results achieved by Lip-DOPE-P5-MPL formulation could make it a promising candidate in developing effective vaccines against Her2 positive breast cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Innate control of adaptive immunity: Beyond the three-signal paradigm
Jain, Aakanksha; Pasare, Chandrashekhar
2017-01-01
Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987
Chronic grouped social restriction triggers long-lasting immune system adaptations.
Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei
2017-05-16
Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.
Erchick, Daniel J; George, Asha S; Umeh, Chukwunonso; Wonodi, Chizoba
2016-12-10
Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC) officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Weak accountability presents a significant barrier to performance of the routine immunization system and high immunization coverage in Nigeria. As one stakeholder in ensuring the performance of health systems, routine immunization officials reveal critical areas that need to be prioritized if emerging interventions to improve accountability in routine immunization are to have an effect. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Interactions between adipose tissue and the immune system in health and malnutrition.
Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Polić, Bojan
2015-09-01
Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric
2015-06-23
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Jiang, Hong; Chess, Leonard
2008-11-01
By discriminating self from nonself and controlling the magnitude and class of immune responses, the immune system mounts effective immunity against virtually any foreign antigens but avoids harmful immune responses to self. These are two equally important and related but distinct processes, which function in concert to ensure an optimal function of the immune system. Immunologically relevant clinical problems often occur because of failure of either process, especially the former. Currently, there is no unified conceptual framework to characterize the precise relationship between thymic negative selection and peripheral immune regulation, which is the basis for understanding self-non-self discrimination versus control of magnitude and class of immune responses. In this article, we explore a novel hypothesis of how the immune system discriminates self from nonself in the periphery during adaptive immunity. This hypothesis permits rational analysis of various seemingly unrelated biomedical problems inherent in immunologic disorders that cannot be uniformly interpreted by any currently existing paradigms. The proposed hypothesis is based on a unified conceptual framework of the "avidity model of peripheral T-cell regulation" that we originally proposed and tested, in both basic and clinical immunology, to understand how the immune system achieves self-nonself discrimination in the periphery.
The mucosal immune system in health and disease, with an emphasis on parasitic infection
Allardyce, R. A.; Bienenstock, J.
1984-01-01
This article briefly describes the network of immunity involving selected humoral and cellular elements shared between mucosal surfaces that are both exposed to and remote from antigen challenge. The mechanisms promoting the production, concentration, and secretion of specific antibody isotypes, as well as the migration and localization of various lymphoid cell populations, have been discussed with regard to host mucosal protection against pathogenic agents and other potentially harmful macromolecules. Although certain aspects of the mucosal immune system may be viewed as separate from the systemic immune system, they are not exclusively so. We have drawn attention to their interactions with systemic immune reactants and other, nonimmunological, cellular and humoral constituents of mucosal surfaces and tissues such as the liver. At another level of interaction we have considered the teleological translation of host defence and immunoregulation from one generation to the next through the medium of colostrum and breast milk. The manipulation of the mucosal immune system in order to enhance host resistance, modulate autoimmune and allergic systemic reactivity, or even modify fertility holds great promise. Achievement of these goals depends on gaining further insight into the mechanisms that contribute to mucosal immunity and their interactions with the systemic immune system. Much of our current knowledge is based upon experimental animal models or human populations living in relative prosperity. However, the results of oral vaccination, for example, are known to differ considerably in populations that suffer from parasitic infestations, lack adequate nutrition, and are very old or very young. We have chosen to focus attention on these groups because they constitute a large proportion of the world's population and because mucosal infections are a common cause of illness and death among them. Lastly, the recent discovery that immune deficiencies due to insufficient dietary zinc may extend to subsequent generations of optimally nourished offspring calls for a re-evaluation of immunization protocols in malnourished populations, and of our current understanding of disease inheritance and susceptibility. PMID:6424959
Immune system gene dysregulation in autism and schizophrenia.
Michel, Maximilian; Schmidt, Martin J; Mirnics, Karoly
2012-10-01
Gene*environment interactions play critical roles in the emergence of autism and schizophrenia pathophysiology. In both disorders, recent genetic association studies have provided evidence for disease-linked variation in immune system genes and postmortem gene expression studies have shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore, peripheral biomarker studies revealed that both innate and adaptive immune systems are dysregulated. In both disorders symptoms of the disease correlate with the immune system dysfunction; yet, in autism this process appears to be chronic and sustained, while in schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these immune changes actively contribute to disease symptoms. Modeling these changes in animals provided further evidence that prenatal maternal immune activation alters neurodevelopment and leads to behavioral changes that are relevant for autism and schizophrenia. The converging evidence strongly argues that neurodevelopmental immune insults and genetic background critically interact and result in increased risk for either autism or schizophrenia. Further research in these areas may improve prenatal health screening in genetically at-risk families and may also lead to new preventive and/or therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.
Detection of Kaposi's Sarcoma Associated Herpesvirus Nucleic Acids Using a Smartphone Accessory
Mancuso, Matthew; Cesarman, Ethel; Erickson, David
2014-01-01
Kaposi's sarcoma (KS) is an infectious cancer occurring in immune-compromised patients, caused by Kaposi's sarcoma associated herpesvirus (KSHV). Our vision is to simplify the process of KS diagnosis through the creation of a smartphone based point-of-care system capable of yielding an actionable diagnostic readout starting from a raw biopsy sample. In this work we develop the sensing mechanism for the overall system, a smartphone accessory capable of detecting KSHV nucleic acids. The accessory reads out microfluidic chips filled with a colorimetric nanoparticle assay targeted at KSHV. We calculate that our final device can read out gold nanoparticle solutions with an accuracy of .05 OD, and we demonstrate that it can detect DNA sequences from KSHV down to 1 nM. We believe that through integration with our previously developed components, a smartphone based system like the one studied here can provide accurate detection information, as well as a simple platform for field based clinical diagnosis and research. PMID:25117534
A cognitive computational model inspired by the immune system response.
Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim
2014-01-01
The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.
A Cognitive Computational Model Inspired by the Immune System Response
Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim
2014-01-01
The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131
Why AIDS? The Mystery of How HIV Attacks the Immune System.
ERIC Educational Resources Information Center
Christensen, Damaris
1999-01-01
Reviews differing theories surrounding the mystery of how human immunodeficiency virus (HIV) attacks the immune system. Claims that understanding how HIV triggers immune-cell depletion may enable researchers to block its effects. New knowledge could reveal strategies for acquired immune deficiency syndrome (AIDS) therapies that go beyond the drugs…
Diet Modifies the Neuroimmune System by Influencing Macrophage Activation
ERIC Educational Resources Information Center
Sherry, Christina Lynn
2009-01-01
It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…
The Impact of Gut Microbiota on Gender-Specific Differences in Immunity
Fransen, Floris; van Beek, Adriaan A.; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; van der Gaast-de Jongh, Christa; Savelkoul, Huub F.; de Jonge, Marien I.; Faas, Marijke M.; Boekschoten, Mark V.; Smidt, Hauke; El Aidy, Sahar; de Vos, Paul
2017-01-01
Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF) animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system. PMID:28713378
Garay, Paula A.; McAllister, A. Kimberley
2010-01-01
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522
Toskala, Elina
2014-09-01
Knowledge of our immune system functions is critical for understanding allergic airway disease development as well as for selection of appropriate diagnostic and therapeutic options for patients with respiratory allergies. This review explains the current understanding of the basic immunology of the upper airways and the pathophysiology of allergic responses, including the mechanisms behind allergic rhinitis. The immune system can be divided to 2 main defense systems that function differently-innate immunity and adaptive immunity. Innate immunity includes several defensive mechanisms such as anatomic or physical barriers, physiological barriers, phagocytosis, and inflammation. The adaptive immune response is activated in an antigen-specific way to provide for the elimination of antigen and induce lasting protection. Hypersensitivity reactions occur when an exaggerated adaptive immune response is activated. Allergic rhinitis is an example of a type I, immunoglobulin E, mediated hypersensitivity reaction. Today we have several immunomodulatory treatment options for patients with allergic airway diseases, such as subcutaneous and sublingual immunotherapy. An understanding of the basics of our immune system and its method of functions is key for using these therapies appropriately. © 2014 ARS-AAOA, LLC.
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix
2017-01-01
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert
2017-01-01
A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
Rybacka-Mossakowska, J; Ramlau, R; Gazdulska, J; Gołda-Gocka, I; Kozubski, W; Michalak, S
2016-01-01
Cognitive impairment develops as a clinical manifestation of immune-mediated indirect effects of malignancy in lung cancer patients. This study aimed to evaluate the effects of humoral immune response on cognition in lung cancer patients. Fifty-one lung cancer patients were subjected to neurological examination: Mini Mental State Examination (MMSE), Trail Making Test (TMT), and Hamilton scale. The Psychology Experiment Building Language software was used for the evaluation of digit span, simple reaction time (SRT), and choice reaction time (CRT) tests. Serum samples were tested for the presence of onconeuronal antibodies and antineural antibodies. The results demonstrate that autoantibodies were found in 31 % patients. MMSE scores were lower (26.7 ± 2.7) in seropositive patients than in seronegative subjects (28.7 ± 1.2; p = 0.013). Executive functions were also influenced by the presence of autoantibodies. The humoral immune response in lung cancer patients affected both SRT and CRT. We conclude that the humoral immune response in lung cancer patients is associated with cognitive impairment. Cognitive impairment is associated with both specific reactions against onconeuronal or antineural antigens and non-organ specific reactions against nucleosome antigens.
Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut
2018-03-21
Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.
USDA-ARS?s Scientific Manuscript database
This chapter is an update on the swine Immune System. It will be Chapter 16 in the 11th Edition (2018) of Diseases of Swine. The chapter outlines all aspects of the swine immune system in development and in responses to infection and vaccination. It illustrates the tremendous influence that the immu...
Overview of fish immune system and infectious diseases
USDA-ARS?s Scientific Manuscript database
A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...
76 FR 30731 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... as systemic immune response. The method comprises administrating to the treated subject at least two... vaccination strategy assure both local (i.e. vaginal track) and systemic immunity. Development Status: Proof... technology can provide mucosal/local and systemic immunization simultaneously and thus it may prove to be...
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2008-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight (activation, deficiency, dysregulation) and the response of the immune system to specific latent virus reactivation (known to occur during space flight) will be thoroughly assessed. The first in-flight activity for integrated immunity very recently occurred during the STS-120 Space Shuttle mission. The protocols functioned well from a technical perspective, and accurate in-flight data was obtained from 1 Shuttle and 2 ISS crewmembers. Crew participation rates for the study continue to be robust.
[Indicators of the persistent pro-inflammatory activation of the immune system in depression].
Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy
2006-01-01
The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.
In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector
Li, Yi; Beitelshees, Marie; Fang, Lei; Hill, Andrew; Ahmadi, Mahmoud Kamal; Chen, Mingfu; Davidson, Bruce A.; Knight, Paul; Smith, Randall J.; Andreadis, Stelios T.; Hakansson, Anders P.; Jones, Charles H.; Pfeifer, Blaine A.
2016-01-01
The type and potency of an immune response provoked during vaccination will determine ultimate success in disease prevention. The basis for this response will be the design and implementation of antigen presentation to the immune system. Whereas direct antigen administration will elicit some form of immunological response, a more sophisticated approach would couple the antigen of interest to a vector capable of broad delivery formats and designed for heightened response. New antigens associated with pneumococcal disease virulence were used to test the delivery and adjuvant capabilities of a hybrid biological-biomaterial vector consisting of a bacterial core electrostatically coated with a cationic polymer. The hybrid design provides (i) passive and active targeting of antigen-presenting cells, (ii) natural and multicomponent adjuvant properties, (iii) dual intracellular delivery mechanisms, and (iv) a simple formulation mechanism. In addition, the hybrid format enables device-specific, or in situ, antigen production and consolidation via localization within the bacterial component of the vector. This capability eliminates the need for dedicated antigen production and purification before vaccination efforts while leveraging the aforementioned features of the overall delivery device. We present the first disease-specific utilization of the vector toward pneumococcal disease highlighted by improved immune responses and protective capabilities when tested against traditional vaccine formulations and a range of clinically relevant Streptococcus pneumoniae strains. More broadly, the results point to similar levels of success with other diseases that would benefit from the production, delivery, and efficacy capabilities offered by the hybrid vector. PMID:27419235
Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System
Díaz-Muñoz, Manuel D.; Turner, Martin
2018-01-01
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome. PMID:29875770
Immunology and Immunotherapy of Head and Neck Cancer
Ferris, Robert L.
2015-01-01
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330
The Importance of Human Milk for Immunity in Preterm Infants.
Lewis, Erin D; Richard, Caroline; Larsen, Bodil M; Field, Catherine J
2017-03-01
The immune system of preterm infants is immature, placing them at increased risk for serious immune-related complications. Human milk provides a variety of immune protective and immune maturation factors that are beneficial to the preterm infant's poorly developed immune system. The most studied immune components in human milk include antimicrobial proteins, maternal leukocytes, immunoglobulins, cytokines and chemokines, oligosaccharides, gangliosides, nucleotides, and long-chain polyunsaturated fatty acids. There is growing evidence that these components contribute to the lower incidence of immune-related conditions in the preterm infant. Therefore, provision of these components in human milk, donor milk, or formula may provide immunologic benefits. Copyright © 2016 Elsevier Inc. All rights reserved.
Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros
2017-01-01
Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160
2013-01-01
Background One major problem in dairy cattle husbandry is the prevalence of udder infections. In today’s breeding programmes, top priority is being given to making animal evaluation more cost-effective and reliable and less time-consuming. We proposed tumor necrosis factor α (TNF-α), lactoferrin (LTF) and macrophage-expressed lysozyme (mLYZ) genes as potential DNA markers in the improvement of immunity to mastitis. This study included 588 Polish Holstein-Friesian cows kept on one farm located in the north-western region of Poland. All clinical cases of mastitis in the herd under study were recorded by a qualified veterinarian employed by the farm. The following indicators were applied to determine udder immunity to mastitis in the cows under study: morbidity rate (MR), duration of mastitis (DM) and extent of mastitis (EM). TNF-α, mLYZ and LTF genotypes were identified by real-time PCR method, using SimpleProbe technology. Due to the very low frequency of mLYZ allele T, the gene was excluded from further analysis. A statistical analysis of associations between TNF-α and LTF genes and immunity to mastitis were performed using three models: 1) a parity-averaged model including only additive effects of the genes; 2) a parity-averaged model including both additive and epistatic effects of the genes; and 3) a parity-specific model including only additive effects of the genes. Results With the first and second models it was revealed that the genes effects on the applied indicators of immunity to mastitis were non-significant whereas with the third one the effects were found to be statistically significant. Particularly noteworthy was the finding that the effects of TNF-α and LTF varied depending on age (parity). The alleles which were linked to high immunity to mastitis in lower parities appeared to be less favourable in higher parities. Conclusions These interactions might be related to inflamm-ageing, that is an increased susceptibility to infection due to immune system deregulation that progresses with age. Such pattern of interactions makes it impossible to use the genes in question in marker-assisted selection aimed at reducing heritable susceptibility to mastitis. This is because the immune mechanisms behind resistance to infections proved to be too complex. PMID:23758855
Toledo-Ibarra, G. A.; Rojas-Mayorquín, A. E.; Girón-Pérez, M. I.
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals. PMID:24324508
Toledo-Ibarra, G A; Rojas-Mayorquín, A E; Girón-Pérez, M I
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.
Schlieckau, Florian; Schulz, Daniela; Fill Malfertheiner, Sara; Entleutner, Kathrin; Seelbach-Goebel, Birgit; Ernst, Wolfgang
2018-04-19
Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pakula, Malgorzata M; Maier, Thorsten J; Vorup-Jensen, Thomas
2017-06-01
Amino acids (AAs) support a broad range of functions in living organisms, including several that affect the immune system. The functions of the immune system are affected when free AAs are depleted or in excess because of external factors, such as starvation, or because of genetic factors, such as inborn errors of metabolism. Areas covered: In this review, we discuss the current insights into how free AAs affect immune responses. When possible, we make comparisons to known disease states resulting from inborn errors of metabolism, in which changed levels of AAs or AA metabolites provide insight into the impact of AAs on the human immune system in vivo. We also explore the literature describing how changes in AA levels might provide pharmaceutical targets for safe immunomodulatory treatment. Expert opinion: The impact of free AAs on the immune system is a neglected topic in most immunology textbooks. That neglect is undeserved, because free AAs have both direct and indirect effects on the immune system. Consistent choices of pre-clinical models and better strategies for creating formulations are required to gain clinical impact.
Visceral Inflammation and Immune Activation Stress the Brain
Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian
2017-01-01
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271
Artificial Immune System Approaches for Aerospace Applications
NASA Technical Reports Server (NTRS)
KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)
2002-01-01
Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.
Crosstalk between cancer and the neuro-immune system.
Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira
2018-02-15
In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.
A Brief Journey through the Immune System
Yatim, Karim M.
2015-01-01
This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney. PMID:25845377
[Chronobiology of immune system].
Trufakin, V A; Shurlygina, A V; Dergacheva, T I; Litvinenko, G I; Verbitskaia, L V
1999-01-01
The biological rhythmological programme of the immune system is a constituent of the body's common biological rhythmological programme. Its pattern seems to be genetically determined and reflects the functional status of the system. The chronobiological mechanisms responsible for the regulation of immune functions lie in the presence of certain phasic interrelations between the biological rhythms of the synthesis and production of regulatory agents on the one hand, and those of the receptor system and metabolic potential of immunocompetent cells on the other. The facts given in the paper may be a basis for a chronobiological approach to better understanding the mechanisms of the physiology and pathology of the immune system. The medical significance of study of the structural and temporal pattern of the immune system consists in the development of new techniques for diagnosis, prognosis, therapy, and assessment of risk factors in immunopathological conditions.
Lowry, C.A.; Hollis, J.H.; de Vries, A.; Pan, B.; Brunet, L.R.; Hunt, J.R.F.; Paton, J.F.R.; van Kampen, E.; Knight, D.M.; Evans, A.K.; Rook, G.A.W.; Lightman, S.L.
2007-01-01
Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes. PMID:17367941
Vitamin D, the immune system and asthma
Lange, Nancy E; Litonjua, Augusto; Hawrylowicz, Catherine M; Weiss, Scott
2010-01-01
The effects of vitamin D on bone metabolism and calcium homeostasis have long been recognized. Emerging evidence has implicated vitamin D as a critical regulator of immunity, playing a role in both the innate and cell-mediated immune systems. Vitamin D deficiency has been found to be associated with several immune-mediated diseases, susceptibility to infection and cancer. Recently, there has been increasing interest in the possible link between vitamin D and asthma. Further elucidation of the role of vitamin D in lung development and immune system function may hold profound implications for the prevention and treatment of asthma. PMID:20161622
Electronic immunization data collection systems: application of an evaluation framework.
Heidebrecht, Christine L; Kwong, Jeffrey C; Finkelstein, Michael; Quan, Sherman D; Pereira, Jennifer A; Quach, Susan; Deeks, Shelley L
2014-01-14
Evaluating the features and performance of health information systems can serve to strengthen the systems themselves as well as to guide other organizations in the process of designing and implementing surveillance tools. We adapted an evaluation framework in order to assess electronic immunization data collection systems, and applied it in two Ontario public health units. The Centers for Disease Control and Prevention's Guidelines for Evaluating Public Health Surveillance Systems are broad in nature and serve as an organizational tool to guide the development of comprehensive evaluation materials. Based on these Guidelines, and informed by other evaluation resources and input from stakeholders in the public health community, we applied an evaluation framework to two examples of immunization data collection and examined several system attributes: simplicity, flexibility, data quality, timeliness, and acceptability. Data collection approaches included key informant interviews, logic and completeness assessments, client surveys, and on-site observations. Both evaluated systems allow high-quality immunization data to be collected, analyzed, and applied in a rapid fashion. However, neither system is currently able to link to other providers' immunization data or provincial data sources, limiting the comprehensiveness of coverage assessments. We recommended that both organizations explore possibilities for external data linkage and collaborate with other jurisdictions to promote a provincial immunization repository or data sharing platform. Electronic systems such as the ones described in this paper allow immunization data to be collected, analyzed, and applied in a rapid fashion, and represent the infostructure required to establish a population-based immunization registry, critical for comprehensively assessing vaccine coverage.
ENGINEERING NANO- AND MICRO-PARTICLES TO TUNE IMMUNITY
Moon, James J.; Irvine, Darrell J.; Huang, Bonnie
2013-01-01
The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies,. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles in immunotherapies and diagnostics. PMID:22641380
The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy.
Ghiringhelli, François; Apetoh, Lionel
2014-01-01
Preclinical studies have revealed an unexpected ability of the immune system to contribute to the success of chemotherapy and radiotherapy. Anticancer therapies can trigger immune system activation by promoting the release of danger signals from dying tumor cells and/or the elimination of immunosuppressive cells. We have, however, recently discovered that some chemotherapies, such as 5-fluorouracil and gemcitabine, exert conflicting effects on anticancer immune responses. Although 5-fluorouracil and Gem selectively eliminated myeloid-derived suppressive cells in tumor-bearing rodents, these chemotherapies promoted the release of IL-1β and the development of pro-angiogenic IL-17-producing CD4 T cells. The ambivalent effects of chemotherapy on immune responses should thus be carefully considered to design effective combination therapies based on chemotherapy and immune modulators. Herein, we discuss how the initial findings underscoring the key role of the immune system in mediating the antitumor efficacy of anticancer agents could begin to translate into effective therapies in humans.
Ben-Shaanan, Tamar; Schiller, Maya; Rolls, Asya
2017-10-01
The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy
Ichim, Christine V
2005-01-01
Experimental and clinical experience demonstrates that the resolution of a pathogenic challenge depends not only on the presence or absence of an immune reaction, but also on the initiation of the proper type of immune reaction. The initiation of a non-protective type of immune reaction will not only result in a lack of protection, but may also exacerbate the underlying condition. For example, in cancer, constituents of the immune system have been shown to augment tumor proliferation, angiogenesis, and metastases. This review discusses the duality of the role of the immune system in cancer, from the theories of immunosurveillance and immunostimulation to current studies, which illustrate that the immune system has both a protective role and a tumor-promoting role in neoplasia. The potential of using chemotherapy to inhibit a tumor-promoting immune reaction is also discussed. PMID:15698481
Current understanding of HIV-1 and T-cell adaptive immunity: progress to date.
Mohan, Teena; Bhatnagar, Santwana; Gupta, Dablu L; Rao, D N
2014-08-01
The cellular immune response to human immunodeficiency virus (HIV) has different components originating from both the adaptive and innate immune systems. HIV cleverly utilizes the host machinery to survive by its intricate nature of interaction with the host immune system. HIV evades the host immune system at innate ad adaptive, allows the pathogen to replicate and transmit from one host to another. Researchers have shown that HIV has multipronged effects especially on the adaptive immunity, with CD4(+) cells being the worst effect T-cell populations. Various analyses have revealed that, the exposure to HIV results in clonal expansion and excessive activation of the immune system. Also, an abnormal process of differentiation has been observed suggestive of an alteration and blocks in the maturation of various T-cell subsets. Additionally, HIV has shown to accelerate immunosenescence and exhaustion of the overtly activated T-cells. Apart from causing phenotypic changes, HIV has adverse effects on the functional aspect of the immune system, with evidences implicating it in the loss of the capacity of T-cells to secrete various antiviral cytokines and chemokines. However, there continues to be many aspects of the immune- pathogenesis of HIV that are still unknown and thus required further research in order to convert the malaise of HIV into a manageable epidemic. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cutting the Stone: Health Defined in the Era of Value-based Care
2017-01-01
The immune system contributes to the maintenance of health by preventing and limiting the clinical consequences of infections by pathogenic microorganisms. During the evolution of Homo sapiens, those with the fittest immune system survived. The immune system of Homo sapiens was further improved and adapted by admixture with Neanderthal genes. Nowadays, the human immune system provides adequate protection against the majority of infections. For some 20 infectious diseases, the immune system needs to be improved by vaccination. Vaccination is the number one value-based healthcare intervention and has resulted in global eradication of smallpox. Eradication of poliomyelitis and measles is within reach. A continuous effort will be required for recently emerged pathogens, such as Ebola and HIV, as well as the most difficult - malaria and tuberculosis. PMID:28348941
Cutting the Stone: Health Defined in the Era of Value-based Care.
Rijkers, Ger
2017-02-10
The immune system contributes to the maintenance of health by preventing and limiting the clinical consequences of infections by pathogenic microorganisms. During the evolution of Homo sapiens, those with the fittest immune system survived. The immune system of Homo sapiens was further improved and adapted by admixture with Neanderthal genes. Nowadays, the human immune system provides adequate protection against the majority of infections. For some 20 infectious diseases, the immune system needs to be improved by vaccination. Vaccination is the number one value-based healthcare intervention and has resulted in global eradication of smallpox. Eradication of poliomyelitis and measles is within reach. A continuous effort will be required for recently emerged pathogens, such as Ebola and HIV, as well as the most difficult - malaria and tuberculosis.
How (and why) the immune system makes us sleep
Imeri, Luca; Opp, Mark R.
2010-01-01
Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value. PMID:19209176
How (and why) the immune system makes us sleep.
Imeri, Luca; Opp, Mark R
2009-03-01
Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somayaji, Anil B.; Amai, Wendy A.; Walther, Eleanor A.
This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here aremore » extensible to any system that processes a sequence of data through a software interface.« less
Efficient immunization strategies to prevent financial contagion
NASA Astrophysics Data System (ADS)
Kobayashi, Teruyoshi; Hasui, Kohei
2014-01-01
Many immunization strategies have been proposed to prevent infectious viruses from spreading through a network. In this work, we study efficient immunization strategies to prevent a default contagion that might occur in a financial network. An essential difference from the previous studies on immunization strategy is that we take into account the possibility of serious side effects. Uniform immunization refers to a situation in which banks are ``vaccinated'' with a common low-risk asset. The riskiness of immunized banks will decrease significantly, but the level of systemic risk may increase due to the de-diversification effect. To overcome this side effect, we propose another immunization strategy, called counteractive immunization, which prevents pairs of banks from failing simultaneously. We find that counteractive immunization can efficiently reduce systemic risk without altering the riskiness of individual banks.
[IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].
Kochlamasashvili, B; Gogiashvili, L; Jandieri, K
2017-11-01
Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.
The role of the immune system in neurofibromatosis type 1-associated nervous system tumors.
Karmakar, Souvik; Reilly, Karlyne M
2017-01-01
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Country Immunization Information System Assessments - Kenya, 2015 and Ghana, 2016.
Scott, Colleen; Clarke, Kristie E N; Grevendonk, Jan; Dolan, Samantha B; Ahmed, Hussein Osman; Kamau, Peter; Ademba, Peter Aswani; Osadebe, Lynda; Bonsu, George; Opare, Joseph; Diamenu, Stanley; Amenuvegbe, Gregory; Quaye, Pamela; Osei-Sarpong, Fred; Abotsi, Francis; Ankrah, Joseph Dwomor; MacNeil, Adam
2017-11-10
The collection, analysis, and use of data to measure and improve immunization program performance are priorities for the World Health Organization (WHO), global partners, and national immunization programs (NIPs). High quality data are essential for evidence-based decision-making to support successful NIPs. Consistent recording and reporting practices, optimal access to and use of health information systems, and rigorous interpretation and use of data for decision-making are characteristics of high-quality immunization information systems. In 2015 and 2016, immunization information system assessments (IISAs) were conducted in Kenya and Ghana using a new WHO and CDC assessment methodology designed to identify root causes of immunization data quality problems and facilitate development of plans for improvement. Data quality challenges common to both countries included low confidence in facility-level target population data (Kenya = 50%, Ghana = 53%) and poor data concordance between child registers and facility tally sheets (Kenya = 0%, Ghana = 3%). In Kenya, systemic challenges included limited supportive supervision and lack of resources to access electronic reporting systems; in Ghana, challenges included a poorly defined subdistrict administrative level. Data quality improvement plans (DQIPs) based on assessment findings are being implemented in both countries. IISAs can help countries identify and address root causes of poor immunization data to provide a stronger evidence base for future investments in immunization programs.
Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.
Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli
2018-01-01
Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Artificial immune system approach for air combat maneuvering
NASA Astrophysics Data System (ADS)
Kaneshige, John; Krishnakumar, Kalmanje
2007-04-01
Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.
The immune system as a biomonitor: explorations in innate and adaptive immunity
Thomas, Niclas; Heather, James; Pollara, Gabriel; Simpson, Nandi; Matjeka, Theres; Shawe-Taylor, John; Noursadeghi, Mahdad; Chain, Benjamin
2013-01-01
The human immune system has a highly complex, multi-layered structure which has evolved to detect and respond to changes in the internal microenvironment of the body. Recognition occurs at the molecular or submolecular scale, via classical reversible receptor–ligand interactions, and can lead to a response with great sensitivity and speed. Remarkably, recognition is coupled to memory, such that responses are modulated by events which occurred years or even decades before. Although the immune system in general responds differently and more vigorously to stimuli entering the body from the outside (e.g. infections), this is an emergent property of the system: many of the recognition molecules themselves have no inherent bias towards external stimuli (non-self) but also bind targets found within the body (self). It is quite clear that the immune response registers pathophysiological changes in general. Cancer, wounding and chronic tissue injury are some obvious examples. Against this background, the immune system ‘state’ tracks the internal processes of the body, and is likely to encode information regarding both current and past disease processes. Moreover, the distributed nature of most immune responses (e.g. typically involving lymphoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular interstitial spaces, etc.) means that many of the changes associated with immune responses are manifested systemically, and specifically can be detected in blood. This provides a very convenient route to sampling immune cells. We consider two different and complementary ways of querying the human immune ‘state’ using high-dimensional genomic screening methodologies, and discuss the potentials of these approaches and some of the technological and computational challenges to be overcome. PMID:24427535
Mucosal immunization: a review of strategies and challenges.
Patel, Hinal; Yewale, Chetan; Rathi, Mohan N; Misra, Ambikanandan
2014-01-01
The vast majority of pathogens enter the human body via the mucosal surfaces of the gastrointestinal, respiratory, and urogenital tracts, where they initiate mucosal infections that lead to systemic infections. Despite strong evidence that a good mucosal immune response can effectively prevent systemic infection too, only a few mucosal vaccines are available due to their low efficiency. Most current immunization techniques involve systemic injection, but they are ineffective to induce immunization at a mucosal site. It is a great challenge to target a mucosal compartment that can induce protective immunity at mucosal sites as well as systemic sites. A better understanding of cellular and molecular factors involved in the regulation of mucosal immunity will aid in the design of safer mucosal vaccines that elicit the desired protective immunity against infectious diseases such as HIV. The development of mucosal vaccines, whether for prevention of infectious diseases or for immunotherapy, requires antigen delivery and adjuvant systems that can effectively present vaccine or immunotherapeutic antigens to the mucosal sites. In this review, we examine the mechanism of mucosal protection, induction of mucosal immune response, types of vaccines, current status of marketed vaccines, and novel strategies for protection against infections and for treatment of inflammatory disorders. Additionally, we offer perspectives on future challenges and research directions.
An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun
2014-01-01
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228
Chacon, Jessica Ann; Schutsky, Keith; Powell, Daniel J
2016-11-14
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.
Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta
2013-09-01
Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Effects of the space flight environment on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.
2003-01-01
Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.
Human adaptive immune system Rag2-/-gamma(c)-/- mice.
Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G
2005-06-01
Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.
Statistical Physics of T-Cell Development and Pathogen Specificity
NASA Astrophysics Data System (ADS)
Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.
2013-04-01
In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.
Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.
Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A
2015-04-07
Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Behdani, Elham; Bakhtiarizadeh, Mohammad Reza
2017-10-01
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
Guo, Gang; Yu, Miao; Xiao, Wei; Celis, Esteban; Cui, Yan
2017-01-01
Mutations in tumor suppressor p53 remain a vital mechanism of tumor escape from apoptosis and senescence. Emerging evidence suggests that p53 dysfunction also fuels inflammation and supports tumor immune evasion, thereby serving as an immunological driver of tumorigenesis. Therefore, targeting p53 in the tumor microenvironment (TME) also represents an immunologically desirable strategy for reversing immunosuppression and enhancing antitumor immunity. Using a pharmacological p53 activator nutlin-3a, we show that local p53 activation in TME comprising overt tumor infiltrating leukocytes (TILeus) induces systemic antitumor immunity and tumor regression, but not in TME with scarce TILeus, such as B16 melanoma. Maneuvers that recruit leukocytes to TME, such as TLR3 ligand in B16 tumors, greatly enhanced nutlin-induced antitumor immunity and tumor control. Mechanistically, nutlin-3a-induced antitumor immunity was contingent on two non-redundant but immunologically synergistic p53-dependent processes: reversal of immunosuppression in TME and induction of tumor immunogenic cell death (ICD), leading to activation and expansion of polyfunctional CD8 CTLs and tumor regression. Our study demonstrates that unlike conventional tumoricidal therapies, which rely on effective p53 targeting in each tumor cell and often associate with systemic toxicity, this immune-based strategy requires only limited local p53 activation to alter the immune landscape of TME and subsequently amplify immune response to systemic antitumor immunity. Hence, targeting the p53 pathway in TME can be exploited to reverse immunosuppression and augment therapeutic benefits beyond tumoricidal effects to harness tumor-specific, durable, and systemic antitumor immunity with minimal toxicity. PMID:28280037
Novel Target for Ameliorating Pain and Other Problems after SCI: Spontaneous Activity in Nociceptors
2014-10-01
disruption of the BSCB will permit blood-borne mye- loid and lymphoid immune cells to enter the spinal cord parenchyma and exert direct inflammatory actions...recently evolved adaptive immune system, the innate immune system does not em- ploy antigen-specific humoral and cell -mediated immunity mecha- nisms. Two... innate immune functions have been emphasized traditionally: 1) the recruitment of cells and proteins to destroy pathogens and toxins, and 2) increases
A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...
Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos
2016-04-01
Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Adamo, Shelley A
2014-09-01
Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Cheetahs have a stronger constitutive innate immunity than leopards
Heinrich, Sonja K.; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á.; Wachter, Bettina
2017-01-01
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science. PMID:28333126
Cheetahs have a stronger constitutive innate immunity than leopards.
Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina
2017-03-23
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.
From bench to pet shop to bedside? The environment and immune function in mice.
Kitching, A Richard; Ooi, Joshua D
2016-12-01
The generation of inbred mouse strains in the late 19th and early 20th centuries, coupled with the later establishment of specific pathogen-free animal research facilities created a powerful biological platform for exploration of the immune system in health and disease. Studies in this setting have been responsible for huge advances in our understanding of immunobiology and disease, including immune-mediated kidney disease. However, whereas this reductionist and relatively standardized approach allows us to make sense of complex disease biology, it takes place in controlled environments that clearly differ from those that we humans encounter in everyday life. Recent studies comparing the immune systems of wild mice, pet shop mice, and laboratory mice suggest ways in which the murine immune system can be influenced to behave more like the human immune system. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Immunology and Immunotherapy of Head and Neck Cancer.
Ferris, Robert L
2015-10-10
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. © 2015 by American Society of Clinical Oncology.
Targeted Immunomodulation Using Antigen-Conjugated Nanoparticles
McCarthy, Derrick P.; Hunter, Zoe N.; Chackerian, Bryce; Shea, Lonnie D.; Miller, Stephen D.
2014-01-01
The growing prevalence of nanotechnology in the fields of biology, medicine and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This “targeted immunomodulation” can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses. PMID:24616452
Immune evasion, immunopathology and the regulation of the immune system.
Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno
2013-02-13
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P
2014-07-01
Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors
Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.
2013-01-01
Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304
Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications
Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu
2017-01-01
The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.
Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D
2016-02-01
During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The immune response against Candida spp. and Sporothrix schenckii.
Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M
2014-01-01
Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane
2014-03-04
The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.
2014-01-01
The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen. PMID:24589193
From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system.
Dhouib, Ines; Jallouli, Manel; Annabi, Alya; Marzouki, Soumaya; Gharbi, Najoua; Elfazaa, Saloua; Lasram, Mohamed Montassar
2016-05-01
The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In the literature, carbamate (CM) pesticides have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, some autoimmune diseases and cancers. CMs may initiate, facilitate, or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors and modifying immune tolerance. In the present study, direct immunotoxicity, endocrine disruption and inhibition of esterases activities have been introduced as the main mechanisms of CMs-induced immune dysregulation. Moreover, the evidence on the relationship between CM pesticide exposure, dysregulation of the immune system and predisposition to different types of cancers, allergies, autoimmune and infectious diseases is criticized. In addition, in this review, we will discuss the relationship between immunotoxicity and cancer, and the advances made toward understanding the basis of cancer immune evasion.
Alternatives to conventional vaccines--mediators of innate immunity.
Eisen, D P; Liley, H G; Minchinton, R M
2004-01-01
Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.
Immune Response in Thyroid Cancer: Widening the Boundaries
Ward, Laura Sterian
2014-01-01
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756
Effective Management of Information Security and Privacy
ERIC Educational Resources Information Center
Anderson, Alicia
2006-01-01
No university seems immune to cyber attacks. For many universities, such events have served as wake-up calls to develop a comprehensive information security and privacy strategy. This is no simple task, however. It involves balancing a culture of openness with a need for security and privacy. Security and privacy are not the same, and the…
The interplay between immunity and aging in Drosophila.
Garschall, Kathrin; Flatt, Thomas
2018-01-01
Here, we provide a brief review of the mechanistic connections between immunity and aging-a fundamental biological relationship that remains poorly understood-by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections ("immuno-senescence"). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging ("inflammaging"). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from Drosophila , a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Nutritional modulation of age-related changes in the immune system and risk of infection
USDA-ARS?s Scientific Manuscript database
The immune system undergoes some adverse alterations during aging, many of which have been implicated in the increased morbidity and mortality associated with infection in the elderly. In addition to intrinsic changes to the immune system with aging, the elderly are more likely to have poor nutritio...
Vaccines and the infant's immune system--what nurses need to know.
Heurter, Helen; Langman, Eileen
2005-01-01
Vaccines prevent serious infections by stimulating the immune system to identify and destroy invading organisms rapidly before they have a chance to cause disease. Armed with the scientific facts to refute current misconceptions surrounding vaccines and the infant's immune system, nurses can provide parents with the answers they need.
Sugishita, Yoshiyuki; Hayashi, Kunihiko; Mori, Toru; Horiguchi, Itsuko; Marui, Eiji
2012-03-01
The BCG immunization has long been performed in Japan. Although the BCG immunization service is the responsibility of the municipality, the manner in which the BCG immunization is delivered differs from municipality to municipality. The purpose of this study was to clarify how the different manner of the BCG immunization delivery systems influenced the BCG immunization coverage. The study of BCG immunization coverage was conducted in the Tama area located in the western suburbs of Tokyo in 2004. The birth data and the immunization history by the age of 3 years were collected in the three-year-old health check-up from a total of 2,341 children residing in the Tama area. Based on the age at immunization for each child, the BCG immunization coverage was calculated according to the types of the BCG immunization delivery system. The immunization types were defined as follows; the BCG immunization given on the occasion of the mass health check-up (Group 1); the exclusive mass BCG immunization in a monthly service (Group 2); the exclusive mass BCG immunization in a bimonthly service (Group 3); the exclusive mass BCG immunization in services of fewer than every two months (Group 4); and the immunization given on an individual basis by a general practitioner (Group 5). A univariate analysis was performed to examine the relationship between the BCG immunization coverage by the age of 6 months and the difference among the BCG immunization delivery systems, followed by a multivariate regression analysis to adjust for the factors related to the demography, health care services and the socio-economic status of the municipalities. Unadjusted odds ratios and adjusted odds ratios for BCG unimmunized children under the age of 6 months by the BCG immunization delivery manner groups were OR 1 reference, adj. OR 1 reference in Group 1; OR 1.42 CI 0.87-2.29, adj. OR 4.01 CI 2.24-7.11 in Group 2; OR 4.96 CI 3.66-6.82, adj. OR 15.59 CI 10.10-24.49 in Group 3;OR 18.60 CI 13.77-25.49, adj. OR 48.17 CI 29.62-79.75 in Group 4; and OR 4.24 CI 2.86-6.31, adj. OR 15.61 CI 9.05-27.26 in Group 5. The univariate analysis and multivariate regression analysis revealed an influence of the BCG immunization delivery manner on the BCG immunization coverage. The choice of BCG immunization delivery manner is very important to raise the BCG immunization coverage. The BCG immunization given on the occasion of the mass health check-up and the high-frequent immunization service are thought to improve the BCG immunization coverage.
Effects of prebiotics on immune system and cytokine expression.
Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo
2017-02-01
Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
Fungal Strategies to Evade the Host Immune Recognition.
Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M
2017-09-23
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Changes in the immune system are conditioned by nutrition.
Marcos, A; Nova, E; Montero, A
2003-09-01
Undernutrition due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients impairs the immune system, suppressing immune functions that are fundamental to host protection. The most consistent abnormalities are seen in cell-mediated immunity, complement system, phagocyte function, cytokine production, mucosal secretory antibody response, and antibody affinity. There is a number of physiological situations such as ageing and performance of intense physical exercise associated with an impairment of some immune parameters' response. Nutrition can influence the extent of immune alteration in both of them. There are also numerous pathological situations in which nutrition plays a role as a primary or secondary determinant of some underlying immunological impairments. This includes obesity, eating disorders (anorexia nervosa and bulimia nervosa), food hypersensitivity and gastrointestinal disorders as some examples. The implications of nutrition on immune function in these disorders are briefly reviewed.
Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology.
Pulendran, Bali
2009-10-01
Despite their great success, we understand little about how effective vaccines stimulate protective immune responses. Two recent developments promise to yield such understanding: the appreciation of the crucial role of the innate immune system in sensing microorganisms and tuning immune responses, and advances in systems biology. Here I review how these developments are yielding insights into the mechanism of action of the yellow fever vaccine, one of the most successful vaccines ever developed, and the broader implications for vaccinology.
The Human in Space: Lesson from ISS
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2009-01-01
This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?
Interactions between the intestinal microbiota and innate lymphoid cells
Chen, Vincent L; Kasper, Dennis L
2014-01-01
The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741
A surgeons' guide to renal transplant immunopathology, immunology, and immunosuppression.
Gaber, Lillian W; Knight, Richard J; Patel, Samir J
2013-12-01
The response to allografting involves adaptive and innate immune mechanisms. In the adaptive system, activated T cells differentiate to cytotoxic effectors that attack the graft and trigger B cells to differentiation to plasma cells that produce anti-HLA antibodies. The innate immune system recognizes antigens in a non-specific manner and recruits immune cells to the graft through the productions of chemotactic factors, and activation of cytokines and the complement cascade. In the kidney the tubules and the endothelium are the targets of the rejection response. Immune suppression is effective in modulating the adaptive immune system effect on graft histology. Copyright © 2013 Elsevier Inc. All rights reserved.
Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Kurabayashi, Katsuo; Oh, Bo-Ram
2014-08-01
Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.
Role of calcium permeable channels in dendritic cell migration.
Sáez, Pablo J; Sáez, Juan C; Lennon-Duménil, Ana-María; Vargas, Pablo
2018-06-01
Calcium ion (Ca 2+ ) is an essential second messenger involved in multiple cellular and subcellular processes. Ca 2+ can be released and sensed globally or locally within cells, providing complex signals of variable amplitudes and time-scales. The key function of Ca 2+ in the regulation of acto-myosin contractility has provided a simple explanation for its role in the regulation of immune cell migration. However, many questions remain, including the identity of the Ca 2+ stores, channels and upstream signals involved in this process. Here, we focus on dendritic cells (DCs), because their immune sentinel function heavily relies on their capacity to migrate within tissues and later on between tissues and lymphoid organs. Deciphering the mechanisms by which cytoplasmic Ca 2+ regulate DC migration should shed light on their role in initiating and tuning immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carstens, Julienne L; Correa de Sampaio, Pedro; Yang, Dalu; Barua, Souptik; Wang, Huamin; Rao, Arvind; Allison, James P; LeBleu, Valerie S; Kalluri, Raghu
2017-04-27
The exact nature and dynamics of pancreatic ductal adenocarcinoma (PDAC) immune composition remains largely unknown. Desmoplasia is suggested to polarize PDAC immunity. Therefore, a comprehensive evaluation of the composition and distribution of desmoplastic elements and T-cell infiltration is necessary to delineate their roles. Here we develop a novel computational imaging technology for the simultaneous evaluation of eight distinct markers, allowing for spatial analysis of distinct populations within the same section. We report a heterogeneous population of infiltrating T lymphocytes. Spatial distribution of cytotoxic T cells in proximity to cancer cells correlates with increased overall patient survival. Collagen-I and αSMA + fibroblasts do not correlate with paucity in T-cell accumulation, suggesting that PDAC desmoplasia may not be a simple physical barrier. Further exploration of this technology may improve our understanding of how specific stromal composition could impact T-cell activity, with potential impact on the optimization of immune-modulatory therapies.
Design and simulation study of the immunization Data Quality Audit (DQA).
Woodard, Stacy; Archer, Linda; Zell, Elizabeth; Ronveaux, Olivier; Birmingham, Maureen
2007-08-01
The goal of the Data Quality Audit (DQA) is to assess whether the Global Alliance for Vaccines and Immunization-funded countries are adequately reporting the number of diphtheria-tetanus-pertussis immunizations given, on which the "shares" are awarded. Given that this sampling design is a modified two-stage cluster sample (modified because a stratified, rather than a simple, random sample of health facilities is obtained from the selected clusters); the formula for the calculation of the standard error for the estimate is unknown. An approximated standard error has been proposed, and the first goal of this simulation is to assess the accuracy of the standard error. Results from the simulations based on hypothetical populations were found not to be representative of the actual DQAs that were conducted. Additional simulations were then conducted on the actual DQA data to better access the precision of the DQ with both the original and the increased sample sizes.
Analysis and optimization of cross-immunity epidemic model on complex networks
NASA Astrophysics Data System (ADS)
Chen, Chao; Zhang, Hao; Wu, Yin-Hua; Feng, Wei-Qiang; Zhang, Jian
2015-09-01
There are various infectious diseases in real world, and these diseases often spread on a network of population and compete for the limited hosts. Cross-immunity is an important disease competing pattern, which has attracted the attention of many researchers. In this paper, we discovered an important conclusion for two cross-immunity epidemics on a network. When the infectious ability of the second epidemic takes a fixed value, the infectious ability of the first epidemic has an optimal value which minimizes the sum of the infection sizes of the two epidemics. We also proposed a simple mathematical analysis method for the infection size of the second epidemic using the cavity method. The proposed method and conclusion are verified by simulation results. Minor inaccuracies of the existing mathematical methods for the infection size of the second epidemic are also found and discussed in experiments, which have not been noticed in existing research.
Engineered Lentivector Targeting of Dendritic Cells for In Vivo Immunization
Yang, Lili; Yang, Haiguang; Rideout, Kendra; Cho, Taehoon; Joo, Kye il; Ziegler, Leslie; Elliot, Abigail; Walls, Anthony; Yu, Dongzi; Baltimore, David; Wang, Pin
2008-01-01
We report a method of inducing antigen production in dendritic cells (DCs) by in vivo targeting with lentiviral vectors that specifically bind to the DC surface protein, DC-SIGN. To target the DCs, the lentivector was enveloped with a viral glycoprotein from Sindbis virus, engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced DCs and induced DC maturation. A remarkable frequency (up to 12%) of ovalbumin (OVA)-specific CD8+ T cells and a significant antibody response were observed 2 weeks following injection of a targeted lentiviral vector encoding an OVA transgene into naïve mice. These mice were solidly protected against the growth of the OVA-expressing E.G7 tumor and this methodology could even induce regression of an established tumor. Thus, lentiviral vectors targeting DCs provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens. PMID:18297056
Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.
Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C; Lazzaro, Brian P
2015-05-13
The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology.
Tribbles role in reproduction.
Basatvat, Shaghayegh; Carter, Deborah Angela Louise; Kiss-Toth, Endre; Fazeli, Alireza
2015-10-01
Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events. © 2015 Authors; published by Portland Press Limited.
[Application to allergic diseases].
Saito, Hirohisa
2005-04-01
The increasing prevalence of allergic diseases in developed countries is considered to be caused, at least in part, by rapid improvement of human hygiene. In human beings, the immune system developed as an ingenious device for defending against frequent attacks by microbes. Therefore, our immune system seems to have become deranged in our recent, unprecedentedly hygienic environment. It is now necessary to understand the total functional elements comprising the immune system, not just a single molecule present in an immunocyte working in our immune system. Microarray analysis is now becoming capable of detecting the whole transcripts present in a cell. It is anticipated that we can understand the deranged human immunity using the system biology. It is also expected to predict previously unexpected drug-related adverse events caused by interaction of a drug with responsible molecules present in vital organs.
The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus.
Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong
2011-02-15
Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.
The Texas Children's Hospital immunization forecaster: conceptualization to implementation.
Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A
2014-12-01
Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.
Immunological considerations regarding parental concerns on pediatric immunizations.
Nicoli, Francesco; Appay, Victor
2017-05-25
Despite the fundamental role of vaccines in the decline of infant mortality, parents may decide to decline vaccination for their own children. Many factors may influence this decision, such as the belief that the infant immune system is weakened by vaccines, and concerns have been raised about the number of vaccines and the early age at which they are administered. Studies focused on the infant immune system and its reaction to immunizations, summarized in this review, show that vaccines can overcome those suboptimal features of infant immune system that render them more at risk of infections and of their severe manifestations. In addition, many vaccines have been shown to improve heterologous innate and adaptive immunity resulting in lower mortality rates for fully vaccinated children. Thus, multiple vaccinations are necessary and not dangerous, as infants can respond to several antigens as well as when responding to single stimuli. Current immunization schedules have been developed and tested to avoid vaccine interference, improve benefits and reduce side effects compared to single administrations. The infant immune system is therefore capable, early after birth, of managing several antigenic challenges and exploits them to prompt its development. Copyright © 2017 Elsevier Ltd. All rights reserved.
'Order from disorder sprung': recognition and regulation in the immune system
NASA Astrophysics Data System (ADS)
Mak, Tak W.
2003-06-01
Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.
'Order from disorder sprung': recognition and regulation in the immune system.
Mak, Tak W
2003-06-15
Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.
Immunity to betanodavirus infections of marine fish.
Chen, Young-Mao; Wang, Ting-Yu; Chen, Tzong-Yueh
2014-04-01
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection. Copyright © 2013 Elsevier Ltd. All rights reserved.