Sample records for simple laws relating

  1. Simple solutions for relativistic generalizations of the Child-Langmuir law and the Langmuir-Blodgett law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yongpeng; Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024; Liu Guozhi

    In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.

  2. Extradition To and From the United States: Overview of the Law and Recent Treaties

    DTIC Science & Technology

    2010-03-17

    goods, articles, or merchandise. b. Offenses relating to willful evasion of taxes and duties. c. Offenses against the laws relating to international ...Extradition To and From the United States: Overview of the Law and Recent Treaties Congressional Research Service 1 Introduction ...intricate extradition procedures has been attributed to the predominance of this simple principle of international law.6

  3. Favorite Demonstrations: Gaseous Diffusion: A Demonstration of Graham's Law.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Ebner, Ronald D.

    1985-01-01

    Describes a demonstration in which gaseous ammonia and hydrochloric acid are used to illustrate rates of diffusion (Graham's Law). Simple equipment needed for the demonstration include a long tube, rubber stoppes, and cotton. Two related demonstrations are also explained. (DH)

  4. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests

    NASA Astrophysics Data System (ADS)

    Cubrovic, Mihailo

    2005-02-01

    We report on our theoretical and numerical results concerning the transport mechanisms in the asteroid belt. We first derive a simple kinetic model of chaotic diffusion and show how it gives rise to some simple correlations (but not laws) between the removal time (the time for an asteroid to experience a qualitative change of dynamical behavior and enter a wide chaotic zone) and the Lyapunov time. The correlations are shown to arise in two different regimes, characterized by exponential and power-law scalings. We also show how is the so-called “stable chaos” (exponential regime) related to anomalous diffusion. Finally, we check our results numerically and discuss their possible applications in analyzing the motion of particular asteroids.

  5. Application of a simple power law for transport ratio with bimodal distributions of spherical grains under oscillatory forcing

    NASA Astrophysics Data System (ADS)

    Holway, Kevin; Thaxton, Christopher S.; Calantoni, Joseph

    2012-11-01

    Morphodynamic models of coastal evolution require relatively simple parameterizations of sediment transport for application over larger scales. Calantoni and Thaxton (2008) [6] presented a transport parameterization for bimodal distributions of coarse quartz grains derived from detailed boundary layer simulations for sheet flow and near sheet flow conditions. The simulation results, valid over a range of wave forcing conditions and large- to small-grain diameter ratios, were successfully parameterized with a simple power law that allows for the prediction of the transport rates of each size fraction. Here, we have applied the simple power law to a two-dimensional cellular automaton to simulate sheet flow transport. Model results are validated with experiments performed in the small oscillating flow tunnel (S-OFT) at the Naval Research Laboratory at Stennis Space Center, MS, in which sheet flow transport was generated with a bed composed of a bimodal distribution of non-cohesive grains. The work presented suggests that, under the conditions specified, algorithms that incorporate the power law may correctly reproduce laboratory bed surface measurements of bimodal sheet flow transport while inherently incorporating vertical mixing by size.

  6. Convective Detrainment and Control of the Tropical Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Rind, D.

    2006-12-01

    Sherwood et al. (2006) developed a simple power law model describing the relative humidity distribution in the tropical free troposphere where the power law exponent is the ratio of a drying time scale (tied to subsidence rates) and a moistening time which is the average time between convective moistening events whose temporal distribution is described as a Poisson distribution. Sherwood et al. showed that the relative humidity distribution observed by GPS occultations and MLS is indeed close to a power law, approximately consistent with the simple model's prediction. Here we modify this simple model to be in terms of vertical length scales rather than time scales in a manner that we think more correctly matches the model predictions to the observations. The subsidence is now in terms of the vertical distance the air mass has descended since it last detrained from a convective plume. The moisture source term becomes a profile of convective detrainment flux versus altitude. The vertical profile of the convective detrainment flux is deduced from the observed distribution of the specific humidity at each altitude combined with sinking rates estimated from radiative cooling. The resulting free tropospheric detrainment profile increases with altitude above 3 km somewhat like an exponential profile which explains the approximate power law behavior observed by Sherwood et al. The observations also reveal a seasonal variation in the detrainment profile reflecting changes in the convective behavior expected by some based on observed seasonal changes in the vertical structure of convective regions. The simple model results will be compared with the moisture control mechanisms in a GCM with many additional mechanisms, the GISS climate model, as described in Rind (2006). References Rind. D., 2006: Water-vapor feedback. In Frontiers of Climate Modeling, J. T. Kiehl and V. Ramanathan (eds), Cambridge University Press [ISBN-13 978-0-521- 79132-8], 251-284. Sherwood, S., E. R. Kursinski and W. Read, A distribution law for free-tropospheric relative humidity, J. Clim. In press. 2006

  7. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals. PMID:23772091

  8. Zeta potential in ceramic industry

    NASA Technical Reports Server (NTRS)

    Lecuit, M.

    1984-01-01

    Deflocculation, electrical conductivity and zeta potential (ZP) are studied for the addition of 0 to 10000 ppm Na2SiO3 deflocculator to slips obtained from three argillaceous materials (kaolin d'Arvor, ball clay Hyplas 64, and/or Granger Clay No. 10). The quantity of Na2SO3 required to deflocculate a slip is independent of the density but differes for each clay. The ZP is directly related to the density of the slip. The higher the ZP the more stable a slip is; the value of the ZP of a mixture does not follow a simple law but the electrical resistance of a mixture does follow a simple additive law. The ZP appears to have linear relation with the specific surface of the argillaceous material.

  9. Immigrant Entitlements Made (Relatively) Simple: A Pamphlet for Agency Workers. Second Edition.

    ERIC Educational Resources Information Center

    New York City Dept. of City Planning, NY.

    This guide to immigrant entitlements for New York City agencies serving immigrants reflects major changes in immigration law and entitlements law since 1985. The guide focuses on programs administered by the City of New York, but also includes information about some state and federal programs. The guide identifies the following: (1) government…

  10. Washington State's alcohol ignition interlock law: effects on recidivism among first-time DUI offenders.

    PubMed

    McCartt, Anne T; Leaf, William A; Farmer, Charles M; Eichelberger, Angela H

    2013-01-01

    To examine the effects of changes to Washington State's ignition interlock laws: moving issuance of interlock orders from courts to the driver licensing department in July 2003 and extending the interlock order requirement to first-time offenders with blood alcohol concentrations (BACs) below 0.15 percent ("first simple driving under the influence [DUI]") in June 2004. Trends in conviction types, interlock installation rates, and 2-year cumulative recidivism rates were examined for first-time convictions (simple, high-BAC, test refusal DUI; deferred prosecution; alcohol-related negligent driving) stemming from DUI arrests between January 1999 and June 2006. Regression analyses examined recidivism effects of the law changes and interlock installation rates. To examine general deterrent effects, trends in single-vehicle late-night crashes in Washington were compared with trends in California and Oregon. After the 2004 law change, the proportion of simple DUIs declined somewhat, though the proportion of negligent driving convictions (no interlock order requirement) continued an upward trend. Interlock installation rates for first simple DUIs were 3 to 6 percent in the year before the law change and one third after. Recidivism declined by an estimated 12 percent (e.g., expected 10.6% without law change vs. 9.3% among offenders arrested between April and June 2006, the last study quarter) among first simple DUI offenders and an estimated 11 percent (expected 10.2% vs. 9.1%) among all first-time offenders. There was an estimated 0.06 percentage point decrease in the recidivism rate for each percentage point increase in the proportion of first simple DUI offenders with interlocks. If installation rates had been 100 vs. 34 percent for first simple DUI offenders arrested between April and June 2006, and if the linear relationship between rates of recidivism and installations continued, recidivism could have been reduced from 9.3 to 5.3 percent. With installation rates of 100 vs. 24 percent for all first offenders, their recidivism rate could have fallen from 9.1 to 3.2 percent. Although installation rates increased somewhat after the 2003 law change, recidivism rates were not significantly affected, perhaps due to the short follow-up period before the 2004 law change. The 2004 law change was associated with an 8.3 percent reduction in single-vehicle late-night crash risk. Mandating interlock orders for all first DUI convictions was associated with reductions in recidivism, even with low interlock use rates, and reductions in crashes. Additional gains are likely achievable with higher rates. Jurisdictions should seek to increase use rates and reconsider permitting reductions in DUI charges to other traffic offenses without interlock order requirements.

  11. A Fan-tastic Quantitative Exploration of Ohm's Law

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Ekey, Robert; McCullough, Roy; Reitz, William

    2018-02-01

    Teaching simple circuits and Ohm's law to students in the introductory classroom has been extensively investigated through the common practice of using incandescent light bulbs to help students develop a conceptual foundation before moving on to quantitative analysis. However, the bulb filaments' resistance has a large temperature dependence, which makes them less suitable as a tool for quantitative analysis. Some instructors show that light bulbs do not obey Ohm's law either outright or through inquiry-based laboratory experiments. Others avoid the subject altogether by using bulbs strictly for qualitative purposes and then later switching to resistors for a numerical analysis, or by changing the operating conditions of the bulb so that it is "barely" glowing. It seems incongruous to develop a conceptual basis for the behavior of simple circuits using bulbs only to later reveal that they do not follow Ohm's law. Recently, small computer fans were proposed as a suitable replacement of bulbs for qualitative analysis of simple circuits where the current is related to the rotational speed of the fans. In this contribution, we demonstrate that fans can also be used for quantitative measurements and provide suggestions for successful classroom implementation.

  12. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    PubMed

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  13. On Integral Upper Limits Assuming Power-law Spectra and the Sensitivity in High-energy Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahnen, Max L., E-mail: m.knoetig@gmail.com

    The high-energy non-thermal universe is dominated by power-law-like spectra. Therefore, results in high-energy astronomy are often reported as parameters of power-law fits, or, in the case of a non-detection, as an upper limit assuming the underlying unseen spectrum behaves as a power law. In this paper, I demonstrate a simple and powerful one-to-one relation of the integral upper limit in the two-dimensional power-law parameter space into the spectrum parameter space and use this method to unravel the so-far convoluted question of the sensitivity of astroparticle telescopes.

  14. Statistical foundations of liquid-crystal theory: I. Discrete systems of rod-like molecules.

    PubMed

    Seguin, Brian; Fried, Eliot

    2012-12-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals.

  15. Newton's Law: Not so Simple after All

    ERIC Educational Resources Information Center

    Robertson, William C.; Gallagher, Jeremiah; Miller, William

    2004-01-01

    One of the most basic concepts related to force and motion is Newton's first law, which essentially states, "An object at rest tends to remain at rest unless acted on by an unbalanced force. An object in motion in a straight line tends to remain in motion in a straight line unless acted upon by an unbalanced force." Judging by the time and space…

  16. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  17. Eigenspace Design of Helicopter Flight Control Systems

    DTIC Science & Technology

    1990-11-01

    Attitude Changes ......... 44 2.6 Yaw Cross Coupling Criteria . ............................................... 45 I 4. i Definition of the Rigid Body...laws. The methodology detailed in this report allows the designer to synthesize control laws which result in desirable response types such as attitude ...it is simple to relate the desired frequency response characteristics to the natural frequencies and damping factors or the time constants of the

  18. School Law: Handbook for School Board Members. A Handbook of Information on New York State Education Law, Regulations and Decisions of the Commissioner of Education, and Other Laws and Legal Opinions Relating to Education. For the Guidance of School Administrators and Boards of Education in New York State.

    ERIC Educational Resources Information Center

    Hageny, William J.

    In simple and readily available form, this handbook provides boards of education with the laws and regulations governing central school districts, union free schools, and city schools. It should save both time and unnecessary mistakes and give the board an understanding of the legal framework on which the school rests so that the board can proceed…

  19. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    NASA Astrophysics Data System (ADS)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  20. The predictive power of zero intelligence in financial markets.

    PubMed

    Farmer, J Doyne; Patelli, Paolo; Zovko, Ilija I

    2005-02-08

    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where constraints imposed by market institutions dominate strategic agent behavior. We use data from the London Stock Exchange to test a simple model in which minimally intelligent agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction and yields simple laws relating order-arrival rates to statistical properties of the market. We test the validity of these laws in explaining cross-sectional variation for 11 stocks. The model explains 96% of the variance of the gap between the best buying and selling prices (the spread) and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The nondimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view, because it demonstrates the existence of simple laws relating prices to order flows and, in a broader context, suggests there are circumstances where the strategic behavior of agents may be dominated by other considerations.

  1. The orbital mechanics of flight mechanics

    NASA Technical Reports Server (NTRS)

    Dunning, R. S.

    1973-01-01

    A reference handbook on modern dynamic orbit theory is presented. Starting from the most basic inverse-square law, the law of gravity for a sphere is developed, and the motion of point masses under the influence of a sphere is considered. The reentry theory and the orbital theory are discussed along with the relative motion between two bodies in orbit about the same planet. Relative-motion equations, rectangular coordinates, and the mechanics of simple rigid bodies under the influence of a gravity gradient field are also discussed.

  2. Phenomenology of wall-bounded Newtonian turbulence.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Zilitinkevich, Sergej S

    2006-01-01

    We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.

  3. Exploring the effect of power law social popularity on language evolution.

    PubMed

    Gong, Tao; Shuai, Lan

    2014-01-01

    We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.

  4. The Second Law and Quantum Physics

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.

    2008-08-01

    In this talk, I discuss the mystery of the second law and its relation to quantum information. There are many explanations of the second law, mostly satisfactory and not mutually exclusive. Here, I advocate quantum mechanics and quantum information as something that, through entanglement, helps resolve the paradox or the puzzle of the origin of the second law. I will discuss the interpretation called quantum Darwinism and how it helps explain why our world seems so classical, and what it has to say about the permanence or transience of information. And I will discuss a simple model illustrating why systems away from thermal equilibrium tend to be more complicated.

  5. Teaching the principles of statistical dynamics

    PubMed Central

    Ghosh, Kingshuk; Dill, Ken A.; Inamdar, Mandar M.; Seitaridou, Effrosyni; Phillips, Rob

    2012-01-01

    We describe a simple framework for teaching the principles that underlie the dynamical laws of transport: Fick’s law of diffusion, Fourier’s law of heat flow, the Newtonian viscosity law, and the mass-action laws of chemical kinetics. In analogy with the way that the maximization of entropy over microstates leads to the Boltzmann distribution and predictions about equilibria, maximizing a quantity that E. T. Jaynes called “caliber” over all the possible microtrajectories leads to these dynamical laws. The principle of maximum caliber also leads to dynamical distribution functions that characterize the relative probabilities of different microtrajectories. A great source of recent interest in statistical dynamics has resulted from a new generation of single-particle and single-molecule experiments that make it possible to observe dynamics one trajectory at a time. PMID:23585693

  6. Teaching the principles of statistical dynamics.

    PubMed

    Ghosh, Kingshuk; Dill, Ken A; Inamdar, Mandar M; Seitaridou, Effrosyni; Phillips, Rob

    2006-02-01

    We describe a simple framework for teaching the principles that underlie the dynamical laws of transport: Fick's law of diffusion, Fourier's law of heat flow, the Newtonian viscosity law, and the mass-action laws of chemical kinetics. In analogy with the way that the maximization of entropy over microstates leads to the Boltzmann distribution and predictions about equilibria, maximizing a quantity that E. T. Jaynes called "caliber" over all the possible microtrajectories leads to these dynamical laws. The principle of maximum caliber also leads to dynamical distribution functions that characterize the relative probabilities of different microtrajectories. A great source of recent interest in statistical dynamics has resulted from a new generation of single-particle and single-molecule experiments that make it possible to observe dynamics one trajectory at a time.

  7. A Multipurpose Experiment with an Electronic Balance

    ERIC Educational Resources Information Center

    Ganci, S.

    2008-01-01

    This short article describes some useful and quick applications of a cooking electronic balance. Newton's third law, Archimedes buoyancy and an estimate of relative density are accomplished in a very simple way. (Contains 1 figure.)

  8. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.

    PubMed

    Wawrezinieck, Laure; Rigneault, Hervé; Marguet, Didier; Lenne, Pierre-François

    2005-12-01

    To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.

  9. The predictive power of zero intelligence in financial markets

    NASA Astrophysics Data System (ADS)

    Farmer, J. Doyne; Patelli, Paolo; Zovko, Ilija I.

    2005-02-01

    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where constraints imposed by market institutions dominate strategic agent behavior. We use data from the London Stock Exchange to test a simple model in which minimally intelligent agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction and yields simple laws relating order-arrival rates to statistical properties of the market. We test the validity of these laws in explaining cross-sectional variation for 11 stocks. The model explains 96% of the variance of the gap between the best buying and selling prices (the spread) and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The nondimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view, because it demonstrates the existence of simple laws relating prices to order flows and, in a broader context, suggests there are circumstances where the strategic behavior of agents may be dominated by other considerations. double auction market | market microstructure | agent-based models

  10. The predictive power of zero intelligence in financial markets

    PubMed Central

    Farmer, J. Doyne; Patelli, Paolo; Zovko, Ilija I.

    2005-01-01

    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where constraints imposed by market institutions dominate strategic agent behavior. We use data from the London Stock Exchange to test a simple model in which minimally intelligent agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction and yields simple laws relating order-arrival rates to statistical properties of the market. We test the validity of these laws in explaining cross-sectional variation for 11 stocks. The model explains 96% of the variance of the gap between the best buying and selling prices (the spread) and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The nondimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view, because it demonstrates the existence of simple laws relating prices to order flows and, in a broader context, suggests there are circumstances where the strategic behavior of agents may be dominated by other considerations. PMID:15687505

  11. Zeroth Law, Entropy, Equilibrium, and All That

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2008-05-01

    The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the traditional approach to thermodynamics is discussed. It is shown that the traditional approach does not need to appeal to the second law to solve with rigor the type of problems discussed by Gislason and Craig: in problems not involving chemical reaction, the zeroth law and the condition for mechanical equilibrium, complemented by the first law and any necessary equations of state, are sufficient to determine the final state. We have to invoke the second law only if we wish to calculate the change of entropy. Since most students are exposed to a traditional approach to thermodynamics, the examples of Gislason and Craig are re-examined in terms of the traditional formulation. The maximization of the entropy in the final state can be verified in the traditional approach quite directly by the use of the fundamental equations of thermodynamics. This approach uses relatively simple mathematics in as general a setting as possible.

  12. The Evolution of the Exponent of Zipf's Law in Language Ontogeny

    PubMed Central

    Baixeries, Jaume; Elvevåg, Brita; Ferrer-i-Cancho, Ramon

    2013-01-01

    It is well-known that word frequencies arrange themselves according to Zipf's law. However, little is known about the dependency of the parameters of the law and the complexity of a communication system. Many models of the evolution of language assume that the exponent of the law remains constant as the complexity of a communication systems increases. Using longitudinal studies of child language, we analysed the word rank distribution for the speech of children and adults participating in conversations. The adults typically included family members (e.g., parents) or the investigators conducting the research. Our analysis of the evolution of Zipf's law yields two main unexpected results. First, in children the exponent of the law tends to decrease over time while this tendency is weaker in adults, thus suggesting this is not a mere mirror effect of adult speech. Second, although the exponent of the law is more stable in adults, their exponents fall below 1 which is the typical value of the exponent assumed in both children and adults. Our analysis also shows a tendency of the mean length of utterances (MLU), a simple estimate of syntactic complexity, to increase as the exponent decreases. The parallel evolution of the exponent and a simple indicator of syntactic complexity (MLU) supports the hypothesis that the exponent of Zipf's law and linguistic complexity are inter-related. The assumption that Zipf's law for word ranks is a power-law with a constant exponent of one in both adults and children needs to be revised. PMID:23516390

  13. Le Chatelier--Right or Wrong?

    ERIC Educational Resources Information Center

    Helfferich, Friedrich G.

    1985-01-01

    Presents a class exercise designed to find out how well students understand the nature and consequences of the mass action law and Le Chatelier's principle as applied to chemical equilibria. The exercise relates to a practical situation and provides simple relations for maximizing equilibrium quantities not found in standard textbooks. (JN)

  14. Zipf's word frequency law in natural language: a critical review and future directions.

    PubMed

    Piantadosi, Steven T

    2014-10-01

    The frequency distribution of words has been a key object of study in statistical linguistics for the past 70 years. This distribution approximately follows a simple mathematical form known as Zipf's law. This article first shows that human language has a highly complex, reliable structure in the frequency distribution over and above this classic law, although prior data visualization methods have obscured this fact. A number of empirical phenomena related to word frequencies are then reviewed. These facts are chosen to be informative about the mechanisms giving rise to Zipf's law and are then used to evaluate many of the theoretical explanations of Zipf's law in language. No prior account straightforwardly explains all the basic facts or is supported with independent evaluation of its underlying assumptions. To make progress at understanding why language obeys Zipf's law, studies must seek evidence beyond the law itself, testing assumptions and evaluating novel predictions with new, independent data.

  15. Gravitation and Special Relativity from Compton Wave Interactions at the Planck Scale: An Algorithmic Approach

    NASA Technical Reports Server (NTRS)

    Blackwell, William C., Jr.

    2004-01-01

    In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.

  16. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  17. Relativity, nonextensivity, and extended power law distributions.

    PubMed

    Silva, R; Lima, J A S

    2005-11-01

    A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.

  18. The Phase Shift in the Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2008-09-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation. A method is given for measuring the phase shift with results for aluminum and brass rings.

  19. Some Insights Regarding a Popular Introductory Gas Law Experiment

    ERIC Educational Resources Information Center

    DePierro, Ed; Garafalo, Fred

    2005-01-01

    The Dumas method provides a relatively simple way to determine the molar mass of volatile chemical compounds. A potential source of error in the Dumas molar mass method as it is often practiced in introductory chemistry laboratories is reported.

  20. Feedback-induced phase transitions in active heterogeneous conductors.

    PubMed

    Ocko, Samuel A; Mahadevan, L

    2015-04-03

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  1. Statistical Properties of Online Auctions

    NASA Astrophysics Data System (ADS)

    Namazi, Alireza; Schadschneider, Andreas

    We characterize the statistical properties of a large number of online auctions run on eBay. Both stationary and dynamic properties, like distributions of prices, number of bids etc., as well as relations between these quantities are studied. The analysis of the data reveals surprisingly simple distributions and relations, typically of power-law form. Based on these findings we introduce a simple method to identify suspicious auctions that could be influenced by a form of fraud known as shill bidding. Furthermore the influence of bidding strategies is discussed. The results indicate that the observed behavior is related to a mixture of agents using a variety of strategies.

  2. A Note on Weak Solutions of Conservation Laws and Energy/Entropy Conservation

    NASA Astrophysics Data System (ADS)

    Gwiazda, Piotr; Michálek, Martin; Świerczewska-Gwiazda, Agnieszka

    2018-03-01

    A common feature of systems of conservation laws of continuum physics is that they are endowed with natural companion laws which are in such cases most often related to the second law of thermodynamics. This observation easily generalizes to any symmetrizable system of conservation laws; they are endowed with nontrivial companion conservation laws, which are immediately satisfied by classical solutions. Not surprisingly, weak solutions may fail to satisfy companion laws, which are then often relaxed from equality to inequality and overtake the role of physical admissibility conditions for weak solutions. We want to answer the question: what is a critical regularity of weak solutions to a general system of conservation laws to satisfy an associated companion law as an equality? An archetypal example of such a result was derived for the incompressible Euler system in the context of Onsager's conjecture in the early nineties. This general result can serve as a simple criterion to numerous systems of mathematical physics to prescribe the regularity of solutions needed for an appropriate companion law to be satisfied.

  3. Spacetime symmetries and Kepler's third law

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre

    2012-11-01

    The curved spacetime geometry of a system of two point masses moving on a circular orbit has a helical symmetry. We show how Kepler’s third law for circular motion, and its generalization in post-Newtonian theory, can be recovered from a simple, covariant condition on the norm of the associated helical Killing vector field. This unusual derivation can be used to illustrate some concepts of prime importance in a general relativity course, including those of Killing field, covariance, coordinate dependence and gravitational redshift.

  4. Efficiency of some heat engines at maximum-power conditions

    NASA Astrophysics Data System (ADS)

    De Vos, Alexis

    1985-06-01

    In the present paper a simple model is presented for a heat engine, where the power output is limited by the rate of heat supply (and/or heat release). The model leads to a variety of results. Some of them are established laws such as the Carnot law, the Curzon-Ahlborn efficiency, and the Castañs efficiency. Other results are new, and are related to phenomena as different as geothermal energy conversion and the Penfield paradox of electric circuits.

  5. Distilling free-form natural laws from experimental data.

    PubMed

    Schmidt, Michael; Lipson, Hod

    2009-04-03

    For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. A key challenge to finding analytic relations automatically is defining algorithmically what makes a correlation in observed data important and insightful. We propose a principle for the identification of nontriviality. We demonstrated this approach by automatically searching motion-tracking data captured from various physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated as laws found for simpler systems were used to bootstrap explanations for more complex systems, gradually uncovering the "alphabet" used to describe those systems.

  6. Zipf’s word frequency law in natural language: A critical review and future directions

    PubMed Central

    2014-01-01

    The frequency distribution of words has been a key object of study in statistical linguistics for the past 70 years. This distribution approximately follows a simple mathematical form known as Zipf ’ s law. This article first shows that human language has a highly complex, reliable structure in the frequency distribution over and above this classic law, although prior data visualization methods have obscured this fact. A number of empirical phenomena related to word frequencies are then reviewed. These facts are chosen to be informative about the mechanisms giving rise to Zipf’s law and are then used to evaluate many of the theoretical explanations of Zipf’s law in language. No prior account straightforwardly explains all the basic facts or is supported with independent evaluation of its underlying assumptions. To make progress at understanding why language obeys Zipf’s law, studies must seek evidence beyond the law itself, testing assumptions and evaluating novel predictions with new, independent data. PMID:24664880

  7. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  8. International Humanitarian Law: The legal framework for humanitarian forensic action.

    PubMed

    Gaggioli, Gloria

    2018-01-01

    In armed conflicts, death is not an exceptional occurrence, but becomes the rule and occurs on a daily basis. Dead bodies are sometimes despoiled, mutilated, abandoned without any funeral rite and without a decent burial. Unidentified remains may be counted by hundreds or thousands. As a result, families look for years for missing relatives, ignorant of the fate of their loved ones. International Humanitarian Law, also called the laws of war or the law of armed conflict, is an international law branch, which has been developed to regulate and, as far as possible, to humanize armed conflicts. It contains a number of clear and concrete obligations incumbent to belligerent parties on the management of dead bodies, which provide the legal framework for humanitarian forensic action. The purpose of this article is to present, in a simple and concise manner, these rules with a view to extrapolate some key legal principles, such as the obligation to respect the dignity of the dead or the right to know the fate of relatives, which shall guide anyone dealing with human remains. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Power-law ansatz in complex systems: Excessive loss of information.

    PubMed

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  10. Self-Paced Physics, Segment 18.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Eighty-seven problems are included in this volume which is arranged to match study segments 2 through 14. The subject matter is related to projectiles, simple harmonic motion, kinetic friction, multiple pulley arrangements, motion on inclined planes, circular motion, potential energy, kinetic energy, center of mass, Newton's laws, elastic and…

  11. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  12. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  13. A novel design of the high-precision magnetic locator with three-dimension measurement capability applying dynamically sensing mechanism

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Nan; Chen, Po-Shen; Chen, Mu-Ping; Teng, Ching-Cheng

    2006-09-01

    A novel design of the magnetic locator, for obtaining the high-precision measurement information of variety of the buried metal pipes, is presented in this paper. The concept of dynamically sensing mechanism, including the vibrating and moving devices, proposed herein is a simple and effective way to improve the precision of three-dimension location sensing for the underground utilities. Based on the primary magnetism of Lenz's law and Faraday's law, the functions of the amplifying effect for the sensing magnetic signals, as well as the distinguishing effect by the simple filtering algorithms embedded in processing programs, are achieved while the relatively strong noise exists. The verification results of these integration designs demonstrate the effectiveness both by precise locating for the buried utility, and accurate measurement for the depth.

  14. Scaling of Perceptual Errors Can Predict the Shape of Neural Tuning Curves

    NASA Astrophysics Data System (ADS)

    Shouval, Harel Z.; Agarwal, Animesh; Gavornik, Jeffrey P.

    2013-04-01

    Weber’s law, first characterized in the 19th century, states that errors estimating the magnitude of perceptual stimuli scale linearly with stimulus intensity. This linear relationship is found in most sensory modalities, generalizes to temporal interval estimation, and even applies to some abstract variables. Despite its generality and long experimental history, the neural basis of Weber’s law remains unknown. This work presents a simple theory explaining the conditions under which Weber’s law can result from neural variability and predicts that the tuning curves of neural populations which adhere to Weber’s law will have a log-power form with parameters that depend on spike-count statistics. The prevalence of Weber’s law suggests that it might be optimal in some sense. We examine this possibility, using variational calculus, and show that Weber’s law is optimal only when observed real-world variables exhibit power-law statistics with a specific exponent. Our theory explains how physiology gives rise to the behaviorally characterized Weber’s law and may represent a general governing principle relating perception to neural activity.

  15. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitag, Mark A.

    2001-12-31

    The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate formore » most systems of chemical interest.« less

  16. Maximum entropy and equations of state for random cellular structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivier, N.

    Random, space-filling cellular structures (biological tissues, metallurgical grain aggregates, foams, etc.) are investigated. Maximum entropy inference under a few constraints yields structural equations of state, relating the size of cells to their topological shape. These relations are known empirically as Lewis's law in Botany, or Desch's relation in Metallurgy. Here, the functional form of the constraints is now known as a priori, and one takes advantage of this arbitrariness to increase the entropy further. The resulting structural equations of state are independent of priors, they are measurable experimentally and constitute therefore a direct test for the applicability of MaxEnt inferencemore » (given that the structure is in statistical equilibrium, a fact which can be tested by another simple relation (Aboav's law)). 23 refs., 2 figs., 1 tab.« less

  17. High order filtering methods for approximating hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1991-01-01

    The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.

  18. There is More than a Power Law in Zipf

    PubMed Central

    Cristelli, Matthieu; Batty, Michael; Pietronero, Luciano

    2012-01-01

    The largest cities, the most frequently used words, the income of the richest countries, and the most wealthy billionaires, can be all described in terms of Zipf’s Law, a rank-size rule capturing the relation between the frequency of a set of objects or events and their size. It is assumed to be one of many manifestations of an underlying power law like Pareto’s or Benford’s, but contrary to popular belief, from a distribution of, say, city sizes and a simple random sampling, one does not obtain Zipf’s law for the largest cities. This pathology is reflected in the fact that Zipf’s Law has a functional form depending on the number of events N. This requires a fundamental property of the sample distribution which we call ‘coherence’ and it corresponds to a ‘screening’ between various elements of the set. We show how it should be accounted for when fitting Zipf’s Law. PMID:23139862

  19. A mathematical theorem as the basis for the second law: Thomson's formulation applied to equilibrium

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Nieuwenhuizen, Th. M.

    2002-03-01

    There are several formulations of the second law, and they may, in principle, have different domains of validity. Here a simple mathematical theorem is proven which serves as the most general basis for the second law, namely the Thomson formulation (“cyclic changes cost energy”), applied to equilibrium. This formulation of the second law is a property akin to particle conservation (normalization of the wave function). It has been strictly proven for a canonical ensemble, and made plausible for a micro-canonical ensemble. As the derivation does not assume time-inversion invariance, it is applicable to situations where persistent currents occur. This clear-cut derivation allows to revive the “no perpetuum mobile in equilibrium” formulation of the second law and to criticize some assumptions which are widespread in literature. The result puts recent results devoted to foundations and limitations of the second law in proper perspective, and structurizes this relatively new field of research.

  20. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.

    PubMed

    Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos

    2003-07-01

    To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.

  1. Derivation of the Ideal Gas Law

    ERIC Educational Resources Information Center

    Laugier, Alexander; Garai, Jozsef

    2007-01-01

    Undergraduate and graduate physics and chemistry books usually state that combining the gas laws results in the ideal gas law. Leaving the derivation to the students implies that this should be a simple task, most likely a substitution. Boyle's law, Charles's law, and the Avogadro's principle are given under certain conditions; therefore, direct…

  2. Suspensions of Noncolloidal Particles in Yield Stress Fluids: Experimental and Micromechanical Approaches

    NASA Astrophysics Data System (ADS)

    Mahaut, Fabien; Bertrand, François; Coussot, Philippe; Chateau, Xavier; Ovarlez, Guillaume

    2008-07-01

    We study experimentally and theoretically the behavior of suspensions of noncolloidal particles in yield stress fluids. We develop procedures and materials that allow focusing on the purely mechanical contribution of the particles to the yield stress fiuid behavior, allowing relating the macroscopic properties of these suspensions to the mechanical properties of the yield stress fluid and the particle volume fraction. We find that the elastic modulus/concentration relationship follows a Krieger-Dougherty law, and show that the yield stress/concentration relationship is related to the elastic modulus/concentration relationship through a very simple law, in agreement with a micromechanical analysis. We finally present evidence for shear-induced migration in the flows of these suspensions.

  3. The quotient of normal random variables and application to asset price fat tails

    NASA Astrophysics Data System (ADS)

    Caginalp, Carey; Caginalp, Gunduz

    2018-06-01

    The quotient of random variables with normal distributions is examined and proven to have power law decay, with density f(x) ≃f0x-2, with the coefficient depending on the means and variances of the numerator and denominator and their correlation. We also obtain the conditional probability densities for each of the four quadrants given by the signs of the numerator and denominator for arbitrary correlation ρ ∈ [ - 1 , 1) . For ρ = - 1 we obtain a particularly simple closed form solution for all x ∈ R. The results are applied to a basic issue in economics and finance, namely the density of relative price changes. Classical finance stipulates a normal distribution of relative price changes, though empirical studies suggest a power law at the tail end. By considering the supply and demand in a basic price change model, we prove that the relative price change has density that decays with an x-2 power law. Various parameter limits are established.

  4. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Liu, G.; Koda, J., E-mail: calzetti@astro.umass.edu

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scattermore » of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to {approx}unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.« less

  5. Turning around Newton's Second Law

    ERIC Educational Resources Information Center

    Goff, John Eric

    2004-01-01

    Conceptual and quantitative difficulties surrounding Newton's second law often arise among introductory physics students. Simply turning around how one expresses Newton's second law may assist students in their understanding of a deceptively simple-looking equation.

  6. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    ERIC Educational Resources Information Center

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  7. The Effective Utilization of an Instructional Film in a Learning Sequence

    ERIC Educational Resources Information Center

    Thomas, Ian D.

    1973-01-01

    Summarizes some of the main research findings relating to the utilization of instructional films in classroom situations. Reports the confirmation of a number of these findings in a survey conducted to investigate the teaching and learning practices used in acquiring the ability to solve simple problems using Coulomb's Law. (Author/JR)

  8. Teaching Beer's Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Jacobson, Erik C.

    2016-01-01

    A very simple protocol for teaching Beer's Law and absorption spectrophotometry using a smart phone is described. Materials commonly found in high school chemistry laboratories or even around the house may be used. Data collection and analysis is quick and easy. Despite the simple nature of the experiment, excellent results can be achieved.

  9. Occupation probabilities and fluctuations in the asymmetric simple inclusion process

    NASA Astrophysics Data System (ADS)

    Reuveni, Shlomi; Hirschberg, Ori; Eliazar, Iddo; Yechiali, Uri

    2014-04-01

    The asymmetric simple inclusion process (ASIP), a lattice-gas model of unidirectional transport and aggregation, was recently proposed as an "inclusion" counterpart of the asymmetric simple exclusion process. In this paper we present an exact closed-form expression for the probability that a given number of particles occupies a given set of consecutive lattice sites. Our results are expressed in terms of the entries of Catalan's trapezoids—number arrays which generalize Catalan's numbers and Catalan's triangle. We further prove that the ASIP is asymptotically governed by the following: (i) an inverse square-root law of occupation, (ii) a square-root law of fluctuation, and (iii) a Rayleigh law for the distribution of interexit times. The universality of these results is discussed.

  10. Optimal decision making and matching are tied through diminishing returns

    PubMed Central

    2017-01-01

    How individuals make decisions has been a matter of long-standing debate among economists and researchers in the life sciences. In economics, subjects are viewed as optimal decision makers who maximize their overall reward income. This framework has been widely influential, but requires a complete knowledge of the reward contingencies associated with a given choice situation. Psychologists and ecologists have observed that individuals tend to use a simpler “matching” strategy, distributing their behavior in proportion to relative rewards associated with their options. This article demonstrates that the two dominant frameworks of choice behavior are linked through the law of diminishing returns. The relatively simple matching can in fact provide maximal reward when the rewards associated with decision makers’ options saturate with the invested effort. Such saturating relationships between reward and effort are hallmarks of the law of diminishing returns. Given the prevalence of diminishing returns in nature and social settings, this finding can explain why humans and animals so commonly behave according to the matching law. The article underscores the importance of the law of diminishing returns in choice behavior. PMID:28739920

  11. Optimal decision making and matching are tied through diminishing returns.

    PubMed

    Kubanek, Jan

    2017-08-08

    How individuals make decisions has been a matter of long-standing debate among economists and researchers in the life sciences. In economics, subjects are viewed as optimal decision makers who maximize their overall reward income. This framework has been widely influential, but requires a complete knowledge of the reward contingencies associated with a given choice situation. Psychologists and ecologists have observed that individuals tend to use a simpler "matching" strategy, distributing their behavior in proportion to relative rewards associated with their options. This article demonstrates that the two dominant frameworks of choice behavior are linked through the law of diminishing returns. The relatively simple matching can in fact provide maximal reward when the rewards associated with decision makers' options saturate with the invested effort. Such saturating relationships between reward and effort are hallmarks of the law of diminishing returns. Given the prevalence of diminishing returns in nature and social settings, this finding can explain why humans and animals so commonly behave according to the matching law. The article underscores the importance of the law of diminishing returns in choice behavior.

  12. Effect of nonideal square-law detection on static calibration in noise-injection radiometers

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1984-01-01

    The effect of nonideal square-law detection on the static calibration for a class of Dicke radiometers is examined. It is shown that fourth-order curvature in the detection characteristic adds a nonlinear term to the linear calibration relationship normally ascribed to noise-injection, balanced Dicke radiometers. The minimum error, based on an optimum straight-line fit to the calibration curve, is derived in terms of the power series coefficients describing the input-output characteristics of the detector. These coefficients can be determined by simple measurements, and detection nonlinearity is, therefore, quantitatively related to radiometric measurement error.

  13. Jell-O Optics: Edibly Exploring Snell's Law and Optical Power

    NASA Astrophysics Data System (ADS)

    Hendryx, Jennifer; Reynolds, Mathias

    2012-03-01

    This presentation details a laboratory exercise and/or demonstration of refraction with an inexpensive, simple set-up: a pan of Jell-O, protractors, and laser pointers. This activity is presented from the perspective of an optical sciences graduate student who has spent the school year team-teaching high school math and physics (through Academic Decathlon). The goal is to present some of the fundamentals of optics with an enjoyable and affordable approach. The concepts include Snell's law, index of refraction, and optical power/focal length as they relate to the curvature of a lens.

  14. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2004-03-01

    Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a cantilever to detect variations in the interaction force between cantilever tip and sample. While a simple relation exists enabling the frequency shift to be determined for a given force law, the required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the cantilever. In this letter we address this problem and present simple yet accurate formulas that enable the interaction force and energy to be determined directly from the measured frequency shift. These formulas are valid for any oscillation amplitude and interaction force, and are therefore of widespread applicability in frequency modulation dynamic force spectroscopy.

  15. Simple artificial neural networks that match probability and exploit and explore when confronting a multiarmed bandit.

    PubMed

    Dawson, Michael R W; Dupuis, Brian; Spetch, Marcia L; Kelly, Debbie M

    2009-08-01

    The matching law (Herrnstein 1961) states that response rates become proportional to reinforcement rates; this is related to the empirical phenomenon called probability matching (Vulkan 2000). Here, we show that a simple artificial neural network generates responses consistent with probability matching. This behavior was then used to create an operant procedure for network learning. We use the multiarmed bandit (Gittins 1989), a classic problem of choice behavior, to illustrate that operant training balances exploiting the bandit arm expected to pay off most frequently with exploring other arms. Perceptrons provide a medium for relating results from neural networks, genetic algorithms, animal learning, contingency theory, reinforcement learning, and theories of choice.

  16. Gamma-Ray Burst Intensity Distributions

    NASA Technical Reports Server (NTRS)

    Band, David L.; Norris, Jay P.; Bonnell, Jerry T.

    2004-01-01

    We use the lag-luminosity relation to calculate self-consistently the redshifts, apparent peak bolometric luminosities L(sub B1), and isotropic energies E(sub iso) for a large sample of BATSE bursts. We consider two different forms of the lag-luminosity relation; for both forms the median redshift, for our burst database is 1.6. We model the resulting sample of burst energies with power law and Gaussian dis- tributions, both of which are reasonable models. The power law model has an index of a = 1.76 plus or minus 0.05 (95% confidence) as opposed to the index of a = 2 predicted by the simple universal jet profile model; however, reasonable refinements to this model permit much greater flexibility in reconciling predicted and observed energy distributions.

  17. A simple marriage model for the power-law behaviour in the frequency distributions of family names

    NASA Astrophysics Data System (ADS)

    Wu, Hao-Yun; Chou, Chung-I.; Tseng, Jie-Jun

    2011-01-01

    In many countries, the frequency distributions of family names are found to decay as a power law with an exponent ranging from 1.0 to 2.2. In this work, we propose a simple marriage model which can reproduce this power-law behaviour. Our model, based on the evolution of families, consists of the growth of big families and the formation of new families. Preliminary results from the model show that the name distributions are in good agreement with empirical data from Taiwan and Norway.

  18. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    ERIC Educational Resources Information Center

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  19. A Flush Toilet Model for the Transistor

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2012-01-01

    In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted.…

  20. A Left-Hand Rule for Faraday's Law

    ERIC Educational Resources Information Center

    Salu, Yehuda

    2014-01-01

    A left-hand rule for Faraday's law is presented here. This rule provides a simple and quick way of finding directional relationships between variables of Faraday's law without using Lenz's rule.

  1. Legal rights to safe abortion: knowledge and attitude of women in North-West Ethiopia toward the current Ethiopian abortion law.

    PubMed

    Muzeyen, R; Ayichiluhm, M; Manyazewal, T

    2017-07-01

    To assess women's knowledge and attitude toward Ethiopian current abortion law. A quantitative, community-based cross-sectional survey. Women of reproductive age in three selected lower districts in Bahir Dar, North-West Ethiopia, were included. Multi-stage simple random sampling and simple random sampling were used to select the districts and respondents, respectively. Data were collected using a structured questionnaire comprising questions related to knowledge and attitude toward legal status of abortion and cases where abortion is currently allowed by law in Ethiopia. Descriptive statistics were used to summarize the data and multivariable logistic regression computed to assess the magnitude and significance of associations. Of 845 eligible women selected, 774 (92%) consented to participate and completed the interview. A total of 512 (66%) women were aware of the legal status of the Ethiopian abortion law and their primary sources of information were electronic media such as television and radio (43%) followed by healthcare providers (38.7%). Among women with awareness of the law, 293 (57.2%) were poor in knowledge, 188 (36.7%) fairly knowledgeable, and 31 (6.1%) good in knowledge about the cases where abortion is allowed by law. Of the total 774 women included, 438 (56.5%) hold liberal and 336 (43.5%) conservative attitude toward legalization of abortion. In the multivariable logistic regression, age had a significant association with knowledge, whereas occupation had a significant association with attitude toward the law. Women who had poor knowledge toward the law were more likely to have conservative attitude toward the law (adjusted odds ratio, 0.40; 95% confidence interval, 0.23-0.61). Though the Ethiopian criminal code legalized abortion under certain circumstances since 2005, a significant number of women knew little about the law and several protested legalization of abortion. Countries such as Ethiopia with high maternal mortality records need to lift high-impact interventions that would trigger women to understand and exercise their legal rights to safe abortion and other reproductive health securities. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Duality symmetry and power-law fading of frustration in a quantum multiconnected superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, S.N.; Ralston, J.P.

    1991-03-01

    We generalize the Alexander--de Gennes equations to a new system of superconducting-wire networks, allowing for variation of the cross-sectional area of wires. The generalized equations are solved for a square lattice of different cross-sectional-area ratios {lambda} in the {ital x} and {ital y} directions. A symmetry of {lambda}{r arrow}1/{lambda} is related to the Aubry-Andre duality and an obvious geometric property. We find that even a slight geometric asymmetry can soften the fine structure of the magnetic phase boundary considerably. We obtain a power-law dependence on the parameter {lambda} as {lambda}{r arrow}{infinity} and {lambda}{r arrow}0. For a finite-area ratio {lambda}, wemore » speculate that a simple analytic fit incorporating the dual symmetry is close to the exact nonperturbative behavior. The system is also related analytically to a recent study of Hu and Chen, which revealed a power-law behavior for a rectangular lattice.« less

  3. Validating the Goldstein-Wehner Law for the Stratified Positive Column of DC Discharge in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D.

    2012-01-01

    In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…

  4. Bayesian truthing and experimental validation in homeland security and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian; Kostrzewski, Andrew; Pradhan, Ranjit

    2014-05-01

    In this paper we discuss relations between Bayesian Truthing (experimental validation), Bayesian statistics, and Binary Sensing in the context of selected Homeland Security and Intelligence, Surveillance, Reconnaissance (ISR) optical and nonoptical application scenarios. The basic Figure of Merit (FoM) is Positive Predictive Value (PPV), as well as false positives and false negatives. By using these simple binary statistics, we can analyze, classify, and evaluate a broad variety of events including: ISR; natural disasters; QC; and terrorism-related, GIS-related, law enforcement-related, and other C3I events.

  5. Scaling range of power laws that originate from fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Grech, Dariusz; Mazur, Zygmunt

    2013-05-01

    We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A0378-437110.1016/j.physa.2013.01.049 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R2 of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.

  6. Simple heterogeneity parametrization for sea surface temperature and chlorophyll

    NASA Astrophysics Data System (ADS)

    Skákala, Jozef; Smyth, Timothy J.

    2016-06-01

    Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.

  7. Power-law viscous materials for analogue experiments: New data on the rheology of highly-filled silicone polymers

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Schrank, C.; Cruden, A.

    2008-03-01

    The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ˜3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.

  8. Will Global Warming Cause a Rise in Sea Level? A Simple Activity about the States of Water

    ERIC Educational Resources Information Center

    Oguz, Ayse

    2009-01-01

    In this activity, a possible problem related to global warming is clarified by the principle of states of water. The activity consists of an experiment that includes three scientific principles: Archimedes' Principle, the Law of Conservation of Matter, and the fluidity of liquids. The experiment helps students raise questions and open new horizons…

  9. Photon Mass, Graviton Mass: Zero or Not?

    NASA Astrophysics Data System (ADS)

    Scharff Goldhaber, Alfred; Nieto, Michael Martin

    2007-04-01

    Testing for deviations from simple laws is a time-honored part of physics research. In electricity and magnetism the first approach to such testing, from the eighteenth century well into the twentieth, was to look for departures from -2 of the power of distance between two electric charges or two magnetic poles determining the force between them. Absent a particular length scale, this was a natural choice for parameterizing possible deviations from the simple and esthetic inverse square law. With the advent of relativity and quantum mechanics, and the realization that certain phenomena of light can be described in terms of photon particles, it became appealing to ask if these particles might have a non-zero mass, and Proca found the appropriate modification of the Maxwell equations. Despite the particle-motion origin of this idea, the most powerful way to constrain the size of a possible photon mass is by setting a lower bound on the Compton wavelength, by looking at static electric and especially magnetic fields over increasing length scales. For gravity similar statements apply, but graviton mass is theoretically questionable, and observed phenomena imply either additional sources or departures from Einstein's general relativity.

  10. Effect of the material properties on the crumpling of a thin sheet.

    PubMed

    Habibi, Mehdi; Adda-Bedia, Mokhtar; Bonn, Daniel

    2017-06-07

    While simple at first glance, the dense packing of sheets is a complex phenomenon that depends on material parameters and the packing protocol. We study the effect of plasticity on the crumpling of sheets of different materials by performing isotropic compaction experiments on sheets of different sizes and elasto-plastic properties. First, we quantify the material properties using a dimensionless foldability index. Then, the compaction force required to crumple a sheet into a ball as well as the average number of layers inside the ball are measured. For each material, both quantities exhibit a power-law dependence on the diameter of the crumpled ball. We experimentally establish the power-law exponents and find that both depend nonlinearly on the foldability index. However the exponents that characterize the mechanical response and morphology of the crumpled materials are related linearly. A simple scaling argument explains this in terms of the buckling of the sheets, and recovers the relation between the crumpling force and the morphology of the crumpled structure. Our results suggest a new approach to tailor the mechanical response of the crumpled objects by carefully selecting their material properties.

  11. Kepler Observations of Rapid Optical Variability in the BL Lac Object W2r192+42

    NASA Technical Reports Server (NTRS)

    R.Edelson; Mushotzky, R.; Vaughn, S.; Scargle, J.; Gandhi, P.; Malkan, M.; Baumgartner, W.

    2013-01-01

    We present the first Kepler monitoring of a strongly variable BL Lac, W2R1926+42. The light curve covers 181 days with approx. 0.2% errors, 30 minute sampling and >90% duty cycle, showing numerous delta-I/I > 25% flares over timescales as short as a day. The flux distribution is highly skewed and non-Gaussian. The variability shows a strong rms-flux correlation with the clearest evidence to date for non-linearity in this relation. We introduce a method to measure periodograms from the discrete autocorrelation function, an approach that may be well-suited to a wide range of Kepler data. The periodogram is not consistent with a simple power-law, but shows a flattening at frequencies below 7x10(exp -5) Hz. Simple models of the power spectrum, such as a broken power law, do not produce acceptable fits, indicating that the Kepler blazar light curve requires more sophisticated mathematical and physical descriptions than currently in use.

  12. Simplified analysis about horizontal displacement of deep soil under tunnel excavation

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyan; Gu, Shuancheng; Huang, Rongbin

    2017-11-01

    Most of the domestic scholars focus on the study about the law of the soil settlement caused by subway tunnel excavation, however, studies on the law of horizontal displacement are lacking. And it is difficult to obtain the horizontal displacement data of any depth in the project. At present, there are many formulas for calculating the settlement of soil layers. In terms of integral solutions of Mindlin classic elastic theory, stochastic medium theory, source-sink theory, the Peck empirical formula is relatively simple, and also has a strong applicability at home. Considering the incompressibility of rock and soil mass, based on the principle of plane strain, the calculation formula of the horizontal displacement of the soil along the cross section of the tunnel was derived by using the Peck settlement formula. The applicability of the formula is verified by comparing with the existing engineering cases, a simple and rapid analytical method for predicting the horizontal displacement is presented.

  13. Second Law of Thermodynamics Applied to Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  14. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.

    PubMed

    Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien

    2012-01-01

    Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.

  15. Dramatic (and Simple!) Demonstration of Newton's Third Law

    NASA Astrophysics Data System (ADS)

    Feldman, Gerald

    2011-02-01

    An operational understanding of Newton's third law is often elusive for students. Typical examples of this concept are given for contact forces that are closer to the students' everyday experience. While this is a good thing in general, the reaction force can sometimes be taken for granted, and the students can miss the opportunity to really think about what is going on. In the case of magnetic forces, however, the notion of action at a distance actually requires a careful inspection of the forces involved and thereby promotes a more detailed analysis of the situation. In this paper, a simple demonstration of Newton's third law is presented in the context of a magnet falling through a hollow conducting tube. The results are unambiguous and lead the students to an irrefutable verification of Newton's third law.

  16. Check the Lambert-Beer-Bouguer law: a simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics

    NASA Astrophysics Data System (ADS)

    Di Capua, R.; Offi, F.; Fontana, F.

    2014-07-01

    Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.

  17. PubMed Central

    Voultsos, P.; Casini, M.; Ricci, G.; Tambone, V.; Spagnolo, A.G.

    2017-01-01

    SUMMARY The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed. PMID:28374874

  18. Definition of (so MIScalled) ''Complexity'' as UTTER-SIMPLICITY!!! Versus Deviations From it as Complicatedness-Measure

    NASA Astrophysics Data System (ADS)

    Young, F.; Siegel, Edward Carl-Ludwig

    2011-03-01

    (so MIScalled) "complexity" with INHERENT BOTH SCALE-Invariance Symmetry-RESTORING, AND 1 / w (1.000..) "pink" Zipf-law Archimedes-HYPERBOLICITY INEVITABILITY power-spectrum power-law decay algebraicity. Their CONNECTION is via simple-calculus SCALE-Invariance Symmetry-RESTORING logarithm-function derivative: (d/ d ω) ln(ω) = 1 / ω , i.e. (d/ d ω) [SCALE-Invariance Symmetry-RESTORING](ω) = 1/ ω . Via Noether-theorem continuous-symmetries relation to conservation-laws: (d/ d ω) [inter-scale 4-current 4-div-ergence} = 0](ω) = 1 / ω . Hence (so MIScalled) "complexity" is information inter-scale conservation, in agreement with Anderson-Mandell [Fractals of Brain/Mind, G. Stamov ed.(1994)] experimental-psychology!!!], i.e. (so MIScalled) "complexity" is UTTER-SIMPLICITY!!! Versus COMPLICATEDNESS either PLUS (Additive) VS. TIMES (Multiplicative) COMPLICATIONS of various system-specifics. COMPLICATEDNESS-MEASURE DEVIATIONS FROM complexity's UTTER-SIMPLICITY!!!: EITHER [SCALE-Invariance Symmetry-BREAKING] MINUS [SCALE-Invariance Symmetry-RESTORING] via power-spectrum power-law algebraicity decays DIFFERENCES: ["red"-Pareto] MINUS ["pink"-Zipf Archimedes-HYPERBOLICITY INEVITABILITY]!!!

  19. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.

    2014-11-01

    We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.

  20. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    NASA Astrophysics Data System (ADS)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  1. A Simple Power Law Governs Many Sensory Amplifications and Multisensory Enhancements.

    PubMed

    Billock, Vincent A; Havig, Paul R

    2018-05-16

    When one sensory response occurs in the presence of a different sensory stimulation, the sensory response is often amplified. The variety of sensory enhancement data tends to obscure the underlying rules, but it has long been clear that weak signals are usually amplified more than strong ones (the Principle of Inverse Effectiveness). Here we show that for many kinds of sensory amplification, the underlying law is simple and elegant: the amplified response is a power law of the unamplified response, with a compressive exponent that amplifies weak signals more than strong. For both psychophysics and cortical electrophysiology, for both humans and animals, and for both sensory integration and enhancement within a sense, gated power law amplification (amplification of one sense triggered by the presence of a different sensory signal) is often sufficient to explain sensory enhancement.

  2. Cross-scale morphology

    USGS Publications Warehouse

    Allen, Craig R.; Holling, Crawford S.; Garmestani, Ahjond S.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.

    2013-01-01

    The scaling of physical, biological, ecological and social phenomena is a major focus of efforts to develop simple representations of complex systems. Much of the attention has been on discovering universal scaling laws that emerge from simple physical and geometric processes. However, there are regular patterns of departures both from those scaling laws and from continuous distributions of attributes of systems. Those departures often demonstrate the development of self-organized interactions between living systems and physical processes over narrower ranges of scale.

  3. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  4. The Polarization of Light and Malus' Law Using Smartphones

    ERIC Educational Resources Information Center

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-01-01

    Originally an empirical law, nowadays Malus' law is seen as a key experiment to demonstrate the transverse nature of electromagnetic waves, as well as the intrinsic connection between optics and electromagnetism. In this work, a simple and inexpensive setup is proposed to quantitatively verify the nature of polarized light. A flat computer screen…

  5. Evaluating motives: Two simple tests to identify and avoid entanglement in legally dubious urine drug testing schemes.

    PubMed

    Barnes, Michael C; Worthy, Stacey L

    2015-01-01

    This article educates healthcare practitioners on the legal framework prohibiting abusive practices in urine drug testing (UDT) in medical settings, discusses several profit-driven UDT schemes that have resulted in enforcement actions, and provides recommendations for best practices in UDT to comply with state and federal fraud and anti-kickback statutes. The authors carefully reviewed and analyzed statutes, regulations, adivsory opinions, case law, court documents, articles from legal journals, and news articles. Certain facts-driven UDT arrangements tend to violate federal and state healthcare laws and regulations, including Stark law, the anti-kickback statute, the criminal health care fraud statute, and the False Claims Act. Healthcare practitioners who use UDT can help ensure that they are in compliance with applicable federal and state laws by evaluating whether their actions are motivated by providing proper care to their patients rather than by profits. They must avoid schemes that violate the spirit of the law while appearing to comply with the letter of the law. Such a simple self-evaluation of motive can reduce a practitioner's likelihood of civil fines and criminal liability.

  6. Power-Laws and Scaling in Finance: Empirical Evidence and Simple Models

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jean-Philippe

    We discuss several models that may explain the origin of power-law distributions and power-law correlations in financial time series. From an empirical point of view, the exponents describing the tails of the price increments distribution and the decay of the volatility correlations are rather robust and suggest universality. However, many of the models that appear naturally (for example, to account for the distribution of wealth) contain some multiplicative noise, which generically leads to non universal exponents. Recent progress in the empirical study of the volatility suggests that the volatility results from some sort of multiplicative cascade. A convincing `microscopic' (i.e. trader based) model that explains this observation is however not yet available. We discuss a rather generic mechanism for long-ranged volatility correlations based on the idea that agents constantly switch between active and inactive strategies depending on their relative performance.

  7. Modelling tidewater glacier calving: from detailed process models to simple calving laws

    NASA Astrophysics Data System (ADS)

    Benn, Doug; Åström, Jan; Zwinger, Thomas; Todd, Joe; Nick, Faezeh

    2017-04-01

    The simple calving laws currently used in ice sheet models do not adequately reflect the complexity and diversity of calving processes. To be effective, calving laws must be grounded in a sound understanding of how calving actually works. We have developed a new approach to formulating calving laws, using a) the Helsinki Discrete Element Model (HiDEM) to explicitly model fracture and calving processes, and b) the full-Stokes continuum model Elmer/Ice to identify critical stress states associated with HiDEM calving events. A range of observed calving processes emerges spontaneously from HiDEM in response to variations in ice-front buoyancy and the size of subaqueous undercuts, and we show that HiDEM calving events are associated with characteristic stress patterns simulated in Elmer/Ice. Our results open the way to developing calving laws that properly reflect the diversity of calving processes, and provide a framework for a unified theory of the calving process continuum.

  8. Statistical mechanics in the context of special relativity. II.

    PubMed

    Kaniadakis, G

    2005-09-01

    The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g., momentum, energy, etc.), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E 66, 056125 (2002)], we show that the Lorentz transformations impose also a proper one-parameter generalization of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits us to construct a coherent and self-consistent relativistic statistical theory, preserving the main features of the ordinary statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence. Furthermore, this statistical mechanics can be obtained as the stationary case of a generalized kinetic theory governed by an evolution equation obeying the H theorem and reproducing the Boltzmann equation of the ordinary kinetics in the classical limit.

  9. Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Moutinho, Carlos

    2015-05-01

    This paper is focused on the control problems related to semi-active tuned mass dampers (TMDs) used to reduce harmonic vibrations, specially involving civil structures. A simplified version of the phase control law is derived and its effectiveness is investigated and evaluated. The objective is to improve the functioning of control systems of this type by simplifying the measurement process and reducing the number of variables involved, making the control system more feasible and reliable. Because the control law is of ON/OFF type, combined with appropriate trigger conditions, the activity of the actuation system may be significantly reduced, which may be of few seconds a day in many practical cases, increasing the durability of the device and reducing its maintenance. Moreover, due to the ability of the control system to command the motion of the inertial mass, the semi-active TMD is relatively insensitive to its initial tuning, resulting in the capability of self-tuning and in the possibility of controlling several vibration modes of a structure over a significant broadband frequency.

  10. Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M2 (M = Cu, Ag, Au, Rg).

    PubMed

    Li, Wan-Lu; Lu, Jun-Bo; Wang, Zhen-Ling; Hu, Han-Shi; Li, Jun

    2018-05-07

    The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu 2 , Ag 2 , Au 2 , Rg 2 ) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0 g + ground state, Rg 2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg 2 , two nearly degenerate SO states, 0 g + and 2 u , exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.

  11. High School Forum: Brief Introduction to the Three Laws of Thermodynamics

    ERIC Educational Resources Information Center

    Herron, J. Dudley

    1975-01-01

    Because thermodynamics is usually presented in a highly mathematical context, many students fail to comprehend even its intuitive aspects. Provides simple explanations, without complicated mathematics, for the three thermodynamics laws. (MLH)

  12. Cyclovergence: the motor response to cyclodisparity.

    PubMed

    Hooten, K; Myers, E; Worrall, R; Stark, L

    1979-03-05

    Static photographic evidence of the occurrence of cyclovergence is presented that supports and extends the result of Crone and Everhard-Halm (1975). Wide-angle complex targets were a necessary condition; simple horizontal line targets were insufficient. Our asymmetrical disparity targets supported in part the conformance of cyclovergence to Hering's Law but raised questions relating to the computational process that also acts to remove cyclodisparity and permits cyclofusion. Saturation and hysteresis nonlinearities were observed.

  13. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  14. Non-invasive absolute measurement of leaf water content using terahertz quantum cascade lasers.

    PubMed

    Baldacci, Lorenzo; Pagano, Mario; Masini, Luca; Toncelli, Alessandra; Carelli, Giorgio; Storchi, Paolo; Tredicucci, Alessandro

    2017-01-01

    Plant water resource management is one of the main future challenges to fight recent climatic changes. The knowledge of the plant water content could be indispensable for water saving strategies. Terahertz spectroscopic techniques are particularly promising as a non-invasive tool for measuring leaf water content, thanks to the high predominance of the water contribution to the total leaf absorption. Terahertz quantum cascade lasers (THz QCL) are one of the most successful sources of THz radiation. Here we present a new method which improves the precision of THz techniques by combining a transmission measurement performed using a THz QCL source, with simple pictures of leaves taken by an optical camera. As a proof of principle, we performed transmission measurements on six plants of Vitis vinifera L. (cv "Colorino"). We found a linear law which relates the leaf water mass to the product between the leaf optical depth in the THz and the projected area. Results are in optimal agreement with the proposed law, which reproduces the experimental data with 95% accuracy. This method may overcome the issues related to intra-variety heterogeneities and retrieve the leaf water mass in a fast, simple, and non-invasive way. In the future this technique could highlight different behaviours in preserving the water status during drought stress.

  15. Scaling in Ecosystems and the Linkage of Macroecological Laws

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.

    2007-12-01

    Are there predictable linkages among macroecological laws regulating size and abundance of organisms that are ubiquitously supported by empirical observations and that ecologists treat traditionally as independent? Do fragmentation of habitats, or reduced supply of energy and matter, result in predictable changes on whole ecosystems as a function of their size? Using a coherent theoretical framework based on scaling theory, it is argued that the answer to both these questions is affirmative. The concern of the talk is with the comparatively simple situation of the steady state behavior of a fully developed ecosystem in which, over evolutionary time, resources are exploited in full, individual and collective metabolic needs are met and enough time has elapsed to produce a rough balance between speciation and extinction and ecological fluxes. While ecological patterns and processes often show great variation when viewed at different scales of space, time, organismic size and organizational complexity, there is also widespread evidence for the existence of scaling regularities as embedded in macroecological "laws" or rules. These laws have commanded considerable attention from the ecological community. Indeed they are central to ecological theory as they describe the features of complex adaptive systems shown by a number of biological systems, and perhaps for the investigation of the dynamic origin of scale invariance of natural forms in general. The species-area and relative species-abundance relations, the scaling of community and species' size spectra, the scaling of population densities with their mean body mass and the scaling of the largest organism with ecosystem size are examples of such laws. Borrowing heavily from earlier successes in physics, it will be shown how simple mathematical scaling arguments, following from dimensional and finite-size scaling analyses, provide theoretical predictions of the inter- relationships among the species abundance relationship, the species-area relationship and community size spectra, in excellent accord with empirical data. The main conclusion is that the proposed scaling framework, along with the questions and predictions it provides, serves as a starting point for a novel approach to macroecological analysis.

  16. Derivation of the Second Law of Thermodynamics from Boltzmann's Distribution Law.

    ERIC Educational Resources Information Center

    Nelson, P. G.

    1988-01-01

    Shows how the thermodynamic condition for equilibrium in an isolated system can be derived by the application of Boltzmann's law to a simple physical system. States that this derivation could be included in an introductory course on chemical equilibrium to help prepare students for a statistical mechanical treatment presented in the curriculum.…

  17. Arduino-Based Experiment Demonstrating Malus's Law

    ERIC Educational Resources Information Center

    de Freitas, Welica P. S.; Cena, Cicero R.; Alves, Diego C. B.; Goncalves, Alem-Mar B.

    2018-01-01

    Malus's law states that the intensity of light after passing through two polarizers is proportional to the square of the cosine of the angle between the polarizers. We present a simple setup demonstrating this law. The novelty of our work is that we use a multi-turn potentiometer mechanically linked to one of the polarizers to measure the…

  18. The First Billion Years project: constraining the dust attenuation law of star-forming galaxies at z ≃ 5

    NASA Astrophysics Data System (ADS)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.

    2017-09-01

    We present the results of a study investigating the dust attenuation law at z ≃ 5, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N = 498 galaxies drawn from the First Billion Years (FiBY) simulation project. The simulated galaxies at z ≃ 5, which have M1500 ≤ -18.0 and 7.5 ≤ log(M/M}_{⊙}) ≤ 10.2, display a mass-dependent α-enhancement, with a median value of [α /{Fe}]_{z=5} ˜eq 4 × [α /{Fe}]_{Z_{⊙}}. The median Fe/H ratio of the simulated galaxies is 0.14 ± 0.05 which produces steep intrinsic ultraviolet (UV) continuum slopes; 〈βI〉 = -2.4 ± 0.05. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form A(λ) ∝ λn, we explore the parameter values which best reproduce the observed z = 5 luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass (A1500 = 0.5 × log(M/M⊙) - 3.3), and the dust attenuation slope (n) is within the range -0.7 ≤ n ≤ -0.3, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model assumptions, including the effects of massive binaries. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV (n = -0.55). In contrast, curves as steep as the Small Magellanic Cloud extinction curve (n = -1.24) are formally ruled out. Finally, we show that our models are consistent with recent 1.3 mm Atacama Large Millimeter Array observations of the Hubble Ultra Deep Field, and predict the form of the z ≃ 5 infrared excess (IRX)-β relation.

  19. Universal Power Law Governing Pedestrian Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamouzas, Ioannis; Skinner, Brian; Guy, Stephen J.

    2014-12-01

    Human crowds often bear a striking resemblance to interacting particle systems, and this has prompted many researchers to describe pedestrian dynamics in terms of interaction forces and potential energies. The correct quantitative form of this interaction, however, has remained an open question. Here, we introduce a novel statistical-mechanical approach to directly measure the interaction energy between pedestrians. This analysis, when applied to a large collection of human motion data, reveals a simple power-law interaction that is based not on the physical separation between pedestrians but on their projected time to a potential future collision, and is therefore fundamentally anticipatory inmore » nature. Remarkably, this simple law is able to describe human interactions across a wide variety of situations, speeds, and densities. We further show, through simulations, that the interaction law we identify is sufficient to reproduce many known crowd phenomena.« less

  20. Greedy algorithms and Zipf laws

    NASA Astrophysics Data System (ADS)

    Moran, José; Bouchaud, Jean-Philippe

    2018-04-01

    We consider a simple model of firm/city/etc growth based on a multi-item criterion: whenever entity B fares better than entity A on a subset of M items out of K, the agent originally in A moves to B. We solve the model analytically in the cases K  =  1 and . The resulting stationary distribution of sizes is generically a Zipf-law provided M  >  K/2. When , no selection occurs and the size distribution remains thin-tailed. In the special case M  =  K, one needs to regularize the problem by introducing a small ‘default’ probability ϕ. We find that the stationary distribution has a power-law tail that becomes a Zipf-law when . The approach to the stationary state can also be characterized, with strong similarities with a simple ‘aging’ model considered by Barrat and Mézard.

  1. Genetic noise mechanism for power-law switching in bacterial flagellar motors

    NASA Astrophysics Data System (ADS)

    Krivonosov, M. I.; Zaburdaev, V.; Denisov, S. V.; Ivanchenko, M. V.

    2018-06-01

    Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduced from simple thermodynamic arguments. Recently, it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of the barrier between the two rotation states, it is possible to generate switching statistics with an intermediate power-law asymptotics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated ‘noise’ can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as the equilibrium number of molecules, sensitivities, and the characteristic relaxation time.

  2. Characteristic Sizes of Life in the Oceans, from Bacteria to Whales.

    PubMed

    Andersen, K H; Berge, T; Gonçalves, R J; Hartvig, M; Heuschele, J; Hylander, S; Jacobsen, N S; Lindemann, C; Martens, E A; Neuheimer, A B; Olsson, K; Palacz, A; Prowe, A E F; Sainmont, J; Traving, S J; Visser, A W; Wadhwa, N; Kiørboe, T

    2016-01-01

    The size of an individual organism is a key trait to characterize its physiology and feeding ecology. Size-based scaling laws may have a limited size range of validity or undergo a transition from one scaling exponent to another at some characteristic size. We collate and review data on size-based scaling laws for resource acquisition, mobility, sensory range, and progeny size for all pelagic marine life, from bacteria to whales. Further, we review and develop simple theoretical arguments for observed scaling laws and the characteristic sizes of a change or breakdown of power laws. We divide life in the ocean into seven major realms based on trophic strategy, physiology, and life history strategy. Such a categorization represents a move away from a taxonomically oriented description toward a trait-based description of life in the oceans. Finally, we discuss life forms that transgress the simple size-based rules and identify unanswered questions.

  3. The new Israeli feed safety law: challenges in relation to animal and public health.

    PubMed

    Barel, Shimon; Elad, Dani; Cuneah, Olga; Shimshoni, Jakob A

    2017-03-01

    The Israeli feed safety legislation, which came to prominence in the early 1970s, has undergone a major change from simple feed safety and quality regulations to a more holistic concept of control of feed safety and quality throughout the whole feed production chain, from farm to the end user table. In February 2014, a new law was approved by the Israeli parliament, namely the Control of Animal Feed Law, which is expected to enter into effect in 2017. The law is intended to regulate the production and marketing of animal feed, guaranteeing the safety and quality of animal products throughout the production chain. The responsibility on the implementation of the new feed law was moved from the Plant Protection Inspection Service to the Veterinary Services and Animal Health. In preparation for the law's implementation, we have characterized the various sources and production lines of feed for farm and domestic animals in Israel and assessed the current feed safety challenges in terms of potential hazards or undesirable substances. Moreover, the basic requirements for feed safety laboratories, which are mandatory for analyzing and testing for potential contaminants, are summarized for each of the contaminants discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Modal sound transmission loss of a single leaf panel: Asymptotic solutions.

    PubMed

    Wang, Chong

    2015-12-01

    In a previously published paper [C. Wang, J. Acoust. Soc. Am. 137(6), 3514-3522 (2015)], the modal sound transmission coefficients of a single leaf panel were discussed with regard to the inter-modal coupling effects. By incorporating such effect into the equivalent modal radiation impedance, which is directly related to the modal sound transmission coefficient of each mode, the overall sound transmission loss for both normal and randomized sound incidences was computed through a simple modal superposition. Benefiting from the analytical expressions of the equivalent modal impedance and modal transmission coefficients, in this paper, behaviors of modal sound transmission coefficients in several typical frequency ranges are discussed in detail. Asymptotic solutions are also given for the panels with relatively low bending stiffnesses, for which the sound transmission loss has been assumed to follow the mass law of a limp panel. Results are also compared to numerical analysis and the renowned mass law theories.

  5. Marine debris ingestion and Thayer's law - The importance of plastic color.

    PubMed

    Santos, Robson G; Andrades, Ryan; Fardim, Lorena M; Martins, Agnaldo Silva

    2016-07-01

    In recent years marine plastic pollution has gained considerable attention as a significant threat to marine animals. Despite the abundant literature related to marine debris ingestion, only a few studies attempted to understand the factors involved in debris ingestion. Plastic ingestion is commonly attributed to visual similarities of plastic fragments to animal's prey items, such as plastic bags and jellyfish. However, this simple explanation is not always coherent with the variety of debris items ingested and with the species' main prey items. We assess differences in the conspicuousness of plastic debris related to their color using Thayer's law to infer the likelihood that visual foragers detect plastic fragments. We hypothesize that marine animals that perceive floating plastic from below should preferentially ingest dark plastic fragments, whereas animals that perceive floating plastic from above should select for paler plastic fragments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.

    2018-05-01

    We present the results of a new study of the relationship between infrared excess (IRX ≡ LIR/LUV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 < z < 3, based on a deep Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra Deep Field. Excluding the most heavily obscured sources, we use a stacking analysis to show that z ≃ 2.5 star-forming galaxies in the mass range 9.25≤ log (M_{\\ast }/M_{⊙}) ≤ 10.75 are fully consistent with the IRX-β relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.

  7. Slow Relaxation in Anderson Critical Systems

    NASA Astrophysics Data System (ADS)

    Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail

    2016-05-01

    We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.

  8. A proposal for limited criminal liability in high-accuracy endoscopic sinus surgery.

    PubMed

    Voultsos, P; Casini, M; Ricci, G; Tambone, V; Midolo, E; Spagnolo, A G

    2017-02-01

    The aim of the present study is to propose legal reform limiting surgeons' criminal liability in high-accuracy and high-risk surgery such as endoscopic sinus surgery (ESS). The study includes a review of the medical literature, focusing on identifying and examining reasons why ESS carries a very high risk of serious complications related to inaccurate surgical manoeuvers and reviewing British and Italian legal theory and case-law on medical negligence, especially with regard to Italian Law 189/2012 (so called "Balduzzi" Law). It was found that serious complications due to inaccurate surgical manoeuvers may occur in ESS regardless of the skill, experience and prudence/diligence of the surgeon. Subjectivity should be essential to medical negligence, especially regarding high-accuracy surgery. Italian Law 189/2012 represents a good basis for the limitation of criminal liability resulting from inaccurate manoeuvres in high-accuracy surgery such as ESS. It is concluded that ESS surgeons should be relieved of criminal liability in cases of simple/ordinary negligence where guidelines have been observed. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  9. Scaling laws and fluctuations in the statistics of word frequencies

    NASA Astrophysics Data System (ADS)

    Gerlach, Martin; Altmann, Eduardo G.

    2014-11-01

    In this paper, we combine statistical analysis of written texts and simple stochastic models to explain the appearance of scaling laws in the statistics of word frequencies. The average vocabulary of an ensemble of fixed-length texts is known to scale sublinearly with the total number of words (Heaps’ law). Analyzing the fluctuations around this average in three large databases (Google-ngram, English Wikipedia, and a collection of scientific articles), we find that the standard deviation scales linearly with the average (Taylor's law), in contrast to the prediction of decaying fluctuations obtained using simple sampling arguments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage of words using a Poisson process with a fat-tailed distribution of word frequencies (Zipf's law) and topic-dependent frequencies of individual words (as in topic models). Considering topical variations lead to quenched averages, turn the vocabulary size a non-self-averaging quantity, and explain the empirical observations. For the numerous practical applications relying on estimations of vocabulary size, our results show that uncertainties remain large even for long texts. We show how to account for these uncertainties in measurements of lexical richness of texts with different lengths.

  10. Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-10-01

    A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.

  11. From science to policy in early childhood education.

    PubMed

    Gormley, William T

    2011-08-19

    This paper examines the relationship between scientific research and public policy. After explaining why the simple conversion of research into public law is unlikely, several factors are identified that can promote the use of research by public officials. Examples of use and non-use are cited from early childhood education, where empirical evidence on program effects is relatively strong. Some specific suggestions are offered for improving the connection between science and public policy.

  12. Are attractors 'strange', or is life more complicated than the simple laws of physics?

    PubMed

    Pogun, S

    2001-01-01

    Interesting and intriguing questions involve complex systems whose properties cannot be explained fully by reductionist approaches. Last century was dominated by physics, and applying the simple laws of physics to biology appeared to be a practical solution to understand living organisms. However, although some attributes of living organisms involve physico-chemical properties, the genetic program and evolutionary history of complex biological systems make them unique and unpredictable. Furthermore, there are and will be 'unobservable' phenomena in biology which have to be accounted for.

  13. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  14. Lenz's Law: Feel the Force.

    ERIC Educational Resources Information Center

    Sawicki, Charles A.

    1996-01-01

    Describes a simple, inexpensive system that allows students to have hands-on contact with simple experiments involving forces generated by induced currents. Discusses the use of a dynamic force sensor in making quantitative measurements of the forces generated. (JRH)

  15. On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation

    NASA Astrophysics Data System (ADS)

    Akbulut, Arzu; Taşcan, Filiz

    2018-04-01

    In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.

  16. Measuring Drag Force in Newtonian Liquids

    ERIC Educational Resources Information Center

    Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr

    2012-01-01

    The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at…

  17. Power law behavior of the isotope yield distributions in the multifragmentation regime of heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Wada, R.; Chen, Z.; Keutgen, T.; Kowalski, S.; Hagel, K.; Barbui, M.; Bonasera, A.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Schmidt, K. J.; Wang, J.

    2010-11-01

    Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, asym/T, extracted in previous work and that of the pairing term, ap/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I=N-Z value, the corrected yields of isotopes relative to the yield of C12 show a power law distribution Y(N,Z)/Y(12C)~A-τ in the mass range 1⩽A⩽30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted τ value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be τprim=2.4±0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.

  18. More on Faraday's and Lenz's laws - Qualitative demonstrations

    NASA Astrophysics Data System (ADS)

    Hessel, Roberto

    2011-03-01

    A large variety of simple setups for demonstrating Faraday's and Lenz's laws have been described in the literature.1-4 For a few semesters, we tested some of these setups, especially those suggested in Ref. 1, but recently we decided to develop our own version.

  19. Boiling Temperature vs. Composition. An Almost-Exact Explicit Equation for a Binary Mixture Following Raoult's Law.

    ERIC Educational Resources Information Center

    Cardinali, Mario Emilio; Giomini, Claudio

    1989-01-01

    Proposes a simple procedure based on an expansion of the exponential terms of Raoult's law by applying it to the case of the benzene-toluene mixture. The results with experimental values are presented as a table. (YP)

  20. Psychophysics of time perception and intertemporal choice models

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki; Oono, Hidemi; Radford, Mark H. B.

    2008-03-01

    Intertemporal choice and psychophysics of time perception have been attracting attention in econophysics and neuroeconomics. Several models have been proposed for intertemporal choice: exponential discounting, general hyperbolic discounting (exponential discounting with logarithmic time perception of the Weber-Fechner law, a q-exponential discount model based on Tsallis's statistics), simple hyperbolic discounting, and Stevens' power law-exponential discounting (exponential discounting with Stevens' power time perception). In order to examine the fitness of the models for behavioral data, we estimated the parameters and AICc (Akaike Information Criterion with small sample correction) of the intertemporal choice models by assessing the points of subjective equality (indifference points) at seven delays. Our results have shown that the orders of the goodness-of-fit for both group and individual data were [Weber-Fechner discounting (general hyperbola) > Stevens' power law discounting > Simple hyperbolic discounting > Exponential discounting], indicating that human time perception in intertemporal choice may follow the Weber-Fechner law. Indications of the results for neuropsychopharmacological treatments of addiction and biophysical processing underlying temporal discounting and time perception are discussed.

  1. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  2. Contingency and statistical laws in replicate microbial closed ecosystems.

    PubMed

    Hekstra, Doeke R; Leibler, Stanislas

    2012-05-25

    Contingency, the persistent influence of past random events, pervades biology. To what extent, then, is each course of ecological or evolutionary dynamics unique, and to what extent are these dynamics subject to a common statistical structure? Addressing this question requires replicate measurements to search for emergent statistical laws. We establish a readily replicated microbial closed ecosystem (CES), sustaining its three species for years. We precisely measure the local population density of each species in many CES replicates, started from the same initial conditions and kept under constant light and temperature. The covariation among replicates of the three species densities acquires a stable structure, which could be decomposed into discrete eigenvectors, or "ecomodes." The largest ecomode dominates population density fluctuations around the replicate-average dynamics. These fluctuations follow simple power laws consistent with a geometric random walk. Thus, variability in ecological dynamics can be studied with CES replicates and described by simple statistical laws. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Stress and strain evolution of folding rocks

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka

    2015-04-01

    One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress difference between pure and simple shear is less pronounced in power-law materials. It also depends on the original orientation of the layer relative to the shear plane, being the shortening rate initially relatively low when the layer makes a low angle with the shear plane. The mechanical behaviour is similar in pure and simple shear when the layer is oriented at a relative high angle (45°). M-G Llorens, PD Bons, A Griera and E Gomez-Rivas (2013a) When do folds unfold during progressive shear?. Geology, 41, 563-566. M-G Llorens, PD Bons, A Griera, E Gomez-Rivas and LA Evans (2013b) Single layer folding in simple shear. Journal of Structural Geology, 50, 209-220.

  4. Development of a solid propellant viscoelastic dynamic model

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.; Fitzgerald, J. E.

    1976-01-01

    The results of a one year study to develop a dynamic response model for the Space Shuttle Solid Rocket Motor (SRM) propellant are presented. An extensive literature survey was conducted, from which it was concluded that the only significant variables affecting the dynamic response of the SRM propellant are temperature and frequency. Based on this study, and experimental data on propellants related to the SRM propellant, a dynamic constitutive model was developed in the form of a simple power law with temperature incorporated in the form of a modified power law. A computer program was generated which performs a least-squares curve-fit of laboratory data to determine the model parameters and it calculates dynamic moduli at any desired temperature and frequency. Additional studies investigated dynamic scaling laws and the extent of coupling between the SRM propellant and motor cases. It was found, in agreement with other investigations, that the propellant provides all of the mass and damping characteristics whereas the case provides all of the stiffness.

  5. Lightning Scaling Laws Revisited

    NASA Technical Reports Server (NTRS)

    Boccippio, D. J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Scaling laws relating storm electrical generator power (and hence lightning flash rate) to charge transport velocity and storm geometry were originally posed by Vonnegut (1963). These laws were later simplified to yield simple parameterizations for lightning based upon cloud top height, with separate parameterizations derived over land and ocean. It is demonstrated that the most recent ocean parameterization: (1) yields predictions of storm updraft velocity which appear inconsistent with observation, and (2) is formally inconsistent with the theory from which it purports to derive. Revised formulations consistent with Vonnegut's original framework are presented. These demonstrate that Vonnegut's theory is, to first order, consistent with observation. The implications of assuming that flash rate is set by the electrical generator power, rather than the electrical generator current, are examined. The two approaches yield significantly different predictions about the dependence of charge transfer per flash on storm dimensions, which should be empirically testable. The two approaches also differ significantly in their explanation of regional variability in lightning observations.

  6. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  7. Development of a Hands-On Model Embedded with Guided Inquiry Laboratory to Enhance Students' Understanding of Law of Mechanical Energy Conservation

    ERIC Educational Resources Information Center

    Wangdi, Dumcho; Kanthang, Paisan; Precharattana, Monamorn

    2017-01-01

    This paper attempts to investigate the understanding of the law of mechanical energy conservation using a guided inquiry approach. A simple hands-on model was constructed and used to demonstrate the law of mechanical energy conservation. A total of 30 grade ten students from one of the middle secondary schools in western Bhutan participated in…

  8. A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Blanco, Luis H.; Romero, Carmen M.

    1995-10-01

    A set of experiments that examines each one of the terms of the ideal gas equation is described. Boyle's Law, Charles-Gay Lussac's Law, Amonton's Law, the number of moles or Molecular Weight, and the Gas Constant are studied. The experiments use very simple, easy to obtain equipment and common gases, mainly air. The results gathered by General Chemistry College students are satisfactory.

  9. Exponentially Stabilizing Robot Control Laws

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Bayard, David S.

    1990-01-01

    New class of exponentially stabilizing laws for joint-level control of robotic manipulators introduced. In case of set-point control, approach offers simplicity of proportion/derivative control architecture. In case of tracking control, approach provides several important alternatives to completed-torque method, as far as computational requirements and convergence. New control laws modified in simple fashion to obtain asymptotically stable adaptive control, when robot model and/or payload mass properties unknown.

  10. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  11. On electromechanical instability in semicrystalline polymer

    NASA Astrophysics Data System (ADS)

    Yong, Huadong; Zhou, Youhe

    2013-10-01

    Semicrystalline polymers are promising materials for actuators and capacitors. In response to the electric field, the polymer undergoes large deformation. Based on a simple model, the critical electric field in the polymer is investigated in the present paper. The polymer is assumed to be incompressible and specified by the power law relation. Using the stability condition of the determinant of the Hessian, the critical electric field can be obtained. Comparing the results from prestress with prestrain, it is shown that the critical electric field is related to the hardening exponent N and may be restricted by the necking instability.

  12. Archimedes meets Einstein: a millennial geometric bridge

    NASA Astrophysics Data System (ADS)

    Prado, Xabier; Area, Iván; Paredes, Angel; Domínguez Castiñeiras, José Manuel; Edelstein, José D.; Mira, Jorge

    2018-07-01

    This contribution explores some analogies between special relativity and geometrical tools developed by the ancient Greeks. The kinematics of one-dimensional elastic collisions is solved with simple ruler-and-compass constructions on conic sections. Then, a thought-provoking relation involving Lorentz transformations, Archimedes’ law of the lever and Einstein’s formula for the relativistic mass is put forward. The familiarity with classical geometry is useful in developing intuitions on deep concepts of modern physics and can be profitable for high school or basic undergraduate teaching. Moreover, it is fascinating to establish a bridge connecting beautiful ideas separated by two millennia.

  13. Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer-Lambert Law

    ERIC Educational Resources Information Center

    Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M.

    2007-01-01

    We have developed a simple, resilient experiment that illustrates the Nernst equation and Beer-Lambert law for our second-semester general chemistry students. In the experiment, the students monitor the reduction of ferricyanide ion, [Fe(CN)[subscript 6

  14. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  15. On space-based SETI

    NASA Technical Reports Server (NTRS)

    Stuiver, Willem

    1990-01-01

    Space-based antenna systems for the search of signals from extra-terrestrial intelligence are discussed. Independent studies of the ecliptic solar-sailing transfer problem from the geosynchronous departure orbit to Sun-Earth collinear transterrestrial liberation point were conducted. They were based on a relatively simple mathematical model describing attitude-controlled spacecraft motion in the ecliptic plane as governed by solar and terrestrial gravitational attraction together with the solar radiation pressure. The resulting equations of motion were integrated numerically for a relevant range of values of spacecraft area-to-mass ratio and for an appropriate spacecraft attitude-control law known to lead to Earth escape. Experimentation with varying initial conditions in the departure orbit, and with attitude-control law modification after having achieved Earth escape, established the feasibility of component deployment by means of solar sailing. Details are presented.

  16. Scaling laws between population and facility densities.

    PubMed

    Um, Jaegon; Son, Seung-Woo; Lee, Sung-Ik; Jeong, Hawoong; Kim, Beom Jun

    2009-08-25

    When a new facility like a grocery store, a school, or a fire station is planned, its location should ideally be determined by the necessities of people who live nearby. Empirically, it has been found that there exists a positive correlation between facility and population densities. In the present work, we investigate the ideal relation between the population and the facility densities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, it was shown that the density of facility D and that of population rho should follow a simple power law D approximately rho(2/3). In our empirical analysis, on the other hand, the power-law exponent alpha in D approximately rho(alpha) is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy in alpha, we propose a model based on economic mechanisms that mimic the competitive balance between the profit of the facilities and the social opportunity cost for populations. Through our simple, microscopically driven model, we show that commercial facilities driven by the profit of the facilities have alpha = 1, whereas public facilities driven by the social opportunity cost have alpha = 2/3. We simulate this model to find the optimal positions of facilities on a real U.S. map and show that the results are consistent with the empirical data.

  17. Trajectory optimization and guidance law development for national aerospace plane applications

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1988-01-01

    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.

  18. A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.

    We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of {xi}(r), the galaxy two-point correlation function. While {xi}(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal massmore » loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a {approx}90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law {xi}(r). We investigate how the shape of {xi}(r) depends on subhalo mass (or luminosity) and redshift. We find that {xi}(r) breaks from a power law at high masses, implying that only galaxies of luminosities {approx}< L{sub *} should exhibit power-law clustering. Moreover, we demonstrate that {xi}(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that {xi}(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z {approx} 0. We then investigate the conditions required for {xi}(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of {xi}(r) are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies and halos that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are intertwined and we find no simple, universal rule for which a power law {xi}(r) will occur. However, we do show that the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve a power law {xi}(r) and that these conditions are met only in a narrow mass and redshift range. We conclude that the power-law nature of {xi}(r) for L{sub *} and fainter galaxy samples at low redshift is a cosmic coincidence.« less

  19. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes.

    PubMed

    Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  20. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes

    NASA Astrophysics Data System (ADS)

    Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  1. [Factors related to awareness on tobacco advertisement and promotion among adults in six cities in China].

    PubMed

    Yang, Yan; Wu, Xi; Li, Qiang; Jiao, Shu-fang; Li, Xun; Li, Xin-jian; Zhu, Guo-ping; Du, Lin; Zhao, Jian-hua; Jiang, Yuan; Feng, Guo-ze

    2009-04-01

    To know the situation of tobacco advertisement, promotions and related factors in six cities in China. 4815 adults (above 18 years), selected form Beijing, Shanghai, Shenyang, Changsha, Guangzhou and Yinchuan through probability proportionate sampling and simple random sampling, were investigated through questionnaires. The most commonly reported channels that smokers noticed tobacco advertisements were billboards (35.6%) and television (34.4%). The most commonly reported tobacco promotional activities that were noticed by smokers were free gifts when buying cigarettes (23.1%) and free samples of cigarettes (13.9%). Smokers in Changsha were more likely to report noticing tobacco advertisement on billboards (chi2 = 562.474, P < 0.00 1), and on television (chi2 = 265.570, P < 0.001). Smokers in Changsha (chi2 = 58.314, P < 0.001) were more likely to notice tobacco related news and games. A logistic regression analysis showed that the living and education level were related to awareness of tobacco advertisement and promotion. It was universal to see tobacco advertisement and promotions in cities in China but the laws and regulations about tobacco-control were not uniformly executed in different cities. It is necessary to perfect and uniform related laws and regulations.

  2. Enhancement of orientation gradients during simple shear deformation by application of simple compression

    NASA Astrophysics Data System (ADS)

    Jahedi, Mohammad; Ardeljan, Milan; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Knezevic, Marko

    2015-06-01

    We use a multi-scale, polycrystal plasticity micromechanics model to study the development of orientation gradients within crystals deforming by slip. At the largest scale, the model is a full-field crystal plasticity finite element model with explicit 3D grain structures created by DREAM.3D, and at the finest scale, at each integration point, slip is governed by a dislocation density based hardening law. For deformed polycrystals, the model predicts intra-granular misorientation distributions that follow well the scaling law seen experimentally by Hughes et al., Acta Mater. 45(1), 105-112 (1997), independent of strain level and deformation mode. We reveal that the application of a simple compression step prior to simple shearing significantly enhances the development of intra-granular misorientations compared to simple shearing alone for the same amount of total strain. We rationalize that the changes in crystallographic orientation and shape evolution when going from simple compression to simple shearing increase the local heterogeneity in slip, leading to the boost in intra-granular misorientation development. In addition, the analysis finds that simple compression introduces additional crystal orientations that are prone to developing intra-granular misorientations, which also help to increase intra-granular misorientations. Many metal working techniques for refining grain sizes involve a preliminary or concurrent application of compression with severe simple shearing. Our finding reveals that a pre-compression deformation step can, in fact, serve as another processing variable for improving the rate of grain refinement during the simple shearing of polycrystalline metals.

  3. A Fan-Tastic Quantitative Exploration of Ohm's Law

    ERIC Educational Resources Information Center

    Mitchell, Brandon; Ekey, Robert; McCullough, Roy; Reitz, William

    2018-01-01

    Teaching simple circuits and Ohm's law to students in the introductory classroom has been extensively investigated through the common practice of using incandescent light bulbs to help students develop a conceptual foundation before moving on to quantitative analysis. However, the bulb filaments' resistance has a large temperature dependence,…

  4. Neuromorphic Computing: A Post-Moore's Law Complementary Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Birdwell, John Douglas; Dean, Mark

    2016-01-01

    We describe our approach to post-Moore's law computing with three neuromorphic computing models that share a RISC philosophy, featuring simple components combined with a flexible and programmable structure. We envision these to be leveraged as co-processors, or as data filters to provide in situ data analysis in supercomputing environments.

  5. The Beer Lambert Law Measurement Made Easy

    ERIC Educational Resources Information Center

    Onorato, Pasquale; Gratton, Luigi M.; Polesell, Marta; Salmoiraghi, Alessandro; Oss, Stefano

    2018-01-01

    We propose the use of a smartphone based apparatus as a valuable tool for investigating the optical absorption of a material and to verify the exponential decay predicted by Beer's law. The very simple experimental activities presented here, suitable for undergraduate students, allows one to measure the material transmittance including its…

  6. Probing Planck's Law at Home

    ERIC Educational Resources Information Center

    Bonnet, I.; Gabelli, J.

    2010-01-01

    We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value for…

  7. Experimental Confirmation of Lenz's Law

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2017-01-01

    The paper presents a series of experiments that demonstrate the phenomenon of electromagnetic induction. These make it possible to determine the direction of the induced current and so confirm Lenz's Law. The simple experiments can be reproduced in a school laboratory and can be recommended for students' project activity.

  8. Experimental confirmation of Lenz’s law

    NASA Astrophysics Data System (ADS)

    Mayer, V. V.; Varaksina, E. I.

    2017-11-01

    The paper presents a series of experiments that demonstrate the phenomenon of electromagnetic induction. These make it possible to determine the direction of the induced current and so confirm Lenz’s Law. The simple experiments can be reproduced in a school laboratory and can be recommended for students’ project activity.

  9. A Simple Boyle's Law Experiment.

    ERIC Educational Resources Information Center

    Lewis, Don L.

    1997-01-01

    Describes an experiment to demonstrate Boyle's law that provides pressure measurements in a familiar unit (psi) and makes no assumptions concerning atmospheric pressure. Items needed include bathroom scales and a 60-ml syringe, castor oil, disposable 3-ml syringe and needle, modeling clay, pliers, and a wooden block. Commercial devices use a…

  10. Faraday's Law and Seawater Motion

    ERIC Educational Resources Information Center

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  11. Steady-state heat transport: Ballistic-to-diffusive with Fourier's law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, Jesse, E-mail: jmaassen@purdue.edu; Lundstrom, Mark

    2015-01-21

    It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundarymore » conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.« less

  12. Free cooling of the one-dimensional wet granular gas.

    PubMed

    Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S

    2006-07-07

    The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.

  13. AdS black disk model for small-x DIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao

    2011-05-23

    Using the approximate conformal invariance of QCD at high energies we consider a simple AdS black disk model to describe saturation in DIS. Deep inside saturation the structure functions have the same power law scaling, F{sub T}{approx}F{sub L}{approx}{sup -}{omega}, where {omega} is related to the expansion rate of the black disk with energy. Furthermore, the ratio F{sub L}/F{sub T} is given by the universal value (1+{omega}/3+{omega}), independently of the target.

  14. Multiscale Modeling of Stiffness, Friction and Adhesion in Mechanical Contacts

    DTIC Science & Technology

    2012-02-29

    over a lateral length l scales as a power law: h  lH, where H is called the Hurst exponent . For typical experimental surfaces, H ranges from 0.5 to 0.8...surfaces with a wide range of Hurst exponents using fully atomistic calculations and the Green’s function method. A simple relation like Eq. (2...described above to explore a full range of parameter space with different rms roughness h0, rms slope h’0, Hurst exponent H, adhesion energy

  15. Testing Planetary Volcanism Models with Multi-Wavelength Near Infrared Observations of Kilauea Flows and Fountains

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Radebaugh, Jani; M. C Lopes, Rosaly; Kerber, Laura; Solomonidou, Anezina; Watkins, Bryn

    2017-10-01

    Using remote sensing of planetary volcanism on objects such as Io to determine eruption conditions is challenging because the emitting region is typically not resolved and because exposed lava cools so quickly. A model of the cooling rate and eruption mechanism is typically used to predict the amount of surface area at different temperatures, then that areal distribution is convolved with a Planck blackbody emission curve, and the predicted spectra is compared with observation. Often the broad nature of the Planck curve makes interpretation non-unique. However different eruption mechanisms (for example cooling fire fountain droplets vs. cooling flows) have very different area vs. temperature distributions which can often be characterized by simple power laws. Furthermore different composition magmas have significantly different upper limit cutoff temperatures. In order to test these models in August 2016 and May 2017 we obtained spatially resolved observations of spreading Kilauea pahoehoe flows and fire fountains using a three-wavelength near-infrared prototype camera system. We have measured the area vs. temperature distribution for the flows and find that over a relatively broad temperature range the distribution does follow a power law matching the theoretical predictions. As one approaches the solidus temperature the observed area drops below the simple model predictions by an amount that seems to vary inversely with the vigor of the spreading rate. At these highest temperatures the simple models are probably inadequate. It appears necessary to model the visco-elastic stretching of the very thin crust which covers even the most recently formed surfaces. That deviation between observations and the simple models may be particularly important when using such remote sensing observations to determine magma eruption temperatures.

  16. The legal implications of healthcare communications: what every pain physician needs to know.

    PubMed

    Shomaker, T S; Ashburn, M A

    2000-03-01

    Accurate and sensitive communication of health care information is essential to effective patient management in the pain clinic, operating room, other health care settings. However, information relating to the health care status of a patient is sensitive and may be embarrassing or damaging if it falls into the wrong hands. Ethical cannons of medicine and statutory provisions have emphasized the obligation of the physician to safeguard patient confidences. However, threats to the confidentiality of medical information abound and are even more significant in our age of instantaneous communication characterized by the growing use of email, facsimile, and the Internet. This article outlines legal issues relating to communication in three key areas of health care law: confidentiality/breach of privacy, informed consent, and defamation. The major principles of the law in these areas are discussed and case studies are used to illustrate key points and give simple preventive strategies to help steer the delicate balance between sharing important healthcare information and protecting sensitive patient information.

  17. Scaling laws and bulk-boundary decoupling in heat flow.

    PubMed

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  18. Fractional power-law spatial dispersion in electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru; Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife; Trujillo, Juan J., E-mail: jtrujill@ullmat.es

    2013-07-15

    Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s lawmore » and Debye’s screening for the media.« less

  19. Emergence of an optimal search strategy from a simple random walk

    PubMed Central

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2013-01-01

    In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445

  20. Emergence of an optimal search strategy from a simple random walk.

    PubMed

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2013-09-06

    In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.

  1. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  2. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    NASA Astrophysics Data System (ADS)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  3. A Simple Derivation of Kepler's Laws without Solving Differential Equations

    ERIC Educational Resources Information Center

    Provost, J.-P.; Bracco, C.

    2009-01-01

    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple…

  4. The Identities Hidden in the Matching Laws, and Their Uses

    ERIC Educational Resources Information Center

    Thorne, David R.

    2010-01-01

    Various theoretical equations have been proposed to predict response rate as a function of the rate of reinforcement. If both the rate and probability of reinforcement are considered, a simple identity, defining equation, or "law" holds. This identity places algebraic constraints on the allowable forms of our mathematical models and can help…

  5. Increasing the Drive of Your Physics Class

    ERIC Educational Resources Information Center

    Eisenstein, Stanley

    2008-01-01

    First-year physics students often have a difficult time grasping Newton's laws of motion and recognizing the forces that these laws depend on. The "Paper Car" project is an experiential activity that is rich in application of force principles. It is also simple enough that students are able to integrate straightforward but non-trivial physics…

  6. See the Light! A Nice Application of Calculus to Chemistry

    ERIC Educational Resources Information Center

    Boersma, Stuart; McGowan, Garrett

    2007-01-01

    Some simple modeling with Riemann sums can be used to develop Beer's Law, which describes the relationship between the absorbance of light and the concentration of the solution which the light is penetrating. A further application of the usefulness of Beer's Law in creating calibration curves is also presented. (Contains 3 figures.)

  7. The Second Law of Thermodynamics in a Historical Setting.

    ERIC Educational Resources Information Center

    Strnad, J.

    1984-01-01

    Traces the development of thermodynamics in physics, focusing on a strategy which enables students to grasp in a limited time and by means of simple calculus the main implications of the second law essential for everyday life (understanding operation of heat engines, refrigerators, heat pumps, district heating, and energy degradation). (JN)

  8. Active Learning through Appellate Simulation: A Simple Recipe for a Business Law Course

    ERIC Educational Resources Information Center

    McDevitt, William J.

    2009-01-01

    Business law professors have long recognized the pedagogical value of using simulations in the classroom. In-class simulations can serve to develop the all-important critical thinking skills that educated people are expected to possess in today's complex legal environment. Moot court exercises, also known as appellate argumentation or appellate…

  9. A Simple Demonstration of the Curie-Weiss Law and a Spin-Crossover Compound.

    ERIC Educational Resources Information Center

    Hutchinson, Bennett; And Others

    1980-01-01

    Discusses an addition to an apparatus which allows the effect of temperature on a paramagnetic compound to be measured, therefore demonstrating the Curie-Weiss law. The experiment can be used as a demonstration or student experiment to stimulate discussion of magnetic susceptibility and ligand field trips. (Author/JN)

  10. Electrostatic potential jump across fast-mode collisionless shocks

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Kan, J. R.

    1991-01-01

    The electrostatic potential jump across fast-mode collisionless shocks is examined by comparing published observations, hybrid simulations, and a simple model, in order to better characterize its dependence on the various shock parameters. In all three, it is assumed that the electrons can be described by an isotropic power-law equation of state. The observations show that the cross-shock potential jump correlates well with the shock strength but shows very little correlation with other shock parameters. Assuming that the electrons obey an isotropic power law equation of state, the correlation of the potential jump with the shock strength follows naturally from the increased shock compression and an apparent dependence of the power law exponent on the Mach number which the observations indicate. It is found that including a Mach number dependence for the power law exponent in the electron equation of state in the simple model produces a potential jump which better fits the observations. On the basis of the simulation results and theoretical estimates of the cross-shock potential, it is discussed how the cross-shock potential might be expected to depend on the other shock parameters.

  11. A pulsed jumping ring apparatus for demonstration of Lenz's law

    NASA Astrophysics Data System (ADS)

    Tanner, Paul; Loebach, Jeff; Cook, James; Hallen, H. D.

    2001-08-01

    Lenz's law is often demonstrated in classrooms by the use of Elihu Thomson's jumping ring. However, it is ironic that a thorough analysis of the physics of the ac jumping ring reveals that the operation is due mainly to a phase difference, not Lenz's law. A complete analysis of the physics behind the ac jumping ring is difficult for the introductory student. We present a design for a pulsed jumping ring which can be fully described by the application of Lenz's law. Other advantages of this system are that it lends itself to a rigorous analysis of the force balances and energy flow. The simple jumping ring apparatus closely resembles Thomson's, but is powered by a capacitor bank. The jump heights were measured for several rings as a function of energy stored in the capacitors. A simple model describes the data well. Currents in both the drive coil and ring are measured and that of the drive coil modeled to illuminate some properties of the capacitors. An analysis of the energy flow in the system explains the higher jump heights, to 2 m, when the ring is cooled.

  12. Bespoke physics for living technology.

    PubMed

    Ackley, David H

    2013-01-01

    In the physics of the natural world, basic tasks of life, such as homeostasis and reproduction, are extremely complex operations, requiring the coordination of billions of atoms even in simple cases. By contrast, artificial living organisms can be implemented in computers using relatively few bits, and copying a data structure is trivial. Of course, the physical overheads of the computers themselves are huge, but since their programmability allows digital "laws of physics" to be tailored like a custom suit, deploying living technology atop an engineered computational substrate might be as or more effective than building directly on the natural laws of physics, for a substantial range of desirable purposes. This article suggests basic criteria and metrics for bespoke physics computing architectures, describes one such architecture, and offers data and illustrations of custom living technology competing to reproduce while collaborating on an externally useful computation.

  13. Lead ions and Coulomb’s Law at the LHC (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  14. Counting Magnetic Bipoles on the Sun by Polarity Inversion

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    2004-01-01

    This paper presents a simple and efficient algorithm for deriving images of polarity inversion from NSO/Kitt Peak magnetograms without use of contouring routines and shows by example how these maps depend upon the spatial scale for filtering the raw data. Smaller filtering scales produce many localized closed contours in mixed polarity regions while supergranular and larger filtering scales produce more global patterns. The apparent continuity of an inversion line depends on how the spatial filtering is accomplished, but its shape depends only on scale. The total length of the magnetic polarity inversion contours varies as a power law of the filter scale with fractal dimension of order 1.9. The amplitude but nut the exponent of this power-law relation varies with solar activity. The results are compared to similar analyses of areal distributions of bipolar magnetic regions.

  15. Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information

    NASA Technical Reports Server (NTRS)

    Howell, L. W., Jr.

    2003-01-01

    A simple power law model consisting of a single spectral index, sigma(sub 2), is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index sigma(sub 2) greater than sigma(sub 1) above E(sub k). The maximum likelihood (ML) procedure was developed for estimating the single parameter sigma(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (Pl) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum- detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are stained in practice are investigated.

  16. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  17. Illustrating some implications of the conservation laws in relativistic mechanics

    NASA Astrophysics Data System (ADS)

    Boyer, Timothy H.

    2009-06-01

    The conservation laws of nonrelativistic and relativistic systems are reviewed and some simple illustrations are provided for the restrictive nature of the relativistic conservation law involving the center of energy compared to the nonrelativistic conservation law for the center of mass. Extension of the nonrelativistic interaction of particles through a potential to a system that is Lorentz-invariant through order v2/c2 is found to require new velocity- and acceleration-dependent forces that are suggestive of a field theory where the no-interaction theorem of Currie, Jordan, and Sudershan does not hold.

  18. Underwater Rays

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2008-01-01

    Light beams in wavy unclear water, also called underwater rays, and caustic networks of light formed at the bottom of shallow water are two faces of a single phenomenon. Derivation of the caustic using only simple geometry, Snell's law and simple derivatives accounts for observations such as the existence of the caustic network on vertical walls,…

  19. Simple adaptive control for quadcopters with saturated actuators

    NASA Astrophysics Data System (ADS)

    Borisov, Oleg I.; Bobtsov, Alexey A.; Pyrkin, Anton A.; Gromov, Vladislav S.

    2017-01-01

    The stabilization problem for quadcopters with saturated actuators is considered. A simple adaptive output control approach is proposed. The control law "consecutive compensator" is augmented with the auxiliary integral loop and anti-windup scheme. Efficiency of the obtained regulator was confirmed by simulation of the quadcopter control problem.

  20. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  1. Assessing the Effects of Medical Marijuana Laws on Marijuana Use: The Devil is in the Details

    PubMed Central

    Pacula, Rosalie Liccardo; Powell, David; Heaton, Paul; Sevigny, Eric L.

    2014-01-01

    This paper sheds light on previous inconsistencies identified in the literature regarding the relationship between medical marijuana laws (MMLs) and recreational marijuana use by closely examining the importance of policy dimensions (registration requirements, home cultivation, dispensaries) and the timing of when particular policy dimensions are enacted. Using data from our own legal analysis of state MMLs, we evaluate which features are associated with adult and youth recreational and heavy use by linking these policy variables to data from the Treatment Episodes Data System (TEDS) and the National Longitudinal Survey of Youth (NLSY97). We employ differences-in-differences techniques, controlling for state and year fixed effects, allowing us to exploit within-state policy changes. We find that while simple dichotomous indicators of MML laws are not positively associated with marijuana use or abuse, such measures hide the positive influence legal dispensaries have on adult and youth use, particularly heavy use. Sensitivity analyses that help address issues of policy endogeneity and actual implementation of dispensaries support our main conclusion that not all MML laws are the same. Dimensions of these policies, in particular legal protection of dispensaries, can lead to greater recreational marijuana use and abuse among adults and those under the legal age of 21 relative to medical marijuana laws without this supply source. PMID:25558490

  2. Gyroscope precession in special and general relativity from basic principles

    NASA Astrophysics Data System (ADS)

    Jonsson, Rickard M.

    2007-05-01

    In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.

  3. Mathematical model for studying cyclist kinematics in vehicle-bicycle frontal collisions

    NASA Astrophysics Data System (ADS)

    Condrea, OA; Chiru, A.; Chiriac, RL; Vlase, S.

    2017-10-01

    For the development of effective vehicle related safety solutions to improve cyclist protection, kinematic predictions are essential. The objective of the paper was the elaboration of a simple mathematical model for predicting cyclist kinematics, with the advantage of yielding simple results for relatively complicated impact situations. Thus, the use of elaborated math software is not required and the calculation time is shortened. The paper presents a modelling framework to determine cyclist kinematic behaviour for the situations in which a M1 category vehicle frontally hits the rear part of a bicycle. After the primary impact between the vehicle front bumper and the bicycle, the cyclist hits the vehicle’s bonnet, the windscreen or both the vehicle’s bonnet and the windscreen in short succession. The head-windshield impact is often the most severe impact, causing serious and potentially lethal injuries. The cyclist is represented by a rigid segment and the equations of motion for the cyclist after the primary impact are obtained by applying Newton’s second law of motion. The impact time for the contact between the vehicle and the cyclist is yielded afterwards by formulating and intersecting the trajectories for two points positioned on the cyclist’s head/body and the vehicle’s windscreen/bonnet while assuming that the cyclist’s equations of motion after the primary impact remain the same. Postimpact kinematics for the secondary impact are yielded by applying linear and angular momentum conservation laws.

  4. Contact law and impact responses of laminated composites

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yang, S. H.

    1980-01-01

    Static identation tests were performed to determine the law of contact between a steel ball and glass/epoxy and graphite/epoxy laminated composites. For both composites the power law with an index of 1.5 was found to be adequate for the loading curve. Substantial permanent deformations were noted after the unloading. A high order beam finite element was used to compute the dynamic contact force and response of the laminated composite subjected to the impact of an elastic sphere. This program can be used with either the classical Hertzian contact law or the measured contact law. A simple method is introduced for estimating the contact force and contact duration in elastic impacts.

  5. Predictor laws for pictorial flight displays

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.

    1985-01-01

    Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.

  6. General flat four-dimensional world pictures and clock systems

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.; Underwood, J. A.

    1978-01-01

    We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincare-Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.

  7. The impact of mandatory helmet law on the outcome of maxillo facial trauma: a comparative study in kerala.

    PubMed

    Usha, M; Ravindran, V; Soumithran, C S; Ravindran Nair, K S

    2014-06-01

    Motorcyclists comprise the majority of road-traffic victims in low and middle income countries,and consequently, the majority of the road-traffic victims globally. Simple measures can be taken to make safer on the roads, which include enforcement of safety measures like seat belt and helmets. The compulsory Helmet law was enforced in Kerala on 18/06/07. Resistance to legislation on motorcycle helmets still coexists world wide with debate on the effectiveness of helmets. In an attempt to analyze the protective effect of helmets on facial injuries a comparative study was conducted in Government Dental College, Calicut, which is a major trauma centre in northern Kerala. Data for the present study was obtained from the patients who have reported to the Emergency Department of Oral and Maxillofacial Surgery, Government Dental College, Calicut, for a period of 6 months immediately after the implementation of strict helmet rule in Kerala. For the study all patients with a history of nonfatal motor cycle accident sustaining facial injuries were included. The results were compared with the study conducted in the same institution in the pre law period. The study demonstrates the protective effect of motorcycle helmets in decreasing the morbidity of maxillofacial trauma.There was a marked decrease in incidence of motorcycle-related injuries, remarkable increase in helmet usage and better outcome in helmeted individuals in the post law period. Road traffic injury control is a public health problem. Health and medical professionals have an ethical responsibility to educate and arrange for the safety of individuals. Helmets are effective in preventing or reducing the severity of motorcycle-related injuries and in a developing country like India, enforced mandatory motor cycle helmet law is potentially one of the most cost effective interventions available.

  8. A simple and general method for solving detailed chemical evolution with delayed production of iron and other chemical elements

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; Spitoni, E.

    2017-04-01

    We present a theoretical method for solving the chemical evolution of galaxies by assuming an instantaneous recycling approximation for chemical elements restored by massive stars and the delay time distribution formalism for delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represents the starting point of this method. We derive a simple and general equation, which closely relates the Laplace transforms of the galaxy gas accretion history and star formation history, which can be used to simplify the problem of retrieving these quantities in the galaxy evolution models assuming a linear Schmidt-Kennicutt law. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element X can be suitably solved with classical methods. We apply our model to reproduce the [O/Fe] and [Si/Fe] versus [Fe/H] chemical abundance patterns as observed at the solar neighbourhood by assuming a decaying exponential infall rate of gas and different delay time distributions for Type Ia Supernovae; we also explore the effect of assuming a non-linear Schmidt-Kennicutt law, with the index of the power law being k = 1.4. Although approximate, we conclude that our model with the single-degenerate scenario for Type Ia Supernovae provides the best agreement with the observed set of data. Our method can be used by other complementary galaxy stellar population synthesis models to predict also the chemical evolution of galaxies.

  9. Effects of directional uncertainty on visually-guided joystick pointing.

    PubMed

    Berryhill, Marian; Kveraga, Kestutis; Hughes, Howard C

    2005-02-01

    Reaction times generally follow the predictions of Hick's law as stimulus-response uncertainty increases, although notable exceptions include the oculomotor system. Saccadic and smooth pursuit eye movement reaction times are independent of stimulus-response uncertainty. Previous research showed that joystick pointing to targets, a motor analog of saccadic eye movements, is only modestly affected by increased stimulus-response uncertainty; however, a no-uncertainty condition (simple reaction time to 1 possible target) was not included. Here, we re-evaluate manual joystick pointing including a no-uncertainty condition. Analysis indicated simple joystick pointing reaction times were significantly faster than choice reaction times. Choice reaction times (2, 4, or 8 possible target locations) only slightly increased as the number of possible targets increased. These data suggest that, as with joystick tracking (a motor analog of smooth pursuit eye movements), joystick pointing is more closely approximated by a simple/choice step function than the log function predicted by Hick's law.

  10. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F 68 , 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  11. Scaling laws describe memories of host-pathogen riposte in the HIV population.

    PubMed

    Barton, John P; Kardar, Mehran; Chakraborty, Arup K

    2015-02-17

    The enormous genetic diversity and mutability of HIV has prevented effective control of this virus by natural immune responses or vaccination. Evolution of the circulating HIV population has thus occurred in response to diverse, ultimately ineffective, immune selection pressures that randomly change from host to host. We show that the interplay between the diversity of human immune responses and the ways that HIV mutates to evade them results in distinct sets of sequences defined by similar collectively coupled mutations. Scaling laws that relate these sets of sequences resemble those observed in linguistics and other branches of inquiry, and dynamics reminiscent of neural networks are observed. Like neural networks that store memories of past stimulation, the circulating HIV population stores memories of host-pathogen combat won by the virus. We describe an exactly solvable model that captures the main qualitative features of the sets of sequences and a simple mechanistic model for the origin of the observed scaling laws. Our results define collective mutational pathways used by HIV to evade human immune responses, which could guide vaccine design.

  12. Asymptotic solutions for the case of nearly symmetric gravitational lens systems

    NASA Astrophysics Data System (ADS)

    Wertz, O.; Pelgrims, V.; Surdej, J.

    2012-08-01

    Gravitational lensing provides a powerful tool to determine the Hubble parameter H0 from the measurement of the time delay Δt between two lensed images of a background variable source. Nevertheless, knowledge of the deflector mass distribution constitutes a hurdle. We propose in the present work interesting solutions for the case of nearly symmetric gravitational lens systems. For the case of a small misalignment between the source, the deflector and the observer, we first consider power-law (ɛ) axially symmetric models for which we derive an analytical relation between the amplification ratio and source position which is independent of the power-law slope ɛ. According to this relation, we deduce an expression for H0 also irrespective of the value ɛ. Secondly, we consider the power-law axially symmetric lens models with an external large-scale gravitational field, the shear γ, resulting in the so-called ɛ-γ models, for which we deduce simple first-order equations linking the model parameters and the lensed image positions, the latter being observable quantities. We also deduce simple relations between H0 and observables quantities only. From these equations, we may estimate the value of the Hubble parameter in a robust way. Nevertheless, comparison between the ɛ-γ and singular isothermal ellipsoid (SIE) models leads to the conclusion that these models remain most often distinct. Therefore, even for the case of a small misalignment, use of the first-order equations and precise astrometric measurements of the positions of the lensed images with respect to the centre of the deflector enables one to discriminate between these two families of models. Finally, we confront the models with numerical simulations to evaluate the intrinsic error of the first-order expressions used when deriving the model parameters under the assumption of a quasi-alignment between the source, the deflector and the observer. From these same simulations, we estimate for the case of the ɛ-γ family of models that the standard deviation affecting H0 is ? which merely reflects the adopted astrometric uncertainties on the relative image positions, typically ? arcsec. In conclusions, we stress the importance of getting very accurate measurements of the relative positions of the multiple lensed images and of the time delays for the case of nearly symmetric gravitational lens systems, in order to derive robust and precise values of the Hubble parameter.

  13. The Beer Lambert law measurement made easy

    NASA Astrophysics Data System (ADS)

    Onorato, Pasquale; Gratton, Luigi M.; Polesello, Marta; Salmoiraghi, Alessandro; Oss, Stefano

    2018-05-01

    We propose the use of a smartphone based apparatus as a valuable tool for investigating the optical absorption of a material and to verify the exponential decay predicted by Beer’s law. The very simple experimental activities presented here, suitable for undergraduate students, allows one to measure the material transmittance including its dependence on the incident radiation wavelength.

  14. Dramatic (and Simple!) Demonstration of Newton's Third Law

    ERIC Educational Resources Information Center

    Feldman, Gerald

    2011-01-01

    An operational understanding of Newton's third law is often elusive for students. Typical examples of this concept are given for contact forces that are closer to the students' everyday experience. While this is a good thing in general, the reaction force can sometimes be taken for granted, and the students can miss the opportunity to really think…

  15. Physical analysis of an electric resistor heating

    NASA Astrophysics Data System (ADS)

    Perea Martins, J. E. M.

    2018-05-01

    This work describes a simple experiment to measure the resistor temperature as a function of the applied power and proves that it is an efficient way to introduce some important physical concepts in classroom, including the Joule’s first law, hot-spot temperature, thermal resistance, thermal dissipation constant, time constant and the Newton’s law of cooling.

  16. Why Give to a College That Already Has Enough?

    ERIC Educational Resources Information Center

    Michael, Steve O.

    2007-01-01

    The law of diminishing returns, a simple but powerful concept that is widely known by everyone with a rudimentary understanding of economics, is often flagrantly disregarded by many -- including the richest among us. The law states that there comes a time when additional infusion of a factor of production no longer leads to an increase in…

  17. Evaluation of a pulse control law for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following analytical and experimental studies were conducted: (1) A simple algorithm was developed to suppress the structural vibrations of 3-dimensional distributed parameter systems, subjected to interface motion and/or directly applied forces. The algorithm is designed to cope with structural oscillations superposed on top of rigid-body motion: a situation identical to that encountered by the SCOLE components. A significant feature of the method is that only local measurements of the structural displacements and velocities relative to the moving frame of reference are needed. (2) A numerical simulation study was conducted on a simple linear finite element model of a cantilevered plate which was subjected to test excitations consisting of impulsive base motion and of nonstationary wide-band random excitation applied at its root. In each situation, the aim was to suppress the vibrations of the plate relative to the moving base. (3) A small mechanical model resembling an aircraft wing was designed and fabricated to investigate the control algorithm under realistic laboratory conditions.

  18. Dynamic wetting and spreading and the role of topography.

    PubMed

    McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J

    2009-11-18

    The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v(e), to the dynamic and equilibrium contact angles θ and θ(e) through [Formula: see text]. When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is presented. We review existing data for the spreading of small droplets of polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial droplet spreads with an approximately constant volume and the edge speed-dynamic contact angle relationship follows a power law [Formula: see text]. As the surface texture becomes stronger the exponent goes from p = 3 towards p = 1 in agreement with a Wenzel roughness driven spreading and a roughness modified Hoffman-de Gennes power law. Finally, we suggest that when a droplet spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium contact angle in an exponential manner with a time constant dependent on roughness.

  19. Hooke's Law and the Stiffness of a Plastic Spoon

    ERIC Educational Resources Information Center

    Pestka, Kenneth A., II; Warren, Cori

    2012-01-01

    The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate…

  20. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  1. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  2. Outbreak statistics and scaling laws for externally driven epidemics.

    PubMed

    Singh, Sarabjeet; Myers, Christopher R

    2014-04-01

    Power-law scalings are ubiquitous to physical phenomena undergoing a continuous phase transition. The classic susceptible-infectious-recovered (SIR) model of epidemics is one such example where the scaling behavior near a critical point has been studied extensively. In this system the distribution of outbreak sizes scales as P(n)∼n-3/2 at the critical point as the system size N becomes infinite. The finite-size scaling laws for the outbreak size and duration are also well understood and characterized. In this work, we report scaling laws for a model with SIR structure coupled with a constant force of infection per susceptible, akin to a "reservoir forcing". We find that the statistics of outbreaks in this system fundamentally differ from those in a simple SIR model. Instead of fixed exponents, all scaling laws exhibit tunable exponents parameterized by the dimensionless rate of external forcing. As the external driving rate approaches a critical value, the scale of the average outbreak size converges to that of the maximal size, and above the critical point, the scaling laws bifurcate into two regimes. Whereas a simple SIR process can only exhibit outbreaks of size O(N1/3) and O(N) depending on whether the system is at or above the epidemic threshold, a driven SIR process can exhibit a richer spectrum of outbreak sizes that scale as O(Nξ), where ξ∈(0,1]∖{2/3} and O((N/lnN)2/3) at the multicritical point.

  3. Kinetic electron model for plasma thruster plumes

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  4. Inevitable inflation in Einstein-Cartan theory with improved energy-momentum tensor with spin

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.

    1988-01-01

    Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic, (Bianchi Type-1) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley improved energy momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density. Shear is not effective in preventing inflation in the ECRS model. The relation between fluid vorticity, torsion, reference axis rotation, and shear ellipsoid precession shows through clearly.

  5. The use of precession modulation for nutation control in spin-stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, J. M.; Donner, R. J.; Tasar, V.

    1974-01-01

    The relations which determine the nutation effects induced in a spinning spacecraft by periodic precession thrust pulses are derived analytically. By utilizing the idea that nutation need only be observed just before each precession thrust pulse, a difficult continuous-time derivation is replaced by a simple discrete-time derivation using z-transforms. The analytic results obtained are used to develop two types of modulated precession control laws which use the precession maneuver to concurrently control nutation. Results are illustrated by digital simulation of an actual spacecraft configuration.

  6. Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation

    NASA Astrophysics Data System (ADS)

    de la Rosa, R.; Gandarias, M. L.; Bruzón, M. S.

    2016-11-01

    In this paper we study the generalized variable-coefficient Gardner equations of the form ut + A(t) unux + C(t) u2nux + B(t) uxxx + Q(t) u = 0 . This class broadens out many other equations previously considered: Johnpillai and Khalique (2010), Molati and Ramollo (2012) and Vaneeva et al. (2015). The use of the equivalence group of this class allows us to perform an exhaustive study and a simple and clear formulation of the results. Some conservation laws are derived for the nonlinearly self-adjoint equations by using a general theorem on conservation laws. We also construct conservation laws by applying the multipliers method.

  7. Omori’s law: a note on the history of geophysics

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.

    2017-06-01

    In the late nineteenth century, the Japanese seismologist Omori discovered the first law of earthquake physics, which states that the rate of aftershocks decreases hyperbolically with time. Over the years since then, there has been a vast amount of literature on this law, and the significance of its discovery has been universally recognized. There is, however, a profound division of opinion as to the interpretation of the law. Some argue that Omori just proposed a simple data-fitting formula and replace this formula by a power-law one with a negative fractional exponent, whereas for others the Omori law makes physical sense. The paper describes the history and essence of Omori’s discovery, with special attention paid to interpretational questions. It is shown that Omori’s original formulation of the law correlates well with the current understanding of the rock destruction mechanism at the earthquake focus.

  8. Critical current density and irreversibility line of CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyo, A.; Tokumoto, M.; Ihara, H.

    The critical current density and irreversibility line of the single-phase polycrystalline sample of CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub y} with T{sub c}= 117 K have been estimated from measurements of magnetic hysteresis loops assuming Bean critical state model. Simple power law relations, J{sub c}{proportional_to}H{sup {minus}m}, are observed in the magnetic field dependence of the intragrain J{sub c}. Values of the intragrain J{sub c} in a magnetic field of 1 T are about 10{sup 6} and 10{sup 4} A/cm{sup 2} at temperatures of 5 and 77 K, respectively. An exponential decay of the J{sub c} with increasing temperature, J{sub c}{proportional_to}exp({minus}T/T{sub 0}), ismore » observed below 60 K. The characteristic temperature T{sub 0} of Cu-1234 is T{sub 0}= 16.1 K in a magnetic field of 1.0 T. The dependence of the J{sub c} on temperature is relatively small among the oxide superconductors. Simple power law relations, J{sub c}{proportional_to}(1{minus}T/T{sub c}){sup n}, are found in whole ranges of the temperature and magnetic field. The value of n is 5.24 for a magnetic field of 1.0 T. The irreversibility fields at 70 and 77 K are estimated to be 9.5 and 3.7 T, respectively. The temperature dependence of the H{sub irr} is fitted by H{sub irr}=a(1{minus}T/T{sub c}){sup n} with a=2130 and n=5.91.« less

  9. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  10. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  11. A simple thermodynamic model useful for calculating gas solubilities in water/brine/hydrocarbon mixtures from 0 to 250 C and 1 to 150 bars

    NASA Astrophysics Data System (ADS)

    Perez, R. J.; Shevalier, M.; Hutcheon, I.

    2004-05-01

    Gas solubility is of considerable interest, not only for the theoretical understanding of vapor-liquid equilibria, but also due to extensive applications in combined geochemical, engineering, and environmental problems, such as greenhouse gas sequestration. Reliable models for gas solubility calculations in salt waters and hydrocarbons are also valuable when evaluating fluid inclusions saturated with gas components. We have modeled the solubility of methane, ethane, hydrogen, carbon dioxide, hydrogen sulfide, and five other gases in a water-brine-hydrocarbon system by solving a non-linear system of equations composed by modified Henry's Law Constants (HLC), gas fugacities, and assuming binary mixtures. HLCs are a function of pressure, temperature, brine salinity, and hydrocarbon density. Experimental data of vapor pressures and mutual solubilities of binary mixtures provide the basis for the calibration of the proposed model. It is demonstrated that, by using the Setchenow equation, only a relatively simple modification of the pure water model is required to assess the solubility of gases in brine solutions. Henry's Law constants for gases in hydrocarbons are derived using regular solution theory and Ostwald coefficients available from the literature. We present a set of two-parameter polynomial expressions, which allow simple computation and formulation of the model. Our calculations show that solubility predictions using modified HLCs are acceptable within 0 to 250 C, 1 to 150 bars, salinity up to 5 molar, and gas concentrations up to 4 molar. Our model is currently being used in the IEA Weyburn CO2 monitoring and storage project.

  12. Gyrokinetic magnetohydrodynamics and the associated equilibria

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  13. Pair-collision between heterogeneous capsules in simple shear: Effect of membrane stiffness and membrane constitutive laws

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Sarkar, Kausik

    2012-11-01

    Deformability of red blood cells affects hydrodynamic properties of blood and thereby physiological functions in many cardiovascular diseases, e.g. in sickle cell anemia and malaria, the cell membrane becomes stiff affecting their circulation through microvessels. Here, we numerically simulate the hydrodynamic interaction between a pair of cell-like capsules in a free shear flow, using a front-tracking method. The membrane is modeled using various constitutive equations. By varying the stiffness of one capsule (C2) and keeping all other parameters constant, we find a significant effect on the deformation and trajectory of the other (C1) . Increasing the stiffness of C2 surprisingly increases the peak deformation of C1 while decreasing the cross-stream shift in its trajectory However, the relative trajectory between capsules remains the same. Effects of constitutive laws and difference in behaviors between capsules and drops are investigated explaining underlying physics. partial support from NSF.

  14. Fatigue damage mechanics of notched graphite-epoxy laminates

    NASA Astrophysics Data System (ADS)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  15. Homogenization Issues in the Combustion of Heterogeneous Solid Propellants

    NASA Technical Reports Server (NTRS)

    Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.

    2002-01-01

    We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.

  16. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  17. Gyrokinetic magnetohydrodynamics and the associated equilibria

    DOE PAGES

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-27

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee, and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, Φ, and the vector potential, A, and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when Φ → 0 and A becomes constant in time, which, in turn, givesmore » ∇· (J ∥+J ⊥) = 0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. In conclusion, these gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.« less

  18. Gyrokinetic magnetohydrodynamics and the associated equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee, and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, Φ, and the vector potential, A, and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when Φ → 0 and A becomes constant in time, which, in turn, givesmore » ∇· (J ∥+J ⊥) = 0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. In conclusion, these gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.« less

  19. Motional Mechanisms of Homopolar Motors & Rollers

    NASA Astrophysics Data System (ADS)

    Wong, H. K.

    2009-10-01

    The strong Nd2Fe14B permanent magnet has facilitated development of various fascinating yet simple homopolar motors However, the physics of these devices is often not explained, or is explained incorrectly. A major concern is that Newton's third law was overlooked in some of the earlier articles. In this paper, I will employ this law in explaining the motional mechanisms of these devices.

  20. Lenz's law and dimensional analysis

    NASA Astrophysics Data System (ADS)

    Pelesko, John A.; Cesky, Michael; Huertas, Sharon

    2005-01-01

    We show that the time it takes a magnet to fall through a nonmagnetic metallic tube may be found via dimensional analysis. The simple analysis makes this classic demonstration of Lenz's law accessible qualitatively and quantitatively to students with little knowledge of electromagnetism and only elementary knowledge of calculus. The analysis provides a new example of the power and limitations of dimensional analysis.

  1. Functional Behavior Assessment and Function-Based Intervention Planning: Considering the Simple Logic of the Process

    ERIC Educational Resources Information Center

    Scott, Terrance M.; Cooper, Justin T.

    2017-01-01

    While functional behavior assessment (FBA) has been a part of special education law and embedded in Individuals With Disabilities Education Act (IDEA) since 1997, a precise definition of what actions or processes constitute a legal FBA has never been adequately addressed in the law. This article provides an overview of the underlying logic of FBA…

  2. Scaling laws of passive-scalar diffusion in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan

    2017-05-01

    Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.

  3. How a life-like system emerges from a simple particle motion law

    PubMed Central

    Schmickl, Thomas; Stefanec, Martin; Crailsheim, Karl

    2016-01-01

    Self-structuring patterns can be observed all over the universe, from galaxies to molecules to living matter, yet their emergence is waiting for full understanding. We discovered a simple motion law for moving and interacting self-propelled particles leading to a self-structuring, self-reproducing and self-sustaining life-like system. The patterns emerging within this system resemble patterns found in living organisms. The emergent cells we found show a distinct life cycle and even create their own ecosystem from scratch. These structures grow and reproduce on their own, show self-driven behavior and interact with each other. Here we analyze the macroscopic properties of the emerging ecology, as well as the microscopic properties of the mechanism that leads to it. Basic properties of the emerging structures (size distributions, longevity) are analyzed as well as their resilience against sensor or actuation noise. Finally, we explore parameter space for potential other candidates of life. The generality and simplicity of the motion law provokes the thought that one fundamental rule, described by one simple equation yields various structures in nature: it may work on different time- and size scales, ranging from the self-structuring universe, to emergence of living beings, down to the emergent subatomic formation of matter. PMID:27901107

  4. Simple robust control laws for robot manipulators. Part 1: Non-adaptive case

    NASA Technical Reports Server (NTRS)

    Wen, J. T.; Bayard, D. S.

    1987-01-01

    A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control.

  5. What are the main research challenges in hydrology?

    NASA Astrophysics Data System (ADS)

    Savenije, H. H. G.

    2012-04-01

    The science of hydrology finds itself in a difficult situation. The PUB decade has told us that we are not very good at predicting hydrological behaviour in a data scarce environment. How good is our science if we are so uncertain about our predictions? On the other hand experienced hydrologists may say that we know enough for most practical problems. We can apply standard approaches or models to a variety of situations and if we have enough data we can make reasonable predictions of river flow, groundwater levels or water availability. In the world of applied hydrology we have enough knowledge to design dams, well fields, embankments, irrigation schemes, water intakes, and the like. There are proofs galore of impressive hydraulic works, all around the world. But for a scientist these accomplishments are hardly satisfying. The fact that a model works is no proof that the theory is correct, or that we understand the processes behind it. A hydrological scientist will rightly point out that there is still a lot that we don't understand. Although we can apply rainfall-runoff models to catchments, we fail to understand how exactly the water behaves, or how long it resides within the different compartments of the system. From a science perspective this is very unsatisfactory, even though engineers may argue that there is no problem as long as the models give reasonable outputs. So is our science adequate or are we still in the dark and do we fail to understand precisely how our hydrological system functions, much like a clockmaker who can read the time from a watch, but fails to understand how precisely the clockwork works? Hydrology is about the occurrence and flow of water (or moisture) through the Earth system. In that sense it is similar to other Earth sciences, such a climatology, oceanography or hydraulics. But this similarity is treacherous, because it is different in one fundamental aspect. Unlike other Earth sciences, in hydrology the medium through which the water flows is unknown. This medium is highly heterogeneous at all scales and largely unobservable. Knowing just the basic laws of conservation of mass and momentum is not sufficient because we lack geometrical relationships that define the medium through which the water flows. We often call these equations the closure relations, because they are the equations that we lack to make the system predictable. As hydrologists we know we can measure the characteristics of this medium indirectly by setting up an experiment or by calibration, but these characteristics are scale dependent and hence need to be (re-)calibrated if we move to a different scale. This makes hydrology highly empirical and dependent on calibration. Other scientists often fail to see this fundamental aspect of hydrology and may blame hydrologists for not being able to forecast the system's behaviour without calibration. They also have closure problems, but having observable system boundaries they have been able to develop scaling laws that allow them to use closure relations for new situations. For instance they developed the Manning equation for the interaction with the river bed, with tabulated coefficients for use in a wide range of hypothetical cases. A similarly simple hydrological equation such as the Darcy equation, however, always requires calibration because we cannot observe or predict subsurface characteristics. And if it is difficult for an aquifer, then we can imagine how difficult it is for a catchment. By now we know that the reductionist approach, that aims to solve this problem by starting from the smallest element and to upscale to the catchment scale, does not work. Not only because it would require lots of data, but more importantly because it is a flawed concept. It neglects the fact that the hydrological system is organised and that in upscaling there are scaling laws that we need to obey. But what are these scaling laws? That is the fundamental question. We do know that in hydrology sometimes surprisingly simple laws come to the fore, however complex the hydrological system is. Here lies the opportunity. There are physical processes at play behind the evolution of hydrological patterns. Because the formation of catchments is through erosion of the substratum and the deposition of its sediments, the formation process is the result of energy dissipation and hence entropy generation. Somewhere the answer lies in applying entropy laws to hydrology and to the characteristics of the substrate. For me, finding the laws that govern the characteristics of the substrate is the largest challenge for the science of hydrology in the coming decade. It requires that we embrace the Darwinian science of evolution and apply it to catchment formation processes. There is a lot that we can learn from geo-morphologists, geologists, physicists and ecologists. We have to find the laws that are behind the patterns that exist in and under the landscape and subsequently find the causes for the existence of relatively simple hydrological laws, such as the linear recession of a hydrograph, Lacey's equation for the width of a channel, the exponential shape of an estuary, or the predictability of the Budyko curve. And I would be very happy if we could develop the scaling law for the threshold function of the unsaturated reservoir, which can so well be described by a beta-function. Only if we try to find the physical explanation for these relatively simple laws can we claim that hydrology is a true Earth science, and can we start to make our science a predictive science.

  6. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  7. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.

  8. Sexual and reproductive health in Spanish University Students. A comparison between medical and law students.

    PubMed

    Coronado, Pluvio J; Delgado-Miguel, Carlos; Rey-Cañas, Adriana; Herráiz, Miguel A

    2017-03-01

    To describe behaviors and knowledge related to sexual and reproductive health of Spanish university students and their association with the subject area studied (biomedical or not). A descriptive cross-sectional observational study conducted with 2074 students aged 18-24years from the University Complutense of Madrid in the Faculties of Medicine and Law. Simple random stratified sampling without replacement was performed. A self-administered, anonymous and voluntary questionnaire was distributed. It was based on the Youth Risk Health Behavior Survey and assessed behavior and knowledge in three areas: sex, contraceptive methods (CM) and sexually transmitted infections (STIs). In total, 83.5% of respondents had had sexual intercourse, from a mean age of 16.8years and with a mean of 3.4 sexual partners. Compared with the law students (LS), fewer medical students (MS) were sexually active, they had a later age of sexual initiation and they had had fewer sexual partners (p<0.001). High regular use of contraceptive methods was observed (92.8%), with no significant differences between groups, although LS had had more unprotected sex and had more often used emergency contraception than had MS (p<0.001). In total, 81.5% of respondents knew about the vaccine against human papillomavirus, 60.8% its relationship with cancer and 43.2% had been vaccinated, the rates being significantly higher in MS (p<0.001). The behavior and knowledge of medical students in relation to sexual and reproductive health differed from those of law students. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Exploring Empirical Rank-Frequency Distributions Longitudinally through a Simple Stochastic Process

    PubMed Central

    Finley, Benjamin J.; Kilkki, Kalevi

    2014-01-01

    The frequent appearance of empirical rank-frequency laws, such as Zipf’s law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process’s complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications. PMID:24755621

  10. Allometric scaling law in a simple oxygen exchanging network: possible implications on the biological allometric scaling laws.

    PubMed

    Santillán, Moisés

    2003-07-21

    A simple model of an oxygen exchanging network is presented and studied. This network's task is to transfer a given oxygen rate from a source to an oxygen consuming system. It consists of a pipeline, that interconnects the oxygen consuming system and the reservoir and of a fluid, the active oxygen transporting element, moving through the pipeline. The network optimal design (total pipeline surface) and dynamics (volumetric flow of the oxygen transporting fluid), which minimize the energy rate expended in moving the fluid, are calculated in terms of the oxygen exchange rate, the pipeline length, and the pipeline cross-section. After the oxygen exchanging network is optimized, the energy converting system is shown to satisfy a 3/4-like allometric scaling law, based upon the assumption that its performance regime is scale invariant as well as on some feasible geometric scaling assumptions. Finally, the possible implications of this result on the allometric scaling properties observed elsewhere in living beings are discussed.

  11. Exploring empirical rank-frequency distributions longitudinally through a simple stochastic process.

    PubMed

    Finley, Benjamin J; Kilkki, Kalevi

    2014-01-01

    The frequent appearance of empirical rank-frequency laws, such as Zipf's law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process's complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications.

  12. Ever since Gompertz.

    PubMed

    Olshansky, S J; Carnes, B A

    1997-02-01

    In 1825 British actuary Benjamin Gompertz made a simple but important observation that a law of geometrical progression pervades large portions of different tables of mortality for humans. The simple formula he derived describing the exponential rise in death rates between sexual maturity and old age is commonly, referred to as the Gompertz equation-a formula that remains a valuable tool in demography and in other scientific disciplines. Gompertz's observation of a mathematical regularity in the life table led him to believe in the presence of a low of mortality that explained why common age patterns of death exist. This law of mortality has captured the attention of scientists for the past 170 years because it was the first among what are now several reliable empirical tools for describing the dying-out process of many living organisms during a significant portion of their life spans. In this paper we review the literature on Gompertz's law of mortality and discuss the importance of his observations and insights in light of research on aging that has taken place since then.

  13. Rotational viscometers—a subject for student projects

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2010-11-01

    Three variants of the rotational viscometer employing a dc motor are considered. The viscometers are highly suitable for liquids of high viscosity, such as glycerol or oils (that is, for η in the range 10-1000 mPa s). The set-ups are very simple and can serve as a first step to designing devices that are more complicated. Experimentation with the electrical motors used in the viscometers provides a deeper understanding of some of the fundamental laws of electricity and magnetism (Lorentz's force, Faraday's law of electromagnetic induction, and Lenz's law).

  14. Physical explanation of the periodic table.

    PubMed

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  15. Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better

    NASA Astrophysics Data System (ADS)

    Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal

    2018-06-01

    Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.

  16. Introducing Stochastic Simulation of Chemical Reactions Using the Gillespie Algorithm and MATLAB: Revisited and Augmented

    ERIC Educational Resources Information Center

    Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.

    2008-01-01

    The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible…

  17. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  18. A Simple Apparatus for Demonstrating Fluid Forces and Newton's Third Law

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz; James, Mark C.

    2012-01-01

    Over 2200 years ago, in order to determine the purity of a golden crown of the king of Syracuse, Archimedes submerged the crown in water and determined its volume by measuring the volume of the displaced water. This simple experiment became the foundation of what eventually became known as Archimedes' principle: An object fully or partially…

  19. Simple System to Measure the Earth's Magnetic Field

    ERIC Educational Resources Information Center

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  20. Shock wave propagation in layered planetary embryos

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar; Ivanov, Boris A.

    2014-05-01

    The propagation of impact-induced shock wave inside a planetary embryo is investigated using the Hugoniot equations and a new scaling law, governing the particle velocity variations along a shock ray inside a spherical body. The scaling law is adopted to determine the impact heating of a growing embryo in its early stage when it is an undifferentiated and uniform body. The new scaling law, similar to other existing scaling laws, is not suitable for a large differentiated embryo consisting of a silicate mantle overlying an iron core. An algorithm is developed in this study on the basis of the ray theory in a spherically symmetric body which relates the shock parameters at the top of the core to those at the base of the mantle, thus enabling the adoption of scaling laws to estimate the impact heating of both the mantle and the core. The algorithm is applied to two embryo models: a simple two-layered model with a uniform mantle overlying a uniform core, and a model where the pre-shock density and acoustic velocity of the embryo are radially dependent. The former illustrates details of the particle velocity, shock pressure, and temperature increase behind the shock front in a 2D axisymmetric geometry. The latter provides a means to compare the results with those obtained by a hydrocode simulation. The agreement between the results of the two techniques in revealing the effects of the core-mantle boundary on the shock wave transmission across the boundary is encouraging.

  1. A frictional population model of seismicity rate change

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.; Cocco, M.; Belardinelli, M.E.

    2005-01-01

    We study models of seismicity rate changes caused by the application of a static stress perturbation to a population of faults and discuss our results with respect to the model proposed by Dieterich (1994). These models assume distribution of nucleation sites (e.g., faults) obeying rate-state frictional relations that fail at constant rate under tectonic loading alone, and predicts a positive static stress step at time to will cause an immediate increased seismicity rate that decays according to Omori's law. We show one way in which the Dieterich model may be constructed from simple general idead, illustratted using numerically computed synthetic seismicity and mathematical formulation. We show that seismicity rate change predicted by these models (1) depend on the particular relationship between the clock-advanced failure and fault maturity, (2) are largest for the faults closest to failure at to, (3) depend strongly on which state evolution law faults obey, and (4) are insensitive to some types of population hetrogeneity. We also find that if individual faults fail repeatedly and populations are finite, at timescales much longer than typical aftershock durations, quiescence follows at seismicity rate increase regardless of the specific frictional relations. For the examined models the quiescence duration is comparable to the ratio of stress change to stressing rate ????/??,which occurs after a time comparable to the average recurrence interval of the individual faults in the population and repeats in the absence of any new load may pertubations; this simple model may partly explain observations of repeated clustering of earthquakes. Copyright 2005 by the American Geophysical Union.

  2. Efficient Control Law Simulation for Multiple Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.

    1998-10-06

    In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The timemore » to calculate the control law for each robot at each time step is demonstrated to be O(logN).« less

  3. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    NASA Technical Reports Server (NTRS)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  4. Simplified Solar Modulation Model of Inner Trapped Belt Proton Flux As a Function of Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.

  5. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercovici, D.

    1995-02-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less

  6. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales

    NASA Astrophysics Data System (ADS)

    Meyer-Vernet, Nicole; Rospars, Jean-Pierre

    2015-08-01

    Despite their variety and complexity, living organisms obey simple scaling laws due to the universality of the laws of physics. In the present paper, we study the scaling between maximum speed and size, from bacteria to the largest mammals. While the preferred speed has been widely studied in the framework of Newtonian mechanics, the maximum speed has rarely attracted the interest of physicists, despite its remarkable scaling property; it is roughly proportional to length throughout nearly the whole range of running and swimming organisms. We propose a simple order-of-magnitude interpretation of this ubiquitous relationship, based on physical properties shared by life forms of very different body structure and varying by more than 20 orders of magnitude in body mass.

  7. Load alleviation maneuvers for a launch vehicle

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Bless, Robert

    1993-01-01

    This paper addresses the design of a forward-looking autopilot that is capable of employing a priori knowledge of wind gusts ahead of the flight path to reduce the bending loads experienced by a launch vehicle. The analysis presented in the present paper is only preliminary, employing a very simple vehicle dynamical model and restricting itself to wind gusts of the form of isolated spikes. The main result of the present study is that LQR based feedback laws are inappropriate to handle spike-type wind perturbations with large amplitude and narrow base. The best performance is achieved with an interior-point penalty optimal control formulation which can be well approximated by a simple feedback control law. Reduction of the maximum bending loads by nearly 50 percent is demonstrated.

  8. Hooke's Law and the Stiffness of a Plastic Spoon

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.; Warren, Cori

    2012-11-01

    The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate another method to explore elastic properties of everyday materials. This experiment uses a common plastic spoon exposed to a transverse force in order to determine the stiffness constant, yield point, and rupture point of the plastic spoon. In addition, much like the "Youngs Modulus of a Marshmallow" activity, this experiment visually demonstrates Hooke's law, is fun and easy to perform, and leaves a lasting impression on the students.

  9. Sharpening the second law of thermodynamics with the quantum Bayes theorem.

    PubMed

    Gharibyan, Hrant; Tegmark, Max

    2014-09-01

    We prove a generalization of the classic Groenewold-Lindblad entropy inequality, combining decoherence and the quantum Bayes theorem into a simple unified picture where decoherence increases entropy while observation decreases it. This provides a rigorous quantum-mechanical version of the second law of thermodynamics, governing how the entropy of a system (the entropy of its density matrix, partial-traced over the environment and conditioned on what is known) evolves under general decoherence and observation. The powerful tool of spectral majorization enables both simple alternative proofs of the classic Lindblad and Holevo inequalities without using strong subadditivity, and also novel inequalities for decoherence and observation that hold not only for von Neumann entropy, but also for arbitrary concave entropies.

  10. [Effect of heterogenic irradiation on deviation from Bouguer-Lambert-Beer law in photometric measurements in ultraviolet, visible, and infrared spectra].

    PubMed

    Ovchinnikov, M M; Podgornyĭ, G N

    2004-03-01

    The passing and optic-density parameters registered by a photometric device were estimated, on the basis of a simple modeled system, with respect to the ratio between the absorption band width and the heterogeneous radiation degree. The impacts of heterogeneous radiation on the validity of the Bueguer'-Lambert's-Baire's law were elucidated.

  11. Validating the Collision-Dominated Child-Langmuir Law for a DC Discharge Cathode Sheath in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V.; Yegorenkov, V.

    2009-01-01

    In this paper, we propose a simple method of observing the collision-dominated Child-Langmuir law in the course of an undergraduate laboratory work devoted to studying the properties of gas discharges. To this end we employ the dc gas discharge whose properties are studied in sufficient detail. The undergraduate laboratory work itself is reduced…

  12. Some observations on boundary conditions for numerical conservation laws

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1988-01-01

    Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.

  13. Between disorder and order: A case study of power law

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Zhao, Youjie; Yue, Xiaoguang; Xiong, Fei; Sun, Yongke; He, Xin; Wang, Lichao

    2016-08-01

    Power law is an important feature of phenomena in long memory behaviors. Zipf ever found power law in the distribution of the word frequencies. In physics, the terms order and disorder are Thermodynamic or statistical physics concepts originally and a lot of research work has focused on self-organization of the disorder ingredients of simple physical systems. It is interesting what make disorder-order transition. We devise an experiment-based method about random symbolic sequences to research regular pattern between disorder and order. The experiment results reveal power law is indeed an important regularity in transition from disorder to order. About these results the preliminary study and analysis has been done to explain the reasons.

  14. Stable laws and cosmic ray physics

    NASA Astrophysics Data System (ADS)

    Genolini, Y.; Salati, P.; Serpico, P. D.; Taillet, R.

    2017-04-01

    Context. In the new "precision era" for cosmic ray astrophysics, scientists making theoretical predictions cannot content themselves with average trends, but need to correctly take into account intrinsic uncertainties. The space-time discreteness of the cosmic ray sources, together with a substantial ignorance of their precise epochs and locations (with the possible exception of the most recent and close ones) play an important role in this sense. Aims: We elaborate a statistical theory to deal with this problem, relating the composite probability P(Ψ) to obtain a flux Ψ at the Earth and the single-source probability p(ψ) to contribute with a flux ψ. The main difficulty arises from the fact that p(ψ) is a "heavy tail" distribution, characterized by power-law or broken power-law behavior up to very large fluxes, for which the central limit theorem does not hold, and leading to distributions different from Gaussian. The functional form of the distribution for the aggregated flux is nonetheless unchanged by its own convolution, that is, it belongs to the so-called stable laws class. Methods: We analytically discuss the regime of validity of the stable laws associated with the distributions arising in cosmic ray astrophysics, as well as the limitations to the treatment imposed by causal considerations and partial source catalog knowledge. We validate our results with extensive Monte Carlo simulations, for different regimes of propagation parameters and energies. Results: We find that relatively simple recipes provide a satisfactory description of the probability P(Ψ). We also find that a naive Gaussian fit to simulation results would underestimate the probability of very large fluxes, that is, several times above the average, while overestimating the probability of relatively milder excursions. At large energies, large flux fluctuations are prevented by causal considerations, while at low energies, a partial knowledge of the recent and nearby population of sources plays an important role. A few proposals have been recently discussed in the literature to account for spectral breaks reported in cosmic ray data in terms of local contributions. We apply our newly developed theory to assess their probabilities, finding that they are relatively small, typically at the 0.1% level or smaller, never exceeding 1%. Conclusions: The use of heavy tail distributions is relevant in assessing how likely a measured cosmic ray flux is to depart from the average expectation in a given model. The existing mathematical theory leading to stable laws can be adapted to the case of interest via some recipes that closely reproduce numerical simulations and are relatively easy to implement.

  15. Power-law confusion: You say incremental, I say differential

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1993-01-01

    Power-law distributions are commonly used to describe the frequency of occurrences of crater diameters, stellar masses, ring particle sizes, planetesimal sizes, and meteoroid masses to name a few. The distributions are simple, and this simplicity has led to a number of misstatements in the literature about the kind of power-law that is being used: differential, cumulative, or incremental. Although differential and cumulative power-laws are mathematically trivial, it is a hybrid incremental distribution that is often used and the relationship between the incremental distribution and the differential or cumulative distributions is not trivial. In many cases the slope of an incremental power-law will be nearly identical to the slope of the cumulative power-law of the same distribution, not the differential slope. The discussion that follows argues for a consistent usage of these terms and against the oft-made implicit claim that incremental and differential distributions are indistinguishable.

  16. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabowski, M.P.; Mathieu, P.

    1995-11-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, formore » two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model`s free parameter for all charges is derived in closed form. 62 refs., 4 figs.« less

  17. Derivation of the Biot-Savart Law from Ampere's Law Using the Displacement Current

    NASA Astrophysics Data System (ADS)

    Buschauer, Robert

    2013-12-01

    The equation describing the magnetic field due to a single, nonrelativistic charged particle moving at constant velocity is often referred to as the "Biot-Savart law for a point charge." Introductory calculus-based physics books usually state this law without proof.2 Advanced texts often present it either without proof or as a special case of a complicated mathematical formalism.3 Either way, little or no physical insight is provided to the student regarding the underlying physics. This paper presents a novel, basic, and transparent derivation of the Biot-Savart law for a point charge based only on Maxwell's displacement current term in Ampere's law. This derivation can serve many pedagogical purposes. For example, it can be used as lecture material at any academic level to obtain the Biot-Savart law for a point charge from simple principles. It can also serve as a practical example of the important fact that a changing electric flux produces a magnetic field.

  18. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  19. A new approach to global control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    A new and simple approach to configuration control of redundant manipulators is presented. In this approach, the redundancy is utilized to control the manipulator configuration directly in task space, where the task will be performed. A number of kinematic functions are defined to reflect the desirable configuration that will be achieved for a given end-effector position. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. An adaptive scheme is then utilized to globally control the configuration variables so as to achieve tracking of some desired reference trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The control law is simple and computationally very fast, and does not require the complex manipulator dynamic model.

  20. Forced tearing of ductile and brittle thin sheets.

    PubMed

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  1. Crater size estimates for large-body terrestrial impact

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.; Housen, Kevin R.

    1988-01-01

    Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.

  2. Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation

    PubMed Central

    Thurner, Stefan; Hanel, Rudolf; Liu, Bo; Corominas-Murtra, Bernat

    2015-01-01

    The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the ‘history’ of word usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of 10 famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this ‘nestedness’ is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model, it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level, we are able to show that in the case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential or self-organized critical mechanisms behind language formation, but simply uses the empirically quantifiable parameter ‘nestedness’ to understand the statistics of word frequencies. PMID:26063827

  3. Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation.

    PubMed

    Thurner, Stefan; Hanel, Rudolf; Liu, Bo; Corominas-Murtra, Bernat

    2015-07-06

    The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the 'history' of word usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of 10 famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this 'nestedness' is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model, it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level, we are able to show that in the case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential or self-organized critical mechanisms behind language formation, but simply uses the empirically quantifiable parameter 'nestedness' to understand the statistics of word frequencies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Spectral properties of 441 radio pulsars

    NASA Astrophysics Data System (ADS)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  5. Arduino-based experiment demonstrating Malus’s law

    NASA Astrophysics Data System (ADS)

    Freitas, W. P. S.; Cena, C. R.; Alves, D. C. B.; Goncalves, A. M. B.

    2018-05-01

    Malus’s law states that the intensity of light after passing through two polarizers is proportional to the square of the cosine of the angle between the polarizers. We present a simple setup demonstrating this law. The novelty of our work is that we use a multi-turn potentiometer mechanically linked to one of the polarizers to measure the polarizer’s rotation angle while keeping the other polarizer fixed. Both the potentiometer and light sensor used to measure the transmitted light intensity are connected to an Arduino board so that the intensity of light is measured as a function of the rotation angle.

  6. Noise properties in the ideal Kirchhoff-Law-Johnson-Noise secure communication system.

    PubMed

    Gingl, Zoltan; Mingesz, Robert

    2014-01-01

    In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We answer this question and in the same time we provide a theoretical basis to analyze real systems as well.

  7. Berkeley's moral philosophy.

    PubMed Central

    Warnock, G

    1990-01-01

    Berkeley held that the moral duty of mankind was to obey God's laws; that--since God was a benevolent Creator--the object of His laws must be to promote the welfare and flourishing of mankind; and that, accordingly, humans could identify their moral duties by asking what system of laws for conduct would in fact tend to promote that object. This position--which is akin to that of 'rule' Utilitarianism--is neither unfamiliar nor manifestly untenable. He was surely mistaken, however, in his further supposition that, if this theory were accepted, the resolution of all (or most) particular moral dilemmas would be simple and straightforward. PMID:2181141

  8. When Newton's cooling law doesn't hold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarnow, E.

    1994-01-01

    What is the fastest way to cool something If the object is macroscopic it is to lower the surrounding temperature as much as possible and let Newton's cooling law take effect. If we enter the microscopic world where quantum mechanics rules, this procedure may no longer be the best. This is shown in a simple example where we calculate the optimum cooling rate for an asymmetric two-state system.

  9. Equivalence of the Kelvin-Planck statement of the second law and the principle of entropy increase

    NASA Astrophysics Data System (ADS)

    Sarasua, L. G.; Abal, G.

    2016-09-01

    We present a demonstration of the equivalence between the Kelvin-Planck statement of the second law and the principle of entropy increase. Despite the fundamental importance of these two statements, a rigorous treatment to establish their equivalence is missing in standard physics textbooks. The argument is valid under very general conditions, but is simple and suited to an undergraduate course.

  10. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  11. Note on the stability of viscous roll waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, Luis Miguel; Zumbrun, Kevin

    2017-02-01

    In this note, we announce a complete classification of the stability of periodic roll-wave solutions of the viscous shallow water equations, from their onset at Froude number F ≈ 2 up to the infinite Froude limit. For intermediate Froude numbers, we obtain numerically a particularly simple power-law relation between F and the boundaries of the region of stable periods, which appears potentially useful in hydraulic engineering applications. In the asymptotic regime F → 2 (onset), we provide an analytic expression of the stability boundaries, whereas in the limit F → ∞, we show that roll waves are always unstable.

  12. On the Rate of Relaxation for the Landau Kinetic Equation and Related Models

    NASA Astrophysics Data System (ADS)

    Bobylev, Alexander; Gamba, Irene M.; Zhang, Chenglong

    2017-08-01

    We study the rate of relaxation to equilibrium for Landau kinetic equation and some related models by considering the relatively simple case of radial solutions of the linear Landau-type equations. The well-known difficulty is that the evolution operator has no spectral gap, i.e. its spectrum is not separated from zero. Hence we do not expect purely exponential relaxation for large values of time t>0. One of the main goals of our work is to numerically identify the large time asymptotics for the relaxation to equilibrium. We recall the work of Strain and Guo (Arch Rat Mech Anal 187:287-339 2008, Commun Partial Differ Equ 31:17-429 2006), who rigorously show that the expected law of relaxation is \\exp (-ct^{2/3}) with some c > 0. In this manuscript, we find an heuristic way, performed by asymptotic methods, that finds this "law of two thirds", and then study this question numerically. More specifically, the linear Landau equation is approximated by a set of ODEs based on expansions in generalized Laguerre polynomials. We analyze the corresponding quadratic form and the solution of these ODEs in detail. It is shown that the solution has two different asymptotic stages for large values of time t and maximal order of polynomials N: the first one focus on intermediate asymptotics which agrees with the "law of two thirds" for moderately large values of time t and then the second one on absolute, purely exponential asymptotics for very large t, as expected for linear ODEs. We believe that appearance of intermediate asymptotics in finite dimensional approximations must be a generic behavior for different classes of equations in functional spaces (some PDEs, Boltzmann equations for soft potentials, etc.) and that our methods can be applied to related problems.

  13. Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics.

    PubMed

    Pandey, Parth Pratim; Jain, Sanjay

    2016-09-01

    Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as 'growth laws'. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three population variables: an amino acid pool, a pool of enzymes that transport an external nutrient and produce the amino acids, and ribosomes that catalyze their own and the enzymes' production from the amino acids. We assume that the cell allocates its resources between the enzyme sector and the ribosomal sector to maximize its growth rate. We show that the empirical growth laws follow from this assumption and derive analytic expressions for the phenomenological parameters in terms of the more basic model parameters. Interestingly, the maximization of the growth rate of the cell as a whole implies that the cell allocates resources to the enzyme and ribosomal sectors in inverse proportion to their respective 'efficiencies'. The work introduces a mathematical scheme in which the cellular growth rate can be explicitly determined and shows that two large parameters, the number of amino acid residues per enzyme and per ribosome, are useful for making approximations.

  14. Integrating laboratory creep compaction data with numerical fault models: A Bayesian framework

    USGS Publications Warehouse

    Fitzenz, D.D.; Jalobeanu, A.; Hickman, S.H.

    2007-01-01

    We developed a robust Bayesian inversion scheme to plan and analyze laboratory creep compaction experiments. We chose a simple creep law that features the main parameters of interest when trying to identify rate-controlling mechanisms from experimental data. By integrating the chosen creep law or an approximation thereof, one can use all the data, either simultaneously or in overlapping subsets, thus making more complete use of the experiment data and propagating statistical variations in the data through to the final rate constants. Despite the nonlinearity of the problem, with this technique one can retrieve accurate estimates of both the stress exponent and the activation energy, even when the porosity time series data are noisy. Whereas adding observation points and/or experiments reduces the uncertainty on all parameters, enlarging the range of temperature or effective stress significantly reduces the covariance between stress exponent and activation energy. We apply this methodology to hydrothermal creep compaction data on quartz to obtain a quantitative, semiempirical law for fault zone compaction in the interseismic period. Incorporating this law into a simple direct rupture model, we find marginal distributions of the time to failure that are robust with respect to errors in the initial fault zone porosity. Copyright 2007 by the American Geophysical Union.

  15. Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles

    PubMed Central

    Brighton, Caroline H.; Thomas, Adrian L. R.

    2017-01-01

    The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660

  16. Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles.

    PubMed

    Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K

    2017-12-19

    The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.

  17. Abortion Law and Policy Around the World: In Search of Decriminalization.

    PubMed

    Berer, Marge

    2017-06-01

    The aim of this paper is to provide a panoramic view of laws and policies on abortion around the world, giving a range of country-based examples. It shows that the plethora of convoluted laws and restrictions surrounding abortion do not make any legal or public health sense. What makes abortion safe is simple and irrefutable-when it is available on the woman's request and is universally affordable and accessible. From this perspective, few existing laws are fit for purpose. However, the road to law reform is long and difficult. In order to achieve the right to safe abortion, advocates will need to study the political, health system, legal, juridical, and socio-cultural realities surrounding existing law and policy in their countries, and decide what kind of law they want (if any). The biggest challenge is to determine what is possible to achieve, build a critical mass of support, and work together with legal experts, parliamentarians, health professionals, and women themselves to change the law-so that everyone with an unwanted pregnancy who seeks an abortion can have it, as early as possible and as late as necessary.

  18. Load alleviation maneuvers for a launch vehicle

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Bless, Robert R.

    1993-01-01

    This paper addresses the design of a forward-looking autopilot that is capable of employing a priori knowledge of wind gusts ahead of the flight path to reduce the bending loads experienced by a launch vehicle. The analysis presented in the present paper is only preliminary, employing a very simple vehicle dynamical model and restricting itself to wind gusts of the form of isolated spikes. The main result of the present study is that linear quadratic regulator (LQR) based feedback laws are inappropriate to handle spike-type wind perturbations with large amplitude and narrow base. The best performance is achieved with an interior-point penalty optimal control formulation which can be well approximated by a simple feedback control law. Reduction of the maximum bending loads by nearly 50% is demonstrated.

  19. High order filtering methods for approximating hyberbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1990-01-01

    In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.

  20. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  1. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α <αc (=2) time-dependence of mean square displacement (MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  2. The Forbes 400, the Pareto power-law and efficient markets

    NASA Astrophysics Data System (ADS)

    Klass, O. S.; Biham, O.; Levy, M.; Malcai, O.; Solomon, S.

    2007-01-01

    Statistical regularities at the top end of the wealth distribution in the United States are examined using the Forbes 400 lists of richest Americans, published between 1988 and 2003. It is found that the wealths are distributed according to a power-law (Pareto) distribution. This result is explained using a simple stochastic model of multiple investors that incorporates the efficient market hypothesis as well as the multiplicative nature of financial market fluctuations.

  3. Race to the Top: What Have We Learned from the States So Far? A State-by-State Evaluation of Race to the Top Performance

    ERIC Educational Resources Information Center

    Boser, Ulrich

    2012-01-01

    On February 17, 2009, President Obama signed the American Recovery and Reinvestment Act (ARRA). The law had a very simple mission: kick-start an economic recovery through strategic investment. Deep within the law were a number of key education initiatives, including Race to the Top (RTT), which was a way to invest in the nation's education system…

  4. Accumulated distribution of material gain at dislocation crystal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakin, V. I., E-mail: rakin@geo.komisc.ru

    2016-05-15

    A model for slowing down the tangential growth rate of an elementary step at dislocation crystal growth is proposed based on the exponential law of impurity particle distribution over adsorption energy. It is established that the statistical distribution of material gain on structurally equivalent faces obeys the Erlang law. The Erlang distribution is proposed to be used to calculate the occurrence rates of morphological combinatorial types of polyhedra, presenting real simple crystallographic forms.

  5. 12 CFR 213.9 - Relation to state laws.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Relation to state laws. 213.9 Section 213.9... LEASING (REGULATION M) § 213.9 Relation to state laws. (a) Inconsistent state law. A state law that is... a lessor cannot comply with a state law without violating a provision of this part, the state law is...

  6. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  7. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less

  8. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing

    PubMed Central

    Kang, Chang-kwon; Shyy, Wei

    2013-01-01

    We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300

  9. Network-Physics(NP) Bec DIGITAL(#)-VULNERABILITY Versus Fault-Tolerant Analog

    NASA Astrophysics Data System (ADS)

    Alexander, G. K.; Hathaway, M.; Schmidt, H. E.; Siegel, E.

    2011-03-01

    Siegel[AMS Joint Mtg.(2002)-Abs.973-60-124] digits logarithmic-(Newcomb(1881)-Weyl(1914; 1916)-Benford(1938)-"NeWBe"/"OLDbe")-law algebraic-inversion to ONLY BEQS BEC:Quanta/Bosons= digits: Synthesis reveals EMP-like SEVERE VULNERABILITY of ONLY DIGITAL-networks(VS. FAULT-TOLERANT ANALOG INvulnerability) via Barabasi "Network-Physics" relative-``statics''(VS.dynamics-[Willinger-Alderson-Doyle(Not.AMS(5/09)]-]critique); (so called)"Quantum-computing is simple-arithmetic(sans division/ factorization); algorithmic-complexities: INtractibility/ UNdecidability/ INefficiency/NONcomputability / HARDNESS(so MIScalled) "noise"-induced-phase-transitions(NITS) ACCELERATION: Cook-Levin theorem Reducibility is Renormalization-(Semi)-Group fixed-points; number-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(02)] How? mea culpa)can ONLY be MBCS "hot-plasma" versus digit-clumping NON-random BEC; Modular-arithmetic Congruences= Signal X Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)] BEC logarithmic-law inversion factorization:Watkins number-thy. U stat.-phys.); P=/=NP TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation via geometry.

  10. Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Motter, Adilson E.; Kantz, Holger

    2006-02-01

    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with nonhierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent γ=2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.

  11. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu

    2015-08-01

    The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.

  12. Iridescent cellulose nanocrystal films: the link between structural colour and Bragg’s law

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Dinh; Sierra, Egoitz; Eguiraun, Harkaitz; Lizundia, Erlantz

    2018-07-01

    Structural colour is a phenomenon found in nature, which provides plants and animals with vibrant optical properties. The production of this colour is based on the interaction of incident light with the hierarchical organisation of submicron- and micron-sized layered structures. Cellulose nanocrystals (CNCs) are anisotropic building units formed by acid hydrolysis of native cellulose microfibers, which can disperse in aqueous media to form a photonic liquid crystal. One fascinating example of the appearance of biomimetic colour is the supramolecular assembly of CNCs into iridescent layered structures that rotate along a helical screw to yield a long-range chiral nematic order. A quick, simple and engaging experiment that allows the establishment of a direct relation between the structural colour and underlying mechanism of the light interaction with these hierarchically structured materials is reported. The obtained colour changes are explained within the theoretical framework provided by Bragg’s law and may provide an easy way to observe the macroscopic manifestation of this often abstract concept.

  13. Fractality and growth of He bubbles in metals

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Ito, Atsushi M.; Ohno, Noriyasu

    2017-08-01

    Pinholes are formed on surfaces of metals by the exposure to helium plasmas, and they are regarded as the initial process of the growth of fuzzy nanostructures. In this study, number density of the pinholes is investigated in detail from the scanning electron microscope (SEM) micrographs of tungsten and tantalum exposed to the helium plasmas. A power law relation was identified between the number density and the size of pinholes. From the slope and the region where the power law was satisfied, the fractal dimension D and smin, which characterize the SEM images, are deduced. Parametric dependences and material dependence of D and smin are revealed. To explain the fractality, simple Monte-Carlo simulations including random walks of He atoms and absorption on bubble was introduced. It is shown that the initial position of the random walk is one of the key factors to deduce the fractality. The results indicated that new nucleations of bubbles are necessary to reproduce the number-density distribution of bubbles.

  14. The fatigue of high office

    NASA Astrophysics Data System (ADS)

    Ramsden, Jeremy J.; Naran, Deven

    2007-03-01

    The word frequencies of the speeches of some contemporary politicians have been determined over a decade of office. By fitting Mandelbrot's simple canonical law (a development of Zipf 's law) to the data, the average cybernetic temperature θ was determined for each year of office. Two contrasting cases were examined. The first, that of the British Prime Minister Tony Blair, showed a steady decline of θ punctuated by partial recovery following certain key events such as re-election. The second, that of the Australian Prime Minister John Howard, showed a more uniform temperature. It is suggested that the first case is an example of the phenomenon of fatigue or habituation, inevitable in any complex system rich in equilibrium states, and the partial de-habituation observed is a consequence of a sharp disturbance to the system. Given the relative ease of carrying out the analysis, it could become a routine tool regularly applied to holders of high office to determine their continuing fitness to occupy the office.

  15. Running to well-being: A comparative study on the impact of exercise on the physical and mental health of law and psychology students.

    PubMed

    Skead, Natalie K; Rogers, Shane L

    Research indicates that, in comparison to other university students, law students are at greater risk of experiencing high levels of psychological distress. There is also a large body of literature supporting a general negative association between exercise and stress, anxiety and depression. However, we are not aware of any studies exploring the impact of exercise on the mental health of law students specifically. This article reports evidence of a negative association between exercise and psychological distress in 206 law and psychology students. Compared to psychology students, the law students not only reported greater psychological distress, but, in addition, there was a stronger association between their levels of distress and their levels of exercise. Based on the results of this study, we suggest a simple yet effective way law schools might support the mental health of their students. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Letting students discover the power, and the limits, of simple models: Coulomb's law

    NASA Astrophysics Data System (ADS)

    Bohacek, Peter; Vonk, Matthew; Dill, Joseph; Boehm, Emma

    2017-09-01

    The inverse-square law pops up all over. It's a simplified model of reality that describes light, sound, gravity, and static electricity. But when it's brought up in class, students are often just handed the equations. They rarely have an opportunity to discover Coulomb's law or Newton's law of gravitation for themselves. It's not hard to understand why. A quantitative demonstration of Coulomb's law can be difficult. The forces are smaller than many force sensors can measure and static electricity tends to be finicky. In addition, off-the-shelf units are expensive or difficult to use. As a result, many instructors skip this lab in favor of qualitative demonstrations or simulations. Adolf Cortel sought to remedy this by designing a straightforward experiment for measuring Coulomb's law using charged metalized-glass spheres (Christmas ornaments) and an electronic balance. Building on Cortel's design, we've made a series of video-based experiments that students can use to discover the relationships that underlie electric force.

  17. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  18. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  19. Stability analysis of multiple-robot control systems

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are of fundamental importance. Three paradigms to study this problem are proposed. They are distinguished by the set of variables used for control design. They are joint torques, arm tip force vectors, and an accelerated generalized coordinate set. Control issues related to each case are discussed. The latter two choices require complete model information, which presents practical modeling, computational, and robustness problems. Therefore, focus is on the joint torque control case to develop relatively model independent motion and internal force control laws. The rigid body assumption allows the motion and force control problems to be independently addressed. By using an energy motivated Lyapunov function, a simple proportional derivative plus gravity compensation type of motion control law is always shown to be stabilizing. The asymptotic convergence of the tracing error to zero requires the use of a generalized coordinate with the contact constraints taken into account. If a non-generalized coordinate is used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward and feedback schemes are analyzed. The feedback control, if proper care has been taken, exhibits better robustness and transient performance.

  20. von Kármán-Howarth equation for three-dimensional two-fluid plasmas.

    PubMed

    Andrés, N; Mininni, P D; Dmitruk, P; Gómez, D O

    2016-06-01

    We derive the von Kármán-Howarth equation for a full three-dimensional incompressible two-fluid plasma. In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic "four-fifths" law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in terms of third-order structure functions, which is appropriate for comparison with in situ measurements in the solar wind at different spatial ranges.

  1. Space law and space resources

    NASA Technical Reports Server (NTRS)

    Goldman, Nathan C.

    1992-01-01

    Space industrialization is confronting space law with problems that are changing old and shaping new legal principles. The return to the Moon, the next logical step beyond the space station, will establish a permanent human presence there. Science and engineering, manufacturing and mining will involve the astronauts in the settlement of the solar system. These pioneers, from many nations, will need a legal, political, and social framework to structure their lives and interactions. International and even domestic space law are only the beginning of this framework. Dispute resolution and simple experience will be needed in order to develop, over time, a new social system for the new regime of space.

  2. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1975-01-01

    Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.

  3. New class of control laws for robotic manipulators. I - Nonadaptive case. II - Adaptive case

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Bayard, David S.

    1988-01-01

    A new class of exponentially stabilizing control laws for joint level control of robot arms is discussed. Closed-loop exponential stability has been demonstrated for both the set point and tracking control problems by a slight modification of the energy Lyapunov function and the use of a lemma which handles third-order terms in the Lyapunov function derivatives. In the second part, these control laws are adapted in a simple fashion to achieve asymptotically stable adaptive control. The analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and uses a parameterization based on physical (time-invariant) quantities.

  4. Entropic forces in Brownian motion

    NASA Astrophysics Data System (ADS)

    Roos, Nico

    2014-12-01

    Interest in the concept of entropic forces has risen considerably since Verlinde proposed in 2011 to interpret the force in Newton's second law and gravity as entropic forces. Brownian motion—the motion of a small particle (pollen) driven by random impulses from the surrounding molecules—may be the first example of a stochastic process in which such forces are expected to emerge. In this article, it is shown that at least two types of entropic force can be identified in three-dimensional Brownian motion. This analysis yields simple derivations of known results of Brownian motion, Hooke's law, and—applying an external (non-radial) force—Curie's law and the Langevin-Debye equation.

  5. 12 CFR 157.11 - To what extent does Federal law preempt deposit-related state laws?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false To what extent does Federal law preempt deposit-related state laws? 157.11 Section 157.11 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY DEPOSITS § 157.11 To what extent does Federal law preempt deposit-related state laws? State law...

  6. 12 CFR 157.11 - To what extent does Federal law preempt deposit-related state laws?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false To what extent does Federal law preempt deposit-related state laws? 157.11 Section 157.11 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY DEPOSITS § 157.11 To what extent does Federal law preempt deposit-related state laws? State law...

  7. 12 CFR 157.11 - To what extent does Federal law preempt deposit-related state laws?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false To what extent does Federal law preempt deposit-related state laws? 157.11 Section 157.11 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY DEPOSITS § 157.11 To what extent does Federal law preempt deposit-related state laws? State law...

  8. Law-Related Education: Trends and Development.

    ERIC Educational Resources Information Center

    Miller, Rosemary V.; Darnley, Susan M.

    The report analyzes law-related education programs and materials developed during the period 1968-78. Specifically, it examines program motivations, assumptions, project development, and the relationship of law-related education to civic education. Law-related education is seen to include the study of the role of law in society, the legal…

  9. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  10. Two Activities with a Simple Model of the Solar System: Discovering Kepler's 3rd Law and Investigating Apparent Motion of Venus

    ERIC Educational Resources Information Center

    Rovšek, Barbara; Guštin, Andrej

    2018-01-01

    An astronomy "experiment" composed of three parts is described in the article. Being given necessary data a simple model of inner planets of the solar system is made in the first part with planets' circular orbits using appropriate scale. In the second part revolution of the figurines used as model representations of the planets along…

  11. Statistical Tests Black swans or dragon-kings? A simple test for deviations from the power law★

    NASA Astrophysics Data System (ADS)

    Janczura, J.; Weron, R.

    2012-05-01

    We develop a simple test for deviations from power law tails. Actually, from the tails of any distribution. We use this test - which is based on the asymptotic properties of the empirical distribution function - to answer the question whether great natural disasters, financial crashes or electricity price spikes should be classified as dragon-kings or `only' as black swans.

  12. Using Simple Harmonic Motion to Follow the Galilean Moons--Testing Kepler's Third Law on a Small System

    ERIC Educational Resources Information Center

    de Moraes, I. G.; Pereira, J. A. M.

    2009-01-01

    The motion of the four Galilean moons of Jupiter is studied in this work. The moons had their positions with respect to the centre of the planet measured during one week of observation by means of telescopic charge coupled device images. It is shown that their movement can be well described as a simple harmonic motion. The revolution period and…

  13. Abortion Law and Policy Around the World

    PubMed Central

    2017-01-01

    Abstract The aim of this paper is to provide a panoramic view of laws and policies on abortion around the world, giving a range of country-based examples. It shows that the plethora of convoluted laws and restrictions surrounding abortion do not make any legal or public health sense. What makes abortion safe is simple and irrefutable—when it is available on the woman’s request and is universally affordable and accessible. From this perspective, few existing laws are fit for purpose. However, the road to law reform is long and difficult. In order to achieve the right to safe abortion, advocates will need to study the political, health system, legal, juridical, and socio-cultural realities surrounding existing law and policy in their countries, and decide what kind of law they want (if any). The biggest challenge is to determine what is possible to achieve, build a critical mass of support, and work together with legal experts, parliamentarians, health professionals, and women themselves to change the law—so that everyone with an unwanted pregnancy who seeks an abortion can have it, as early as possible and as late as necessary. PMID:28630538

  14. A real time data acquisition system using the MIL-STD-1553B bus. [for transmission of data to host computer for control law processing

    NASA Technical Reports Server (NTRS)

    Peri, Frank, Jr.

    1992-01-01

    A flight digital data acquisition system that uses the MIL-STD-1553B bus for transmission of data to a host computer for control law processing is described. The instrument, the Remote Interface Unit (RIU), can accommodate up to 16 input channels and eight output channels. The RIU employs a digital signal processor to perform local digital filtering before sending data to the host. The system allows flexible sensor and actuator data organization to facilitate quick control law computations on the host computer. The instrument can also run simple control laws autonomously without host intervention. The RIU and host computer together have replaced a similar larger, ground minicomputer system with favorable results.

  15. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  16. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  17. The Tablecloth Trick, Take II.

    ERIC Educational Resources Information Center

    Ringlein, James

    2003-01-01

    Explores the basic physics behind pulling a tablecloth out from under a set of dishes, glassware, and utensils without disturbing them. Discusses terminology of Newton's laws of motion and illustrates them using three simple examples. (NB)

  18. String and Sticky Tape Experiments.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1979-01-01

    Explains how to demonstrate the fundamentals of one dimensional kinematics such as Newton's third law of motion, and collision between bodies, using simple materials of marbles, strings, sticky tape, drinking straws, and rubber bands. (GA)

  19. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  20. A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, A.

    We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc

  1. A simple calculation method for determination of equivalent square field.

    PubMed

    Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad

    2012-04-01

    Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.

  2. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    PubMed Central

    Liebermeister, Wolfram; Klipp, Edda

    2006-01-01

    Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669

  3. Mechanics

    NASA Astrophysics Data System (ADS)

    Cox, John

    2014-05-01

    Part 1. The Winning of the Principles: 1. Introduction; 2. The beginnings of statics. Archimedes. Problem of the lever and of the centre of gravity; 2. Experimental verification and applications of the principle of the lever; 3. The centre of gravity; 4. The balance; 5. Stevinus of Bruges. The principle of the inclined plane; 6. The parallelogram of forces; 7. The principle of virtual work; 8. Review of the principles of statics; 9. The beginnings of dynamics. Galileo. The problem of falling bodies; 10. Huyghens. The problem of uniform motion in a circle. 'Centrifugal force'; 11. Final statement of the principles of dynamics. Extension to the motions of the heavenly bodies. The law of universal gravitation. Newton; Part II. Mathematical Statement of the Principles: Introduction; 12. Kinematics; 13. Kinetics of a particle moving in a straight line. The laws of motion; 14. Experimental verification of the laws of motion. Atwood's machine; 15. Work and energy; 16. The parallelogram law; 17. The composition and resolution of forces. Resultant. Component. Equilibrium; 18. Forces in one plane; 19. Friction; Part III. Application to Various Problems: 20. Motion on an inclined plane. Brachistochrones; 21. Projectiles; 22. Simple harmonic motion; 23. The simple pendulum; 24. Central forces. The law of gravitation; 25. Impact and impulsive forces; Part IV. The Elements of Rigid Dynamics: 26. The compound pendulum. Huyghens' solution; 27. D'alembert's principle; 28. Moment of inertia; 29. Experimental determination of moments of inertia; 30. Determination of the value of gravity by Kater's pendulum; 31. The constant of gravitation, or weighing the Earth. The Cavendish experiment; Answers to the examples; Index.

  4. Maximum current density and beam brightness achievable by laser-driven electron sources

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  5. 12 CFR 40.17 - Relation to State laws.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Relation to State laws. 40.17 Section 40.17... INFORMATION Relation to Other Laws; Effective Date § 40.17 Relation to State laws. (a) In general. This part.... (b) Greater protection under State law. For purposes of this section, a State statute, regulation...

  6. 12 CFR 573.17 - Relation to State laws.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Relation to State laws. 573.17 Section 573.17... INFORMATION Relation to Other Laws; Effective Date § 573.17 Relation to State laws. (a) In general. This part.... (b) Greater protection under State law. For purposes of this section, a State statute, regulation...

  7. 17 CFR 160.17 - Relation to state laws.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Relation to state laws. 160.17... FINANCIAL INFORMATION Relation to Other Laws; Effective Date § 160.17 Relation to state laws. (a) In general... the inconsistency. (b) Greater protection under state law. For purposes of this section, a state...

  8. 12 CFR 716.17 - Relation to state laws.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Relation to state laws. 716.17 Section 716.17... CONSUMER FINANCIAL INFORMATION Relation to Other Laws; Effective Date § 716.17 Relation to state laws. (a... extent of the inconsistency. (b) Greater protection under state law. For purposes of this section, a...

  9. 12 CFR 40.17 - Relation to State laws.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Relation to State laws. 40.17 Section 40.17... INFORMATION Relation to Other Laws; Effective Date § 40.17 Relation to State laws. (a) In general. This part.... (b) Greater protection under State law. For purposes of this section, a State statute, regulation...

  10. 17 CFR 248.17 - Relation to State laws.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Relation to State laws. 248.17... Information Relation to Other Laws; Effective Date § 248.17 Relation to State laws. (a) In general. This... inconsistency. (b) Greater protection under State law. For purposes of this section, a State statute, regulation...

  11. Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2002-01-01

    A simple power law model consisting of a single spectral index, a is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The Maximum likelihood (ML) procedure was developed for estimating the single parameter alpha(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (P1) consistency (asymptotically unbiased). (P2) efficiency asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only he ascertained by calculating the CRB for an assumed energy spectrum-detector response function combination, which can be quite formidable in practice. However. the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are attained in practice are investigated. The ML technique is then extended to estimate spectra information from an arbitrary number of astrophysics data sets produced by vastly different science instruments. This theory and its successful implementation will facilitate the interpretation of spectral information from multiple astrophysics missions and thereby permit the derivation of superior spectral parameter estimates based on the combination of data sets.

  12. Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals.

    PubMed

    Edwards, Andrew M

    2011-06-01

    A surprisingly diverse variety of foragers have previously been concluded to exhibit movement patterns known as Lévy flights, a special type of random walk. These foragers range in size from microzooplankton in experiments to fishermen in the Pacific Ocean and the North Sea. The Lévy flight conclusion implies that all the foragers have similar scale-free movement patterns that can be described by a single dimensionless parameter, the exponent micro of a power-law (Pareto) distribution. However, the previous conclusions have been made using methods that have since been shown to be problematic: inaccurate techniques were used to estimate micro, and the power-law distribution was usually assumed to hold without testing any alternative hypotheses. Therefore, I address the open question of whether the previous data still support the Lévy flight hypothesis, and thus determine whether Lévy flights really are so ubiquitous in ecology. I present a comprehensive reanalysis of 17 data sets from seven previous studies for which Lévy flight behavior had been concluded, covering marine, terrestrial, and experimental systems from four continents. I use the modern likelihood and Akaike weights approach to test whether simple alternative models are more supported by the data than Lévy flights. The previously estimated values of the power-law exponent micro do not match those calculated here using the accurate likelihood approach, and almost all of them lie outside of the likelihood-based 95% confidence intervals. Furthermore, the original power-law Lévy flight model is overwhelmingly rejected for 16 out of the 17 data sets when tested against three other simple models. For one data set, the data are consistent with coming from a bounded power-law distribution (a truncated Lévy flight). For three other data sets, an exponential distribution corresponding to a simple Poisson process is suitable. Thus, Lévy flight movement patterns are not the common phenomena that was once thought, and are not suitable for use as ecosystem indicators for fisheries management, as has been proposed.

  13. On the Misuse of the Laplace Law in Bio Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thatte, Azam

    2005-11-01

    The Laplace law is commonly applied in biomechanical analyses of blood vessels, lung alveoli, and the gastrointestinal tract, often without concern to assumptions that underlie its use. This ``law'' is a simple force balance applied across the wall of a static pressurized (δP) vessel for small thickness-to-radius ratio τ/r. However, the true thin-wall requirement is more severe than τ/r << 1. Furthermore, because the Laplace law estimates total stress rather than deviatoric stress, the common practice of evaluating material stiffness by plotting Laplace law stress against strain is, in principle, incorrect. To study the validity of the Laplace law in biomechanical applications, we solved exactly the model problem of an axisymmetric pressurized cylinder of arbitrary thickness, linearly elastic isotropic material, in steady state, with the no-load state (δP = 0) as the zero stress state. Vessel radii and all stresses (total, deviatoric, hydrostatic) are predicted as functions of δP. We find that the Laplace law is invalid for many biomechanical applications and that total stress is not an appropriate surrogate for deviatoric stress to evaluate stiffness. We propose a model for deviatoric stress that we argue should replace the Laplace law for many biomechanical applications.

  14. Plasmoid Instability in Forming Current Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisso, L.; Lingam, M.; Huang, Y. -M.

    The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less

  15. Plasmoid Instability in Forming Current Sheets

    DOE PAGES

    Comisso, L.; Lingam, M.; Huang, Y. -M.; ...

    2017-11-28

    The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less

  16. Aeroelastic Wing Shaping Control Subject to Actuation Constraints.

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Nguyen, Nhan

    2014-01-01

    This paper considers the control of coupled aeroelastic aircraft model which is configured with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative deflection between two adjacent flaps is constrained and this actuation constraint is accounted for when designing an effective control law for suppressing the wing vibration. A simple tuned-mass damper mechanism with two attached masses is used as an example to demonstrate the effectiveness of vibration suppression with confined motion of tuned masses. In this paper, a dynamic inversion based pseudo-control hedging (PCH) and bounded control approach is investigated, and for illustration, it is applied to the NASA Generic Transport Model (GTM) configured with VCCTEF system.

  17. USING MICROSOFT OFFICE EXCEL® 2007 TO CONDUCT GENERALIZED MATCHING ANALYSES

    PubMed Central

    Reed, Derek D

    2009-01-01

    The generalized matching equation is a robust and empirically supported means of analyzing relations between reinforcement and behavior. Unfortunately, no simple task analysis is available to behavior analysts interested in using the matching equation to evaluate data in clinical or applied settings. This technical article presents a task analysis for the use of Microsoft Excel to analyze and plot the generalized matching equation. Using a data-based case example and a step-by-step guide for completing the analysis, these instructions are intended to promote the use of quantitative analyses by researchers with little to no experience in quantitative analyses or the matching law. PMID:20514196

  18. Using Microsoft Office Excel 2007 to conduct generalized matching analyses.

    PubMed

    Reed, Derek D

    2009-01-01

    The generalized matching equation is a robust and empirically supported means of analyzing relations between reinforcement and behavior. Unfortunately, no simple task analysis is available to behavior analysts interested in using the matching equation to evaluate data in clinical or applied settings. This technical article presents a task analysis for the use of Microsoft Excel to analyze and plot the generalized matching equation. Using a data-based case example and a step-by-step guide for completing the analysis, these instructions are intended to promote the use of quantitative analyses by researchers with little to no experience in quantitative analyses or the matching law.

  19. Raman scattering in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs.,more » 17 figs., 6 tabs.« less

  20. Troy: A simple nonlinear mathematical perspective

    NASA Astrophysics Data System (ADS)

    Flores, J. C.; Bologna, Mauro

    2013-10-01

    In this paper, we propose a mathematical model for the Trojan war that, supposedly, took place around 1180 BC. Supported by archaeological findings and by Homer’s Iliad, we estimate the numbers of warriors, the struggle rate parameters, the number of individuals per hectare, and other related quantities. We show that the long siege of the city, described in the Iliad, is compatible with a power-law behaviour for the time evolution of the number of individuals. We are able to evaluate the parameters of our model during the phase of the siege and the fall. The proposed model is general, and it can be applied to other historical conflicts.

  1. The origin of the criticality in meme popularity distribution on complex networks.

    PubMed

    Kim, Yup; Park, Seokjong; Yook, Soon-Hyung

    2016-03-24

    Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks.

  2. The origin of the criticality in meme popularity distribution on complex networks

    PubMed Central

    Kim, Yup; Park, Seokjong; Yook, Soon-Hyung

    2016-01-01

    Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks. PMID:27009399

  3. The origin of the criticality in meme popularity distribution on complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Park, Seokjong; Yook, Soon-Hyung

    2016-03-01

    Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks.

  4. Definition of (so MIScalled) ``Complexity" as UTTER-SIMPLICITY!!!(sMciUS!!!) Versus Deviations From( sMciUS!!!): ``COMPLICATEDNESS" Definition(s) and MEASURE(S)!!!

    NASA Astrophysics Data System (ADS)

    Young, F.; Siegel, E.

    2010-03-01

    (so MIScalled) ``complexity''(sMc) associated BOTH SCALE- INVARIANCE Symmetry-RESTORING(S-I S-R) [vs. S-I S-B!!!], AND X (w) P(w ) 1/w^(1.000...) ``pink''/Zipf/Archimedes-HYPERBOLICITY INEVITABILITY CONNECTION is by simple-calculus SISR's logarithm- function derivative: (d/dw)ln(w)=1/w=1/w^(1.000...), hence: (d/dw) [SISR](w)=1/w=1/w^(1.000...)=(via Noether-theorem relating continuous-(SISR)-symmetries to conservation-laws)=(d/dw)[4-DIV (J(INTER-SCALE)=0](w)=1/w =1/w^(1.000...). Hence sMc is information inter-scale conservation [as Anderson-Mandell, Fractals of Brain; Fractals of Mind(1994)-experimental- psychology!!!], i.e. sMciUS!!!, VERSUS ``COMPLICATEDNESS", is sMcciUS!!!: EITHER: PLUS (Additive: Murphy's-law absence) OR TIMES (Multiplicative: Murphy's-law dominance) various disparate system-specificity ``COMPLICATIONS". ``COMPLICATEDNESS" MEASURES: DEVIATIONS FROM sMciUS!!!: EITHER [S-I S-B] MINUS [S- I S-R] AND/OR [``red"/Pareto X(w) P(w) 1/w^(#=/=1.000...)] MINUS [X(w) P(w) 1/w^(1.000...) ``pink"/Zipf/Archimedes-HYPERBOLICITY INEVITABILITY] = [1/w^(#=/=1.000...)] MINUS [1/w^(1.000...)]; almost but not exactly a fractals Hurst-exponent-like [# - 1.000...]!!!

  5. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents (1) suggestions on teaching volume and density in the elementary school; (2) ideas for teaching about floating and sinking; (3) a simple computer program on color addition; and (4) an illustration of Newton's second law of motion. (JN)

  6. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  7. Apparatus for Teaching Physics

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1978-01-01

    Describes a simple device for observing solar spectra, an inexpensive circuit to produce two sinusoidal signals, a method of demonstrating Charles' Law with plastic bags, and discusses the hazards of connecting a vacuum pump to a gas jet. (SL)

  8. Electromagnetic braking: A simple quantitative model

    NASA Astrophysics Data System (ADS)

    Levin, Yan; da Silveira, Fernando L.; Rizzato, Felipe B.

    2006-09-01

    A calculation is presented that quantitatively accounts for the terminal velocity of a cylindrical magnet falling through a long copper or aluminum pipe. The experiment and the theory are a dramatic illustration of Faraday's and Lenz's laws.

  9. Odysseus's Sailboat Dilemma

    ERIC Educational Resources Information Center

    Wong, Siu-ling; Chun, Ka-wai Cecilia; Mak, Se-yuen

    2007-01-01

    We describe a physics investigation project inspired by one of the adventures of Odysseus in Homer's "Odyssey." The investigation uses the laws of mechanics, vector algebra and a simple way to construct a fan-and-sail-cart for experimental verification.

  10. Conclusion

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    It is often held that things should always be made simple, which presumes that either that they can always be made simple or that all the jetisoned logic doesn't matter anyway. Alledgedly, anything should be explainable so that anyone can understand it. Don't get bogged down in dreary details. It should be effortless for the reader: low-dimensional systems exhibit complex behaviour while high-dimensional systems exhibit simple behaviour (to return to our prolegomonal opening), competition is a universal solution, demand must increase as price falls, and everything under the sun neatly fits a power law. Or so the story goes...

  11. The effectiveness of problem-based learning on teaching the first law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Tatar, Erdal; Oktay, Münir

    2011-11-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.

  12. Computed tomography-based diagnosis of diffuse compensatory enlargement of coronary arteries using scaling power laws.

    PubMed

    Huo, Yunlong; Choy, Jenny Susana; Wischgoll, Thomas; Luo, Tong; Teague, Shawn D; Bhatt, Deepak L; Kassab, Ghassan S

    2013-04-06

    Glagov's positive remodelling in the early stages of coronary atherosclerosis often results in plaque rupture and acute events. Because positive remodelling is generally diffused along the epicardial coronary arterial tree, it is difficult to diagnose non-invasively. Hence, the objective of the study is to assess the use of scaling power law for the diagnosis of positive remodelling of coronary arteries based on computed tomography (CT) images. Epicardial coronary arterial trees were reconstructed from CT scans of six Ossabaw pigs fed on a high-fat, high-cholesterol, atherogenic diet for eight months as well as the same number of body-weight-matched farm pigs fed on a lean chow (101.9±16.1 versus 91.5±13.1 kg). The high-fat diet Ossabaw pig model showed diffuse positive remodelling of epicardial coronary arteries. Good fit of measured coronary data to the length-volume scaling power law ( where L(c) and V(c) are crown length and volume) were found for both the high-fat and control groups (R(2) = 0.95±0.04 and 0.99±0.01, respectively). The coefficient, K(LV), decreased significantly in the high-fat diet group when compared with the control (14.6±2.6 versus 40.9±5.6). The flow-length scaling power law, however, was nearly unaffected by the positive remodelling. The length-volume and flow-length scaling power laws were preserved in epicardial coronary arterial trees after positive remodelling. K(LV) < 18 in the length-volume scaling relation is a good index of positive remodelling of coronary arteries. These findings provide a clinical rationale for simple, accurate and non-invasive diagnosis of positive remodelling of coronary arteries, using conventional CT scans.

  13. 45 CFR 152.40 - Relation to State laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Relation to State laws. 152.40 Section 152.40...-EXISTING CONDITION INSURANCE PLAN PROGRAM Relationship to Existing Laws and Programs § 152.40 Relation to State laws. The standards established under this section shall supersede any State law or regulation...

  14. General wave optics propagation scaling law.

    PubMed

    Shakir, Sami A; Dolash, Thomas M; Spencer, Mark; Berdine, Richard; Cargill, Daniel S; Carreras, Richard

    2016-12-01

    A general far-field wave propagation scaling law is developed. The formulation is simple but predicts diffraction peak irradiance accurately in the far field, regardless of the near-field beam type or geometry, including laser arrays. We also introduce the concept of the equivalent uniform circular beam that generates a far-field peak irradiance and power-in-the-bucket that are the same as an arbitrary laser source. Applications to clipped Gaussian beams with an obscuration, both as a single beam and as an array of beams, are shown.

  15. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  16. Wealth Condensation and ``Corruption'' in a Toy Model

    NASA Astrophysics Data System (ADS)

    Johnston, D.; Burda, Z.; Jurkiewicz, J.; Kaminski, M.; Nowak, M. A.; Papp, G.; Zahed, I.

    2005-09-01

    We discuss the wealth condensation mechanism in a simple toy economy in which individual agent's wealths are distributed according to a Pareto power law and the overall wealth is fixed. The observed behaviour is the manifestation of a transition which occurs in Zero Range Processes (ZRPs) or ``balls in boxes'' models. An amusing feature of the transition in this context is that the condensation can be induced by increasing the exponent in the power law, which one might have naively assumed penalised greater wealths more.

  17. Fundamentals of Physics, Part 2 (Chapters 12-20)

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2003-12-01

    Chapter 12 Equilibrium and Elasticity. What injury can occur to a rock climber hanging by a crimp hold? 12-1 What Is Physics? 12-2 Equilibrium. 12-3 The Requirements of Equilibrium. 12-4 The Center of Gravity. 12-5 Some Examples of Static Equilibrium. 12-6 Indeterminate Structures. 12-7 Elasticity. Review & Summary Questions Problems. Chapter 13 Gravitation. What lies at the center of our Milky Way galaxy? 13-1 What Is Physics? 13-2 Newton's Law of Gravitation. 13-3 Gravitation and the Principle of Superposition. 13-4 Gravitation Near Earth's Surface. 13-5 Gravitation Inside Earth. 13-6 Gravitational Potential Energy. 13-7 Planets and Satellites: Kepler's Laws. 13-8 Satellites: Orbits and Energy. 13-9 Einstein and Gravitation. Review & Summary Questions Problems. Chapter 14 Fluids. What causes ground effect in race car driving? 14-1 What Is Physics? 14-2 What Is a Fluid? 14-3 Density and Pressure. 14-4 Fluids at Rest. 14-5 Measuring Pressure. 14-6 Pascal's Principle. 14-7 Archimedes' Principle. 14-8 Ideal Fluids in Motion. 14-9 The Equation of Continuity. 14-10 Bernoulli's Equation. Review & SummaryQuestionsProblems. Chapter 15 Oscillations. What is the "secret" of a skilled diver's high catapult in springboard diving? 15-1 What Is Physics? 15-2 Simple Harmonic Motion. 15-3 The Force Law for Simple Harmonic Motion. 15-4 Energy in Simple Harmonic Motion. 15-5 An Angular Simple Harmonic Oscillator. 15-6 Pendulums. 15-7 Simple Harmonic Motion and Uniform Circular Motion. 15-8 Damped Simple Harmonic Motion. 15-9 Forced Oscillations and Resonance. Review & Summary Questions Problems. Chapter 16 Waves--I. How can a submarine wreck be located by distant seismic stations? 16-1 What Is Physics? 16-2 Types of Waves. 16-3 Transverse and Longitudinal Waves. 16-4 Wavelength and Frequency. 16-5 The Speed of a Traveling Wave. 16-6 Wave Speed on a Stretched String. 16-7 Energy and Power of a Wave Traveling Along a String. 16-8 The Wave Equation. 16-9 The Principle of Superposition for Waves. 16-10 Interference of Waves. 16-11 Phasors. 16-12 Standing Waves. 16-13 Standing Waves and Resonance. Review & Summary Questions Problems. Chapter 17 Waves--II. How can an emperor penguin .nd its mate among thousands of huddled penguins? 17-1 What Is Physics? 17-2 Sound Waves. 17-3 The Speed of Sound. 17-4 Traveling Sound Waves. 17-5 Interference. 17-6 Intensity and Sound Level. 17-7 Sources of Musical Sound. 17-8 Beats. 17-9 The Doppler Effect. 17-10 Supersonic Speeds, Shock Waves. Review & Summary Questions Problems. Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. How can a dead rattlesnake detect and strike a reaching hand? 18-1 What Is Physics?. 18-2 Temperature. 18-3 The Zeroth Law of Thermodynamics. 18-4 Measuring Temperature. 18-5 The Celsius and Fahrenheit Scales. 18-6 Thermal Expansion. 18-7 Temperature and Heat. 18-8 The Absorption of Heat by Solids and Liquids. 18-9 A Closer Look at Heat and Work. 18-10 The First Law of Thermodynamics. 18-11 Some Special Cases of the First Law of Thermodynamics. 18-12 Heat Transfer Mechanisms. Review & Summary Questions Problems. Chapter 19 The Kinetic Theory of Gases. How can cooling steam inside a railroad tank car cause the car to be crushed? 19-1 What Is Physics? 19-2 Avogadro's Number. 19-3 Ideal Gases. 19-4 Pressure, Temperature, and RMS Speed. 19-5 Translational Kinetic Energy. 19-6 Mean Free Path. 19-7 The Distribution of Molecular Speeds. 19-8 The Molar Speci.c Heats of an Ideal Gas. 19-9 Degrees of Freedom and Molar Speci.c Heats. 19-10 A Hint of Quantum Theory. 19-11 The Adiabatic Expansion of an Ideal Gas. Review & Summary Questions Problems. Chapter 20 Entropy and the Second Law of Thermodynamics. Why is the popping of popcorn irreversible? 20-1 What Is Physics? 20-2 Irreversible Processes and Entropy. 20-3 Change in Entropy. 20-4 The Second Law of Thermodynamics. 20-5 Entropy in the Real World: Engines. 20-6 Entropy in the Real World: Refrigerators. 20-7 The Ef.ciencies of Real Engines. 20-8 A Statistical View of Entropy. Review & Summary Questions Problems. Appendices. A The International System of Units (SI). B Some Fundamental Constants of Physics. C Some Astronomical Data. D Conversion Factors. E Mathematical Formulas. F Properties of the Elements. G Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.

  18. Holographic equipartition and the maximization of entropy

    NASA Astrophysics Data System (ADS)

    Krishna, P. B.; Mathew, Titus K.

    2017-09-01

    The accelerated expansion of the Universe can be interpreted as a tendency to satisfy holographic equipartition. It can be expressed by a simple law, Δ V =Δ t (Nsurf-ɛ Nbulk) , where V is the Hubble volume in Planck units, t is the cosmic time in Planck units, and Nsurf /bulk is the number of degrees of freedom on the horizon/bulk of the Universe. We show that this holographic equipartition law effectively implies the maximization of entropy. In the cosmological context, a system that obeys the holographic equipartition law behaves as an ordinary macroscopic system that proceeds to an equilibrium state of maximum entropy. We consider the standard Λ CDM model of the Universe and show that it is consistent with the holographic equipartition law. Analyzing the entropy evolution, we find that it also proceeds to an equilibrium state of maximum entropy.

  19. Control law synthesis and optimization software for large order aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas

    1989-01-01

    A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.

  20. Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws.

    PubMed

    Titze, Tobias; Lauerer, Alexander; Heinke, Lars; Chmelik, Christian; Zimmermann, Nils E R; Keil, Frerich J; Ruthven, Douglas M; Kärger, Jörg

    2015-11-23

    Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex. The limitations of the diffusion model are also discussed with reference to the extensive literature on this subject. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Zipf's law holds for phrases, not words.

    PubMed

    Williams, Jake Ryland; Lessard, Paul R; Desu, Suma; Clark, Eric M; Bagrow, James P; Danforth, Christopher M; Dodds, Peter Sheridan

    2015-08-11

    With Zipf's law being originally and most famously observed for word frequency, it is surprisingly limited in its applicability to human language, holding over no more than three to four orders of magnitude before hitting a clear break in scaling. Here, building on the simple observation that phrases of one or more words comprise the most coherent units of meaning in language, we show empirically that Zipf's law for phrases extends over as many as nine orders of rank magnitude. In doing so, we develop a principled and scalable statistical mechanical method of random text partitioning, which opens up a rich frontier of rigorous text analysis via a rank ordering of mixed length phrases.

  2. Development of Energy Concepts in Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Arons, Arnold B.

    1999-01-01

    Believes that a student's understanding of energy concepts can be enhanced by introducing and using the concept of internal energy by articulating the first law of thermodynamics in a simple, phenomenological form without mathematical encumbrances. (Author/CCM)

  3. Heterogeneous distribution of metabolites across plant species

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuhiro; Arita, Masanori

    2009-07-01

    We investigate the distribution of flavonoids, a major category of plant secondary metabolites, across species. Flavonoids are known to show high species specificity, and were once considered as chemical markers for understanding adaptive evolution and characterization of living organisms. We investigate the distribution among species using bipartite networks, and find that two heterogeneous distributions are conserved among several families: the power-law distributions of the number of flavonoids in a species and the number of shared species of a particular flavonoid. In order to explain the possible origin of the heterogeneity, we propose a simple model with, essentially, a single parameter. As a result, we show that two respective power-law statistics emerge from simple evolutionary mechanisms based on a multiplicative process. These findings provide insights into the evolution of metabolite diversity and characterization of living organisms that defy genome sequence analysis for different reasons.

  4. Simple Models for Nanocrystal Growth

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo

    Growth of new materials with tailored properties is one of the most active research directions for physicists. As pointed out by Silvan Schweber in his brilliant analysis of the evolution of physics after World War II [1] "An important transformation has taken place in physics: As had previously happened in chemistry, an ever larger fraction of the efforts in the field were being devoted to the study of novelty rather than to the elucidation of fundamental laws and interactions […] The successes of quantum mechanics at the atomic level immediately made it clear to the more perspicacious physicists that the laws behind the phenomena had been apprehended, that they could therefore control the behavior of simple macroscopic systems and, more importantly, that they could create new structures, new objects and new phenomena […] Condensed matter physics has indeed become the study of systems that have never before existed. Phenomena such as superconductivity are genuine novelties in the universe."

  5. How long does it take to boil an egg? A simple approach to the energy transfer equation

    NASA Astrophysics Data System (ADS)

    Roura, P.; Fort, J.; Saurina, J.

    2000-01-01

    The heating of simple geometric objects immersed in an isothermal bath is analysed qualitatively through Fourier's law. The approximate temperature evolution is compared with the exact solution obtained by solving the transport differential equation, the discrepancies being smaller than 20%. Our method succeeds in giving the solution as a function of the Fourier modulus so that the scale laws hold. It is shown that the time needed to homogenize temperature variations that extend over mean distances xm is approximately xm2/icons/Journals/Common/alpha" ALT="alpha" ALIGN="MIDDLE"/>, where icons/Journals/Common/alpha" ALT="alpha" ALIGN="MIDDLE"/> is the thermal diffusivity. This general relationship also applies to atomic diffusion. Within the approach presented there is no need to write down any differential equation. As an example, the analysis is applied to the process of boiling an egg.

  6. A new visibility measurement system based on a black target and a comparative trial with visibility instruments

    NASA Astrophysics Data System (ADS)

    Tang, Fanjie; Ma, Shuqing; Yang, Ling; Du, Chuanyao; Tang, Yingjie

    2016-10-01

    According to Koschmieder's law, a mathematical model of contrast between a single black object and the sky background is established. Based on this principle, we built a black target visiometer system using a photograph of a black object taken with an industrial camera, that has a relatively simple structure and automated operation. In this study, three commercial visibility instruments-a forward scatter meter (CJB-3A) and two atmospheric transmission meters (LT31, VM100)-were compared to the black target visiometer system. Our results show that, within visibility ranges of up to 10 km, 1) all of the instruments agree well at low visibility and agree poorly at a visibility exceeding 5 km; 2) the forward scattering instrument has high bias at low visibility because particle absorption is not included; and 3) the best agreement with the black target method was obtained with the simple transmissometer rather than the forward scatter instrument or the hybrid transmissometer for a visibility range of up to 10 km.

  7. 12 CFR 202.11 - Relation to state law.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Relation to state law. 202.11 Section 202.11... OPPORTUNITY ACT (REGULATION B) § 202.11 Relation to state law. (a) Inconsistent state laws. Except as otherwise provided in this section, this regulation alters, affects, or preempts only those state laws that...

  8. Five palaeobiological laws needed to understand the evolution of the living biota.

    PubMed

    Marshall, Charles R

    2017-05-23

    The foundations of several disciplines can be expressed as simple quantitative laws, for example, Newton's laws or the laws of thermodynamics. Here I present five laws derived from fossil data that describe the relationships among species extinction and longevity, species richness, origination rates, extinction rates and diversification. These statements of our palaeobiological knowledge constitute a dimension largely hidden from view when studying the living biota, which are nonetheless crucial to the study of evolution and ecology even for groups with poor or non-existent fossil records. These laws encapsulate: the critical fact of extinction; that species are typically geologically short-lived, and thus that the number of extinct species typically dwarfs the number of living species; that extinction and origination rates typically have similar magnitudes; and, that significant extinction makes it difficult to infer much about a clade's early history or its current diversity dynamics from the living biota alone. Although important strides are being made to integrate these core palaeontological findings into our analysis of the living biota, this knowledge needs to be incorporated more widely if we are to understand their evolutionary dynamics.

  9. Fokker-Planck diffusive law: its interpretation in the context of plasma transport modeling

    NASA Astrophysics Data System (ADS)

    Sanchez, Raul; Carreras, Ben A.; van Milligen, Boudewijn Ph.

    2006-10-01

    It was recently proposed that, when building phenomenological transport models for particle transport in tokamaks, use of the Fokker-Planck diffusive law might be preferable to Fick's law to express particle fluxes [1]. In particular, it might offer a possible explanation for the excessive pinch velocites observed in some experimental situations with respect to the values expected from the forces and asymmetries existent in the system. In spite of the fact that Fokker-Planck's law was first proposed many years ago, it produces a series of counterintuitive results that at first sight seem in contradiction with the second law of thermodynamics. In this contribution we will review the basic concepts behind its formulation and show that, through the use of simple examples relevant to plasma physics, the second law of thermodynamics is not violated in any manner if properly used. The benefits of its use within the modelling of transport in tokamaks will also be clarified.REFERENCES: [1] R. Sanchez et al, Phys. Plasmas 12, 056105 (2005); B.Ph. van Milligen et al, Plasma Phys.Contr.Fusion 47, B743 (2005)

  10. Feedback laws for fuel minimization for transport aircraft

    NASA Technical Reports Server (NTRS)

    Price, D. B.; Gracey, C.

    1984-01-01

    The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.

  11. Digital robust control law synthesis using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1989-01-01

    Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.

  12. Correlation dimension and phase space contraction via extreme value theory

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Vaienti, Sandro

    2018-04-01

    We show how to obtain theoretical and numerical estimates of correlation dimension and phase space contraction by using the extreme value theory. The maxima of suitable observables sampled along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the extremal index is associated with the rate of phase space contraction for backward iteration, which in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution. Numerical tests range from low dimensional maps, to generalized Henon maps and climate data. The estimates of the indicators are particularly robust even with relatively short time series.

  13. 50 CFR 300.3 - Relation to other laws.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Relation to other laws. 300.3 Section 300.3 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS General § 300.3 Relation to other laws. Other laws that may apply to fishing activities addressed...

  14. 16 CFR 313.17 - Relation to State laws.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Relation to State laws. 313.17 Section 313... OF CONSUMER FINANCIAL INFORMATION Relation to Other Laws; Effective Date § 313.17 Relation to State laws. (a) In general. This part shall not be construed as superseding, altering, or affecting any...

  15. 16 CFR 313.17 - Relation to State laws.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Relation to State laws. 313.17 Section 313... OF CONSUMER FINANCIAL INFORMATION Relation to Other Laws; Effective Date § 313.17 Relation to State laws. (a) In general. This part shall not be construed as superseding, altering, or affecting any...

  16. 50 CFR 300.3 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Relation to other laws. 300.3 Section 300.3 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS General § 300.3 Relation to other laws. Other laws that may apply to fishing activities addressed...

  17. Exploiting the hidden symmetry of spinning black holes: conservation laws and numerical tests

    NASA Astrophysics Data System (ADS)

    Witzany, Vojtěch

    2018-01-01

    The Kerr black hole is stationary and axisymmetric, which leads to conservation of energy and azimuthal angular momentum along the orbits of free test particles in its vicinity, but also to conservation laws for the evolution of continuum matter fields. However, the Kerr space-time possesses an additional 'hidden symmetry', which exhibits itself in an unexpected conserved quantity along geodesics known as the Carter constant. We investigate the possibility of using this hidden symmetry to obtain conservation laws and other identities that could be used to test astrophysical simulations of the evolution of matter fields near spinning black holes. After deriving such identities, we set up a simple numerical toy model on which we demonstrate how they can detect the violations of evolution equations in a numerical simulation. Even though one of the expressions we derive is in the form of a conservation law, we end up recommending an equivalent but simpler expression that is not in the form of a conservation law for practical implementation.

  18. Self-organization of vortex-length distribution in quantum turbulence: An approach based on the Barabasi-Albert model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, Akira; Tsubota, Makoto

    2006-07-01

    The energy spectrum of decaying quantum turbulence at T=0 obeys Kolmogorov's law. In addition to this, recent studies revealed that the vortex-length distribution (VLD), meaning the size distribution of the vortices, in decaying Kolmogorov quantum turbulence also obeys a power law. This power-law VLD suggests that the decaying turbulence has scale-free structure in real space. Unfortunately, however, there has been no practical study that answers the following important question: why can quantum turbulence acquire a scale-free VLD? We propose here a model to study the origin of the power law of the VLD from a generic point of view. Themore » nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model, which explains the scale-invariance structure of large networks. We show here that such a model can reproduce the power law of the VLD well.« less

  19. A Simple Ballistic Material Model for Soda-Lime Glass

    DTIC Science & Technology

    2009-01-01

    Author’s personal copy A simple ballistic material model for soda-lime glass M. Grujicic a,*, B. Pandurangan a, N. Coutris a, B.A. Cheeseman b, C...Transparent armor Material modeling Ballistic performance Soda-lime glass a b s t r a c t Various open-literature experimental findings pertaining...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not

  20. Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    PubMed Central

    Kennedy, David N.; Lehár, Joseph; Lee, Myung Joo; Blood, Anne J.; Lee, Sang; Perlis, Roy H.; Smoller, Jordan W.; Morris, Robert; Fava, Maurizio

    2010-01-01

    Background Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Methodology/Principal Findings Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. Conclusions/Significance These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness). PMID:20532247

  1. NADA Protocol for Behavioral Health. Putting Tools in the Hands of Behavioral Health Providers: The Case for Auricular Detoxification Specialists.

    PubMed

    Stuyt, Elizabeth B; Voyles, Claudia A; Bursac, Sara

    2018-02-07

    Background: The National Acupuncture Detoxification Association (NADA) protocol, a simple standardized auricular treatment has the potential to provide vast public health relief on issues currently challenging our world. This includes but is not limited to addiction, such as the opioid epidemic, but also encompasses mental health, trauma, PTSD, chronic stress, and the symptoms associated with these conditions. Simple accessible tools that improve outcomes can make profound differences. We assert that the NADA protocol can have greatest impact when broadly applied by behavioral health professionals, Auricular Detoxification Specialists (ADSes). Methods: The concept of ADS is described and how current laws vary from state to state. Using available national data, a survey of practitioners in three selected states with vastly different laws regarding ADSes, and interviews of publicly funded programs which are successfully incorporating the NADA protocol, we consider possible effects of ADS-friendly conditions. Results: Data presented supports the idea that conditions conducive to ADS practice lead to greater implementation. Program interviews reflect settings in which adding ADSes can in turn lead to improved outcomes. Discussion: The primary purpose of non-acupuncturist ADSes is to expand the access of this simple but effective treatment to all who are suffering from addictions, stress, or trauma and to allow programs to incorporate acupuncture in the form of the NADA protocol at minimal cost, when and where it is needed. States that have changed laws to allow ADS practice for this standardized ear acupuncture protocol have seen increased access to this treatment, benefiting both patients and the programs.

  2. A simple calculation method for determination of equivalent square field

    PubMed Central

    Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad

    2012-01-01

    Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning. PMID:22557801

  3. 50 CFR 600.1201 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Relation to other laws. 600.1201 Section... laws. (a) The relation of this subpart to other laws is set forth in §§ 600.514 and 600.705 and in...) Nothing in this regulation supercedes more restrictive state laws or regulations regarding shark finning...

  4. The mathematical relationship between Zipf’s law and the hierarchical scaling law

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2012-06-01

    The empirical studies of city-size distribution show that Zipf's law and the hierarchical scaling law are linked in many ways. The rank-size scaling and hierarchical scaling seem to be two different sides of the same coin, but their relationship has never been revealed by strict mathematical proof. In this paper, the Zipf's distribution of cities is abstracted as a q-sequence. Based on this sequence, a self-similar hierarchy consisting of many levels is defined and the numbers of cities in different levels form a geometric sequence. An exponential distribution of the average size of cities is derived from the hierarchy. Thus we have two exponential functions, from which follows a hierarchical scaling equation. The results can be statistically verified by simple mathematical experiments and observational data of cities. A theoretical foundation is then laid for the conversion from Zipf's law to the hierarchical scaling law, and the latter can show more information about city development than the former. Moreover, the self-similar hierarchy provides a new perspective for studying networks of cities as complex systems. A series of mathematical rules applied to cities such as the allometric growth law, the 2n principle and Pareto's law can be associated with one another by the hierarchical organization.

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides directions for setup and performance of two demonstrations. The first demonstrates the principles of Raoult's Law; using a simple apparatus designed to measure vapor pressure. The second illustrates the energy available from alcohol combustion (includes safety precautions) using an alcohol-fueled missile. (JM)

  6. Learning Humanoid Arm Gestures

    DTIC Science & Technology

    2005-01-01

    for a visual target with some accuracy ( Marjanovic , learning new gestures. Scassellati, and Williamson, 1996), this simple spring law system has some...coefficients of the reactions established in Marjanovic , M., Scassellati, B. and Williamson, M. 1996. meso. Other long-term metabolic changes could

  7. Estimation of critical behavior from the density of states in classical statistical models

    NASA Astrophysics Data System (ADS)

    Malakis, A.; Peratzakis, A.; Fytas, N. G.

    2004-12-01

    We present a simple and efficient approximation scheme which greatly facilitates the extension of Wang-Landau sampling (or similar techniques) in large systems for the estimation of critical behavior. The method, presented in an algorithmic approach, is based on a very simple idea, familiar in statistical mechanics from the notion of thermodynamic equivalence of ensembles and the central limit theorem. It is illustrated that we can predict with high accuracy the critical part of the energy space and by using this restricted part we can extend our simulations to larger systems and improve the accuracy of critical parameters. It is proposed that the extensions of the finite-size critical part of the energy space, determining the specific heat, satisfy a scaling law involving the thermal critical exponent. The method is applied successfully for the estimation of the scaling behavior of specific heat of both square and simple cubic Ising lattices. The proposed scaling law is verified by estimating the thermal critical exponent from the finite-size behavior of the critical part of the energy space. The density of states of the zero-field Ising model on these lattices is obtained via a multirange Wang-Landau sampling.

  8. The nature of the colloidal 'glass' transition.

    PubMed

    Dawson, Kenneth A; Lawlor, A; DeGregorio, Paolo; McCullagh, Gavin D; Zaccarelli, Emanuela; Foffi, Giuseppe; Tartaglia, Piero

    2003-01-01

    The dynamically arrested state of matter is discussed in the context of athermal systems, such as the hard sphere colloidal arrest. We believe that the singular dynamical behaviour near arrest expressed, for example, in how the diffusion constant vanishes may be 'universal', in a sense to be discussed in the paper. Based on this we argue the merits of studying the problem with simple lattice models. This, by analogy with the the critical point of the Ising model, should lead us to clarify the questions, and begin the program of establishing the degree of universality to be expected. We deal only with 'ideal' athermal dynamical arrest transitions, such as those found for hard sphere systems. However, it is argued that dynamically available volume (DAV) is the relevant order parameter of the transition, and that universal mechanisms may be well expressed in terms of DAV. For simple lattice models we give examples of simple laws that emerge near the dynamical arrest, emphasising the idea of a near-ideal gas of 'holes', interacting to give the power law diffusion constant scaling near the arrest. We also seek to open the discussion of the possibility of an underlying weak coupling theory of the dynamical arrest transition, based on DAV.

  9. The Law and Health Personnel; A Study of Minnesota Law Related to Selected Health Manpower Categories.

    ERIC Educational Resources Information Center

    American Rehabilitation Foundation, Minneapolis, Minn. Inst. for Interdisciplinary Studies.

    This report surveys Minnesota laws relating to the use of health manpower. It presents a summary of Minnesota licensure laws as they apply to categories of health personnel and paramedical personnel currently unrecognized by the law. An analysis is also made of malpractice decisional law to examine whether such laws prohibit or inhibit optimal…

  10. 17 CFR 160.17 - Relation to state laws.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Relation to state laws. 160.17... FINANCIAL INFORMATION UNDER TITLE V OF THE GRAMM-LEACH-BLILEY ACT Relation to Other Laws; Effective Date § 160.17 Relation to state laws. (a) In general. This part shall not be construed as superseding...

  11. 12 CFR 216.17 - Relation to State laws.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Relation to State laws. 216.17 Section 216.17... CONSUMER FINANCIAL INFORMATION (REGULATION P) Relation to Other Laws; Effective Date § 216.17 Relation to State laws. (a) In general. This part shall not be construed as superseding, altering, or affecting any...

  12. 50 CFR 640.3 - Relation to other laws.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Relation to other laws. 640.3 Section 640.3 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Provisions § 640.3 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600...

  13. 50 CFR 648.3 - Relation to other laws.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Relation to other laws. 648.3 Section 648.3 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705. (b) Nothing...

  14. 50 CFR 648.3 - Relation to other laws.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Relation to other laws. 648.3 Section 648.3 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705. (b) Nothing...

  15. 17 CFR 160.17 - Relation to state laws.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Relation to state laws. 160.17... OF CONSUMER FINANCIAL INFORMATION UNDER TITLE V OF THE GRAMM-LEACH-BLILEY ACT Relation to Other Laws; Effective Date § 160.17 Relation to state laws. (a) In general. This part shall not be construed as...

  16. 50 CFR 640.3 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Relation to other laws. 640.3 Section 640.3 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Provisions § 640.3 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600...

  17. 50 CFR 660.403 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Relation to other laws. 660.403 Section 660.403 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... § 660.403 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705...

  18. 12 CFR 332.17 - Relation to State laws.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Relation to State laws. 332.17 Section 332.17... PRIVACY OF CONSUMER FINANCIAL INFORMATION Relation to Other Laws; Effective Date § 332.17 Relation to State laws. (a) In general. This part shall not be construed as superseding, altering, or affecting any...

  19. 50 CFR 648.3 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Relation to other laws. 648.3 Section 648.3 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705. (b) Nothing...

  20. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    PubMed

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.

  1. 12 CFR 229.20 - Relation to state law.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Relation to state law. 229.20 Section 229.20... Availability Policies § 229.20 Relation to state law. (a) In general. Any provision of a law or regulation of...; and (2) Apply to all federally insured banks located within the state. No amendment to a state law or...

  2. Electricity, Relativity and Magnetism: A Unified Text

    NASA Astrophysics Data System (ADS)

    Craik, Derek J.

    2003-09-01

    Electricity, Relativity and Magnetism: A Unified Text presents the first complete and systematic derivation of the principles of magnetism and electromagnetism from Coulomb s law and the theory of special relativity alone. Most books on magnetism introduce the subject in terms of experimental observations, as if magnetism were distinct from, albeit associated with, electricity. The topic of relativity is often mentioned, but almost as an afterthought, rather than as a crucial element of the argument. In this new book from Dr Derek Craik, the important links between electricity and magnetism, via special relativity, are emphasized, leading the reader to a more meaningful and profound understanding of the subject. Electricity, Relativity and Magnetism: A Unified Text gives a simple and brief review of Einstein s special theory of relativity, emphasizing force transformations. An outline of electrostatics, Coulomb s law and its consequences, is also given and is shown to lead to the basis of magnetostatics. Time-dependent electromagnetic effects are introduced naturally via the transformation equations for fields and for potentials, and Maxwell s equations are systematically derived. Magnetic dipoles and magnetization are shown to arise on transforming electric dipoles and polarizations. The author next discusses the application of the theory to practical magnetic calculations, and finally goes on to introduce the quantum theory of magnetism. The concept of spin is introduced, leading to spin statics and magnetic ordering, and spin dynamics and resonances. An account of crystal field theory is included. All whose work and research involves the understanding of magnetic phenomena will find Electricity, Relativity and Magnetism: A Unified Text an invaluable resource which will enhance and deepen their understanding of the subject.

  3. Scaling properties of European research units

    PubMed Central

    Jamtveit, Bjørn; Jettestuen, Espen; Mathiesen, Joachim

    2009-01-01

    A quantitative characterization of the scale-dependent features of research units may provide important insight into how such units are organized and how they grow. The relative importance of top-down versus bottom-up controls on their growth may be revealed by their scaling properties. Here we show that the number of support staff in Scandinavian research units, ranging in size from 20 to 7,800 staff members, is related to the number of academic staff by a power law. The scaling exponent of ≈1.30 is broadly consistent with a simple hierarchical model of the university organization. Similar scaling behavior between small and large research units with a wide range of ambitions and strategies argues against top-down control of the growth. Top-down effects, and externally imposed effects from changing political environments, can be observed as fluctuations around the main trend. The observed scaling law implies that cost-benefit arguments for merging research institutions into larger and larger units may have limited validity unless the productivity per academic staff and/or the quality of the products are considerably higher in larger institutions. Despite the hierarchical structure of most large-scale research units in Europe, the network structures represented by the academic component of such units are strongly antihierarchical and suboptimal for efficient communication within individual units. PMID:19625626

  4. Rich structure in the correlation matrix spectra in non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.

    2017-01-01

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  5. What Gay-Lussac didn't tell us

    NASA Astrophysics Data System (ADS)

    Holbrow, C. H.; Amato, J. C.

    2011-01-01

    Gay-Lussac's 1801 experiments establishing the law of volumes for gases are brilliantly simple, and he described them with a level of detail that was new to physics writing. But he did not present his actual measurements or tell us how he analyzed them to conclude that between 0 to 100 °C, a volume of any gas will expand by about 37.5%. We review his experiments and conclude that he measured initial and final volumes at slightly different pressures. By using the gas laws and his apparatus diagrams, we corrected his data so that they correspond to constant pressure. His corrected results give ΔV/V=36.6%, the currently accepted value for nearly ideal gases. Aside from their intrinsic interest, our analyses can provide students intriguing applications of the gas laws and Pascal's law and motivate them to consider Pascal's paradox. We also note the influence of ballooning and of the French Revolution on Gay-Lussac.

  6. Rich structure in the correlation matrix spectra in non-equilibrium steady states.

    PubMed

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H

    2017-01-17

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  7. 50 CFR 635.3 - Relation to other laws.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Relation to other laws. 635.3 Section 635... ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES General § 635.3 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705 of this chapter and in...

  8. 50 CFR 635.3 - Relation to other laws.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Relation to other laws. 635.3 Section 635... ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES General § 635.3 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705 of this chapter and in...

  9. 50 CFR 635.3 - Relation to other laws.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Relation to other laws. 635.3 Section 635... ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES General § 635.3 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705 of this chapter and in...

  10. 50 CFR 635.3 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Relation to other laws. 635.3 Section 635... ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES General § 635.3 Relation to other laws. (a) The relation of this part to other laws is set forth in § 600.705 of this chapter and in...

  11. 31 CFR 510.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and regulations. 510.101 Section 510.101 Money and Finance: Treasury Regulations Relating to Money and... REGULATIONS Relation of This Part to Other Laws and Regulations § 510.101 Relation of this part to other laws... relieves the involved parties from complying with any other applicable laws or regulations. Note to § 510...

  12. 31 CFR 510.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and regulations. 510.101 Section 510.101 Money and Finance: Treasury Regulations Relating to Money and... REGULATIONS Relation of This Part to Other Laws and Regulations § 510.101 Relation of this part to other laws... relieves the involved parties from complying with any other applicable laws or regulations. Note to § 510...

  13. 31 CFR 510.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and regulations. 510.101 Section 510.101 Money and Finance: Treasury Regulations Relating to Money and... REGULATIONS Relation of This Part to Other Laws and Regulations § 510.101 Relation of this part to other laws... relieves the involved parties from complying with any other applicable laws or regulations. Note to § 510...

  14. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  15. 12 CFR 716.17 - Relation to state laws.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... if the protection such statute, regulation, order or interpretation affords any consumer is greater... CONSUMER FINANCIAL INFORMATION Relation to Other Laws; Effective Date § 716.17 Relation to state laws. (a... extent of the inconsistency. (b) Greater protection under state law. For purposes of this section, a...

  16. A Law-Related Education for Alaskans.

    ERIC Educational Resources Information Center

    Surgeon, Donald L.

    This paper reviews law-related education and suggests ways to implement this type of education in Alaska's secondary schools. Ten reasons for teaching law-related education are presented including the following: research demonstrates the effectiveness of such education; increases student interest in the law; helps students become effective…

  17. Suppressing supersymmetric flavor violations through quenched gaugino-flavor interactions

    NASA Astrophysics Data System (ADS)

    Wells, James D.; Zhao, Yue

    2017-06-01

    Realizing that couplings related by supersymmetry (SUSY) can be disentangled when SUSY is broken, it is suggested that unwanted flavor and C P -violating SUSY couplings may be suppressed via quenched gaugino-flavor interactions, which may be accomplished by power-law running of sfermion anomalous dimensions. A simple theoretical framework to accomplish this is exemplified, where a strongly coupled conformal field theory is achieved after SUSY is softly broken. The defeated constraints are tallied. One key implication of the scenario is the expectation of enhanced top, bottom and tau production at the LHC, accompanied by large missing energy. Also, direct detection signals of dark matter may be more challenging to find than in conventional SUSY scenarios.

  18. Rosenzweig instability in a thin layer of a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  19. Scaling laws for AC gas breakdown and implications for universality

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2017-10-01

    The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.

  20. Models of convection-driven tectonic plates - A comparison of methods and results

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Gable, Carl W.; Weinstein, Stuart A.

    1992-01-01

    Recent numerical studies of convection in the earth's mantle have included various features of plate tectonics. This paper describes three methods of modeling plates: through material properties, through force balance, and through a thin power-law sheet approximation. The results obtained are compared using each method on a series of simple calculations. From these results, scaling relations between the different parameterizations are developed. While each method produces different degrees of deformation within the surface plate, the surface heat flux and average plate velocity agree to within a few percent. The main results are not dependent upon the plate modeling method and herefore are representative of the physical system modeled.

  1. Models for the hotspot distribution

    NASA Technical Reports Server (NTRS)

    Jurdy, Donna M.; Stefanick, Michael

    1990-01-01

    Published hotspot catalogs all show a hemispheric concentration beyond what can be expected by chance. Cumulative distributions about the center of concentration are described by a power law with a fractal dimension closer to 1 than 2. Random sets of the corresponding sizes do not show this effect. A simple shift of the random sets away from a point would produce distributions similar to those of hotspot sets. The possible relation of the hotspots to the locations of ridges and subduction zones is tested using large sets of randomly-generated points to estimate areas within given distances of the plate boundaries. The probability of finding the observed number of hotspots within 10 deg of the ridges is about what is expected.

  2. An Introduction to the Gas Phase

    NASA Astrophysics Data System (ADS)

    Vallance, Claire

    2017-11-01

    'An Introduction to the Gas Phase' is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behaviour of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.

  3. On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.

  4. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  5. Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

    DTIC Science & Technology

    2009-05-01

    free Internet Myth The story recounted below of the scale-free nature of the Internet seems convincing, sound, and al- most too good to be true ...models. In fact, much of the initial excitement in the nascent field of network science can be attributed to an ear- ly and appealingly simple class...this new class of networks, com- monly referred to as scale-free networks. The term scale-free derives from the simple observation that power-law node

  6. A Diffraction Method of Study of Thermal Quasiorder in a Finite Two-Dimensional Harmonic Lattice

    NASA Astrophysics Data System (ADS)

    Aranda, P.; Croset, B.

    1995-09-01

    Due to the non-existence of long-range order, the diffraction peaks of 2D-solids are considered to have a power-law shape g_p^{η-2}. Taking into account the finite size effects and calculating the powder average, we show that this power-law behaviour appears only for high q_p and then for very small intensities. It is therefore quite difficult and hazardous to characterise the quasiorder by using this asymptotic behaviour. Although the shape of the central part of the peak cannot be used to characterise the quasiorder, we show that, for a fairly good resolution, it is possible to determine η using this central part. This determination can be done irrespectively with the other details of the system by comparing the peak width to its value at low temperature, i.e., at low value of η. By using two diffraction peaks, we propose the simple relation: η(Q_{B_1})/Q_{B_1}^2=η(Q_{B_2})/Q_{B_2}^2 as a check of the two-dimensional quasiorder.

  7. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    PubMed

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  8. Turbulent FEL theory and experiment on ELSA at Bruyeres-le-Chatel

    NASA Astrophysics Data System (ADS)

    Chaix, P.; Guimbal, P.

    1995-04-01

    We consider the asymptotic behaviour of long pulse high current Compton free electron laser oscillators. It is known that if the current is high enough and the cavity losses low enough, sideband instabilities and non-linear mode couplings eventually lead to a strong broadening of the radiated spectrum, and to a strong efficiency enhancement. In this “post-sideband” regime, the electron dynamics along the wiggler is intrinsically stochastic, and the efficiency is due to chaotic diffusion of the electrons toward lower energies, rather than to standard synchrotron oscillations. This results in new scaling laws for saturation properties. We have obtained simple analytical estimates for the extracted efficiency and for the spectral width, in very good agreement with numerical simulations. The infrared ELSA free electron laser at Bruyères-le-Châtel has been used to obtain experimental evidence for these new scaling laws. In particular it has been verified that in the post-sideband regime, the ratio of the extracted efficiency to the relative spectral width is independent of the operating parameters, and close to 3/3 as predicted by theory.

  9. Snowboard jumping, Newton’s second law and the force on landing

    NASA Astrophysics Data System (ADS)

    O'Shea, Michael J.

    2004-07-01

    An application of Newton’s second law to a snowboarder dropping off a vertical ledge shows that the average normal force during landing (force exerted by the ground on the snowboarder) is determined by four factors. It is shown that the flexing of the legs, the softness of the snow, the angle of the landing surface and the forward motion of the snowboarder can contribute significantly to reducing the force on landing. A judicious choice of the geometry of the jump leads to a force on landing that is equal to the force that the snowboarder would feel if they were standing at the landing point independent of the height from which the snowboarder jumps. Thus we are able to explain with a relatively simple model why a snowboarder may jump from rather high ledges and land comfortably. The physics here is also applicable to jumps in other sports including skiing and mountain biking. The importance of knowing the limits of models is discussed and some of the limits of this model are pointed out.

  10. Using "StorAge Selection" functions and high resolution isotope data to unravel travel time distributions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe; Botter, Gianluca; Rinaldo, Andrea

    2017-04-01

    We use high resolution tracer data from the Bruntland Burn catchment (UK) to test theoretical approaches that integrate catchment-scale flow and transport processes in a unified framework centered on selective age sampling by streamflow and evapotranspiration fluxes. Hydrologic transport is here described through StorAge Selection (SAS) functions, parametrized as simple power laws. By representing the way in which catchment storage generates outflows composed by water of different ages, the main mechanism regulating the tracer composition of runoff is clearly identified. The calibrated numerical model provides simulations that convincingly reproduce complex measured signals of daily deuterium content in stream waters during wet and dry periods. The results for the catchment under consideration are consistent with other recent studies indicating a tendency for natural catchments to preferentially release younger available water. The model allows estimating transient water age and its related uncertainty, as well as the total catchment storage. This study shows that power-law SAS functions prove a powerful tool to explain catchment-scale transport processes that also has potential in less intensively monitored sites.

  11. Droplet formation and scaling in dense suspensions

    PubMed Central

    Miskin, Marc Z.; Jaeger, Heinrich M.

    2012-01-01

    When a dense suspension is squeezed from a nozzle, droplet detachment can occur similar to that of pure liquids. While in pure liquids the process of droplet detachment is well characterized through self-similar profiles and known scaling laws, we show here the simple presence of particles causes suspensions to break up in a new fashion. Using high-speed imaging, we find that detachment of a suspension drop is described by a power law; specifically we find the neck minimum radius, rm, scales like near breakup at time τ = 0. We demonstrate data collapse in a variety of particle/liquid combinations, packing fractions, solvent viscosities, and initial conditions. We argue that this scaling is a consequence of particles deforming the neck surface, thereby creating a pressure that is balanced by inertia, and show how it emerges from topological constraints that relate particle configurations with macroscopic Gaussian curvature. This new type of scaling, uniquely enforced by geometry and regulated by the particles, displays memory of its initial conditions, fails to be self-similar, and has implications for the pressure given at generic suspension interfaces. PMID:22392979

  12. Extractive photometric determination of gold(III) with 1-(2',4',6'-trichlorophenyl)-4,4,6-trimethyl-(1H,4H)-2-pyrimidinethiol in presence of tri-iso-octylamine.

    PubMed

    Amuse, M A; Kuchekar, S R; Mote, N A; Chavan, M B

    1985-10-01

    Tervalent gold was determined spectrophotometrically as its anionic 1:4 gold-thiol complex extracted into chloroform from aqueous acidic medium (1.5M sulphuric acid) in the presence of tri-iso-octylamine. The complex exhibits maximum absorption at 480 nm (molar absorptivity 4.60 x 10(3) l.mole(-1).cm(-1)) and Beer's law is obeyed in the concentration range 5-50 microg of gold(III) per ml. The relative standard deviation and relative error, calculated from ten determinations of solutions containing 15 microg of gold(III) per ml were 1.0% and 0.8%. The method is simple, selective and reproducible. It permits separation of gold(III) from associated elements and its determination in synthetic mixtures.

  13. Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire

    NASA Astrophysics Data System (ADS)

    Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai

    2018-02-01

    According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.

  14. A tale of four surveys:What have we learned about the variable sky?

    NASA Astrophysics Data System (ADS)

    Howell, S. B.

    2008-03-01

    Four tales concerning a set of photometric imaging surveys are spun. The reader is lead through a brief description of each survey and major results are presented. The four surveys are summarized in a few simple "rules": 1) The fraction of point sources that are variable with respect to those that are found to be constant, increases as a power law as the photometric precision of the survey improves, and 2) This fact can be simply formulated as a power law function granting the user a predictive power.

  15. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    NASA Astrophysics Data System (ADS)

    Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco

    2015-06-01

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  16. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakalis, Evangelos, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  17. Receptor theory and biological constraints on value.

    PubMed

    Berns, Gregory S; Capra, C Monica; Noussair, Charles

    2007-05-01

    Modern economic theories of value derive from expected utility theory. Behavioral evidence points strongly toward departures from linear value weighting, which has given rise to alternative formulations that include prospect theory and rank-dependent utility theory. Many of the nonlinear forms for value assumed by these theories can be derived from the assumption that value is signaled by neurotransmitters in the brain, which obey simple laws of molecular movement. From the laws of mass action and receptor occupancy, we show how behaviorally observed forms of nonlinear value functions can arise.

  18. Crossover of two power laws in the anomalous diffusion of a two lipid membrane.

    PubMed

    Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  19. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping.

    PubMed

    Salje, Ekhard K H; Planes, Antoni; Vives, Eduard

    2017-10-01

    Crackling noise can be initiated by competing or coexisting mechanisms. These mechanisms can combine to generate an approximate scale invariant distribution that contains two or more contributions. The overall distribution function can be analyzed, to a good approximation, using maximum-likelihood methods and assuming that it follows a power law although with nonuniversal exponents depending on a varying lower cutoff. We propose that such distributions are rather common and originate from a simple superposition of crackling noise distributions or exponential damping.

  20. Flow of sand and a variable mass Atwood machine

    NASA Astrophysics Data System (ADS)

    Flores, José; Solovey, Guillermo; Gil, Salvador

    2003-07-01

    We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.

  1. 29 CFR 525.20 - Relation to other laws.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Relation to other laws. 525.20 Section 525.20 Labor... OF WORKERS WITH DISABILITIES UNDER SPECIAL CERTIFICATES § 525.20 Relation to other laws. No provision... noncompliance with any other Federal or State law or municipal ordinance establishing higher standards. ...

  2. 29 CFR 525.20 - Relation to other laws.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Relation to other laws. 525.20 Section 525.20 Labor... OF WORKERS WITH DISABILITIES UNDER SPECIAL CERTIFICATES § 525.20 Relation to other laws. No provision... noncompliance with any other Federal or State law or municipal ordinance establishing higher standards. ...

  3. A Simple, Efficient and Effective Modeling Approach to Determine Baseflow Based on Concentration-Discharge Relationships

    NASA Astrophysics Data System (ADS)

    Liu, F.; Miller, M. P.; Conklin, M. H.

    2017-12-01

    Concentration-discharge relationships in streamflow are a precursor for diagnosing endmember mixing. With a strong power-law relationship between concentration and discharge, previous studies have shown that conservative solute concentrations in streamflow can be explained by mixing of two endmembers, i.e., quick runoff (QR) and baseflow (BF). This current study showed that the unique concentration-discharge power-law curve provides two characteristic values of solute concentrations at extremely high and low flows and these envelope values can be used to aid two-endmember mixing models. In an example conducted in the Upper Colorado River Basin (UCRB), daily specific conductance (SC) and discharge were strongly correlated by a power-law function on both rising and falling limbs from 1983 to 2015 (R2 > 0.9 for all years). The high envelope SC value in each year was directly used to characterize baseflow for that year, while the low envelope SC value was adjusted to represent quick runoff, a collective term for surface runoff and responsive shallow subsurface runoff. The peak flow was considered to be dominated by QR with only a small portion of BF. The ratio of minimum to maximum flows was used to calibrate the low envelope SC value. This ratio represents the least fraction of baseflow to total flow at the peak flow, as baseflow increases with total flow based on published studies. The SC value at the peak flow was considered to be a mixture of QR and BF with the minimum/maximum flow ratio as baseflow fraction and thus SC value in QR was determined with a mass balance equation. The baseflow fractions determined in two-endmember mixing models by this characterization of QR from 1983 to 2011 match those by Miller et al. [2014] very well (R2 = 0.96, slope = 1.07, intercept = -0.13). Baseflow fractions were slightly under-estimated by this approach mainly due to the fact that responsive shallow subsurface runoff was considered to be part of quick flow in this study rather than part of baseflow. This approach provides a simple, efficient and effective modeling tool for estimating baseflow without requiring any samples from endmembers in catchments with a strong power-law relation.

  4. The Best Defense Is a Good Offense: Conducting Offensive Cyberoperations and the Law of Armed Conflict

    DTIC Science & Technology

    2014-02-13

    Bradley and Goldsmith note that “despite its relatively amorphous nature, CIL [customary international law] has essentially the same binding force under...and Jack L. Goldsmith , Customary International Law as Federal Common Law: A Critique of the Modern Position, Harvard Law Review vol. 110, no. 4: 815...Law Institute, 1989), §102(2). 28 Bradley and Goldsmith , 818, citing Restatement of the Law Third, The Foreign Relations Law of the United States

  5. The scaling of complex craters

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.

  6. The dot{M}-M_* relation of pre-main-sequence stars: a consequence of X-ray driven disc evolution

    NASA Astrophysics Data System (ADS)

    Ercolano, B.; Mayr, D.; Owen, J. E.; Rosotti, G.; Manara, C. F.

    2014-03-01

    We analyse current measurements of accretion rates on to pre-main-sequence stars as a function of stellar mass, and conclude that the steep dependence of accretion rates on stellar mass is real and not driven by selection/detection threshold, as has been previously feared. These conclusions are reached by means of statistical tests including a survival analysis which can account for upper limits. The power-law slope of the dot{M}-M_* relation is found to be in the range of 1.6-1.9 for young stars with masses lower than 1 M⊙. The measured slopes and distributions can be easily reproduced by means of a simple disc model which includes viscous accretion and X-ray photoevaporation. We conclude that the dot{M}-M_* relation in pre-main-sequence stars bears the signature of disc dispersal by X-ray photoevaporation, suggesting that the relation is a straightforward consequence of disc physics rather than an imprint of initial conditions.

  7. 12 CFR 557.11 - To what extent does Federal law preempt deposit-related State laws?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true To what extent does Federal law preempt deposit... Federal law preempt deposit-related State laws? (a) Under sections 4(a), 5(a), and 5(b) of the HOLA, 12 U... laws affecting the operations of federal savings associations when appropriate to: (1) Facilitate the...

  8. 12 CFR 557.11 - To what extent does Federal law preempt deposit-related State laws?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true To what extent does Federal law preempt deposit... Federal law preempt deposit-related State laws? (a) Under sections 4(a), 5(a), and 5(b) of the HOLA, 12 U... laws affecting the operations of federal savings associations when appropriate to: (1) Facilitate the...

  9. 12 CFR 557.11 - To what extent does Federal law preempt deposit-related State laws?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false To what extent does Federal law preempt deposit... Federal law preempt deposit-related State laws? (a) Under sections 4(a), 5(a), and 5(b) of the HOLA, 12 U... laws affecting the operations of federal savings associations when appropriate to: (1) Facilitate the...

  10. 12 CFR 557.11 - To what extent does Federal law preempt deposit-related State laws?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false To what extent does Federal law preempt deposit... Federal law preempt deposit-related State laws? (a) Under sections 4(a), 5(a), and 5(b) of the HOLA, 12 U... laws affecting the operations of federal savings associations when appropriate to: (1) Facilitate the...

  11. 12 CFR 557.11 - To what extent does Federal law preempt deposit-related State laws?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false To what extent does Federal law preempt deposit... Federal law preempt deposit-related State laws? (a) Under sections 4(a), 5(a), and 5(b) of the HOLA, 12 U... laws affecting the operations of federal savings associations when appropriate to: (1) Facilitate the...

  12. How a life-like system emerges from a simplistic particle motion law.

    PubMed

    Schmickl, Thomas; Stefanec, Martin; Crailsheim, Karl

    2016-11-30

    Self-structuring patterns can be observed all over the universe, from galaxies to molecules to living matter, yet their emergence is waiting for full understanding. We discovered a simple motion law for moving and interacting self-propelled particles leading to a self-structuring, self-reproducing and self-sustaining life-like system. The patterns emerging within this system resemble patterns found in living organisms. The emergent cells we found show a distinct life cycle and even create their own ecosystem from scratch. These structures grow and reproduce on their own, show self-driven behavior and interact with each other. Here we analyze the macroscopic properties of the emerging ecology, as well as the microscopic properties of the mechanism that leads to it. Basic properties of the emerging structures (size distributions, longevity) are analyzed as well as their resilience against sensor or actuation noise. Finally, we explore parameter space for potential other candidates of life. The generality and simplicity of the motion law provokes the thought that one fundamental rule, described by one simple equation yields various structures in nature: it may work on different time- and size scales, ranging from the self-structuring universe, to emergence of living beings, down to the emergent subatomic formation of matter.

  13. 50 CFR 665.2 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Relation to other laws. 665.2 Section 665.2 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... other laws. NMFS recognizes that any state law pertaining to vessels registered under the laws of that...

  14. 50 CFR 660.2 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Relation to other laws. 660.2 Section 660.2 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... other laws. (a) NMFS recognizes that any state law pertaining to vessels registered under the laws of...

  15. Further applications of Archimedes' principle in the correction of asymmetrical breasts.

    PubMed

    Schultz, R C; Dolezal, R F; Nolan, J

    1986-02-01

    Archimedes' law of buoyancy has been extended to the preoperative bedside assessment of volume differences between breasts, whatever their cause. The simple method described has proved to be a helpful aid in surgical procedures for the correction of breast asymmetry.

  16. Variability and Limits of US State Laws Regulating Workplace Wellness Programs.

    PubMed

    Pomeranz, Jennifer L; Garcia, Andrea M; Vesprey, Randy; Davey, Adam

    2016-06-01

    We examined variability in state laws related to workplace wellness programs for public and private employers. We conducted legal research using LexisNexis and Westlaw to create a master list of US state laws that existed in 2014 dedicated to workplace wellness programs. The master list was then divided into laws focusing on public employers and private employers. We created 2 codebooks to describe the variables used to examine the laws. Coders used LawAtlas(SM) Workbench to code the laws related to workplace wellness programs. Thirty-two states and the District of Columbia had laws related to workplace wellness programs in 2014. Sixteen states and the District of Columbia had laws dedicated to public employers, and 16 states had laws dedicated to private employers. Nine states and the District of Columbia had laws that did not specify employer type. State laws varied greatly in their methods of encouraging or shaping wellness program requirements. Few states have comprehensive requirements or incentives to support evidence-based workplace wellness programs.

  17. 12 CFR 229.59 - Relation to other law.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Relation to other law. 229.59 Section 229.59 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM... Relation to other law. The Check 21 Act and this subpart supersede any provision of federal or state law...

  18. 29 CFR 570.142 - Relation to other laws.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Relation to other laws. 570.142 Section 570.142 Labor... Provisions of the Fair Labor Standards Act of 1938, as Amended Enforcement § 570.142 Relation to other laws... shall justify noncompliance with any Federal or State law or municipal ordinance establishing a higher...

  19. 29 CFR 531.26 - Relation to other laws.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Relation to other laws. 531.26 Section 531.26 Labor... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Interpretations § 531.26 Relation to other laws... Administrator should be taken to override or nullify the provisions of these laws. How Payments May Be Made ...

  20. 50 CFR 300.92 - Relation to other laws.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Relation to other laws. 300.92 Section... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.92 Relation to other laws. (a) Insofar as they are consistent with this part, any other applicable Federal law or regulation, or any applicable...

  1. 29 CFR 570.142 - Relation to other laws.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Relation to other laws. 570.142 Section 570.142 Labor... Provisions of the Fair Labor Standards Act of 1938, as Amended Enforcement § 570.142 Relation to other laws... shall justify noncompliance with any Federal or State law or municipal ordinance establishing a higher...

  2. 50 CFR 19.3 - Relation to other laws.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Relation to other laws. 19.3 Section 19.3... PLANTS (CONTINUED) AIRBORNE HUNTING Introduction § 19.3 Relation to other laws. The exemptions to general... subpart B of this part) do not supersede, or authorize the violation of, other laws designed for the...

  3. 29 CFR 531.26 - Relation to other laws.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Relation to other laws. 531.26 Section 531.26 Labor... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Interpretations § 531.26 Relation to other laws... Administrator should be taken to override or nullify the provisions of these laws. How Payments May Be Made ...

  4. 50 CFR 19.3 - Relation to other laws.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Relation to other laws. 19.3 Section 19.3... PLANTS (CONTINUED) AIRBORNE HUNTING Introduction § 19.3 Relation to other laws. The exemptions to general... subpart B of this part) do not supersede, or authorize the violation of, other laws designed for the...

  5. 33 CFR 320.3 - Related laws.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Related laws. 320.3 Section 320.3... REGULATORY POLICIES § 320.3 Related laws. (a) Section 401 of the Clean Water Act (33 U.S.C. 1341) requires... fullest extent possible: (1) The policies, regulations, and public laws of the United States shall be...

  6. 50 CFR 654.3 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Relation to other laws. 654.3 Section 654.3 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... to other laws. (a) The relation of this part to other laws is set forth in § 600.705 of this chapter...

  7. 21 CFR Appendix A to Subpart A of... - List of Applicable Laws, Regulations, and Administrative Provisions

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... down by law, regulation, or administrative action relating to proprietary medicinal products as... provisions laid down by law, regulation or administrative action relating to proprietary medicinal products... approximation of the laws of the Member States relating to veterinary medicinal products, as widened and amended...

  8. The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue of ancestral vascular plants.

    PubMed

    McCulloh, Katherine A; Sperry, John S

    2005-06-01

    Previous work has shown that the xylem of seed plants follows Murray's law when conduits do not provide structural support to the plant. Here, compliance with Murray's law was tested in the stem photosynthesizer Psilotum nudum, a seedless vascular plant. Psilotum nudum was chosen because the central stele does not provide structural support, which means that Murray's law is applicable, and because its simple shoot structure resembles the earliest vascular plants. Murray's law predicts that the sum of the conduit radii cubed (Σr(3)) should decrease in direct proportion with the volume flow rate (Q) to maximize the hydraulic conductance per unit vascular investment. Agreement with Murray's law was assessed by estimating the transpiration rate distal to a cross-section, which should determine Q under steady state conditions, and comparing that with the Σr(3) of that cross-section. As predicted, regressions between the Σr(3) of the cross-section and Q resulted in a linear relationship with a y-intercept that was not different from zero. Two more rigorous statistical tests were also unable to reject Murray's law. Psilotum nudum plants also increased their conductance per investment by having more conduits distally than proximally, which is more efficient hydraulically than equal or declining conduit numbers distally.

  9. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  10. Gay-Lussac Did Better Than He Knew

    NASA Astrophysics Data System (ADS)

    Holbrow, Charles H.; Amato, Joseph C.

    2011-04-01

    In his 1802 paper Joseph Louis Gay-Lussac reported the first definitive experimental evidence that many different gases exhibit the same fractional expansion of volume when heated. This property is known as Charles Law, Amontons Law, Dalton's Law, or the law of volumes. Gay-Lussac concluded from his experiments that many gases expand by 37.5% when heated from 0 ,oC to 100,oC. Although his result is within 2.5% of the modern value of 36.6% = 100/273.15, the discrepancy is surprising because his direct and simple experimental method allowed him to measure changes in volume with a precision of a few tenths of a percent. An examination of his original paper suggests, however, that he did not take into account that his measurements of the initial and final volumes of gas were made at slightly different pressures. With reasonable assumptions about the diagrams in his paper, one can use Pascal's law and the ideal gas law to correct the measured volumes so that they correspond to the same initial and final pressure. With this correction the results imply δV/V = .366. Gay-Lussac did better than he knew.

  11. A Missing Puzzle Piece in Murray's Law: the Optimal Angle of Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Ruo-Qian; Taylor, Katherine; Winter, Amos G.; Global Engineering; Research Lab Team

    2014-11-01

    Branching flows are common in biological systems, such as the circulatory and respiratory systems of animals. The optimal radii of parent and daughter branches can be explained with Murray's law, which dictates that the sum of metabolic and pumping costs is minimized. Murray's Law can be used to determine the diameter of cascading channels but misses an important parameter: the angles of the branches. Past hydraulic studies have investigated the angle effect, but have not focused on whether this geometry follows Murray's Law; while a simple network optimization is able to show that at low Reynolds numbers a branch with a parent channel connecting to n equally distant channels obeying Murray's Law has a minimum total head loss with a branching angle θ, such that cos θ =n-2/3 , but it's not valid for high Reynolds number flows, which may experience separation and turbulence at the branches. The present study is focused on determining the optimal branch angle that complies with Murray's Law for moderate Reynolds numbers. Computational studies using Open FOAM and experiments using 3D printed branched channels will be presented. These results will be used to quantify the effect of Reynolds number on optimal branch geometry.

  12. Birth and death of protein domains: A simple model of evolution explains power law behavior

    PubMed Central

    Karev, Georgy P; Wolf, Yuri I; Rzhetsky, Andrey Y; Berezovskaya, Faina S; Koonin, Eugene V

    2002-01-01

    Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i) domain birth (duplication with divergence), ii) death (inactivation and/or deletion), and iii) innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer). This formalism can be described as a birth, death and innovation model (BDIM). The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational models, are considered in details and the distributions of the equilibrium frequencies of domain families of different size are determined for each case. We apply the BDIM formalism to the analysis of the domain family size distributions in prokaryotic and eukaryotic proteomes and show an excellent fit between these empirical data and a particular form of the model, the second-order balanced linear BDIM. Calculation of the parameters of these models suggests surprisingly high innovation rates, comparable to the total domain birth (duplication) and elimination rates, particularly for prokaryotic genomes. Conclusions We show that a straightforward model of genome evolution, which does not explicitly include selection, is sufficient to explain the observed distributions of domain family sizes, in which power laws appear as asymptotic. However, for the model to be compatible with the data, there has to be a precise balance between domain birth, death and innovation rates, and this is likely to be maintained by selection. The developed approach is oriented at a mathematical description of evolution of domain composition of proteomes, but a simple reformulation could be applied to models of other evolving networks with preferential attachment. PMID:12379152

  13. Birth and death of protein domains: a simple model of evolution explains power law behavior.

    PubMed

    Karev, Georgy P; Wolf, Yuri I; Rzhetsky, Andrey Y; Berezovskaya, Faina S; Koonin, Eugene V

    2002-10-14

    Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i) domain birth (duplication with divergence), ii) death (inactivation and/or deletion), and iii) innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer). This formalism can be described as a birth, death and innovation model (BDIM). The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational models, are considered in details and the distributions of the equilibrium frequencies of domain families of different size are determined for each case. We apply the BDIM formalism to the analysis of the domain family size distributions in prokaryotic and eukaryotic proteomes and show an excellent fit between these empirical data and a particular form of the model, the second-order balanced linear BDIM. Calculation of the parameters of these models suggests surprisingly high innovation rates, comparable to the total domain birth (duplication) and elimination rates, particularly for prokaryotic genomes. We show that a straightforward model of genome evolution, which does not explicitly include selection, is sufficient to explain the observed distributions of domain family sizes, in which power laws appear as asymptotic. However, for the model to be compatible with the data, there has to be a precise balance between domain birth, death and innovation rates, and this is likely to be maintained by selection. The developed approach is oriented at a mathematical description of evolution of domain composition of proteomes, but a simple reformulation could be applied to models of other evolving networks with preferential attachment.

  14. Cosmology and astrophysics from relaxed galaxy clusters - V. Consistency with cold dark matter structure formation

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-10-01

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration-mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ˜50 kpc-1 Mpc), and test for departures from the simple Navarro-Frenk-White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.

  15. Cosmology and astrophysics from relaxed galaxy clusters – V. Consistency with cold dark matter structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κ m = –0.16 ± 0.07, in agreement with CDMmore » predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κ ζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σ β = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σ α = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less

  16. Cosmology and astrophysics from relaxed galaxy clusters – V. Consistency with cold dark matter structure formation

    DOE PAGES

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-07-15

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κ m = –0.16 ± 0.07, in agreement with CDMmore » predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κ ζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σ β = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σ α = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less

  17. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  18. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment.

    PubMed

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang

    2013-09-01

    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  19. Simple Harmonics Motion experiment based on LabVIEW interface for Arduino

    NASA Astrophysics Data System (ADS)

    Tong-on, Anusorn; Saphet, Parinya; Thepnurat, Meechai

    2017-09-01

    In this work, we developed an affordable modern innovative physics lab apparatus. The ultrasonic sensor is used to measure the position of a mass attached on a spring as a function of time. The data acquisition system and control device were developed based on LabVIEW interface for Arduino UNO R3. The experiment was designed to explain wave propagation which is modeled by simple harmonic motion. The simple harmonic system (mass and spring) was observed and the motion can be realized using curve fitting to the wave equation in Mathematica. We found that the spring constants provided by Hooke’s law and the wave equation fit are 9.9402 and 9.1706 N/m, respectively.

  20. The Promise of Law-Related Education as Delinquency Prevention. Technical Assistance Bulletin.

    ERIC Educational Resources Information Center

    Parrini, Michelle, Ed.

    According to the Law Related Education Act of 1978, Law-Related Education (LRE) can be defined as "education to equip nonlawyers with knowledge and skills pertaining to the law, the legal process, the legal system, and the fundamental principles and values on which these are based." LRE teaches essential concepts of democracy, including…

Top