Sample records for simple low-pressure loading

  1. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  2. A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.

    2013-03-01

    We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.

  3. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  4. Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Houlden, Heather P.

    2014-01-01

    Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.

  5. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.

    PubMed

    Hwang, David; Gabai, Adam S; Yu, Miao; Yew, Alvin G; Hsieh, Adam H

    2012-01-01

    Solid-fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5 MPa Exertion load resulted in 537.2 kPa IDP for low magnitude Prestress compared with 373.7 kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.

  6. The low-cost microwave plasma sources for science and industry applications

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. N.; Aleshin, S. N.; Ivanov, I. A.; Tikhonov, A. V.

    2017-11-01

    Microwave plasma torches proposed in the world market are built according to a scheme that can be called classical: power supply - magnetron head - microwave isolator with water load - reflected power meter - matching device - actual plasma torch - sliding short circuit. The total cost of devices from this list with a microwave generator of 3 kW in the performance, for example, of SAIREM (France), is about 17,000 €. We have changed the classical scheme of the microwave plasmathrone and optimised design of the waveguide channel. As a result, we can supply simple and reliable sources of microwave plasma (complete with our low-budget microwave generator up to 3 kW and a simple plasmathrone of atmospheric pressure) at a price from 3,000 €.

  7. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  8. Effects of static fingertip loading on carpal tunnel pressure

    NASA Technical Reports Server (NTRS)

    Rempel, D.; Keir, P. J.; Smutz, W. P.; Hargens, A.

    1997-01-01

    The purpose of this study was to explore the relationship between carpal tunnel pressure and fingertip force during a simple pressing task. Carpal tunnel pressure was measured in 15 healthy volunteers by means of a saline-filled catheter inserted percutaneously into the carpal tunnel of the nondominant hand. The subjects pressed on a load cell with the tip of the index finger and with 0, 6, 9, and 12 N of force. The task was repeated in 10 wrist postures: neutral; 10 and 20 degrees of ulnar deviation; 10 degrees of radial deviation; and 15, 30, and 45 degrees of both flexion and extension. Fingertip loading significantly increased carpal tunnel pressure for all wrist angles (p = 0.0001). Post hoc analyses identified significant increase (p < 0.05) in carpal tunnel pressure between unloaded (0 N) and all loaded conditions, as well as between the 6 and 12 N load conditions. This study demonstrates that the process whereby fingertip loading elevates carpal tunnel pressure is independent of wrist posture and that relatively small fingertip loads have a large effect on carpal tunnel pressure. It also reveals the response characteristics of carpal tunnel pressure to fingertip loading, which is one step in understanding the relationship between sustained grip and pinch activities and the aggravation or development of median neuropathy at the wrist.

  9. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range.

    PubMed

    Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying

    2018-05-30

    Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study.

    PubMed

    Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N

    2006-12-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.

  11. CFD study of a simple orifice pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  12. Failure strength of the bovine caudal disc under internal hydrostatic pressure.

    PubMed

    Schechtman, Helio; Robertson, Peter A; Broom, Neil D

    2006-01-01

    The structure of the disc is both complex and inhomogeneous, and it functions as a successful load-bearing organ by virtue of the integration of its various structural regions. These same features also render it impossible to assess the failure strength of the disc from isolated tissue samples, which at best can only yield material properties. This study investigated the intrinsic failure strength of the intact bovine caudal disc under a simple mode of internal hydrostatic pressure. Using a hydraulic actuator, coloured hydrogel was injected under monitored pressure into the nucleus through a hollow screw insert which passed longitudinally through one of the attached vertebrae. Failure did not involve vertebra/endplate structures. Rather, failure of the disc annulus was indicated by the simultaneous manifestation of a sudden loss of gel pressure, a flood of gel colouration appearing in the outer annulus and audible fibrous tearing. A mean hydrostatic failure pressure of 18+/-3 MPa was observed which was approximated as a thick-wall hoop stress of 45+/-7 MPa. The experiment provides a measurement of the intrinsic strength of the disc using a method of internal hydrostatic loading which avoids any disruption of the complex architecture of the annular wall. Although the disc in vivo is subjected to a much more complex pattern of loading than is achieved using simple hydrostatic pressurization, this latter mode provides a useful tool for investigating alterations in intrinsic disc strength associated with prior loading history or degeneration.

  13. Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip.

    PubMed

    Gai, Hongwei; Yu, Linfen; Dai, Zhongpeng; Ma, Yinfa; Lin, Bingcheng

    2004-06-01

    A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.

  14. Characterizing G-Loading, Swirl Direction, and Rayleigh Losses in an Ultra Compact Combustor

    DTIC Science & Technology

    2013-07-01

    temperature, pressure, and emission measurements, and liquid fuel and Jet Cat control. The code layout and functionality was simple in comparison to...84 3.6.4. Cavity Air Jet Diameter Influence on g-Loading...21 Figure 15. Cavity air injection jet diameter relationship to g-loading and tangential velocity [4] 22 Figure

  15. Experimental study of dynamic effective stress coefficient for ultrasonic velocities of Bakken cores

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zoback, M. D.

    2016-12-01

    We have performed a series of exhaustive experiments to measure the effective stress coefficient (α) of the tight cores from the Bakken shale oil play. Five distinct, bedding-normal cores from a vertical well were tested, covering the sequences of Lodgepole, Middle Bakken, and Three Forks. The scope of this laboratory study is two-fold: (1) to obtain the dynamic effective stress coefficient for ultrasonic velocities; (2) to characterize the poromechanical properties in relation to rock's mineral composition and microstructure. The experiments were carried out as follows: Argon-saturated specimen (1-inch length, 1-inch diameter) was subjected to hydrostatic confining pressure under drained conditions. Pore pressure was regulated as Argon was injected into both ends of the specimen. We drilled multiple non-through-going boreholes (1-mm diameter) in the specimen to facilitate pore pressure equilibrium, without compromising its integrity. The specimen was put through a loading path to experience confining pressure and pore pressure up to 70 and 60 MPa, respectively. P- and S- wave velocities were measured and used to calculate the rock's dynamic effective stress coefficient. Results of all five cores unanimously show that the dynamic a is a function of both confining and pore pressures, regardless of the wave type and loading path. When the simple effective stress is low, α is close to unity; however, α consistently increases as the simple effective stress rises and can reach as much as 3 when the latter reaches 60 MPa. This trend is rather surprising as it is diametrically the opposite of what was observed for the static α. A possible explanation is that high-frequency wave-induced pore pressure increment may have not remained equilibrated throughout the pore space, especially in very thin cracks, according to the squirt model. This phenomenon can be enhanced when the bulk modulus of pore fluid (gas typically considered to be `soft' and `non-viscous') increases with pore pressure and becomes comparable to the crack stiffness.

  16. Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    PubMed Central

    Borsje, Petra; Arts, Theo; van De Vosse, Frans N.

    2006-01-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity. PMID:17048105

  17. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment.

    PubMed

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang

    2013-09-01

    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  18. Effect of Winglets on a First-Generation Jet Transport Wing. 2: Pressure and Spanwise Load Distributions for a Semispan Model at High Subsonic Speeds. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Flechner, S. G.; Jacobs, P. F.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at high subsonic speeds are presented for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. Selected data are discussed to show the general trends and effects of the various configurations.

  19. Biomechanical effects of sitting with adjustable ischial and lumbar support on occupational low back pain: evaluation of sitting load and back muscle activity

    PubMed Central

    Makhsous, Mohsen; Lin, Fang; Bankard, James; Hendrix, Ronald W; Hepler, Matthew; Press, Joel

    2009-01-01

    Background Compared to standing posture, sitting decreases lumbar lordosis, increases low back muscle activity, disc pressure, and pressure on the ischium, which are associated with occupational LBP. A sitting device that reduces spinal load and low back muscle activities may help increase sitting comfort and reduce LBP risk. The objective of this study is to investigate the biomechanical effect of sitting with a reduced ischial support and an enhanced lumbar support (Off-Loading) on load, interface pressure and muscle activities. Methods A laboratory test in low back pain (LBP) and asymptomatic subjects was designed to test the biomechanical effect of using the Off-Loading sitting posture. The load and interface pressure on seat and the backrest, and back muscle activities associated with usual and this Off-Loading posture were recorded and compared between the two postures. Results Compared with Normal (sitting upright with full support of the seat and flat backrest) posture, sitting in Off-Loading posture significantly shifted the center of the force and the peak pressure on the seat anteriorly towards the thighs. It also significantly decreased the contact area on the seat and increased that on the backrest. It decreased the lumbar muscle activities significantly. These effects are similar in individuals with and without LBP. Conclusion Sitting with reduced ischial support and enhanced lumbar support resulted in reduced sitting load on the lumbar spine and reduced the lumbar muscular activity, which may potentially reduce sitting-related LBP. PMID:19193245

  20. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    NASA Astrophysics Data System (ADS)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  1. Abdominal drainage following cholecystectomy: high, low, or no suction?

    PubMed Central

    McCormack, T. T.; Abel, P. D.; Collins, C. D.

    1983-01-01

    A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study failed to demonstrate any clinically useful difference between high negative pressure, low negative pressure, and static drainage system were compared: a simple tube drain, a low negative used, suction is not necessary and a simple tube drain (greater than 6 mm internal diameter) is the most effective form of drainage. PMID:6614773

  2. Effect of winglets on a first-generation jet transport wing. 3: Pressure and spanwise load distributions for a semispan model at Mach 0.30. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Jacobs, P. F.; Flechner, S. G.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at a Mach number of 0.30 are given for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. To simulate second-segment-climb lift conditions, leading- and/or trailing-edge flaps were added to some configurations.

  3. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

  4. The Effect of Internal Pressure on the Buckling Stress of Thin-Walled Circular Cylinders Under Torsion

    NASA Technical Reports Server (NTRS)

    Crate, Harold; Batdorf, S B; Baab, George W

    1944-01-01

    The results of a series of tests to determine the effect of internal pressure on the buckling load of a thin cylinder under an applied torque indicated that internal pressure raises the shear buckling stress. The experimental results were analyzed with the aid of previously developed theory and a simple interaction formula was derived. (author)

  5. Real-Time Smart Textile-Based System to Monitor Pressure Offloading of Diabetic Foot Ulcers.

    PubMed

    Raviglione, Andrea; Reif, Roberto; Macagno, Maurizio; Vigano, Davide; Schram, Justin; Armstrong, David

    2017-09-01

    The lifetime risk of developing a diabetic foot ulcer (DFU) is at least 25%. A DFU carries a 50% risk for infection and at least 20% of those receive some form of amputation. The most significant parameter that prevents or delays ulcer healing is high plantar pressure. To improve the patient's healing process, the DFU's plantar pressure should remain cumulatively low. Therefore, a tool that continuously measures the DFU loading, and provides real-time feedback can improve the healing outcome. We report the development of a system capable of continuously measuring the pressure, which could have applications to monitor DFU. The system contains a textile pressure sensor attached to a stretchable band, hardware that collects data and transmits them via Bluetooth to a phone, an app that gathers the data and stores them in the cloud, and a web dashboard that displays the data to the clinician. The sensor was characterized in vitro using the system, and the web-dashboard was developed and tested on simulated patient data. We demonstrate the feasibility of developing the system and characterize the pressure response of the device. As a result, we demonstrate a viable method for monitoring DFU off-loading in real time. The presented study demonstrates the feasibility to develop a simple, modular wearable system that opens up new possibilities for diabetic foot ulcer care by providing a way of monitoring the pressure under the ulcer in real time.

  6. An experimental study of the sources of fluctuating pressure loads beneath swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Garg, S.

    1993-01-01

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins at angle of attack. Fin angles from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers flush-mounted in the flat plate are used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their ring levels, amplitude distributions, and power spectra, are also determined. Measurements were made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 160 dB. These fluctuations are dominated by low frequency (0-5 kHz) signals. The maximum ring levels in the interactions show an increasing trend with increasing interaction strength. On the other hand, the maximum ring levels in the forward portion of the interactions decrease linearly with increasing interaction sweep back. These ring pressure distributions and spectra are correlated with the features of the interaction flowfield. The unsteadiness of the off-surface flowfield is studied using a new, non-intrusive technique based on the shadow graph method. The results indicate that the entire lambda-shock structure generated by the interaction undergoes relatively low-frequency oscillations. Some regions where particularly strong fluctuations are generated were identified. Fluctuating pressure measurements are also made along the line of symmetry of an axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple analog to the impinging jet region found in the rear portion of the shock wave/boundary layer interactions under study. It is found that a sharp peak in ring pressure level exists at or near the mean stagnation point. It is suggested that the phenomena responsible for this peak may be active in the swept interactions as well, and may cause the extremely high fluctuating pressures observed in the impinging jet region in the present experimental program.

  7. In vitro assessment of temperature change in the pulp chamber during cavity preparation.

    PubMed

    Oztürk, Bora; Uşümez, Aslihan; Oztürk, A Nilgun; Ozer, Füsun

    2004-05-01

    Tooth preparation with a high-speed handpiece may cause thermal harm to the dental pulp. This in vitro study evaluated the temperature changes in the pulp chamber during 4 different tooth preparation techniques and the effects of 3 different levels of water cooling. The tip of a thermocouple was positioned in the center of the pulp chamber of 120 extracted Shuman premolar teeth. Four different tooth preparation techniques were compared: (1) Low air pressure plus low load (LA/LL), (2) low air pressure plus high load (LA/HL), (3) high air pressure plus low load (HA/LL), and (4) high air pressure plus high load (HA/HL) in combination with 3 different water cooling rates. Control specimens were not water cooled; low water cooling consisted of 15 mL/min, and high water cooling consisted of 40 mL/min. Twelve different groups were established (n=10). An increase of 5.5 degrees C was regarded as critical value for pulpal health. The results were analyzed with a 3-factor ANOVA and Bonferroni adjusted Mann Whitney U test (alpha=.004). For all techniques without water cooling (LA/LL/0, LA/HL/0, HA/LL/0, and HA/HL/0), the average temperature rise within the pulpal chamber exceeded 5.5 degrees C during cavity preparation (7.1 degrees C; 8.9 degrees C; 11.4 degrees C, and 19.7 degrees C, respectively). When low water cooling was used with high air pressure and high load technique (HA/HL/15), the average temperature rise exceeded 5.5 degrees C limit (5.9 degrees C). However, when high water cooling (LA/LL/40, LA/HL/40, HA/LL/40, and HA/HL/40) was utilized, the critical 5.5 degrees C value was not reached with any air pressure or load (3.1 degrees C, 2.8 degrees C, 2.2 degrees C, and -1.8 degrees C, respectively). Within the limitations of this in vitro study, the results indicate that reducing the amount of water cooling or increasing air pressure and load during cavity preparation increased the temperature of the pulp chamber in extracted teeth.

  8. Load Adaptability in Patients With Pulmonary Arterial Hypertension.

    PubMed

    Amsallem, Myriam; Boulate, David; Aymami, Marie; Guihaire, Julien; Selej, Mona; Huo, Jennie; Denault, Andre Y; McConnell, Michael V; Schnittger, Ingela; Fadel, Elie; Mercier, Olaf; Zamanian, Roham T; Haddad, Francois

    2017-09-01

    Right ventricular (RV) adaptation to pressure overload is a major prognostic factor in patients with pulmonary arterial hypertension (PAH). The objectives were first to define the relation between RV adaptation and load using allometric modeling, then to compare the prognostic value of different indices of load adaptability in PAH. Both a derivation (n = 85) and a validation cohort (n = 200) were included. Load adaptability was assessed using 3 approaches: (1) surrogates of ventriculo-arterial coupling (e.g., RV area change/end-systolic area), (2) simple ratio of function and load (e.g., tricuspid annular plane systolic excursion/right ventricular systolic pressure), and (3) indices assessing the proportionality of adaptation using allometric pressure-function or size modeling. Proportional hazard modeling was used to compare the hazard ratio for the outcome of death or lung transplantation. The mean age of the derivation cohort was 44 ± 11 years, with 80% female and 74% in New York Heart Association class III or IV. Mean pulmonary vascular resistance index (PVRI) was 24 ± 11 with a wide distribution (1.6 to 57.5 WU/m 2 ). Allometric relations were observed between PVRI and RV fractional area change (R 2  = 0.53, p < 0.001) and RV end-systolic area indexed to body surface area right ventricular end-systolic area index (RVESAI) (R 2  = 0.29, p < 0.001), allowing the derivation of simple ratiometric load-specific indices of RV adaptation. In right heart parameters, RVESAI was the strongest predictor of outcomes (hazard ratio per SD = 1.93, 95% confidence interval 1.37 to 2.75, p < 0.001). Although RVESAI/PVRI 0.35 provided small incremental discrimination on multivariate modeling, none of the load-adaptability indices provided stronger discrimination of outcome than simple RV adaptation metrics in either the derivation or the validation cohort. In conclusion, allometric modeling enables quantification of the proportionality of RV load adaptation but offers small incremental prognostic value to RV end-systolic dimension in PAH. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  10. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training.

    PubMed

    Kim, Daeyeol; Loenneke, Jeremy P; Ye, Xin; Bemben, Debra A; Beck, Travis W; Larson, Rebecca D; Bemben, Michael G

    2017-12-01

    This study compares the acute and chronic response of high-load resistance training (HL) to low-load resistance training with low blood flow restriction (LL-BFR) pressure. Participants completed elbow flexion with either HL or LL-BFR or nonexercise. In the chronic study, participants in the HL and LL-BFR groups were trained for 8 weeks to determine differences in muscle size and strength. The acute study examined the changes in pretesting/posttesting (Pre/Post) torque, muscle swelling, and blood lactate. In the chronic study, similar changes in muscle size and strength were observed for both HL and LL-BFR. In the acute study, Pre/Post changes in the torque, muscle swelling, and blood lactate were similar between HL and LL-BFR. Our findings indicate that pressure as low as 50% arterial occlusion can produce similar changes in muscle mass and strength compared with traditional HL. Muscle Nerve 56: E126-E133, 2017. © 2017 Wiley Periodicals, Inc.

  11. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Moselle, John R.; Lee, Jinho

    1991-01-01

    Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.

  12. Large-displacement structural durability analyses of simple bend specimen emulating rocket nozzle liners

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    1994-01-01

    Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.

  13. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less

  14. Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes

    NASA Astrophysics Data System (ADS)

    Lyall, M. Eric

    Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.

  15. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  16. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  17. Theoretical Analysis of Pore Pressure Diffusion in Some Basic Rock Mechanics Experiments

    NASA Astrophysics Data System (ADS)

    Braun, Philipp; Ghabezloo, Siavash; Delage, Pierre; Sulem, Jean; Conil, Nathalie

    2018-05-01

    Non-homogeneity of the pore pressure field in a specimen is an issue for characterization of the thermo-poromechanical behaviour of low-permeability geomaterials, as in the case of the Callovo-Oxfordian claystone ( k < 10-20 m2), a possible host rock for deep radioactive waste disposal in France. In tests with drained boundary conditions, excess pore pressure can result in significant errors in the measurement of material parameters. Analytical solutions are presented for the change in time of the pore pressure field in a specimen submitted to various loading paths and different rates. The pore pressure field in mechanical and thermal undrained tests is simulated with a 1D finite difference model taking into account the dead volume of the drainage system of the triaxial cell connected to the specimen. These solutions provide a simple and efficient tool for the estimation of the conditions that must hold for reliable determination of material parameters and for optimization of various test conditions to minimize the experimental duration, while keeping the measurement errors at an acceptable level.

  18. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  19. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    NASA Astrophysics Data System (ADS)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-02-01

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.

  20. Waiting time effect of a GM type orifice pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Kakimi, Yasuhiro; Matsubara, Yoichi

    In a general GM type orifice pulse tube refrigerator, there are two short periods during which both the high pressure valve and the low pressure valve are closed in one cycle. We call the short period `waiting time'. The pressure differences across the high pressure valve and the low pressure valve are decreased by using long waiting time. The pressure difference loss is decreased. Thus, the cooling capacity and the efficiency are increased, and the no-load temperature is decreased. The mechanism of the waiting time is discussed with numerical analysis and verified by experiments. Experiments show that there is an optimum waiting time for the no-load temperature, the cooling capacity and the efficiency, respectively. The no-load temperature of 40.3 K was achieved with a 90° waiting time. The cooling capacity of 58 W at 80 K was achieved with a 60° waiting time. The no-load temperature of 45.1 K and the cooling capacity of 45 W at 80 K were achieved with a 1° waiting time.

  1. Determination of performance of non-ideal aluminized explosives.

    PubMed

    Keshavarz, Mohammad Hossein; Mofrad, Reza Teimuri; Poor, Karim Esmail; Shokrollahi, Arash; Zali, Abbas; Yousefi, Mohammad Hassan

    2006-09-01

    Non-ideal explosives can have Chapman-Jouguet (C-J) detonation pressure significantly different from those expected from existing thermodynamic computer codes, which usually allows finding the parameters of ideal detonation of individual high explosives with good accuracy. A simple method is introduced by which detonation pressure of non-ideal aluminized explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from a, b, c, d and e at any loading density without using any assumed detonation products and experimental data. Calculated detonation pressures show good agreement with experimental values with respect to computed results obtained by complicated computer code. It is shown here how loading density and atomic composition can be integrated into an empirical formula for predicting detonation pressure of proposed aluminized explosives.

  2. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less

  3. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure.

    PubMed

    Neidlinger-Wilke, Cornelia; Würtz, Karin; Urban, Jill P G; Börm, Wolfgang; Arand, Markus; Ignatius, Anita; Wilke, Hans-Joachim; Claes, Lutz E

    2006-08-01

    Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading exercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test(1) and a Wilcoxon 2-sample test(2) were performed to detect differences between the stimulated and control samples(1) and differences between low and high hydrostatic pressure(2). Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for the matrix forming proteins aggrecan and collagen type-I in response to the two different pressure magnitudes: Low hydrostatic-pressure (0.25 MPa) tended to increase collagen-I and aggrecan expression of human nucleus cells (P < 0.05) but only to a small degree. High hydrostatic pressure (2.5 MPa) tended to decrease gene expression of all anabolic proteins with significant effects on aggrecan expression of nucleus cells (P = 0.004). Low hydrostatic pressure had no influence on the expression of matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP13). In contrast, high hydrostatic pressure tended to increase the expression of MMP1, MMP3 and MMP13 of human nucleus cells with high individual-individual variations. The decreased expression of aggrecan (P = 0.008) and collagen type II (P = 0.023) and the increased MMP3 expression (P = 0.008) in response to high hydrostatic pressure could be confirmed in additional experiments with bovine nucleus cells. These results suggest that hydrostatic pressure as one of the physiological stimuli of the IVD may influence matrix turnover in a magnitude dependent way. Low hydrostatic pressure (0.25 MPa) has quite small influences with a tendency to anabolic effects, whereas high hydrostatic pressure (2.5 MPa) tends to decrease the matrix protein expression with a tendency to increase some matrix-turnover enzymes. Therefore, hydrostatic pressure may regulate disc matrix turnover in a dose-dependent way.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial-temporal distribution of a mechanical load resulting from interaction of laser radiation with a barrier (analytic model)

    NASA Astrophysics Data System (ADS)

    Fedyushin, B. T.

    1992-01-01

    The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.

  5. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology.

    PubMed

    Kim, Kang-Hyun; Hong, Soon Kyu; Jang, Nam-Su; Ha, Sung-Hun; Lee, Hyung Woo; Kim, Jong-Man

    2017-05-24

    Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa -1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).

  6. Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes

    DTIC Science & Technology

    2012-09-01

    TURBINE VANES DISSERTATION Presented to the Faculty Department of Aeronautical and Astronautical... Engineering and Management iv AFIT/DS/ENY/12-05 Abstract Past efforts to reduce the airfoil count in low pressure turbines have produced high lift...LOSSES OF HIGH LIFT LOW PRESSURE TURBINE VANES 1. Introduction The low pressure turbine (LPT) in modern high bypass ratio aero- engines is

  7. Blood Pressure and Arterial Load After Transcatheter Aortic Valve Replacement for Aortic Stenosis.

    PubMed

    Lindman, Brian R; Otto, Catherine M; Douglas, Pamela S; Hahn, Rebecca T; Elmariah, Sammy; Weissman, Neil J; Stewart, William J; Ayele, Girma M; Zhang, Feifan; Zajarias, Alan; Maniar, Hersh S; Jilaihawi, Hasan; Blackstone, Eugene; Chinnakondepalli, Khaja M; Tuzcu, E Murat; Leon, Martin B; Pibarot, Philippe

    2017-07-01

    After aortic valve replacement, left ventricular afterload is often characterized by the residual valve obstruction. Our objective was to determine whether higher systemic arterial afterload-as reflected in blood pressure, pulsatile and resistive load-is associated with adverse clinical outcomes after transcatheter aortic valve replacement (TAVR). Total, pulsatile, and resistive arterial load were measured in 2141 patients with severe aortic stenosis treated with TAVR in the PARTNER I trial (Placement of Aortic Transcatheter Valve) who had systolic blood pressure (SBP) and an echocardiogram obtained 30 days after TAVR. The primary end point was 30-day to 1-year all-cause mortality. Lower SBP at 30 days after TAVR was associated with higher mortality (20.0% for SBP 100-129 mm Hg versus 12.0% for SBP 130-170 mm Hg; P <0.001). This association remained significant after adjustment, was consistent across subgroups, and confirmed in sensitivity analyses. In adjusted models that included SBP, higher total and pulsatile arterial load were associated with increased mortality ( P <0.001 for all), but resistive load was not. Patients with low 30-day SBP and high pulsatile load had a 3-fold higher mortality than those with high 30-day SBP and low pulsatile load (26.1% versus 8.1%; hazard ratio, 3.62; 95% confidence interval, 2.36-5.55). Even after relief of valve obstruction in patients with aortic stenosis, there is an independent association between post-TAVR blood pressure, systemic arterial load, and mortality. Blood pressure goals in patients with a history of aortic stenosis may need to be redefined. Increased pulsatile arterial load, rather than blood pressure, may be a target for adjunctive medical therapy to improve outcomes after TAVR. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00530894. © 2017 American Heart Association, Inc.

  8. Unsteady Pressures in a Transonic Fan Cascade Due to a Single Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Hayden, J.

    2002-01-01

    An extensive set of unsteady pressure data was acquired along the midspan of a modern transonic fan blade for simulated flutter conditions. The data set was acquired in a nine-blade linear cascade with an oscillating middle blade to provide a database for the influence coefficient method to calculate instantaneous blade loadings. The cascade was set for an incidence of 10 dg. The data were acquired on three stationary blades on each side of the middle blade that was oscillated at an amplitude of 0.6 dg. The matrix of test conditions covered inlet Mach numbers of 0.5, 0.8, and 1.1 and the oscillation frequencies of 200, 300, 400, and 500 Hz. A simple quasiunsteady two-dimensional computer simulation was developed to aid in the running of the experimental program. For high Mach number subsonic inlet flows the blade pressures exhibit very strong, low-frequency, self-induced oscillations even without forced blade oscillations, while for low subsonic and supersonic inlet Mach numbers the blade pressure unsteadiness is quite low. The amplitude of forced pressure fluctuations on neighboring stationary blades strongly depends on the inlet Mach number and forcing frequency. The flowfield behavior is believed to be governed by strong nonlinear effects due to a combination of viscosity, compressibility, and unsteadiness. Therefore, the validity of the quasi-unsteady simplified computer simulation is limited to conditions when the flowfield is behaving in a linear, steady manner. Finally, an extensive set of unsteady pressure data was acquired to help development and verification of computer codes for blade flutter effects.

  9. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The axial stiffness coefficient shows a maximum for a certain intermediate load while the damping coefficient steadily increases. The computed results evidence the paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where there is actually an inflow through the bearing inner diameter, accompanied by subambient pressures just downstream of the bearing recess edge. These results are solely due to centrifugal fluid inertia and advection transport effects. Recommendations include the extension of the computer program to handle flexure pivot tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft angular misalignments.

  10. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    NASA Astrophysics Data System (ADS)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  11. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  12. Change in Soil Porosity under Load

    NASA Astrophysics Data System (ADS)

    Dyba, V. P.; Skibin, E. G.

    2017-11-01

    The theoretical basis for the process of soil compaction under various loading paths is considered in the article, the theoretical assumptions are compared with the results of the tests of clay soil on a stabilometer. The variant of the critical state model of the sealing plastic-rigid environment is also considered the strength characteristics of which depend on the porosity coefficient. The loading surface is determined by the results of compression and stabilometrical tests. In order to clarify the results of this task, it is necessary to carry out stabilometric tests under conditions of simple loading, i.e. where the vertical pressure would be proportional to the compression pressure σ3 = kσ1. Within the study the attempts were made to confirm the model given in the beginning of the article by laboratory tests. After the analysis of the results, the provided theoretical assumptions were confirmed.

  13. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    NASA Astrophysics Data System (ADS)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  14. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity.

    PubMed

    Su, Bin; Gong, Shu; Ma, Zheng; Yap, Lim Wei; Cheng, Wenlong

    2015-04-24

    A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets

    PubMed Central

    Rinaldi, Andrea; Tamburrano, Alessio; Fortunato, Marco; Sarto, Maria Sabrina

    2016-01-01

    The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges. PMID:27999251

  16. Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga

    2010-01-01

    Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.

  17. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  18. On the estimation of thermal strains developed during oxide growth

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Wright, Ian G.

    2009-07-01

    This paper presents results for the strains and stresses in oxide scales under the conditions of temperature and pressure expected in typical steam boiler operation. These conditions are radically different from those typically encountered in laboratory testing and include features such as a thermal gradient across the tube wall, significant internal (steam) pressure, and cycling of both steam temperature and pressure. Critical examination of the assumptions of flat-plate geometry, which is usually made in calculating stresses and strains in oxide scales, indicated that only the component of the hoop strain that generates stress must be reported for the cylindrical case, and that the use of simple plane-strain is adequate for the system studied. Calculations were made for alloy T22 with a hypothetical, single-layered oxide with appropriate properties. Typical conditions associated with transition of the boiler from full to partial load involve a decrease in both steam temperature and pressure, and these two sources of stress generation were found to exert opposite effects. The relative magnitudes of the resulting strains were used to explain the trends in strain levels calculated when the effects of thermal expansion, temperature loading, and pressure loading were superimposed.

  19. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  20. Design principles of a simple and safe 200-MW(thermal) nuclear district heating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzmann, C.; Bittermann, D.; Gobel, A.

    Kraftwerk Union AG has almost completed the development of a dedicated 200-MW(thermal) nuclear district heating plant to provide environmentally clean energy at a predictably low cost. The concept can easily be adapted to meet power requirements within the 100- to 500-MW(thermal) range. This technology is the product of the experience gained with large pressurized water reactor and boiling water reactor power plants, with respect to both plant and fuel performance. The major development task is that of achieving sufficiently low capital cost by tailoring components and systems designed for large plants to the specific requirements of district heating. These requirementsmore » are small absolute power, low temperatures and pressures, and modest load following, all of which result in the characteristics that are summarized. A fully integrated primary system with natural circulation permits a very compact reactor building containing all safety-related systems and components. Plant safety is essentially guaranteed by inherent features. The reactor containment is tightly fitted around the reactor pressure vessel in such a way that, in the event of any postulated coolant leak, the core cannot become uncovered, even temporarily. Shutdown is assured by gravity drop of the control rods mounted above the core. Decay heat is removed from the core by means of natural circulation via dedicated intermediate circuits of external aircoolers.« less

  1. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  2. Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.

  3. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  4. Development of microbend sensors for pressure, load, and displacement measurements in civil engineering

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Cosentino, Paul J.; Doi, Shinobu; Kumar, Girish; Verghese, John

    1994-05-01

    We are developing low cost, rugged, and reliable fiberoptic sensors to meet current and future needs in civil engineering, including those of smart civil structures. Our work has concentrated on load, pressure, and displacement sensors, including pore water pressure sensors. We have built and demonstrated sensors in the laboratory with loads up to 50 lb., water pressures of 100 psi, and displacements up to 1 mm. Repeatability of sensor measurements are within 5% and are being improved with continued development. The range and sensitivity of the sensors can be easily changed without changing the basic sensor design. We also have multiplexed two water pressure sensors on a single fiber. We describe the sensor construction and experimental performance.

  5. Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system.

    PubMed

    Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi

    2007-05-01

    Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.

  6. Acoustical properties of individual liposome-loaded microbubbles.

    PubMed

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico

    2012-12-01

    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. A simple electric circuit model for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  8. Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold

    NASA Technical Reports Server (NTRS)

    Breen, Daniel P.

    2012-01-01

    This document discusses a technique that provides a means for suspending large, awkward loads, instrument packages, components, and machinery in a stable, controlled, and precise manner. In the baseplate of the test machine, a pattern of grooves and ports is installed that when pressurized generates an attenuated- fluent gas fold providing a low-cost, near-zero-coefficient-of-friction lubrication boundary layer that supports the object evenly, and in a predictable manner. Package movement control requires minimal force. Aids to repeatable travel and positional accuracy can be added via the addition of simple guide bars and stops to the floor or object being moved. This allows easily regulated three-axis motions. Loads of extreme weight and size can be moved and guided by a single person, or by automated means, using minimal force. Upon removal of the attenuated fluent gas fold, the object returns to a stable resting position without impact forces affecting the object.

  9. The effective forces transmitted by high-speed, low-amplitude thoracic manipulation.

    PubMed

    Herzog, W; Kats, M; Symons, B

    2001-10-01

    Twenty asymptomatic volunteers each received three spinal manipulative treatments to the thoracic spine. The treatments consisted of a straight posterior-to-anterior high-speed, low-amplitude thrust to the transverse process of T3-T10 using a reinforced hypothenar contact. All treatments were given by a full-time practicing clinician with 3 years of experience. The primary objective of this study was to quantify local measures of loading applied by the clinician on the volunteers during spinal manipulative treatments and to compare these local measures of loading with previously described global measures. The sparse information on the mechanics of spinal manipulative treatments deals exclusively with global force or pressure measurements. On the basis of these global data, incorrect conclusions may be drawn about the beneficial effects of spinal manipulative therapy, the loading of internal structures, and the risks associated with these treatments. Twenty asymptomatic subjects each received three posterior-to-anterior, high-speed, low-amplitude spinal manipulative treatments to the transverse process of the thoracic spine. Total force, local force, contact area, peak pressure, and average pressure at the contact interface between clinician and subject were measured continuously by use of a thin, flexible pressure pad. Local and global measures of loading were compared and analyzed by use of nonparametric statistics (alpha = 0.01). The average peak total force was 238.2 N. The average peak local force over a target area of 25 mm2 was 5 N, indicating that global measures of loading vastly overestimate the local effective forces at the target site. The peak pressure point moved, on average, 9.8 mm during the course of the manipulation. To the authors' best knowledge, this is the first study to quantify local, effective measures of loading and compare them with the global measures typically used. The conclusions are limited because the study used a single clinician. The effective loading of specific target sites is much smaller than the global measures might suggest. This result occurs because as the forces during spinal manipulative treatment increase, so does the contact area; therefore, much of the total treatment force is taken up by non-target-specific tissues. Because of the vast discrepancy between the global and local measures of loading, it is suggested that risk-benefit assessments of high-speed, low-amplitude spinal manipulative treatments should be made, including local measures of loading. Finally, because theoretical approaches and the inverse dynamics approach can provide only global measures of loading, the results of such studies should be interpreted with caution.

  10. A Simple Sensor Model for THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Bryant, Robert G.

    2009-01-01

    A quasi-static (low frequency) model is developed for THUNDER actuators configured as displacement sensors based on a simple Raleigh-Ritz technique. This model is used to calculate charge as a function of displacement. Using this and the calculated capacitance, voltage vs. displacement and voltage vs. electrical load curves are generated and compared with measurements. It is shown this model gives acceptable results and is useful for determining rough estimates of sensor output for various loads, laminate configurations and thicknesses.

  11. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  12. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on amore » 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.« less

  13. Pressure loads and aerodynamic force information for the -89A space shuttle orbiter configuration, volume 2

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1973-01-01

    Experimental aerodynamic investigations were conducted in a low speed wind tunnel on an 0.0405 scale representation of the 89A light weight Space Shuttle Orbiter to obtain pressure loads data in the presence of the ground for orbiter structural strength analysis. The model and the facility are described, and data reduction is outlined. Tables are included for data set/run number collation, data set/component collation, model component description, and pressure tap locations by series number. Tabulated force and pressure source data are presented.

  14. High pressure generation using scaled-up Kawai-cell

    NASA Astrophysics Data System (ADS)

    Shatskiy, A.; Katsura, T.; Litasov, K. D.; Shcherbakova, A. V.; Borzdov, Y. M.; Yamazaki, D.; Yoneda, A.; Ohtani, E.; Ito, E.

    2011-11-01

    A scaled-up version of a 6-8 Kawai-type multianvil apparatus equipped with 47-mm WC anvils has been developed at the Institute for the Study of the Earth's Interior for operation over pressure ranging up to 19 and 24 GPa using the conventional system with larger compressional volumes between 1.2 and 0.4 cm 3, respectively. This system is used under uniaxial compression along cube diagonal of the Kawai-cell up to the press load of 19 MN. Experiments are performed using octahedral pressure media (PM) made of MgO- and ZrO 2-based semi-sintered ceramics and unfired pyrophyllite gaskets. In this study we used "Toshiba-F" grade WC anvils allowing pressure generation up to 24 GPa. We perform pressure calibrations at room and high temperatures, with octahedron/anvil truncation edge-length ratios ( a0/ b, mm) of 12.2/6, 14/6, 14/7, 16/7, 18/7, 18/9, and 18/10. Different configurations show that an increase in edge-length ratio of a0/b permits the achievement of higher pressure, which agrees with the results of Frost at al. (Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A., Rubie, D.C., 2004. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143, 507). However, it also shifts the pressure maximum to higher press loads, in some cases exceeding the capacity of a press. Our and Frost et al. (2004) data reveal that the 14/6, 18/8, and 18/10 assemblies are the most suitable in generating pressures of up to 19-24 GPa at 19 MN press load limits. The assemblies with a low a0/ b ratio have a lower upper pressure limit; however, they exhibit a systematically higher efficiency in pressure generation at low press loads. Consequently, assemblages with high and low a0/ b ratios should be used in high and low pressure experiments, respectively. For example, the 18/12 assembly is suitable for 5-11 GPa pressure range (Stoyanov, E., Haussermann, U., Leinenweber, K., 2010. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure Res., 30, 175), whereas the 14/6, 18/8 ( Frost et al., 2004), and 18/10 assemblies are suitable for 22-24, 19-23, and 11-19 GPa pressure ranges, respectively. The maximum pressure generation achieved in the present study is 24 GPa, using the 14/6 assembly. This appears to be the maximum pressure level attainable by using WC anvils.

  15. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  16. Startup analysis for a high temperature gas loaded heat pipe

    NASA Technical Reports Server (NTRS)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  17. Tolerance of Artemia to static and shock pressure loading

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  18. Detailed pressure distribution measurements obtained on several configurations of an aspect-ratio-7 variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.

    1985-01-01

    Detailed pressure distribution measurements were made for 11 twist configurations of a unique, multisegmented wing model having an aspect ratio of 7 and a taper ratio of 1. These configurations encompassed span loads ranging from that of an untwisted wing to simple flapped wings both with and without upper-surface spoilers attached. For each of the wing twist configurations, electronic scanning pressure transducers were used to obtain 580 surface pressure measurements over the wing in about 0.1 sec. Integrated pressure distribution measurements compared favorably with force-balance measurements of lift on the model when the model centerbody lift was included. Complete plots and tabulations of the pressure distribution data for each wing twist configuration are provided.

  19. A Simple Question to Think about When Considering the Hemoglobin Function

    ERIC Educational Resources Information Center

    Ruiz-Larrea, M. Begona

    2002-01-01

    Hemoglobin is a complex protein formed by various subunits interacting with each other. These noncovalent interactions, quaternary structure, are responsible for hemoglobin functioning as an excellent oxygen transporter, loading up with oxygen in the lungs and delivering it to tissues, where the oxygen pressure is lower. The communications between…

  20. Uniform shock waves in disordered granular matter.

    PubMed

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  1. Role of the primary silicon particle on the dry sliding wear of hypereutectic aluminium-silicon alloy A390

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Moo; Kang, Suk-Bong; Yoon, Sang-Chul

    1999-07-01

    The wear behavior of hypereutectic aluminium-silicon alloy A390 was investigated using a pin-on-disc wear machine under dry sliding conditions. The wear tests were performed within a load range of 10 to 300N at a constant sliding velocity of 0.5 m/sec. The microstructural and compositional changes that took place during wear were characterized by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis (EDXA) system. Based on the metallographic observations the role of the primary silicon particles was suggested. In a low pressure region, primary silicon particles supported the applied load and wear occurred mainly in the matrix. Thus the wear loss did not show much variation with the applied load. In the mid-load range, primary silicon particles did not yet fracture and thus supported the applied load in part. Transition from oxidative to metallic wear occurs mainly in the matrix and the increase of wear loss becomes sharper than that in a low pressure region. In the high pressure region, the fractures of primary silicon Particles occurred and wear loss increased sharply.

  2. Design and two dimensional cascade test of a jet-flap turbine stator blade with ratio of axial chord to spacing of 0.5

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.

    1971-01-01

    A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.

  3. Structural analyses for the modification and verification of the Viking aeroshell

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Anderson, M. S.

    1976-01-01

    The Viking aeroshell is an extremely lightweight flexible shell structure that has undergone thorough buckling analyses in the course of its development. The analytical tools and modeling technique required to reveal the structural behavior are presented. Significant results are given which illustrate the complex failure modes not usually observed in simple models and analyses. Both shell-of-revolution analysis for the pressure loads and thermal loads during entry and a general shell analysis for concentrated tank loads during launch were used. In many cases fixes or alterations to the structure were required, and the role of the analytical results in determining these modifications is indicated.

  4. Buckling of Low Arches or Curved Beams of Small Curvature

    NASA Technical Reports Server (NTRS)

    Fung, Y C; Kaplan, A

    1952-01-01

    A general solution, based on the classical buckling criterion, is given for the problem of buckling of low arches under a lateral loading acting toward the center of curvature. For a sinusoidal arch under sinusoidal loading, the critical load can be expressed exactly as a simple function of the beam dimension parameters. For other arch shapes and load distributions, approximate values of the critical load can be obtained by summing a few terms of a rapidly converging Fourier series. The effects of initial end thrust and axial and lateral elastic support are discussed. The buckling load based on energy criterion of Karman and Tsien is also calculated. Results for both the classical and the energy criteria are compared with experimental results.

  5. Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.

    In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less

  6. Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes

    DOE PAGES

    Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.; ...

    2017-12-09

    In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less

  7. Performance deterioration based on simulated aerodynamic loads test, JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Stromberg, W. J.

    1981-01-01

    An engine was specially prepared with extensive instrumentation to monitor performance, case temperatures, and clearance changes. A special loading device was used to apply known loads on the engine by the use of cables placed around the flight inlet. These loads simulated the estimated aerodynamic pressure distributions that occur on the inlet in various segments of a typical airplane flight. Test results indicate that the engine lost 1.3 percent in take-off thrust specific fuel consumption (TSFC) during the course of the test effort. Permanent clearance changes due to the loads accounted for 1.1 percent; increase in low pressure compressor airfoil roughness and thermal distortion in the high pressure turbine accounted for 0.2 percent. Pretest predicted performance loss due to clearance changes was 0.9 percent in TSFC. Therefore, the agreement between measurement and prediction is considered to be excellent.

  8. Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2012-01-31

    This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimum in situ compressive stress, so the fractures are not completely open but permeability improvement can be achieved through shear dilation. We found that in this low pressure regime, the coupling between the fluid phase and the rock solid phase becomes very simple, and the numerical model can achieve a low computational cost. Using this modified model, we study the behavior of a single fracture and a random fracture network.

  9. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  10. Design and Flight Test of a Cable Angle Feedback Control System for Improving Helicopter Slung Load Operations at Low Speed

    DTIC Science & Technology

    2014-04-01

    improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3

  11. Rethinking the Connection between Working Memory and Language Impairment

    ERIC Educational Resources Information Center

    Archibald, Lisa M. D.; Harder Griebeling, Katherine

    2016-01-01

    Background: Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. Aims: To examine the processing function of working memory in children with low language (LL) by employing tasks imposing…

  12. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  13. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  14. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2015-01-01

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less

  15. Effects of winglets on a first-generation jet transport wing. 7: Sideslip effects on winglet loads and selected wing loads at subsonic speeds for a full-span model

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.; Covell, Peter F.

    1986-01-01

    The effect of sideslip on winglet loads and selected wing loads was investigated at high and low subsonic Mach numbers. The investigation was conducted in two separate wind tunnel facilities, using two slightly different 0.035-scale full-span models. Results are presented which indicate that, in general, winglet loads as a result of sideslip are analogous to wing loads caused by angle of attack. The center-of-pressure locations on the winglets are somewhat different than might be expected for an analogous wing. The spanwise center of pressure for a winglet tends to be more inboard than for a wing. The most notable chordwise location is a forward center-of-pressure location on the winglet at high sideslip angles. The noted differences between a winglet and an analogous wing are the result of the influence of the wing on the winglet.

  16. A Experimental Study of Fluctuating Pressure Loads Beneath Swept Shock Wave/boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Garg, Sanjay

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.

  17. Investigation of the Flow Over Simple Bodies at Mach Numbers of the Order of 20

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.

    1960-01-01

    It is shown that adequate means are available for calculating inviscid direct and induced pressures on simple axisymmetric bodies at zero angle of attack. The extent to which viscous effects can alter these predictions is indicated. It is also shown that inviscid induced pressures can significantly affect the stability of blunt, two-dimensional flat wings at low angles of attack. However, at high angles of attack, the inviscid induced pressure effects are negligible.

  18. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats.

    PubMed

    Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D

    2007-02-01

    We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.

  19. Investigation of the Effect of Tip Tanks on the Wing Loading of a Republic F-84 Airplane in the Ames 40- by 80-foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.; Salisbury, Ralph D.

    1949-01-01

    Wind-tunnel tests at low Mach number of a Republic F-84C airplane were conducted to determine by pressure-distribution measurements the air loads on wing-tip tanks and the change in wing load distribution due to the presence of tip tanks. Measurements of the aeroelastic twist of the wing were also obtained. Results are presented in the form of loading coefficient, center-of- pressure location, pitching-moment coefficient, aerodynamic-center location, and aeroelastic twist. The investigation revealed that the redistributions in loading brought about by either the tip tanks or elastic deformation of the wing were relatively small when compared with the chnnges in loading normally associated with the deflection of an aileron.

  20. Progressive Fracture of Laminated Fiber-Reinforced Composite Stiffened Plate Under Pressure

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Abdi, Frank; Chamis, Christos C.; Tsouros, Konstantinos

    2007-01-01

    S-Glass/epoxy laminated fiber-reinforced composite stiffened plate structure with laminate configuration (0/90)5 was simulated to investigate damage and fracture progression, under uniform pressure. For comparison reasons a simple plate was examined, in addition with the stiffened plate. An integrated computer code was used for the simulation. The damage initiation began with matrix failure in tension, continuous with damage and/or fracture progression as a result of additional matrix failure and fiber fracture and followed by additional interply delamination. Fracture through the thickness began when the damage accumulation was 90%. After that stage, the cracks propagate rapidly and the structures collapse. The collapse load for the simple plate is 21.57 MPa (3120 psi) and for the stiffened plate 25.24 MPa (3660 psi).

  1. Nested subcritical flows within supercritical systems

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems.

  2. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions

    DOE PAGES

    Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...

    2016-11-03

    In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less

  3. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.

    In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less

  4. A reliable measure of footwear upper comfort enabled by an innovative sock equipped with textile pressure sensors.

    PubMed

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Cannard, Francis; Guéguen, Nils

    2016-10-01

    Footwear comfort is essential and pressure distribution on the foot was shown as a relevant objective measurement to assess it. However, asperities on the foot sides, especially the metatarsals and the instep, make its evaluation difficult with available equipment. Thus, a sock equipped with textile pressure sensors was designed. Results from the mechanical tests showed a high linearity of the sensor response under incremental loadings and allowed to determine the regression equation to convert voltage values into pressure measurements. The sensor response was also highly repeatable and the creep under constant loading was low. Pressure measurements on human feet associated with a perception questionnaire exhibited that significant relationships existed between pressure and comfort perceived on the first, the third and the fifth metatarsals and top of the instep. Practitioner Summary: A sock equipped with textile sensors was validated for measuring the pressure on the foot top, medial and lateral sides to evaluate footwear comfort. This device may be relevant to help individuals with low sensitivity, such as children, elderly or neuropathic, to choose the shoes that fit the best.

  5. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2014-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  6. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2015-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  7. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).

  8. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  9. Targeted delivery of mesoporous silica nanoparticles loaded monastrol into cancer cells: an in vitro study

    NASA Astrophysics Data System (ADS)

    Hanif, Huzaifa; Nazir, Samina; Mazhar, Kehkashan; Waseem, Muhammad; Bano, Shazia; Rashid, Umer

    2017-11-01

    Monastrol is a simple low molecular weight dihydropyrimidine-based kinesin Eg5 inhibitor. Its low cellular activity and its non-drug-like properties have impeded its further development. In a previous report, we have reported various topological parameters to improve the pharmacokinetic properties of monastrol. The purpose of this study is to determine the loading and release feasibility of poorly water-soluble monastrol into the synthesized mesoporous silica nanoparticles (MSNs). The synthesis of MSNs was attained by the ammonia-catalysed hydrolysis and condensation of TEOS in ethanol using polysorbate-80 as surfactant. These were characterized by BET surface area and pore size distribution analyses, SEM, XRD, UV and FTIR spectroscopy. The synthesized monastrol was successfully loaded on MSNPs and coated by hydrogels for successful controlled drug delivery. In vitro release studies are done by simple dialysis method. Monastrol-loaded MSNPs were tested on human cervical epithelial malignant carcinoma (HeLa) cell lines for studying their anticancer activity. Our presented system described a reliable method for targeted delivery of monastrol into the cancer cells in vitro.

  10. Simulation of Shear and Bending Cracking in RC Beam: Material Model and its Application to Impact

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Zuki, S. S. M.; Kamarudin, A. F.; Noh, M. S. Md

    2018-04-01

    This paper presents a simple and reliable non-linear numerical analysis incorporated with fully Lagrangian method namely Smoothed Particle Hydrodynamics (SPH) to predict the impact response of the reinforced concrete (RC) beam under impact loading. The analysis includes the simulation of the effects of high mass low-velocity impact load falling on beam structures. Three basic ideas to present the localized failure of structural elements are: (1) the accurate strength of concrete and steel reinforcement during the short period (dynamic), Dynamic Increase Factor (DIF) has been employed for the effect of strain rate on the compression and tensile strength (2) linear pressure-sensitive yield criteria (Drucker-Prager type) with a new volume dependent Plane-Cap (PC) hardening in the pre-peak regime is assumed for the concrete, meanwhile, shear-strain energy criterion (Von-Mises) is applied to steel reinforcement (3) two kinds of constitutive equation are introduced to simulate the crushing and bending cracking of the beam elements. Then, these numerical analysis results were compared with the experimental test results.

  11. Experimental study of the oscillation of spheres in an acoustic levitator.

    PubMed

    Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C

    2014-10-01

    The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.

  12. Effect of geometry and operating conditions on spur gear system power loss

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds.

  13. Influence of synoptic meteorological conditions on urban air quality -A study over Hyderabad, India using satellite data and ground based measurements

    NASA Astrophysics Data System (ADS)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath

    Urban areas were considered to be a major source of atmospheric pollution due to popula-tion growth, migration, increasing industrialization and energy use particularly in developing countries. The air quality in urban areas is governed by temporal distribution of emissions from various activities in the city, the topography, and the weather, including atmospheric circulation patterns in the region. The extensive coastal belt of India is very vulnerable to low pressure systems in the Bay of Bengal (BoB) or the Arabian Sea. Most importantly, the formation of a low pressure system in the ocean is one of the most prominent weather systems characterized by high atmospheric pressure gradients and wind. In the present study, variation in aerosol properties and ground reaching solar irradiance were analyzed over a tropical urban environment of Hyderabad associated with a low pressure system during December, 3-10, 2008 over Bay of Bengal (BoB). The low pressure system formed over southeast BoB on Decem-ber 4, 2008, moved westwards and lay centered at 23:30 Indian Standard Time. The study area of Hyderabad is located between 17° 10' and 17° 50' N latitude and 78° 10' and 78° 50' E longitude, in the southeastern part of the Indian region, 300 km from the BoB. Synchronous measurements of aerosol optical depth were carried out using handheld MICROTOPS -II in the premises of the National Remote Sensing Centre (NRSC) campus located at Balanagar, Hyderabad. Along with the daytime measurements of AOD500, continuous measurements of the vertical profile of aerosols and planetary boundary layer were carried out using a portable micropulse lidar (MPL) system at 532 nm. An ultraviolet (UV)-B radiometer from Solar Light Company was used to measure UVery in the range 280-320 nm. Continuous measurements of the Particulate-matter (PM) size distributions were performed with GRIMM aerosol spectrom-eter model 1-108. Ground-reaching solar radiation in 310 to 2800 nm broadband was carried out using Kipp Zonen pyranometer model CMP 11. The collocated measurements provide bet-ter understanding of the changes in aerosol properties and their influence on ground reaching solar radiation associated with changes in synoptic meteorological conditions over the study site. Considerable variations in aerosol properties and ground-reaching solar irradiance due to changes in wind velocity and direction associated with the low pressure system formed over southeast BoB were observed. Terra/Aqua-Moderate Resolution Imaging Spectroradiometer AOD550 variations showed trends matching with ground observations. The nighttime AOD values showed a 60% decrease on December 5, 2008, corresponding to the low pressure system located nearer to the measurement site in Hyderabad. The global solar irradiance showed an 6% increase on December 4, 2008, during low pressure over BoB due to reduction in columnar aerosol loading compared to a normal period. Nighttime Light Detection and Ranging observa-tions suggested considerable reduction in atmospheric particulate matter (PM) loading under the influence of low pressure system. Results of the study have implications for monitoring urban air quality as synoptic weather systems are capable of modifying the atmospheric PM loading. In the climate change scenario increased occurrence of low pressure systems over the region was anticipated, and this will have impact on the differential loading of atmospheric pollutants over the region. Keywords: Aerosol optical depth, LIDAR, solar irradiance, PM2.5, UVery, Low pressure system

  14. Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods

    NASA Technical Reports Server (NTRS)

    Adams, G. F.

    1980-01-01

    The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.

  15. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  16. A simple test procedure for evaluating low temperature crack resistance of asphalt concrete.

    DOT National Transportation Integrated Search

    2009-11-01

    The current means of evaluating the low temperature cracking resistance of HMA relies on extensive test : methods that require assumptions about material behaviors and the use of complicated loading equipment. The purpose : of this study was to devel...

  17. Creep of Posidonia Shale at Elevated Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  18. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  19. The Usability of a Pressure-Indicating Film to Measure the Teat Load Caused by a Collapsing Liner

    PubMed Central

    Demba, Susanne; Elsholz, Sabrina; Ammon, Christian; Rose-Meierhöfer, Sandra

    2016-01-01

    Prevention of damage to the teat and mastitis requires determination of the teat load caused by a collapsing liner. The aim of this study was to test a pressure-indicating film designed to measure the pressure between a collapsing liner and artificial teats. The Ultra Super Low and the Extreme Low pressure-indicating films were tested on two types of artificial teat. The experiments were performed with a conventional milking cluster equipped with round silicone liners. For each teat and film type, 30 repetitions were performed. Each repetition was performed with a new piece of film. Kruskal-Wallis tests were performed to detect differences between the pressure values for the different teats. The area of regions where pressure-indication color developed was calculated to determine the most suitable film type. Both film types measured the pressure applied to both artificial teats by the teat cup liner. Thus, the pressure-indicating films can be used to measure the pressure between a collapsing liner and an artificial teat. Based on the results of the present investigation, a pressure-indicating film with the measurement ranges of both film types combined would be an optimal tool to measure the overall pressure between an artificial teat and a collapsing liner. PMID:27690033

  20. Engine combustion control at low loads via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  1. 77 FR 43145 - American Honda Motor Co., Inc., Grant of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... standard. FMVSS No. 139 specifies a low inflation pressure performance test in which the tire is loaded to... analysis also noted that the subject tires must be certified to the low inflation pressure performance... fully comply with paragraph S4.2(a) of Federal Motor Vehicle Safety Standard (FMVSS) No. 138, Tire...

  2. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    PubMed

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Performance of Maybach 300-horsepower airplane engine

    NASA Technical Reports Server (NTRS)

    Sparrow, S W

    1923-01-01

    This report contains the results of a test made upon a Maybach Engine in the altitude chamber of the Bureau of Standards, where controlled conditions of temperature and pressure can be made the same as those of the desired altitude. The results of this test lead to the following conclusions: from the standpoint of thermal efficiency the full-load performance of the engine is excellent at densities corresponding to altitudes up to and including 15,000 feet. The brake mean effective pressure is rather low even at wide-open throttle. This tends to give a high weight per horsepower, in as much as the weight of many engine parts is governed by the size rather than the power of the engine. At part load the thermal efficiency of the engine is low. Judged on a basis of performance the engine's chief claim to interest would appear to lie in the carburetor design, which is largely responsible excellent full-load efficiency and for its poor part-load efficiency.

  4. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  5. Atomistic modeling of helium segregation to grain boundaries in tungsten and its effect on de-cohesion

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Uberuaga, Blas P.; Wirth, Brian D.

    2017-08-01

    Due to their low sputtering yield, low intrinsic tritium retention, high melting point, and high thermal conductivity, W and W alloys are promising candidates for the divertor region in a magnetic fusion device. Transmutation reactions under neutron irradiation lead to the formation of He and H particles that potentially degrade material performance and might lead to failure. High He fluxes ultimately lead to the formation and bursting of bubbles that induce swelling, a strong decrease in toughness, and a nanoscale microstructure that potentially degrades the plasma. Understanding the behavior of He in polycrystalline W is thus of significant importance as one avenue for controlling the material properties under operating conditions. This paper studies the interaction of substitutional He atoms with various grain boundaries in pure W and the effect of the He presence on the system response to external loading. We observe that He segregates to all the interfaces tested and decreases the cohesion of the system at the grain boundary. Upon tension, the presence of He significantly decreases the yield stress, which depends considerably on the bubble pressure. Increasing pressure reduces cohesion, as expected. More complex stress states result in more convoluted behavior, with He hindering grain boundary sliding upon simple shear.

  6. Investigation of space shuttle vehicle 140C configuration orbiter (model 16-0) wheel well pressure loads in the Rockwell International 7.75 x 11 foot wind tunnel (OA143)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.

  7. Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska

    USGS Publications Warehouse

    Leach, David L.; Marsh, Erin E.; Emsbo, Poul; Rombach, Cameron; Kelley, Karen D.; Anthony, Michael W.

    2004-01-01

    The densities of the methane inclusions, together with the temperature of homogenization of coexisting aqueous fluid inclusions, show that these fluid inclusions were trapped between pressures of 800 and 3,400 bars and temperatures between 187° and 214°C. The pressures obtained provide unequivocal evidence that the quartz formed after ore deposition in the Carboniferous because such high fluid pressures could only have been produced from thrust loading during the Mesozoic Brookian orogeny. The observed large variation in pressure is best explained by transient fluid pressures from hydrostatic to lithostatic conditions during thrust loading. The 3,400 bars pressure corresponds with about 12 km of lithostatic burial, whereas the lower pressures (800 bars) correspond with about 8 km of hydrostatic pressure. Because of their low salinity (0-5 wt % NaCl equiv) the electrolyte compositions of the quartz fluid inclusions do not constrain their origin.

  8. A light hydrocarbon fuel processor producing high-purity hydrogen

    NASA Astrophysics Data System (ADS)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.

  9. Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.

    2008-01-01

    This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.

  10. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  11. A fast and simple bonding method for low cost microfluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Yin, Zhifu; Zou, Helin

    2018-01-01

    With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using any equipment. The dye water and gas leakage test indicated that the microfluidic chip can be bonded without leakage or block and its bonding strength can up to 0.84 MPa.

  12. Bifurcation theory applied to buckling states of a cylindrical shell

    NASA Astrophysics Data System (ADS)

    Chaskalovic, J.; Naili, S.

    1995-01-01

    Veins, bronchii, and many other vessels in the human body are flexible enough to be capable of collapse if submitted to suitable applied external and internal loads. One way to describe this phenomenon is to consider an inextensible elastic and infinite tube, with a circular cross section in the reference configuration, subjected to a uniform external pressure. In this paper, we establish that the nonlinear equilibrium equation for this model has nontrivial solutions which appear for critical values of the pressure. To this end, the tools we use are the Liapunov-Schmidt decomposition and the bifurcation theorem for simple multiplicity. We conclude with the bifurcation diagram, showing the dependence between the cross-sectional area and the pressure.

  13. Energy efficient engine: Turbine transition duct model technology report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thurlin, R.

    1982-01-01

    The Low-Pressure Turbine Transition Duct Model Technology Program was directed toward substantiating the aerodynamic definition of a turbine transition duct for the Energy Efficient Engine. This effort was successful in demonstrating an aerodynamically viable compact duct geometry and the performance benefits associated with a low camber low-pressure turbine inlet guide vane. The transition duct design for the flight propulsion system was tested and the pressure loss goal of 0.7 percent was verified. Also, strut fairing pressure distributions, as well as wall pressure coefficients, were in close agreement with analytical predictions. Duct modifications for the integrated core/low spool were also evaluated. The total pressure loss was 1.59 percent. Although the increase in exit area in this design produced higher wall loadings, reflecting a more aggressive aerodynamic design, pressure profiles showed no evidence of flow separation. Overall, the results acquired have provided pertinent design and diagnostic information for the design of a turbine transition duct for both the flight propulsion system and the integrated core/low spool.

  14. Investigation of instability, dynamic forces, and effect of dynamic loading on strength of cages for the bearings in the high pressure oxygen turbopumps for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.; Merriman, T. L.; Rosenfield, A. R.

    1985-01-01

    Experiments were performed to determine the effect of cyclic loading on bearing cage strength. A long term working tensile load of approximately 1300 N (300 lbs) was found to be the likely maximum. Higher loads caused a decrease in cage tensile strength after the 125,000 cycle testing period. Poisson's ratio in compression was found to be highly dependent upon the direction of the fiberglass plies. At room temperature the value was 0.15 with the plies and 0.68 across the plies. At -196 C (-321 F), the value with the plies was 0.20. The results of the analyses conducted have again demonstrated the critical need for improved lubrication in the high pressure oxygen turbopump bearings. Lubricant films with low shear strength and low friction coefficients promote cage stability and decrease ball/cage forces during marginal operating conditions. The analysis of the effect of combined bearing loads on ball/cage loads has identified a radial load of 3600 N (800 lbs) as the maximum for the current clearance of the balls and cage pockets. Liquid oxygen impinging on the cage in the direction of rotation was found to enhance cage stability.

  15. Landing pressure loads of the 140A/B space shuttle orbiter (model 43-0) determined in the Rockwell International low speed wind tunnel (OA69), volume 1. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Soard, T. L.

    1975-01-01

    Wind tunnel tests of a 0.0405 scale model of the -1404A/B configuration of the Space Shuttle Vehicle Orbiter are presented. Pressure loads data were obtained from the orbiter in the landing configuration in the presence of the ground for structural strength analysis. This was accomplished by locating as many as 30 static pressure bugs at various locations on external model surfaces as each configuration was tested. A complete pressure loads survey was generated for each configuration by combining data from all bug locations, and these loads are described for the fuselage, wing, vertical tail, and landing gear doors. Aerodynamic force data was measured by a six component internal strain gage balance. This data was recorded to correct model angles of attack and sideslip for sting and balance deflections and to determine the aerodynamic effects of landing gear extension. All testing was conducted at a Mach number of 0.165 and a Reynolds number of 1.2 million per foot. Photographs of test configurations are shown.

  16. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawodu, O.F.; Meisen, A.

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same totalmore » amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.« less

  17. The multiaxial fatigue response of cylindrical geometry under proportional loading subject to fluctuating tractions

    NASA Astrophysics Data System (ADS)

    Martinez, Rudy D.

    A multiaxial fatigue model is proposed, as it would apply to cylindrical geometry in the form of industrial sized pressure vessels. The main focus of the multiaxial fatigue model will be based on using energy methods with the loading states confined to fluctuating tractions under proportional loading. The proposed fatigue model is an effort to support and enhance existing fatigue life predicting methods for pressure vessel design, beyond the ASME Boiler and Pressure Vessel codes, ASME Section VIII Division 2 and 3, which is currently used in industrial engineering practice for pressure vessel design. Both uniaxial and biaxial low alloy pearlittic-ferritic steel cylindrical cyclic test data are utilized to substantiate the proposed fatigue model. Approximate material hardening and softening aspects from applied load cycling states and the Bauschinger effect are accounted for by adjusting strain control generated hysteresis loops and the cyclic stress strain curve. The proposed fatigue energy model and the current ASME fatigue model are then compared with regards to the accuracy of predicting fatigue life cycle consistencies.

  18. PVDF Gauge Piezoelectric Response under Two-Stage Light Gas Gun Impact Loading

    NASA Astrophysics Data System (ADS)

    Bauer, Francois

    2002-07-01

    Stress gauges based on ferroelectric polymer (PVDF) studies under very high pressure shock compression have shown that the piezoelectric response exhibits a precise reproducible behavior up to 25 GPa. Shock pressure profiles obtained with "in situ" PVDF gauges in porous H.E. (Formex) in a detonation regime have been achieved. Observations of a fast superpressure of a few nanoseconds followed by a pressure release have raised the question of the loading path dependence of the piezoelectric response of PVDF at high shock pressure levels. Consequently, studies of the piezoelectric behavior of PVDF gauges under impact loading using a two-stage light gas gun have been conducted recently. Symmetric impact as well as non symmetric impact and reverse impact techniques have been achieved. Strong viscoplastic behavior of some materials is observed. In typical experiments, the piezoelectric response of PVDF at shock equilibrium could be determined. These results show that the PVDF response appears independent of the loading path up to 30 GPa. Accurate measurements in situ H.E. are also reported with very low inductance PVDF gauges.

  19. Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny

    2018-03-01

    Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.

  20. Engine combustion control at low loads via fuel reactivity stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustionmore » chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.« less

  1. Learning to breathe? Feedforward regulation of the inspiratory motor drive.

    PubMed

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-09-15

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N=13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N=11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Reprint of "Learning to breathe? Feedforward regulation of the inspiratory motor drive".

    PubMed

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-12-01

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N = 13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N = 11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Load cell verification of the uprated high pressure oxygen turbopump for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Beatty, R. F.; Hine, M. J.

    1986-01-01

    The high pressure turbomachinery of the Space Shuttle Main Engine has the highest power-to-weight ratio of any operational machine known. Subsynchronous rotor whirl of the high pressure oxygen turbopump occurred in development testing at full-power level (109 percent thrust). The means by which the turbopump was successfully uprated is presented herein. The subsynchronous motion was determined to be driven by impeller destabilizing forces in combination with low net damping and bearing degradation. The degradation resulted from ball wear due primarily to an excessive loading condition of operating too near the lightly damped rotor second critical speed while under a large static load and, secondarily, from reverse bearing loading or loss of internal clearance and coolant during simulated flight conditions. The rotor response was reduced by stiffening the shaft and supports, optimizing the stiffness and damping of annular seals, and increasing the bearing deadband. The uprated oxygen turbopump configuration was verified by converting the pump and bearing support into a load cell for the purpose of systematically quantifying the load reduction benefits relative to baseline turbopumps. The damped second critical speed margin and the load sharing have been substantially improved which has resulted in reduced bearing loads for improved service life of the machine at full-power level.

  4. A simple bubble-flowmeter with quasicontinuous registration.

    PubMed

    Ludt, H; Herrmann, H D

    1976-07-22

    The construction of a simple bubble-flow-meter is described. The instrument has the following features: 1. automatic bubble injection, 2. precise measurement of the bubble passage time by a digital counter, 3. quasicontinuous registration of the flow rate, 4. alternative run with clear fluid (water) and coloured fluid (blood), 5. low volume, 6. closed measuring system for measurements in low and high pressure systems.

  5. Oral hesperidin-Amorphization and improved dissolution properties by controlled loading onto porous silica.

    PubMed

    Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H

    2017-02-25

    The oral bioavailability of poorly soluble drugs can be improved by amorphization generated by loading into the pores of mesoporous particles (pore size 2-50nm). The main mechanisms are increased kinetic saturation solubility and dissolution velocity due to the amorphous drug state and the nano-size of the drug (=increased dissolution pressure). In this study, the maximum achievable drug loading compared to the theoretical drug loading, and the effect of drug loading degree on the dissolution properties (solubility, dissolution velocity) were investigated. Hesperidin was used as the model active (having also practical relevance for e.g. nutraceutical products), loading was performed onto AEROPERL ® 300 Pharma. Degree of successful drug loading could be easily followed by simple light microscopy (=useful tool for formulation optimization), and was in agreement with scanning electron microscopy. Amorphous versus crystalline state was followed by X-ray diffraction and differential scanning calorimetry. Loadings prepared were 28.6wt.%, 54.5wt.% and 60.0wt.%, the maximum theoretical loading was 72.5wt.%. Obviously the maximum drug loading is not achievable, the 54.5wt.% drug loading was the practical maximum with already some minor crystalline hesperidin on the surface. Interestingly, the maximum kinetic saturation solubility was obtained for the 54.5wt.% drug loading (941.74μg/ml in pH 6.8 PBS), versus 408.80μg/ml for the 60.0wt.% drug loading (=overloaded system). The raw drug powder had a thermodynamic solubility of only 18.40μg/ml. The fastest in vitro release was obtained with the 28.6wt.% loaded system, followed by the 54.5wt.% and 60.0wt.% loadings. The dissolution properties (solubility, dissolution velocity) can obviously be influenced by a "controlled loading". This is a simple, cost-effective technological alternative to modulating this property by chemical modification of silica, requiring a new costly regulatory approval of these chemically modified materials. Copyright © 2016. Published by Elsevier B.V.

  6. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  7. Study on the characteristics of hysteresis loop and resistance of glow discharge plasma using argon gas

    NASA Astrophysics Data System (ADS)

    Mathew, Prijil; Sajith Mathews, T.; Kurian, P. J.; Chattopadyay, P. K.

    2018-05-01

    Hysteresis in discharge current is produced in a low-pressure, magnetic field free, Glow discharge plasma by varying discharge voltage. The variation in area of the hysteresis loops with pressure, electrode distance and load resistor studied. To understand, the nonlinear behaviour of the I-V characteristics, the changes in gas resistance with electrode voltage, pressure and load resistor were studied. After many trials we propose the best suitable empirical equation for the exponential decrease of the gas resistance with electrode voltage as; R = Rmin + Ae-0.008V, which is a novel one and matches well with our experimental results.

  8. Low-stress pressure solution experiments on halite single-crystals

    NASA Astrophysics Data System (ADS)

    Martin, Brigitte; Röller, Klaus; Stöckhert, Bernhard

    1999-07-01

    Pressure solution experiments on halite single-crystals in saturated solution were carried out at atmospheric pressure under uniaxial stress ranging from 0.1 to 2.0 MPa and at temperatures of 303 and 323 K. The experiments were performed in ceramic loading rigs with damp-proofed sample chambers. The low uniaxial stress is applied by loading the piston with steel weights ranging from 0.5 to 5.0 kg. The position of the piston is measured by an electronic displacement transducer, connected to a data acquisition system. Deviations caused by fluctuations of temperature and output voltage of the power supply are corrected after data acquisition. The halite cubes {100} with edge dimensions of 3-9 mm are prepared by cleaving and placed with a (100) cleavage face on the (001) face of a muscovite single-crystal (10×10×0.1 mm), a polished quartz (0001) plate, or another halite crystal oriented to form a 45° twist boundary. The four free (100) faces of the halite cube are in contact with the surrounding NaCl solution. The initial displacement rate of the piston after flooding of the system and loading is up to 50.0 μm/day, attributed to smoothing of the halite face and elimination of point contacts with high stress concentration. Within 2 to 3 days this stage grades into steady-state displacement with rates of 0.1-2.0 μm/day. In some experiments stages of higher displacement rates (2.0-5.0 μm/day) lasting for 3-5 days are observed episodically, with intervals of 10-15 days. These cycles appear not to be triggered by external events. Experiments with a dry mica-halite interface, carried out for comparison at the same temperature and at an uniaxial stress of 2 MPa, result in a displacement rate below the limits of detection. This rules out a significant contribution of crystal plastic deformation in the wet experiments. The experimental results show no simple correlation between displacement rate and magnitude of uniaxial stress, crystal size, type of the interface, and temperature. At the given conditions, convergence at a single interface due to pressure solution is apparently not a steady-state process. The alternating stages of lower and higher displacement rates observed in many experiments suggest that the mechanisms of transport or dissolution may change spontaneously during the experiment. It is possible that the process itself leads to an unstable configuration causing episodic changes.

  9. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.

  10. Ocean dynamics during the passage of Xynthia storm recorded by GPS

    NASA Astrophysics Data System (ADS)

    Nicolas, Joëlle; Ferenc, Marcell; Li, Zhao; van Dam, Tonie; Polidori, Laurent

    2014-05-01

    When computing the effect of atmospheric loading on geodetic coordinates, we must assign the response of the ocean to pressure loading. A pure inverted barometer and a solid Earth ocean response to pressure loading define the extremes of the response. At periods longer than a few days, the inverted barometer response is sufficient (Wunsch and Stammer, 1997). However, how does the ocean respond to fast moving storms? In this study we investigate the effect of a violent storm that progressed over Western Europe between the 27th of February and the 1st of March 2010 on sub-daily vertical GPS (Global Positioning System) position time series of the French GNSS permanent network (RGP). Xynthia was a huge low-pressure system (pressure drop of 40 mbar and a storm surge of 1.4 m (at La Rochelle tide gauge)) that crossed France from the southwest to the northeast over the course of about 20 hours. We study the different behaviour of the coastal and inland sites based on the comparison of the estimated 6-hourly stand-alone GPS position time series (GINS-PC software) with the local pressure and the predicted atmospheric pressure loading time series derived from the high resolution Modern-Era Retrospective Analysis for Research and Applications (NASA MERRA) and also the European Centre for Medium-Range Weather Forecasts (ECMWF) global dataset. We model the predicted displacements using the inverse barometer (IB) and the non-IB ocean response cases as endpoints. Predicted loading effects due to the atmospheric pressure and IB ocean reach up to 1.0, 1.3 and 13.7 mm for the east, north and up components, respectively. Then we attempt to use the GPS vertical surface displacements, the surface pressure, and tide gauge data (SONEL) to identify the true ocean dynamics on the continental shelf during the passage of this fast moving system. Keywords: GPS, GINS-PC, Xynthia, ocean dynamics, atmospheric pressure loading, deformation

  11. Vibration characteristics of the HPOTP (High-Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Moyer, D. S.

    1984-01-01

    Attention is given to rotor dynamic problems that have been encountered and eliminated in the course of Space Shuttle Main Engine (SSME) development, as well as continuing, subsynchronous problems which are being encountered in the development of a 109-percent power level engine. The basic model for the SSME's High Pressure Oxygen Turbopump (HPOTP) encompasses a structural dynamic model for the rotor and housing, and component models for the liquid and gas seals, turbine clearance excitation forces, and impeller diffuser forces. Linear model results are used to examine the synchronous response and stability characteristics of the HPOTP, with attention to bearing load and stability problems associated with the second critical speed. Differences between linear and nonlinear model results are discussed and explained in terms of simple models. Simulation results indicate that while synchronous bearing loads can be reduced, subsynchronous motion is not eliminated by seal modifications.

  12. Nutrient loading and consumers: Agents of change in open-coast macrophyte assemblages

    PubMed Central

    Nielsen, Karina J.

    2003-01-01

    Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities. PMID:12796509

  13. Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages.

    PubMed

    Nielsen, Karina J

    2003-06-24

    Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities.

  14. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  15. Analysis of continuous GPS measurements from southern Victoria Land, Antarctica

    USGS Publications Warehouse

    Willis, Michael J.

    2007-01-01

    Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.

  16. Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1980-01-01

    The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.

  17. An unsteady lifting surface method for single rotation propellers

    NASA Technical Reports Server (NTRS)

    Williams, Marc H.

    1990-01-01

    The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.

  18. Cardiopulmonary baroreceptors affect reflexive startle eye blink.

    PubMed

    Richter, S; Schulz, A; Port, J; Blumenthal, T D; Schächinger, H

    2009-12-07

    Baroafferent signals originating from the 'high pressure' arterial vascular system are known to impact reflexive startle eye blink responding. However, it is not known whether baroafferent feedback of the 'low pressure' cardiopulmonary system loading status exerts a similar effect. Lower Body Negative Pressure (LBNP) at gradients of 0, -10, -20, and -30mm Hg was applied to unload cardiopulmonary baroreceptors. Acoustic startle noise bursts were delivered 230 and 530ms after spontaneous R-waves, when arterial baroreceptors are either loaded or unloaded. Eye blink responses were measured by EMG, and psychomotor reaction time by button pushes to startle stimuli. The new finding of this study was that unloading of cardiopulmonary baroreceptors increases startle eye blink responsiveness. Furthermore, we replicated the effect of relative loading/unloading of arterial baroreceptors on startle eye blink responsiveness. Effects of either arterial or cardiopulmonary baroreceptor manipulations were not present for psychomotor reaction times. These results demonstrate that the loading status of cardiopulmonary baroreceptors has an impact on brainstem-based CNS processes.

  19. Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions

    NASA Astrophysics Data System (ADS)

    Said, M.

    Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.

  20. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.

    PubMed

    Actis, Jason A; Honegger, Jasmin D; Gates, Deanna H; Petrella, Anthony J; Nolasco, Luis A; Silverman, Anne K

    2018-02-08

    Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ice sheet load cycling and fluid underpressures in the Eastern Michigan Basin, Ontario, Canada

    USGS Publications Warehouse

    Neuzil, Christopher E.; Provost, Alden M.

    2014-01-01

    Strong fluid underpressures have been detected in Paleozoic strata in the eastern Michigan Basin, with hydraulic heads reaching ~400 m below land surface (~4 MPa underpressure) and ~200 m below sea level in strata where unusually low permeabilities (~10−20–10−23 m2) were measured in situ. Multiple glaciations, including three with as much as 3 km of ice cover at the site in the last 120 ka, suggest a causal link with the underpressures. We examined this possibility using a one-dimensional groundwater flow model incorporating mechanical loading from both ice weight and lithospheric flexure. Because hydrologic and mechanical changes during glaciation are not well characterized and subsurface properties are imperfectly known, the model was used inversely to estimate flexural loads and loosely constrained permeabilities by matching observed pressures. Acceptable matches were obtained for a surprisingly wide range of scenarios with permeabilities close to measured values and plausible flexural loads. Matches were not obtained when too many parameters were preselected, or when permeabilities were constrained to be significantly larger than measured values. In successful model runs groundwater expulsion under glacial-mechanical loads caused the underpressuring, and flexural loads were important if aquifer and sub-glacial pressures were significantly elevated during glaciation. Simulated fluid pressures in the low-permeability strata fluctuated by 30–40 MPa during glacial cycles but resulted in advective transport of only tens of meters or less. Although other mechanisms cannot be ruled out, we conclude that glacial-mechanical forcing of a water-saturated system can explain the observed underpressures.

  2. Evacuation of coal from hoppers/silos with low pressure pneumatic blasting systems

    NASA Technical Reports Server (NTRS)

    Fischer, J. S.

    1977-01-01

    The need for an efficient, economical, effective and quiet device for moving coal and other difficult bulk solids was recognized. Thus came the advent of the low pressure pneumatic blasting system - a very efficient means of using a small amount of plant air (up to 125 PSI) to eliminate the most troublesome material hang-ups in storage containers. This simple device has one moving part and uses approximately 3% of the air consumed by a pneumatic vibrator on the same job. The principle of operation is very simple: air stored in the unit's reservoir is expelled directly into the material via a patented quick release valve. The number, size, and placement of the blaster units on the storage vessel is determined by a series of tests to ascertain flowability of the problem material. These tests in conjunction with the hopper or silo configuration determine specification of a low pressure pneumatic blasting system. This concept has often proven effective in solving flow problems when all other means have failed.

  3. Effect of geometry and operating conditions on spur gear system power loss

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    The results of an analysis of the effects of spur gear size, pitch, width and ratio on total mesh power loss for a wide range of speeds, torques and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine-pitched gears had higher peak efficiencies but lower part-load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full-load loss except at low speeds.

  4. Perceived parental food controlling practices are related to obesogenic or leptogenic child life style behaviors.

    PubMed

    Van Strien, Tatjana; van Niekerk, Rianne; Ouwens, Machteld A

    2009-08-01

    To better understand whether the parental food controlling practices pressure and restriction to eat are obesity preventing or obesity promoting, this study examined whether these parenting practices are related to other (food or non-food) areas that are generally regarded as obesogenic or leptogenic. Are these foods controlling practices more indicative of obesogenic or leptogenic child life style behaviors? In a sample of 7-12-year-old boys and girls (n = 943) the perceived parental food controlling practices were related to various measures for unhealthy life style. Using factor analysis we assessed whether there is a constellation of lifestyle behaviors that is potentially obesogenic or leptogenic. Remarkably, perceived parental restriction and pressure loaded on two different factors. Perceived parental restriction to eat had a negative loading on a factor that further comprised potential obesogenic child life style behaviors, such as snacking (positive loading), time spend with screen media (television or computer) (positive loadings) and frequency of fruit consumption (negative loading). Perceived parental pressure to eat had a positive loading on a factor that further comprised potential leptogenic life style behaviors such as frequency of eating a breakfast meal and sporting (positive loadings). It is concluded that low perceived parental restriction in regard to food may perhaps be a sign of more uninvolved 'neglecting' or indulgent parenting/obesogenic home environment, whereas high perceived parental pressure to eat may be sign of a more 'concerned' leptogenic parenting/home environment, though more research into style of parenting is needed.

  5. Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    1994-01-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  6. Launchers and Improved Components for 4.5 in. Rockets

    DTIC Science & Technology

    1946-02-09

    Engagements 132 Loading 133 Release 133 "Dig In" Characteristic 133 Cushioning 134 TABLE OF CONTENTS (Conttd) PAGE *Overshooting" in Loading 134 Effect on... loaded for a cold climate and used in a hot climate without removing some of the propellent powder there will be danger of its bursting. Conversely, if...it is loaded for use in a hot climate, there vwill not be sufficient powder for firing at low temperature. A regulating pressure device that would

  7. Contact characteristics of the subtalar joint after a simulated calcaneus fracture.

    PubMed

    Sangeorzan, B J; Ananthakrishnan, D; Tencer, A F

    1995-06-01

    A simple calcaneus fracture consisting of two parts was modeled in nine fresh cadaver hindfoot specimens to assess changes in subtalar joint contact characteristics with increasing plantar depression of the posterolateral fracture component. To perform the experiment, rods were placed in the tibial and fibular shafts of each specimen, which was mounted in a frame in neutral stance. A pneumatic cylinder was used to deliver a vertical compressive load through the rods into the foot while permitting free motion of the foot in the horizontal plane. Sealed packets of pressure-sensitive film were inserted into the anterior-middle and posterior facets of the talocalcaneal articulation, and a 700-N load was applied. After testing of the intact foot, a primary fracture line was created using a microoscillating saw. The osteotomized posterolateral component was anatomically reduced and fixed, the film inserted, and the load reapplied. The test was repeated after the posterolateral fragment was displaced 2, 5, and 10 mm in a plantar direction. The resulting pressure prints were scanned along with pressure/color density calibration strips using a flat-bed scanner, and an image analysis system was used to determine contact areas within specified pressure intervals. The contact area (> 0.5 MPa) of the posterior facet was significantly decreased with 2, 5, and 10 mm displacements of the posterolateral calcaneus fracture component. The ratio of high-pressure area (< 5.0 MPa) to contact area in the posterior facet was significantly increased only with displacements of 5 and 10 mm. There were no significant changes in any contact parameters in the anterior-middle facet.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The influence of hyaluronan on the structure of a DPPC-bilayer under high pressures.

    PubMed

    Zander, Thomas; Wieland, D C Florian; Raj, Akanksha; Wang, Min; Nowak, Benedikt; Krywka, Christina; Dėdinaitė, Andra; Claesson, Per Martin; Garamus, Vasil M; Schreyer, Andreas; Willumeit-Römer, Regine

    2016-06-01

    The superior lubrication properties of synovial joints have inspired many studies aiming at uncovering the molecular mechanisms which give rise to low friction and wear. However, the mechanisms are not fully understood yet, and, in particular, it has not been elucidated how the biolubricants present at the interface of cartilage respond to high pressures, which arise during high loads of joints. In this study we utilize a simple model system composed of two biomolecules that have been implied as being important for joint lubrication. It consists of a solid supported dipalmitoylphosphatidylcholin (DPPC) bilayer, which was formed via vesicles fusion on a flat Si wafer, and the anionic polysaccharide hyaluronan (HA). We first characterized the structure of the HA layer that adsorbed to the DPPC bilayers at ambient pressure and different temperatures using X-ray reflectivity (XRR) measurements. Next, XRR was utilized to evaluate the response of the system to high hydrostatic pressures, up to 2kbar (200MPa), at three different temperatures. By means of fluorescence microscopy images the distribution of DPPC and HA on the surface was visualized. Our data suggest that HA adsorbs to the headgroup region that is oriented towards the water side of the supported bilayer. Phase transitions of the bilayer in response to temperature and pressure changes were also observed in presence and absence of HA. Our results reveal a higher stability against high hydrostatic pressures for DPPC/HA composite layers compared to that of the DPPC bilayer in absence of HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sonic-boom-induced building structure responses including damage.

    NASA Technical Reports Server (NTRS)

    Clarkson, B. L.; Mayes, W. H.

    1972-01-01

    Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.

  10. Testing of a controller for a hybrid capillary pumped loop thermal control system

    NASA Technical Reports Server (NTRS)

    Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave

    1989-01-01

    A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.

  11. Bearing Capacity Assessment on low Volume Roads

    NASA Astrophysics Data System (ADS)

    Zariņš, A.

    2015-11-01

    A large part of Latvian road network consists of low traffic volume roads and in particular of roads without hard pavement. Unbounded pavements shows serious problems in the form of rutting and other deformations, which finally lead to weak serviceability and damage of the road structure after intensive exploitation periods. Traditionally, these problems have been associated with heavy goods transport, overloaded vehicles and their impact. To find the specific damaging factors causing road pavement deformations and evaluate their prevention possibilities, and establish conditions that will allow doing it, the study was carried out. The tire pressure has been set as the main factor of load. Two different tire pressures have been used in tests and their impacts were compared. The comparison was done using deflection measurements with LWD together with dielectric constant measurements in a road structure using percometer. Measurements were taken in the upper pavement structure layers at different depths during full-scale loading and in different moisture/temperature conditions. Advisable load intensity and load factors for heavy traffic according to road conditions were set based on the study results.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NEIL K. MCDOUGALD

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this projectmore » was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.« less

  13. A High-Sensitivity Hydraulic Load Cell for Small Kitchen Appliances

    PubMed Central

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application. PMID:22163665

  14. A high-sensitivity hydraulic load cell for small kitchen appliances.

    PubMed

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application.

  15. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics

    NASA Astrophysics Data System (ADS)

    Labay, C.; Buxadera-Palomero, J.; Avilés, M.; Canal, C.; Ginebra, M. P.

    2016-08-01

    Beta-tricalcium phosphate (β-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies.

  16. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    NASA Astrophysics Data System (ADS)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was utilized to simulate the shock loading and twin evolution for these loading conditions. The second part of this research ties into the modeling efforts. Within the model for predicting twin volume fraction is a twin growth equation and a constant describing the stress at which the twin nucleation will occur. By using a constant value for the twin nucleation stress modeling efforts fail to accurately predict the growth and final twin volume fraction. A second shock loading experimental study combined with high strain rate compression tests using a split Hopkinson pressure bar were completed to determine a twin nucleation stress equation as a function of dislocation density. Steel specimens were subjected to cold rolling to 3% strain and subsequently impacted using the gas gun at different pressures. The increase in dislocation density due to pre-straining substantially increased the twin nucleation stress indicating that twin nucleation stress in dependent upon prior strain history. This has been explained in terms of the velocity and generation rates of both perfect and partial dislocations. An explicit form of the critical twin nucleation stress was developed and parameters were determined through plate impact tests and low temperature (77K) SHPB compression tests. The final component in studying deformation twin mechanisms in BCC steel extends the research to the post-impact mechanical properties and how the twin volume fraction affects the dynamic flow stress. Compression tests between 293K and 923K at an average strain rate of 4700 s-1 were completed on the as-received and 3% pre-strained steels in both the initial condition and after being impacted at pressures of 6GPa and 11GPa. Results of the experimental testing were used in a thermal activation model in order to distinguish separate components in the microstructure contributing to the enhanced flow stress caused by the shock loading. It has been shown that the dislocations generated from shock loading are equivalent to those produced under lower rate straining and the addition of deformation twins in the microstructure contribute to the athermal stress by adding to the long range barriers.

  17. Triple-loaded single-anchor stitch configurations: an analysis of cyclically loaded suture-tendon interface security.

    PubMed

    Coons, David A; Barber, F Alan; Herbert, Morley A

    2006-11-01

    This study evaluated the strength and suture-tendon interface security of different suture configurations from triple-suture-loaded anchors. A juvenile bovine infraspinatus tendon was detached and repaired by use of 4 different suture combinations from 2 suture anchors: 3 simple sutures in each anchor (ThreeVo anchor; Linvatec, Largo, FL); 2 peripheral simple stitches and 1 central horizontal mattress suture passed deeper into the tendon, creating a larger footprint (bigfoot-print anchor); 2 peripheral simple stitches with 1 central horizontal mattress stitch passed through the same holes as the simple sutures (stitch-of-Burns); and 2 simple stitches (TwoVo anchor; Linvatec). The constructs were cyclically loaded between 10 N and 180 N for 3,500 cycles and then destructively tested. The number of cycles required to create a 5-mm gap and a 10-mm gap and the ultimate load to failure and failure mode were recorded. The ThreeVo anchor was strongest and most resistant to cyclic loading (P < .01). The TwoVo anchor was least resistant to cyclic loading. The stitch-of-Burns anchor was more resistant to cyclic loading than both the bigfoot-print anchor and the TwoVo anchor (P < .03). The ThreeVo, stitch-of-Burns, and TwoVo anchors were stronger than the bigfoot-print anchor (P < .05). Three simple sutures in an anchor hold better than two simple sutures. Three simple sutures provide superior suture-tendon security than combinations of one mattress and two simple stitches subjected to cyclic loading. A central mattress stitch placed more medially than two peripheral simple stitches (bigfoot-print anchor) configured to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as three simple stitches (ThreeVo anchor). Placing a central mattress stitch more medially than 2 peripheral simple stitches to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as 3 simple stitches.

  18. Measuring Pressure Has a New Standard

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.

  19. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip.

    PubMed

    Comtet, Jean; Jensen, Kaare H; Turgeon, Robert; Stroock, Abraham D; Hosoi, A E

    2017-03-20

    Vascular plants rely on differences in osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as Münch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem sugar concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems, counterintuitively, to occur by means of passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the non-linear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, the phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of Münch transport, where the phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies.

  20. A Venturi microregulator array module for distributed pressure control

    PubMed Central

    Chang, Dustin S.; Langelier, Sean M.; Zeitoun, Ramsey I.

    2010-01-01

    Pressure-driven flow control systems are a critical component in many microfluidic devices. Compartmentalization of this functionality into a stand-alone module possessing a simple interface would allow reduction of the number of pneumatic interconnects required for fluidic control. Ideally, such a module would also be sufficiently compact for implementation in portable platforms. In our current work, we show the feasibility of using a modular array of Venturi pressure microregulators for coordinated droplet manipulation. The arrayed microregulators share a single pressure input and are capable of outputting electronically controlled pressures that can be independently set between ±1.3 kPa. Because the Venturi microregulator operates by thermal perturbation of a choked gas flow, this output range corresponds to a temperature variation between 20 and 95°C. Using the array, we demonstrate loading, splitting, merging, and independent movement of multiple droplets in a valveless microchannel network. PMID:20938490

  1. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  2. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    PubMed

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Hydrogen storage container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  4. Structural testing and analysis of a braided, inflatable fabric torus structure

    NASA Astrophysics Data System (ADS)

    Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.

    2017-10-01

    Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.

  5. Susceptibility of experimental faults to pore pressure increase: insights from load-controlled experiments on calcite-bearing rocks

    NASA Astrophysics Data System (ADS)

    Spagnuolo, Elena; Violay, Marie; Nielsen, Stefan; Cornelio, Chiara; Di Toro, Giulio

    2017-04-01

    Fluid pressure has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). Terzaghi's principle states that the effective normal stress is linearly reduced by a pore pressure (Pf) increase σeff=σn(1 - αPf), where the effective stress parameter α, may be related to the fraction of the fault area that is flooded. A value of α =1 is often used by default, with Pf shifting the Mohr circle towards lower normal effective stresses and anticipating failure on pre-existing faults. However, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on calcite-bearing rock samples (Carrara marble) at room humidity conditions and in the presence of pore fluids (drained conditions) using a rotary apparatus (SHIVA). A pre-cut fault is loaded by constant shear stress τ under constant normal stress σn=15 MPa until a target value corresponding roughly to the 80 % of the frictional fault strength. The pore pressure Pf is then raised with regular pressure and time steps to induce fault instability. Assuming α=1 and a threshold for instability τp_eff=μp σeff, the experiments reveal that an increase of Pf does not necessarily induce an instability even when the effective strength threshold is largely surpassed (e.g., τp_eff=1.3 μpσeff). This result may indicate that the Pf increase did not instantly diffuse throughout the slip zone, but took a finite time to equilibrate with the external imposed pressure increase due to finite permeability. Under our experimental conditions, a significant departure from α=1 is observed provided that the Pf step is shorter than about < 20s. We interpret this delay as indicative of the diffusion time (td), which is related to fluid penetration length l by l = √ κtd-, where κ is the hydraulic diffusivity on the fault plane. We show that a simple cubic law relates td to hydraulic aperture, pore pressure gradient and injection rate. We redefine α as the ratio between the fluid penetration length and sample dimension L resulting in α = min(√ktd,L) L. Under several pore pressure loading rates this relation yields an approximate hydraulic diffusivity κ ˜10-8 m2 s-1 which is compatible, for example, with a low porosity shale. Our results highlight that a high injection flow rate in fault plane do not necessarily induce seismogenic fault slip: a critical pore penetration length or fluid patch size is necessary to trigger fault instability.

  6. Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film.

    PubMed

    Liu, Weijie; Liu, Nishuang; Yue, Yang; Rao, Jiangyu; Cheng, Feng; Su, Jun; Liu, Zhitian; Gao, Yihua

    2018-04-01

    Piezoresistive sensor is a promising pressure sensor due to its attractive advantages including uncomplicated signal collection, simple manufacture, economical and practical characteristics. Here, a flexible and highly sensitive pressure sensor based on wrinkled graphene film (WGF)/innerconnected polyvinyl alcohol (PVA) nanowires/interdigital electrodes is fabricated. Due to the synergistic effect between WGF and innerconnected PVA nanowires, the as-prepared pressure sensor realizes a high sensitivity of 28.34 kPa -1 . In addition, the device is able to discern lightweight rice about 22.4 mg (≈2.24 Pa) and shows excellent durability and reliability after 6000 repeated loading and unloading cycles. What is more, the device can detect subtle pulse beat and monitor various human movement behaviors in real-time. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Excavating and loading equipment for peat mining

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.

    2017-10-01

    Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.

  8. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts

    PubMed Central

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-01-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  9. A High-Value, Low-Cost Bubble Continuous Positive Airway Pressure System for Low-Resource Settings: Technical Assessment and Initial Case Reports

    PubMed Central

    Brown, Jocelyn; Machen, Heather; Kawaza, Kondwani; Mwanza, Zondiwe; Iniguez, Suzanne; Lang, Hans; Gest, Alfred; Kennedy, Neil; Miros, Robert; Richards-Kortum, Rebecca; Molyneux, Elizabeth; Oden, Maria

    2013-01-01

    Acute respiratory infections are the leading cause of global child mortality. In the developing world, nasal oxygen therapy is often the only treatment option for babies who are suffering from respiratory distress. Without the added pressure of bubble Continuous Positive Airway Pressure (bCPAP) which helps maintain alveoli open, babies struggle to breathe and can suffer serious complications, and frequently death. A stand-alone bCPAP device can cost $6,000, too expensive for most developing world hospitals. Here, we describe the design and technical evaluation of a new, rugged bCPAP system that can be made in small volume for a cost-of-goods of approximately $350. Moreover, because of its simple design—consumer-grade pumps, medical tubing, and regulators—it requires only the simple replacement of a <$1 diaphragm approximately every 2 years for maintenance. The low-cost bCPAP device delivers pressure and flow equivalent to those of a reference bCPAP system used in the developed world. We describe the initial clinical cases of a child with bronchiolitis and a neonate with respiratory distress who were treated successfully with the new bCPAP device. PMID:23372661

  10. Blast-Loading Assessment of Multi-Energy Flash Computed Tomography (MEFCT) Diagnostic

    DTIC Science & Technology

    2016-08-01

    Perrella JA, Sturgill JM. Design of a simple blast pressure gauge based on a heterodyne velocimetry measuring technique. Aberdeen Proving Ground (MD...position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or...of the radiation dose throughout the angular span of the 150-, 300-, and 450-kV flash X-ray sources used in the MEFCT diagnostic: left image shows

  11. Graphite-fiber-reinforced polyimide liners of various compositions in plain spherical bearings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1978-01-01

    A plain spherical bearing design with a ball diameter of 28.6 mm, a race length of 12.7 mm, and a 1.7-mm-thick, molded composite liner was evaluated. The liner material is a self-lubricating composite of graphite-fiber-reinforced polyimide resin (GFRPI). The liner is prepared by transfer molding a mixture of one part chopped graphite fiber and one part partially polymerized resin into the space between the bearing ball and the outer race and then completing the polymerization under heat and pressure. Several liner compositions were evaluated: two types of polyimide, condensation and addition; two types of graphite fiber, low and high modulus; and four powder additives - cadmium oxide, cadmium iodide, graphite fluoride, and molybdenum disulfide. The bearings were oscillated + or - 15 deg at 1 Hz for 20 kilocycles under a radial unit load of 29 MN sq m (4200 psi) in dry air at 25, 200, or 315 C. Both types of fiber and polyimide gave low friction and wear. A simple equation was developed to fit the wear-time data and adequately predicted wear to 100 kilocycles.

  12. Effects of cognitive appraisal and mental workload factors on performance in an arithmetic task.

    PubMed

    Galy, Edith; Mélan, Claudine

    2015-12-01

    We showed in a previous study an additive interaction between intrinsic and extraneous cognitive loads and of participants' alertness in an 1-back working memory task. The interaction between intrinsic and extraneous cognitive loads was only observed when participants' alertness was low (i.e. in the morning). As alertness is known to reflect an individual's general functional state, we suggested that the working memory capacity available for germane cognitive load depends on a participant's functional state, in addition to intrinsic and extraneous loads induced by the task and task conditions. The relationships between the different load types and their assessment by specific load measures gave rise to a modified cognitive load model. The aim of the present study was to complete the model by determining to what extent and at what processing level an individual's characteristics intervene in order to implement efficient strategies in a working memory task. Therefore, the study explored participants' cognitive appraisal of the situation in addition to the load factors considered previously-task difficulty, time pressure and alertness. Each participant performed a mental arithmetic task in four different cognitive load conditions (crossover of two task difficulty conditions and of two time pressure conditions), both while their alertness was low (9 a.m.) and high (4 p.m.). Results confirmed an additive effect of task difficulty and time pressure, previously reported in the 1-back memory task, thereby lending further support to the modified cognitive load model. Further, in the high intrinsic and extraneous load condition, performance was reduced on the morning session (i.e. when alertness was low) on one hand, and in those participants' having a threat appraisal of the situation on the other hand. When these factors were included into the analysis, a performance drop occurred in the morning irrespective of cognitive appraisal, and with threat appraisal in the afternoon (i.e. high alertness). Taken together, these findings indicate that mental overload can be the result of a combination of subject-related characteristics, including alertness and cognitive appraisal, in addition to well-documented task-related components (intrinsic and extraneous load). As the factors investigated in the study are known to be critically involved in a number of real job-activities, the findings suggest that solutions designed to reduce incidents and accidents at work should consider the situation from a global perspective, including individual characteristics, task parameters, and work organization, rather than dealing with each factor separately.

  13. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  14. High-tip-speed, low-loading transonic fan stage. Part 3: Final report

    NASA Technical Reports Server (NTRS)

    Ware, T. C.; Kobayashi, R. J.; Jackson, R. J.

    1974-01-01

    Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips.

  15. Calcium with the β-tin structure at high pressure and low temperature

    PubMed Central

    Li, Bing; Ding, Yang; Yang, Wenge; Wang, Lin; Zou, Bo; Shu, Jinfu; Sinogeikin, Stas; Park, Changyong; Zou, Guangtian; Mao, Ho-kwang

    2012-01-01

    Using synchrotron high-pressure X-ray diffraction at cryogenic temperatures, we have established the phase diagram for calcium up to 110 GPa and 5–300 K. We discovered the long-sought for theoretically predicted β-tin structured calcium with I41/amd symmetry at 35 GPa in a s mall low-temperature range below 10 K, thus resolving the enigma of absence of this lowest enthalpy phase. The stability and relations among various distorted simple-cubic phases in the Ca-III region have also been examined and clarified over a wide range of high pressures and low temperatures. PMID:23012455

  16. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  17. Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity

    PubMed Central

    Gibney, Kyla D.; Aligbe, Enimielen; Eggleston, Brady A.; Nunes, Sarah R.; Kerkhoff, Willa G.; Dean, Cassandra L.; Kwakye, Leslie D.

    2017-01-01

    The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller’s inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information. PMID:28163675

  18. Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity.

    PubMed

    Gibney, Kyla D; Aligbe, Enimielen; Eggleston, Brady A; Nunes, Sarah R; Kerkhoff, Willa G; Dean, Cassandra L; Kwakye, Leslie D

    2017-01-01

    The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller's inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information.

  19. The Response of Simple Polymer Structures Under Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  20. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  1. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  2. An analytical study of the effects of transverse shear deformation and anisotropy on buckling loads of laminated cylinders. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1987-01-01

    Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.

  3. Numerical Modelling and Analysis of Hydrostatic Thrust Air Bearings for High Loading Capacities and Low Air Consumption

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    The paper presents a numerical simulation study on hydrostatic thrust air bearings to assess the load capacity, compressed air consumptions, and the dynamic response. Finite Difference Method (FDM) and Finite Volume Method (FVM) are combined to solve the non-linear Reynolds equation to find the pressure distribution of the air bearing gas film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, supplied pressure, depth of the groove and external load, are investigated based on the proposed FDM model. The simulation results show that the thrust air bearings with a groove have a higher load capacity and air consumption than without a groove, and the load capacity and air consumption both increase with the depth of the groove. Bearings without the groove are better damped than those with the grooves, and the stability of thrust bearing decreases when the groove depth increases. The stability of the thrust bearings is also affected by their loading.

  4. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  5. Time pressure and attention allocation effect on upper limb motion steadiness.

    PubMed

    Liu, Sicong; Eklund, Robert C; Tenenbaum, Gershon

    2015-01-01

    Following ironic process theory (IPT), the authors aimed at investigating how attentional allocation affects participants' upper limb motion steadiness under low and high levels of mental load. A secondary purpose was to examine the validity of skin conductance level in measuring perception of pressure. The study consisted of 1 within-participant factor (i.e., phase: baseline, test) and 4 between-participant factors (i.e., gender: male, female; mental load: fake time constraints, no time constraints; attention: positive, suppressive; order: baseline → → → test, test → → baseline). Eighty college students (40 men and 40 women, Mage = 20.20 years, SD(age) = 1.52 years) participated in the study. Gender-stratified random assignment was employed in a 2 × 2 × 2 × 2 × 2 mixed experimental design. The findings generally support IPT but its predictions on motor performance under mental load may not be entirely accurate. Unlike men, women's performance was not susceptible to manipulations of mental load and attention allocation. The validity of skin conductance readings as an index of pressure perception was called into question.

  6. Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube

    NASA Astrophysics Data System (ADS)

    Alok, Praveen; Sahu, Debjyoti

    2018-02-01

    Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.

  7. Development of longitudinally excited CO2 laser

    NASA Astrophysics Data System (ADS)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  8. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2016-09-01

    The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pressure demagnetization of the Martian crust: Ground truth from SNC meteorites

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Rochette, Pierre; Gattacceca, Jérôme; Sadykov, Ravil A.; Trukhin, Vladimir I.

    2007-12-01

    We performed hydrostatic pressure demagnetization experiments up to 1.3 GPa on Martian meteorites: nakhlite NWA998 (magnetite-bearing), basaltic shergottites NWA1068 (pyrrhotite-bearing) and Los Angeles (titanomagnetite-bearing) as well as terrestrial rocks: rhyolite (hematite-bearing) and basalt (titanomagnetite-bearing), using a new non-magnetic high-pressure cell. The detailed description of measuring techniques and experimental set-up is presented. We found that under 1.3 GPa the samples lost up to 54% of their initial saturation isothermal remanent magnetization (IRM). Repeated loading resulted in a further decrease of magnetization of the samples. Our experiments show that the resistance of IRM to hydrostatic pressure is not exclusively controlled by the remanent coercivity of the sample, but is strongly dependant on its magnetic mineralogy. There is no simple equivalence between pressure demagnetization and alternating field demagnetization. The extrapolation of these results of pressure demagnetization of IRM of Martian meteorites to the demagnetization of the Martian crust by impacts is discussed.

  10. A hybrid floating brush seal (HFBS) for improved sealing and wear performance in turbomachinery applications

    NASA Astrophysics Data System (ADS)

    Lattime, Scott Byran

    A conceptually new type of seal has been developed for gas turbine applications which dramatically reduces wear and leakage associated with current labyrinth and brush seal technologies. The Hybrid Floating Brush Seal (HFBS) combines brush seal and film riding face seal technologies to create a hybrid seal that allows both axial and radial excursions of the sealed shaft, while simultaneously eliminating interface surface speeds (friction and heat) between the rotor and the brush material that characterize standard brush seal technology. A simple test rig was designed to evaluate feasibility of the HFBS under relatively low pressures and rotational speeds (50psig, 5krpm). A second test stand was created to study the effects of centrifugal force on bristle deflection. A third test facility was constructed for prototype development and extensive room temperature testing at moderate pressures and fairly high rotational speeds (100psig, 40krpm). This test rig also allowed the evaluation of the HFBS during axial movement of a rotating shaft. An analytical model to predict the effects of centrifugal force on the bristles of a rotating brush seal was developed. Room temperature analysis of the HFBS proved successful for relatively high operating rotational velocities at moderate pressures with very acceptable leakage rates for gas turbine engines. Brush seals were able to track rotor speeds up to 24krpm while maintaining sealing integrity. The HFBS's ability to function under axial shaft displacement and synchronous dynamic radial loading was also proven successful. Hydrodynamic performance of the face seal was proven to provide adequate stiffness and load carrying capacity to keep the brush seal from contacting the face seal at pressure drops across the brush of up to 100psi. Leakage performance over standard brush seal and labyrinth technology was quite dramatic. The HFBS showed its sealing advantage using much higher radial interference between the rotor and the bristle bore over standard brush seal designs. Experimental results of the HFBS showed leakage reductions of 6 to 7 times that of a standard brush seal at the same operating pressure ratios and rotational speed and an order of magnitude less than numerical predictions of a standard labyrinth seal. (Abstract shortened by UMI.)

  11. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  12. Elastic and viscoelastic model of the stress history of sedimentary rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less

  13. Zooming in on the cause of the perceptual load effect in the go/no-go paradigm.

    PubMed

    Chen, Zhe; Cave, Kyle R

    2016-08-01

    Perceptual load theory (Lavie, 2005) claims that attentional capacity that is not used for the current task is allocated to irrelevant distractors. It predicts that if the attentional demands of the current task are high, distractor interference will be low. One particularly powerful demonstration of perceptual load effects on distractor processing relies on a go/no-go cue that is interpreted by either simple feature detection or feature conjunction (Lavie, 1995). However, a possible alternative interpretation of these effects is that the differential degree of distractor processing is caused by how broadly attention is allocated (attentional zoom) rather than to perceptual load. In 4 experiments, we show that when stimuli are arranged to equalize the extent of spatial attention across conditions, distractor interference varies little whether cues are defined by a simple feature or a conjunction, and that the typical perceptual load effect emerges only when attentional zoom can covary with perceptual load. These results suggest that attentional zoom can account for the differential degree of distractor processing traditionally attributed to perceptual load in the go/no-go paradigm. They also provide new insight into how different factors interact to control distractor interference. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions

    NASA Astrophysics Data System (ADS)

    Said, Magdi A.

    2004-01-01

    The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jiwen; Song, Yang, E-mail: yang.song@uwo.ca; Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the solemore » product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.« less

  16. Mass loading in the solar wind interaction with Venus and Mars

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Bauer, S. J.; Krymskii, A. M.; Mitnitskii, V. Ya.

    1989-03-01

    An analysis of available experimental data and theoretical concepts indicates that the interaction of the solar wind (SW) on the subsolar side with Venus, which has no intrinsic magnetic field, and with Mars, which has a small intrinsic magnetic field, is determined by the solar wind dynamic pressure with a contribution from the neutral planetary atmosphere to this interaction. The pattern of the SW interaction with these planets is different in principle for high and low dynamic pressures of the SW and is related to the varying intensity of ion formation processes (the SW Mass loading effect) in the vicinity of the SW obstacle boundary, which moves for different SW dynamic pressures into regions of different neutral atmosphere density. For moderate or high SW dynamic pressures, the subsolar Martian magnetosphere is also affected by this process. Results of numerical simulations of the SW-Mars interaction for a magnetospheric obstacle boundary at an altitude of 300 km are presented. To estimate the relative role of photoionization and charge exchange processes and their effect on the shock front position, different versions of the mass loading effect were separately calculated.

  17. Central arterial pressure assessment with intensity POF sensor

    NASA Astrophysics Data System (ADS)

    Leitão, Cátia; Gonçalves, Steve; Antunes, Paulo; Bastos, José M.; Pinto, João. L.; André, Paulo

    2015-09-01

    The central pressure monitoring is considered a new key factor in hypertension assessment and cardiovascular prevention. In this work, it is presented the central arterial systolic pressure assessment with an intensity based POF sensor. The device was tested in four subjects, and stable pulse waves were obtained, allowing the calculation of the central pressure for all the subjects. The results shown that the sensor performs reliably, being a simple and low-cost solution to the intended application.

  18. Damage Arresting Composites

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Davis, Pamela A.

    2015-01-01

    Under NASA's Environmentally Responsible Aviation Project (ERA) the most promising vehicle concepts and technologies that can simultaneously reduce aircraft fuel use, community noise, and emissions are being evaluated. Two key factors to accomplishing these goals are reducing structural weight and moving away from the traditional tube and wing aircraft configuration to a shape that has improved lift and less drag. The hybrid wing body (HWB) configuration produces more lift and less drag by smoothly joining the wings to the center fuselage section so it provides aerodynamic advantages. This shape, however, presents structural challenges with its pressurized, non-circular cabin subjected to aerodynamic flight loads. In the HWB, the structure of the center section where the passenger cabin would be located must support large in-plane loads as well as internal pressure on nearly-flat panels and right-angle joints. This structural arrangement does not lend itself to simple, efficient designs. Traditional aluminum and even state-of-the-art composites do not provide a solution to this challenge.

  19. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom segment and is trapped by the flange on the top dome segment when these components are bolted together with high-strength bolts. The pressure dome has several unique features. It is made (to ASME Pressure Vessel guidelines) in a high-strength aluminum alloy with the strength of stainless steel and the weight benefits of aluminum. The flange of the upper dome portion contains specially machined flats for mounting the dome, and other flats dedicated to the special feedthroughs for electrical connections. A pressure dome can be increased in length to house larger stacks (more cells) of the same diameter with the simple addition of a cylindrical segment. To aid in dome assembly, two stainless steel rings are employed. One is used beneath the heads of the high-strength bolts in lieu of individual hardened washers, and another is used instead of individual nuts. Like electrolyzers could be operated at low or high pressures simply by operating the electrolyzer outside or inside a pressurized dome.

  20. Effect of Water Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu-Mg Alloy Over Wide-Range Stress Intensity Factor Loading

    DTIC Science & Technology

    2014-05-07

    impacts: (a) crack closure, (b) transport of water vapor molecules within the fatigue crack (47], and (c) tensile stress-plastic strain range...sealed stainless steel UHV chamber. Pure water vapor was introduced from a sealed glass flask containing triply distilled water, via a precision leak...lamellar for H1 flow in a fatigue crack in steel ; specifically, flow is dominated by the low dynamic viscosity of a gas (particularly at low pressures) and

  1. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Guan, Jiwen; Song, Yang

    2016-06-01

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  2. The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.

  3. Investigation of Phenomena of Discrete Wingtip Jets

    DTIC Science & Technology

    1988-08-01

    larger than that in no-blowing case, this implied that the aerodynamic loading of the wing model increased in latter case. 3.3. SURFACE PRESSURE...results show that the improvement in the pressure distribution was different from that of the winglet . The winglet utilizes the principle of pressure...Ayers, R. F. and Wilde, M. R., " An experimental investigation of the aerodynamic characteristics of a low aspect ratio swept wing with blowing in a

  4. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    NASA Astrophysics Data System (ADS)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  5. Quantifying the Influence of Lightning Strike Pressure Loading on Composite Specimen Damage

    NASA Astrophysics Data System (ADS)

    Foster, P.; Abdelal, G.; Murphy, A.

    2018-04-01

    Experimental work has shown that a component of lightning strike damage is caused by a mechanical loading. As the profile of the pressure loading is unknown a number of authors propose different pressure loads, varying in form, application area and magnitude. The objective of this paper is to investigate the potential contribution of pressure loading to composite specimen damage. This is achieved through a simulation study using an established modelling approach for composite damage prediction. The study examines the proposed shockwave loads from the literature. The simulation results are compared with measured test specimen damage examining the form and scale of damage. The results for the first time quantify the significance of pressure loading, demonstrating that although a pressure load can cause damage consistent with that measured experimentally, it has a negligible contribution to the overall scale of damage. Moreover the requirements for a pressure to create the damage behaviours typically witnessed in testing requires that the pressure load be within a very precise window of magnitude and loading area.

  6. Psychometric evaluation of the Polish adaptation of the Hill-Bone Compliance to High Blood Pressure Therapy Scale.

    PubMed

    Uchmanowicz, Izabella; Jankowska-Polańska, Beata; Chudiak, Anna; Szymańska-Chabowska, Anna; Mazur, Grzegorz

    2016-05-10

    Development of simple instruments for the determination of the level of adherence in patients with high blood pressure is the subject of ongoing research. One such instrument, gaining growing popularity worldwide, is the Hill-Bone Compliance to High Blood Pressure Therapy. The aim of this study was to adapt and to test the reliability of the Polish version of Hill-Bone Compliance to High Blood Pressure Therapy Scale. A standard guideline was used for the translation and cultural adaptation of the English version of the Hill-Bone Compliance to High Blood Pressure Therapy Scale into Polish. The study included 117 Polish patients with hypertension aged between 27 and 90 years, among them 53 men and 64 women. Cronbach's alpha was used for analysing the internal consistency of the scale. The mean score in the reduced sodium intake subscale was M = 5.7 points (standard deviation SD = 1.6 points). The mean score in the appointment-keeping subscale was M = 3.4 points (standard deviation SD = 1.4 points). The mean score in the medication-taking subscale was M = 11.6 points (standard deviation SD = 3.3 points). In the principal component analysis, the three-factor system (1 - medication-taking, 2 - appointment-keeping, 3 - reduced sodium intake) accounted for 53 % of total variance. All questions had factor loadings > 0.4. The medication-taking subscale: most questions (6 out of 9) had the highest loadings with Factor 1. The appointment-keeping subscale: all questions (2 out of 2) had the highest loadings with Factor 2. The reduced sodium intake subscale: most questions (2 out of 3) had the highest loadings with Factor 3. Goodness of fit was tested at chi(2) = 248.87; p < 0.001. The Cronbach's alpha score for the entire questionnaire was 0.851. The Hill-Bone Compliance to High Blood Pressure Therapy Scale proved to be suitable for use in the Polish population. Use of this screening tool for the assessment of adherence to BP treatment is recommended.

  7. The mechanics of decompressive craniectomy: Bulging in idealized geometries

    NASA Astrophysics Data System (ADS)

    Weickenmeier, Johannes; Kuhl, Ellen; Goriely, Alain

    2016-11-01

    In extreme cases of traumatic brain injury or a stroke, the resulting uncontrollable swelling of the brain may lead to a harmful increase of the intracranial pressure. As a common measure for immediate release of pressure on the brain, part of the skull is surgically removed allowing for the brain to bulge outwards, a procedure known as a decompressive craniectomy. During this excessive brain swelling, the affected tissue typically undergoes large deformations resulting in a complex three-dimensional mechanical loading state with several important implications on optimal treatment strategies and outcome. Here, as a first step towards a better understanding of the mechanics of a decompressive craniectomy, we consider simple models for the bulging of elastic solids under geometric constraints representative of the surgical intervention. In small deformations and simple geometries, the exact solution of this problem is derived from the theory of contact mechanics. The analysis of these solutions reveals a number of interesting generic features relevant for the mechanics of craniectomy.

  8. Constant load and constant volume response of municipal solid waste in simple shear.

    PubMed

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biomechanical comparison of single-row arthroscopic rotator cuff repair technique versus transosseous repair technique.

    PubMed

    Tocci, Stephen L; Tashjian, Robert Z; Leventhal, Evan; Spenciner, David B; Green, Andrew; Fleming, Braden C

    2008-01-01

    This study determined the effect of tear size on gap formation of single-row simple-suture arthroscopic rotator cuff repair (ARCR) vs transosseous Mason-Allen suture open RCR (ORCR) in 13 pairs of human cadaveric shoulders. A massive tear was created in 6 pairs and a large tear in 7. Repairs were cyclically tested in low-load and high-load conditions, with no significant difference in gap formation. Under low-load, gapping was greater in massive tears. Under high-load, there was a trend toward increased gap with ARCR for large tears. All repairs of massive tears failed in high-load. Gapping was greater posteriorly in massive tears for both techniques. Gap formation of a modeled RCR depends upon the tear size. ARCR of larger tears may have higher failure rates than ORCR, and the posterior aspect appears to be the site of maximum gapping. Specific attention should be directed toward maximizing initial fixation of larger rotator cuff tears, especially at the posterior aspect.

  10. Activation energy of the low-load NaCl transition from nanoindentation loading curves.

    PubMed

    Kaupp, Gerd

    2014-01-01

    Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.

  11. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  12. Experience Gained from Construction of Low-Emission Combustion Chambers for On-Land Large-Capacity Gas-Turbine Units: GT24/26

    NASA Astrophysics Data System (ADS)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.; Gutnik, M. M.

    2018-06-01

    This article is the third in a planned series of articles devoted to the experience gained around the world in constructing low-emission combustion chambers for on-land large-capacity (above 250 MW) gas-turbine units (GTUs). The aim of this study is to generalize and analyze the ways in which different designers apply the fuel flow and combustion arrangement principles and the fuel feed control methods. The considered here GT24 and GT26 (GT24/26) gas-turbine units generating electric power at the 60 and 50 Hz frequencies, respectively, are fitted with burners of identical designs. Designed by ABB, these GTUs were previously manufactured by Alstom, and now they are produced by Ansaldo Energia. The efficiency of these GTUs reaches 41% at the 354 MW power output during operation in the simple cycle and 60.5% at the 505MW power output during operation in the combined cycle. Both GTUs comply with all requirements for harmful emissions. The compression ratio is equal to 35. In this article, a system is considered for two-stage fuel combustion in two sequentially arranged low-emission combustion chambers, one of which is placed upstream of the high-pressure turbine (CC1) and the other upstream of the low-pressure turbine (CC2). The article places the main focus on the CC2, which operates with a decreased content of oxygen in the oxidizer supplied to the burner inlets. The original designs of vortex generators and nozzles placed in the flow of hot combustion products going out from the high-pressure turbine are described in detail. The article also presents an original CC2 front plate cooling system, due to which a significantly smaller amount of air fed for cooling has been reached. The article also presents the pressure damping devices incorporated in the chamber, the use of which made it possible to obtain a significantly wider range of CC loads at which its low-emission operation is ensured. The fuel feed adjustment principles and the combustion control methods implemented in the low-emission combustion chambers of this GTU are of interest from the scientific and practical points of view.

  13. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.

    PubMed

    Ma, Lin; Weisman, Catherine; Baltean-Carlès, Diana; Delbende, Ivan; Bauwens, Luc

    2015-08-01

    The influence of a resistive load on the starting performance of a standing-wave thermoacoustic engine is investigated numerically. The model used is based upon a low Mach number assumption; it couples the two-dimensional nonlinear flow and heat exchange within the thermoacoustic active cell with one-dimensional linear acoustics in the loaded resonator. For a given engine geometry, prescribed temperatures at the heat exchangers, prescribed mean pressure, and prescribed load, results from a simulation in the time domain include the evolution of the acoustic pressure in the active cell. That signal is then analyzed, extracting growth rate and frequency of the dominant modes. For a given load, the temperature difference between the two sides is then varied; the most unstable mode is identified and so is the corresponding critical temperature ratio between heater and cooler. Next, varying the load, a stability diagram is obtained, potentially with a predictive value. Results are compared with those derived from Rott's linear theory as well as with experimental results found in the literature.

  14. Energy efficient engine, low-pressure turbine boundary layer program

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1981-01-01

    A study was conducted to investigate development of boundary layers under the influence of velocity distributions simulating the suction side of two state-of-the-art turbine airfoils: a forward loaded airfoil (squared-off design) and an aft loaded airfoil (aft-loaded design). These velocity distributions were simulated in a boundary layer wind tunnel. Detailed measurements of boundary layer mean velocity and turbulence intensity profiles were obtained for an inlet turbulence level of 2.4 percent and an exit Reynolds number of 800,000. Flush-mounted hot film probes identified the boundary layer transition regimes in the adverse pressure gradient regions for both velocity distributions. Wall intermittency data showed good agreement with the correlations of Dhawan and Narasimha for the intermittency factor distribution in transitional flow regimes.

  15. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    NASA Technical Reports Server (NTRS)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and test scale. The amplitude and frequency of oscillations varied considerably over the pump s operating space, making it difficult to predict blade loads.

  16. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  17. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure.

    PubMed

    Correia, Cristina; Pereira, Ana L; Duarte, Ana R C; Frias, Ana M; Pedro, Adriano J; Oliveira, João T; Sousa, Rui A; Reis, Rui L

    2012-10-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner.

  18. Recommendations to the NRC (Nuclear Regulatory Commission) for Review Criteria for Alternative Methods of Low-Level Radioactive Waste Disposal. Task 2A. Below-Ground Vaults.

    DTIC Science & Technology

    1988-01-01

    Settlements ........ 2.6-21 2.6.2.7.4.2 Total Settleme. t ... 2.6-21 2.6.2.7.4.3 Lateral Deformations ........ 2.6-22 2.6.2.7.5 Limits for Soil Loads and...otherwise specified, such as construction loads , etc. 2.1-2 F - Loads due to lateral and vertical pressure of incidental liquids. H - Loads due to lateral ...design loads , as well as forces and moments imposed by the continuity of the structural framing system. Columns should be designed to sustain all design

  19. Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Seok; Park, Hee-Young; Choi, Insoo; Cho, Min Kyung; Kim, Hyoung-Juhn; Yoo, Sung Jong; Henkensmeier, Dirk; Kim, Jin Young; Nam, Suk Woo; Park, Sehkyu; Lee, Kwan-Young; Jang, Jong Hyun

    2016-03-01

    The effect of temperature and pressure, and diffusion layer thickness is assessed on performance of a proton exchange membrane water electrolyzers (PEMWEs) with an ultralow iridium oxide (IrO2) loading (0.1 mg cm-2) anode prepared by electrodeposition and a Pt/C catalyzed cathode with a Pt loading of 0.4 mg cm-2. Increasing pressure to 2.5 bar at 120 °C enhances the water electrolysis current, so the anode electrodeposited with 0.1 mg cm-2 IrO2 gives a current density of 1.79 A cm-2 at 1.6 V, which is comparable to the conventional powder-type IrO2 electrode with 2.0 mg cm-2 at a temperature of 120 °C and pressure of 2.5 bar. The major factors for cell performances are rationalized in terms of overpotentials, water flow rates and thickness of diffusion layers, based on polarization behavior and ac-impedance response.

  20. Fatigue analyses of the prototype Francis runners based on site measurements and simulations

    NASA Astrophysics Data System (ADS)

    Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N.

    2014-03-01

    With the increasing development of solar power and wind power which give an unstable output to the electrical grid, hydropower is required to give a rapid and flexible compensation, and the hydraulic turbines have to operate at off-design conditions frequently. Prototype Francis runners suffer from strong vibrations induced by high pressure pulsations at part load, low part load, speed-no-load and during start-stops and load rejections. Fatigue and damage may be caused by the alternating stress on the runner blades. Therefore, it becomes increasingly important to carry out fatigue analysis and life time assessment of the prototype Francis runners, especially at off-design conditions. This paper presents the fatigue analyses of the prototype Francis runners based on the strain gauge site measurements and numerical simulations. In the case of low part load, speed-no-load and transient events, since the Francis runners are subjected to complex hydraulic loading, which shows a stochastic characteristic, the rainflow counting method is used to obtain the number of cycles for various dynamic amplitude ranges. From middle load to full load, pressure pulsations caused by Rotor-stator- Interaction become the dominant hydraulic excitation of the runners. Forced response analysis is performed to calculate the maximum dynamic stress. The agreement between numerical and experimental stresses is evaluated using linear regression method. Taking into account the effect of the static stress on the S-N curve, the Miner's rule, a linear cumulative fatigue damage theory, is employed to calculate the damage factors of the prototype Francis runners at various operating conditions. The relative damage factors of the runners at different operating points are compared and discussed in detail.

  1. A low-friction high-load thrust bearing and the human hip joint.

    PubMed

    McIlraith, A H

    2010-06-01

    A hydrostatic thrust bearing operating at a pressure of 130 MPa and with a coefficient of friction rising to 0.004 in 6 days is described. It consists of interleaved oil-coated Mylar and brass sheets, each 0.1 mm thick. At this pressure, the Mylar deforms to reveal a pool of lubricant bounded by contacting layers at its edges where the pressure tapers off to zero. Thus, most of the load is borne by the oil so its effective Coulomb (slip-stick) friction is very low. Expressions for the effective coefficient of friction, the area of the solid-to-solid contact and the torque needed to rotate the bearing are given in terms of its geometry, the viscosity of the lubricant and elapsed time. The mechanism of a bearing with similar geometry and properties, the human hip joint, is compared with this plastic bearing. While their low friction properties arise from the same basic cause, the different natures of their soft deformable materials lead to the hip joint having a much wider range of action. This work is an example of new engineering leading to a fresh insight into an action of Nature, which in turn suggests an improvement in engineering.

  2. Measuring Viscosities of Gases at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  3. Molecular dynamics simulation of shock-wave loading of copper and titanium

    NASA Astrophysics Data System (ADS)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  4. Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    2018-05-01

    Phenotypic switching is one of the mechanisms by which bacteria thrive in ever changing environmental conditions around them. Earlier studies have shown that the application of steady high hydrostatic pressure leads to stochastic switching of mesophilic bacteria from a cellular phenotype having a normal cell cycle to another phenotype lacking cell division. Here, we have studied the dynamics of this phenotypic switching with fluctuating periodic pressure using a set of experiments and a theoretical model. Our results suggest that the phenotypic switching rate from high-pressure phenotype to low-pressure phenotype in the reversible regime is larger as compared to the switching rate from low-pressure phenotype to high-pressure phenotype. Furthermore, we find that even though the cell division and elongation are presumably regulated by a large number of genes the underlying physics of the dynamics of stochastic switching at high pressure is captured reasonably well by a simple two-state model.

  5. Load responsive multilayer insulation performance testing

    NASA Astrophysics Data System (ADS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  6. [Modeling of experimental hypertension by chronic salt loading combined with a low-protein diet in Wistar rats].

    PubMed

    Strekalova, V V; Khachirov, D G; Dedenkov, A N; Suvorov, Iu I; Shvatsabaia, I K

    1989-01-01

    Combination of chronic salt loading with protein-poor diet produces experimental hypertension with natrium consumption near to physiological. The present model is characterized, compared to the existing one, by stage development, moderate arterial blood pressure elevation and absence of "salt toxicosis" and may be thus considered more adequate for experimental investigation of primary arterial hypertension pathophysiology.

  7. Crystal structure of simple metals at high pressures

    NASA Astrophysics Data System (ADS)

    Degtyareva, Olga

    2010-09-01

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  8. METAShield: Hot Metallic Aeroshell Concept for RLV/SOV

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Poteet, Carl C.; Daryabeigi, Kamran; Nowak, Robert J.; Hsu, Su-Yuen; Schmidt, Irvin H.; Ku, Shih-Huei P.

    2003-01-01

    An innovative fuselage design approach that combines many desirable operational features with a simple and efficient structural approach is being developed by NASA. The approach, named METAShield for MEtallic TransAtmospheric Shield, utilizes lightly loaded, hot aeroshell structures surrounding integral propellant tanks that carry the primary structural loads. The aeroshells are designed to withstand the local pressure loads, transmitting them to the tanks with minimal restraint of thermal growth. No additional thermal protection system protects the METAShield, and a fibrous or multilayer insulation blanket, located in the space between the aeroshell and the tanks, serves as both high temperature and cryogenic insulation for the tanks. The concept is described in detail, and the performance and operational features are highlighted. Initial design results and analyses of the structural, thermal, and thermal-structural performance are described. Computational results evaluating resistance to hypervelocity impact damage, as well as some supporting aerothermal wind tunnel results. are also presented. Future development needs are summarized.

  9. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  10. Pain management after laparoscopic cholecystectomy-a randomized prospective trial of low pressure and standard pressure pneumoperitoneum.

    PubMed

    Singla, Sanjeev; Mittal, Geeta; Raghav; Mittal, Rajinder K

    2014-02-01

    Abdominal pain and shoulder tip pain after laparoscopic cholecystectomy are distressing for the patient. Various causes of this pain are peritoneal stretching and diaphragmatic irritation by high intra-abdominal pressure caused by pneumoperitoneum . We designed a study to compare the post operative pain after laparoscopic cholecystectomy at low pressure (7-8 mm of Hg) and standard pressure technique (12-14 mm of Hg). Aim : To compare the effect of low pressure and standard pressure pneumoperitoneum in post laparoscopic cholecystectomy pain . Further to study the safety of low pressure pneumoperitoneum in laparoscopic cholecystectomy. A prospective randomised double blind study. A prospective randomised double blind study was done in 100 ASA grade I & II patients. They were divided into two groups -50 each. Group A patients underwent laparoscopic cholecystectomy with low pressure pneumoperitoneum (7-8 mm Hg) while group B underwent laparoscopic cholecystectomy with standard pressure pneumoperitoneum (12-13 mm Hg). Both the groups were compared for pain intensity, analgesic requirement and complications. Demographic data and intraoperative complications were analysed using chi-square test. Frequency of pain, intensity of pain and analgesics consumption was compared by applying ANOVA test. Post-operative pain score was significantly less in low pressure group as compared to standard pressure group. Number of patients requiring rescue analgesic doses was more in standard pressure group . This was statistically significant. Also total analgesic consumption was more in standard pressure group. There was no difference in intraoperative complications. This study demonstrates the use of simple expedient of reducing the pressure of pneumoperitoneum to 8 mm results in reduction in both intensity and frequency of post-operative pain and hence early recovery and better outcome.This study also shows that low pressure technique is safe with comparable rate of intraoperative complications.

  11. Rethinking the connection between working memory and language impairment.

    PubMed

    Archibald, Lisa M D; Harder Griebeling, Katherine

    2016-05-01

    Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. To examine the processing function of working memory in children with low language (LL) by employing tasks imposing increasing processing loads with constant storage demands individually adjusted based on each participant's short-term memory capacity. School-age groups with LL (n = 17) and typical language with either average (n = 28) or above-average nonverbal intelligence (n = 15) completed complex working memory-span tasks varying processing load while keeping storage demands constant, varying storage demands while keeping processing load constant, simple storage-span tasks, and measures of language and nonverbal intelligence. Teachers completed questionnaires about cognition and learning. Significantly lower scores were found for the LL than either matched group on storage-based tasks, but no group differences were found on the tasks varying processing load. Teachers' ratings of oral expression and mathematics abilities discriminated those who did or did not complete the most challenging cognitive tasks. The results implicate a deficit in the phonological storage but not in the central executive component of working memory for children with LL. Teacher ratings may reveal personality traits related to perseverance of effort in cognitive research. © 2015 Royal College of Speech and Language Therapists.

  12. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (OA148), volume 5

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in wind tunnel test OA148 are presented. The objectives of the test series were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 orbiter in the thermal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes.

  13. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  14. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor.

    PubMed

    Zhang, Yanhao; Zhong, Fohua; Xia, Siqing; Wang, Xuejiang; Li, Jixiang

    2009-10-15

    A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.

  15. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    PubMed

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  16. Proceedings of the International Cryocoolers Conference (4th) Held in Easton, Maryland on 25-26 September 1986

    DTIC Science & Technology

    1987-10-30

    simple relationship for the required refrigerant mass flow rate, m, for a given cooling load, q1l m = where Ah is the enthalpy difference between the cool...compressor concepts were tested to determine their performance. No measurable difference in performance was found and the first, more compact, concept was...resulting change in orifice size adjusts the mass flow rate through the valve. By reducing excursions in the pressure difference across the J-T valve, the

  17. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  18. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  19. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  20. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  1. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  2. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  3. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  4. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  5. Calculated and measured stresses in simple panels subject to intense random acoustic loading including the near noise field of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Lassiter, Leslie W; Hess, Robert W

    1958-01-01

    Flat 2024-t3 aluminum panels measuring 11 inches by 13 inches were tested in the near noise fields of a 4-inch air jet and turbojet engine. The stresses which were developed in the panels are compared with those calculated by generalized harmonic analysis. The calculated and measured stresses were found to be in good agreement. In order to make the stress calculations, supplementary data relating to the transfer characteristics, damping, and static response of flat and curved panels under periodic loading are necessary and were determined experimentally. In addition, an appendix containing detailed data on the near pressure field of the turbojet engine is included.

  6. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.

  7. Theoretical and Experimental Aspects of Acoustic Modelling of Engine Exhaust Systems with Applications to a Vacuum Pump

    NASA Astrophysics Data System (ADS)

    Sridhara, Basavapatna Sitaramaiah

    In an internal combustion engine, the engine is the noise source and the exhaust pipe is the main transmitter of noise. Mufflers are often used to reduce engine noise level in the exhaust pipe. To optimize a muffler design, a series of experiments could be conducted using various mufflers installed in the exhaust pipe. For each configuration, the radiated sound pressure could be measured. However, this is not a very efficient method. A second approach would be to develop a scheme involving only a few measurements which can predict the radiated sound pressure at a specified distance from the open end of the exhaust pipe. In this work, the engine exhaust system was modelled as a lumped source-muffler-termination system. An expression for the predicted sound pressure level was derived in terms of the source and termination impedances, and the muffler geometry. The pressure source and monopole radiation models were used for the source and the open end of the exhaust pipe. The four pole parameters were used to relate the acoustic properties at two different cross sections of the muffler and the pipe. The developed formulation was verified through a series of experiments. Two loudspeakers and a reciprocating type vacuum pump were used as sound sources during the tests. The source impedance was measured using the direct, two-load and four-load methods. A simple expansion chamber and a side-branch resonator were used as mufflers. Sound pressure level measurements for the prediction scheme were made for several source-muffler and source-straight pipe combinations. The predicted and measured sound pressure levels were compared for all cases considered. In all cases, correlation of the experimental results and those predicted by the developed expressions was good. Predicted and measured values of the insertion loss of the mufflers were compared. The agreement between the two was good. Also, an error analysis of the four-load method was done.

  8. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requiresmore » that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.« less

  9. Effects of age and the use of hands-free cellular phones on driving behavior and task performance.

    PubMed

    Liu, Yung-Ching; Ou, Yang-Kun

    2011-12-01

    This study used a driving simulator to investigate the effect of using a Bluetooth hands-free cellular phone earpiece on the driving behavior of two age groups. Forty-eight participants (24 aged 20-26 and 24 aged 65-73) were examined to assess their performance on the following divided-attention tasks under 2 driving load conditions (high and low): (1) attempting to maintain the speed limit and (2) using a cellular phone while driving. The length of the call conversation (long vs. short) and the conversational content (complex vs. simple) were manipulated as within-subject independent variables. The driving behavior of the participants, their task reaction times and accuracy, and subjective ratings were collected as dependent variables. The results indicate that under low driving loads, short talk times, and simple conversational content, the driving behavior of the participants showed low variance in the vehicle's mean speed. In contrast, complex conversation had a significantly negative impact on driving behavior. Notably, under a low driving load, motorists' driving behaviors, measured in lateral acceleration, caused significantly smaller variance in complex conversations compared to no call and simple conversations. The use of a hands-free cellular phone affected the performance (acceleration, lane deviation, reaction time, and accuracy) of older drivers significantly more than younger drivers. While performing divided attention tasks, the accuracy of the older drivers was 66.3 percent and that of the younger drivers was 96.3 percent. Although this study did not find a clear impact of cellular phone use on the driving behavior of younger drivers, their divided-attention task reaction times and accuracy were better under no-call than calling conditions. This study indicates that the use of hands-free cellular phones could significantly affect the safety of driving among the older and present risks, although lesser, for younger drivers.

  10. Type 2 diabetes and impaired glucose tolerance are associated with word memory source monitoring recollection deficits but not simple recognition familiarity deficits following water, low glycaemic load, and high glycaemic load breakfasts.

    PubMed

    Lamport, Daniel J; Lawton, Clare L; Mansfield, Michael W; Moulin, Chris A J; Dye, Louise

    2014-01-30

    It has been established that type 2 diabetes, and to some extent, impaired glucose tolerance (IGT), are associated with general neuropsychological impairments in episodic memory. However, the effect of abnormalities in glucose metabolism on specific retrieval processes such as source monitoring has not been investigated. The primary aim was to investigate the impact of type 2 diabetes and IGT on simple word recognition (familiarity) and complex source monitoring (recollection). A secondary aim was to examine the effect of acute breakfast glycaemic load manipulations on episodic memory. Data are presented from two separate studies; (i) 24 adults with type 2 diabetes and 12 controls aged 45-75years, (ii) 18 females with IGT and 47 female controls aged 30-50years. Controls were matched for age, IQ, BMI, waist circumference, and depression. Recognition of previously learned words and memory for specifically which list a previously learned word had appeared in (source monitoring) was examined at two test sessions during the morning after consumption of low glycaemic load, high glycaemic load and water breakfasts according to a counterbalanced, crossover design. Type 2 diabetes (p<0.05) and IGT (p<0.01) were associated with significant source monitoring recollection deficits but not impairments in familiarity. Impairments were only observed in the late postprandial stage at the second test session. These impairments were not attenuated by the breakfast glycaemic load manipulations. Isolated source monitoring recollection deficits indicate that abnormalities in glucose metabolism are not detrimental for global episodic memory processes. This enhances our understanding of how metabolic disorders are associated with memory impairments. © 2013.

  11. Simple go/no-go test for subcritical damage in body armor panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Jason; Chimenti, D. E.

    2011-06-23

    The development of a simple test for subcritical damage in body armor panels using pressure-sensitive dye-indicator film has been performed and demonstrated effective. Measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Impacts from hard blunt impactors instrumented with an accelerometer and embedded force transducer were studied. Reliable correlations between the indicator film and instrumented impact force are shown for a range of impact energies. Force and acceleration waveforms with corresponding indicator film results are presented for impact events onto damaged and undamaged panels. We find that panel damage can occur at impact levels farmore » below the National Institute of Justice acceptance test standard.« less

  12. All solution-processed micro-structured flexible electrodes for low-cost light-emitting pressure sensors fabrication.

    PubMed

    Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun

    2017-07-31

    Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.

  13. Complete inhibition of creatine kinase in isolated perfused rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts aremore » able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.« less

  14. Practical problems relating to the hovercraft application of marine gas turbines

    NASA Astrophysics Data System (ADS)

    Jin-Zhang, Z.

    Design specifications of the marine gas turbine in a hovercraft application are discussed, in addition to the requirements for load distribution of the turbine power in this application. The effective load of the gas turbine is found to be about 57 percent higher than that of the air-cooled diesel engine, and a comparison between the two engines indicates that the effective load of the diesel-driven boat becomes advantageous only when the endurance is more than 26 hours. A multistage filter for air-water separation could reduce the salt content to less than 0.01 ppm where the pressure loss is less than 100 mm water head, and a low profile-resistance ejector without a mixing section could be developed to reduce the engine room pressure to the 45-50 C range.

  15. Constraints on Pore Pressure in Subduction Zones From Geotechnical Tests and Physical Properties Data

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.

    2005-12-01

    At subduction zones, as incoming sediments are either offscraped or underthrust at the trench, elevated pore pressures result from the combination of rapid loading and low permeability. Pore pressure within underthrust sediment is especially important for the mechanical strength of the plate boundary fault system, because the main décollement localizes immediately above this sediment, and at many subduction zones steps downward into it. Because the underthrust sediment undergoes progressive uniaxial (vertical) strain, quantitative estimates of in situ pore pressure can be obtained by several methods, including: (1) maximum past burial stress ( Pv'}) from laboratory consolidation tests on core samples, and (2) observed compaction trends in boreholes. These methods allow a detailed view of pore pressure and its variability down-section, providing insight into dewatering processes and the evolution of shear strength relevant to early development of the décollement. Geotechnical tests also provide independent measurement of the coefficient of consolidation ( Cv), compressibility ( mv), and permeability (k) of sediment samples, which can be used to parameterize forward models of pressure generation. Here, I discuss pore pressure estimates derived from (1) consolidation tests on core samples, and (2) observed porosity profiles, along transects where ODP drilling has sampled sediment at the Nankai, N. Barbados, and Costa Rican subduction zones. At all three margins, the two independent methods yield consistent results, and indicate development of significant overpressures that increase systematically with distance from the trench. The values are in good agreement with direct measurements in 2 instrumented boreholes at Barbados, maximum and minimum bounds from the known loading rate, and results of 2-D numerical models of fluid flow. Inferred pressures document nearly undrained conditions at the base of the section (excess pressures equal to the load emplaced by subduction burial), and partially drained conditions at the top (excess pressures of ~40% of the undrained response at Costa Rica, ~50-60% at Nankai, and ~90-100% at Barbados). The spatial pattern of excess pore pressure is most consistent with upward drainage to a highly permeable décollement, to distances of at least 5-10 km landward of the trench. When directly measured values of mv and k from laboratory geotechnical experiments are incorporated into simple 1-D models of vertical dewatering, simulated pore pressures are consistent with those inferred from consolidation tests and porosity data. Model results suggest that severe underconsolidation should persist for tens of km from the trench; notably, simulated underconsolidation is diminished by 20-30 km landward of the trench at Nankai, broadly coincident with the locations of both diminished seismic reflection amplitude observed at the décollement and the updip extent of coseismic slip. The consistent results achieved at these three margins indicate that: (1) geotechnical tests can provide viable estimates of in situ pore pressure, at least at shallow depths, and (2) laboratory-derived values of permeability and sediment compressibility may be representative of in situ properties, despite collection at small spatial scale and over short times. However, significant uncertainty exists in projecting models to greater depth using geotechnical parameters from shallow samples; more detailed laboratory investigations are clearly needed to better understand the roles of temperature, rate, and diagenetic effects.

  16. Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.

    1987-01-01

    The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.

  17. Experiment Evaluation of Bifurcation in Sands

    NASA Technical Reports Server (NTRS)

    Alshibi, Khalid A.; Sture, Stein

    2000-01-01

    The basic principles of bifurcation analysis have been established by several investigators, however several issues remain unresolved, specifically how do stress level, grain size distribution, and boundary conditions affect general bifurcation phenomena in pressure sensitive and dilatant materials. General geometrical and kinematics conditions for moving surfaces of discontinuity was derived and applied to problems of instability of solids. In 1962, the theoretical framework of bifurcation by studying the acceleration waves in elasto-plastic (J2) solids were presented. Bifurcation analysis for more specific forms of constitutive behavior was examined by studying localization in pressure-sensitive, dilatant materials, however, analyses were restricted to plane deformation states only. Bifurcation analyses were presented and applied to predict shear band formations in sand under plane strain condition. The properties of discontinuous bifurcation solutions for elastic-plastic solids under axisymmetric and plane strain loading conditions were studied. The study focused on theory, but also references and comparisons to experiments were made. The current paper includes a presentation of a summary of bifurcation analyses for biaxial and triaxial (axisymmetric) loading conditions. The Coulomb model is implemented using incremental piecewise scheme to predict the constitutive relations and shear band inclination angles. Then, a comprehensive evaluation of bifurcation phenomena is presented based on data from triaxial experiments performed under microgravity conditions aboard the Space Shuttle under very low effective confining pressure (0.05 to 1.30 kPa), in which very high peak friction angles (47 to 75 degrees) and dilatancy angles (30 to 31 degrees) were measured. The evaluation will be extended to include biaxial experiments performed on the same material under low (10 kPa) and moderate (100 kPa) confining pressures. A comparison between the behavior under biaxial and triaxial loading conditions will be presented, and related issues concerning influence of confining pressure will be discussed.

  18. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  19. The European Spacelab structural design evolution

    NASA Technical Reports Server (NTRS)

    Thirkettle, A. J.

    1982-01-01

    Spacelab is a manned, reusable laboratory which is being developed for the European Space Agency (ESA). In its working mode it will fly in low earth orbit in the cargo bay of the Shuttle Transportation System (STS) Orbiter. A description is presented of the structural development of the various features of Spacelab. System requirements are considered along with structural requirements, quasi-static loads, acoustic loads, pressure loads, crash loads, ground loads, and the fatigue profile. Aspects of thermal environment generation are discussed, and questions regarding the design evolution of the pallet structure are examined. Details of pallet structure testing are reported, taking into account static strength tests, acoustic tests, the modal survey test, crash tests, and fatigue/fracture mechanics testing.

  20. International Aviation (Selected Articles).

    DTIC Science & Technology

    1982-07-15

    large axial aerodynamic load for a long time, operating life greatly decreased. For this reason, most adopted the following measures: 1) Readjusted...little. This can cause the forward axial force of the entire rotor to increase (this affects the load on the thrust bearing). For this reason, it is...generator. When the prototype is a turbofan , the following method can be adopted to obtain a gas generator: 1. Eliminate the fan and low pressure

  1. On the upper part load vortex rope in Francis turbine: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

  2. Hydromechanical effects of continental glaciation on groundwater systems

    USGS Publications Warehouse

    Neuzil, C.E.

    2012-01-01

    Hydromechanical effects of continental ice sheets may involve considerably more than the widely recognized direct compression of overridden terrains by ice load. Lithospheric flexure, which lags ice advance and retreat, appears capable of causing comparable or greater stress changes. Together, direct and flexural loading may increase fluid pressures by tens of MPa in geologic units unable to drain. If so, fluid pressures in low-permeability formations subject to glaciation may have increased and decreased repeatedly during cycles of Pleistocene glaciation and can again in the future. Being asynchronous and normally oriented, direct and flexural loading presumably cause normal and shear stresses to evolve in a complex fashion through much or all of a glacial cycle. Simulations of fractured rock predict permeability might vary by two to three orders of magnitude under similar stress changes as fractures at different orientations are subjected to changing normal and shear stresses and some become critically stressed. Uncertainties surrounding these processes and their interactions, and the confounding influences of surface hydrologic changes, make it challenging to delineate their effects on groundwater flow and pressure regimes with any specificity. To date, evidence for hydromechanical changes caused by the last glaciation is sparse and inconclusive, comprising a few pressure anomalies attributed to the removal of direct ice load. This may change as more data are gathered, and understanding of relevant processes is refined.

  3. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    NASA Astrophysics Data System (ADS)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  4. Low-pressure membrane integrity tests for drinking water treatment: A review.

    PubMed

    Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P

    2010-01-01

    Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.

  5. Quantification of in situ pore pressure and stress in regions of low frequency earthquakes and anomalously low seismic velocity at the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Saffer, D. M.

    2012-12-01

    Recent seismic reflection and ocean bottom seismometer (OBS) studies reveal broad regions of low seismic velocity along the megathrust plate boundary of the Nankai subduction zone offshore SW Japan. These low velocity zones (LVZ's) extend to ~55 km from the trench, corresponding to depths of >~10 km below sea floor. Elevated pore pressure has been invoked as one potential cause of both the LVZ's and very low frequency earthquakes (VLFE) in the outer forearc. Here, we estimate the in-situ pore fluid pressure and stress state within these LVZ's by combining P-wave velocities (Vp) obtained from seismic reflection and OBS data with well-constrained empirical relations between (1) P-wave velocity and porosity; and (2) porosity and effective mean and differential stresses, defined by triaxial deformation tests on drill core samples of the incoming oceanic sediment. We used cores of Lower Shikoku Basin (LSB) hemipelagic mudstone (322-C0011B-19R-5, initial porosity of 43%), and Middle Shikoku Basin (MSB) tuffaceous sandstone (333-C0011D-51X-2, initial porosity of 46%) that have been recovered from IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Site C0011 (~20 km seaward from the deformation front). Samples were loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension. During the tests, all pressures, axial displacement, and pore volume change were continuously monitored; and ultrasonic velocity and permeability were measured at regular intervals. The relationship between Vp and porosity for LSB mudstone is independent of stress path, and is well fit by an empirical function derived by Hoffman and Tobin [2004] for LSB sediments sampled by drilling along Muroto transect, located ~150 km southwest of the NanTroSEIZE study area. The MSB sandstone exhibits slightly higher P-wave velocity than LSB mudstone at a given porosity. Based on our experimental results, and assuming that the sediments in the LVZ's are at shear failure defined by a critical state stress condition, we estimate that effective vertical stress in the LVZ ranges from 15 MPa at 13 km landward of the trench, to 41 MPa at a distance of 55 km. The maximum horizontal effective stress ranges from 41-124 MPa over this region. Excess pore fluid pressure ranges from 15-81 MPa, corresponding to modified pore pressure ratios, λ* of 0.44-0.73. If LVZ is composed dominantly of sandstones, both the effective vertical and horizontal stresses would be lower, and the excess pore pressure would be higher, with pore pressure ratios λ* = 0.31-0.90. Our results suggest that the sediments have been loaded under poorly drained conditions, and that pore fluids support ≥~53-91 % of the overburden stress along the base of the accretionary wedge across the outer forearc. The low effective stress should lead to a mechanically weak plate boundary, and is spatially correlated with well-located low-frequency earthquakes in the outer accretionary wedge. The heterogeneous distribution of inferred pore pressure also suggests that fluid sources and drainage are localized and possibly transient.

  6. Simple adaptation of the Bridgman high pressure technique for use with liquid media

    NASA Astrophysics Data System (ADS)

    Colombier, E.; Braithwaite, D.

    2007-09-01

    We present a simple novel technique to adapt a standard Bridgman cell for the use of a liquid pressure transmitting medium. The technique has been implemented in a compact cell, able to fit in a commercial Quantum Design PPMS system, and would also be easily adaptable to extreme conditions of very low temperatures or high magnetic fields. Several media have been tested and a mix of fluorinert FC84:FC87 has been shown to produce a considerable improvement over the pressure conditions in the standard steatite solid medium, while allowing a relatively easy setup procedure. For optimized hydrostatic conditions, the success rate is about 80% and the maximum pressure achieved so far is 7.1GPa. Results are shown for the heavy fermion system YbAl3 and for NaV6O15, an insulator showing charge order.

  7. 14 CFR 23.365 - Pressurized cabin loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... landing. (d) The airplane structure must be strong enough to withstand the pressure differential loads... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23... structure must be strong enough to withstand the flight loads combined with pressure differential loads from...

  8. Space Shuttle Main Engine Off-Nominal Low Power Level Operation

    NASA Technical Reports Server (NTRS)

    Bradley, Michael

    1997-01-01

    This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.

  9. Neural control of vascular reactions: impact of emotion and attention.

    PubMed

    Okon-Singer, Hadas; Mehnert, Jan; Hoyer, Jana; Hellrung, Lydia; Schaare, Herma Lina; Dukart, Juergen; Villringer, Arno

    2014-03-19

    This study investigated the neural regions involved in blood pressure reactions to negative stimuli and their possible modulation by attention. Twenty-four healthy human subjects (11 females; age = 24.75 ± 2.49 years) participated in an affective perceptual load task that manipulated attention to negative/neutral distractor pictures. fMRI data were collected simultaneously with continuous recording of peripheral arterial blood pressure. A parametric modulation analysis examined the impact of attention and emotion on the relation between neural activation and blood pressure reactivity during the task. When attention was available for processing the distractor pictures, negative pictures resulted in behavioral interference, neural activation in brain regions previously related to emotion, a transient decrease of blood pressure, and a positive correlation between blood pressure response and activation in a network including prefrontal and parietal regions, the amygdala, caudate, and mid-brain. These effects were modulated by attention; behavioral and neural responses to highly negative distractor pictures (compared with neutral pictures) were smaller or diminished, as was the negative blood pressure response when the central task involved high perceptual load. Furthermore, comparing high and low load revealed enhanced activation in frontoparietal regions implicated in attention control. Our results fit theories emphasizing the role of attention in the control of behavioral and neural reactions to irrelevant emotional distracting information. Our findings furthermore extend the function of attention to the control of autonomous reactions associated with negative emotions by showing altered blood pressure reactions to emotional stimuli, the latter being of potential clinical relevance.

  10. Space shuttle solid rocket booster recovery system definition. Volume 3: SRB water impact loads computer program, user's manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.

  11. Effect of solar loading on greenhouse containers used in transpiration efficiency screening

    USDA-ARS?s Scientific Manuscript database

    Earlier we described a simple high throughput method of screening sorghum for transpiration efficiency (TE). Subsequently it was observed that while results were consistent between lines exhibiting high and low TE, ranking between lines with similar TE was variable. We hypothesized that variable mic...

  12. Crystal structure of simple metals at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyareva, Olga

    2010-10-22

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less

  13. Intravenous cannulation of adolescents does not affect the modulation of autonomic tone assessed by heart rate and blood pressure variability.

    PubMed

    Stewart, J M

    2000-02-01

    Invasive arterial monitoring alters autonomic tone. The effects of intravenous (i.v.) insertion are less clear. The author assessed the effects of i.v. insertion on autonomic activity in patients aged 11 to 19 years prior to head-up tilt by measuring heart rate, blood pressure, heart rate variability, blood pressure variability, and baroreceptor gain before and after i.v. insertion with continuous electrocardiography and arterial tonometry in patients with orthostatic tachycardia syndrome (OTS, N = 21), in patients who experienced simple fainting (N = 14), and in normal control subjects (N = 6). Five-minute samples were collected after 30 minutes supine. Fifteen minutes after i.v. insertion, data were collected again. These 5-minute samples were also collected in a separate control population without i.v. insertion after 30 minutes supine and again 30 minutes later. This population included 12 patients with OTS, 13 patients who experienced simple fainting, and 6 normal control subjects. Heart rate variability included the mean RR, the standard deviation of the RR interval (SDNN), and the root mean square of successive RR differences (RMSSD). Autoregressive spectral modeling was used. Low-frequency power (LFP, 0.04-0.15 Hz), high-frequency power (HFP, 0.15-0.40 Hz), and total power (TP, 0.01-0.40 Hz) were compared. Blood pressure variability included standard deviation of systolic blood pressure, LFP, and HFP. Baroreceptor gain at low frequency and high frequency was calculated from cross-spectral transfer function magnitudes when coherence was greater than 0.5. In patients with OTS, RR (790 +/- 50 msec), SDNN (54 +/- 6 msec), RMSSD (55 +/- 5 msec), LFP (422 +/- 200 ms2/Hz), HFP (846 +/- 400 ms2/Hz), and TP (1550 +/- 320 ms2/Hz) were less than in patients who experienced simple fainting (RR, 940 +/- 50 msec; SDNN, 84 +/- 10 msec; RMSSD, 91 +/- 7 msec; LFP, 880 +/- 342 ms2/Hz; HFP, 1720 +/- 210 ms2/Hz; and TP, 3228 +/- 490 ms2/Hz) or normal control subjects (RR, 920 +/- 30 msec; SDNN, 110 +/- 29 msec; RMSSD, 120 +/- 16 msec; LFP, 1600 +/- 331 ms2/Hz; HFP, 2700 +/- 526 ms2/Hz; and TP, 5400 +/- 1017 ms2/Hz). Blood pressure and blood pressure variability were not different in any group. Standard deviation, LFP, and HFP were, respectively, 5.24 +/- 0.8 mm Hg, 1.2 +/- 0.2, and 1.5 +/- 0.3 for patients with OTS; 4.6 +/- 0.4 mm Hg, 1.2 +/- 0.2, and 1.4 +/- 0.3 for patients who experienced simple fainting; and 5.55 +/- 1.0 mm Hg, 1.4 +/- 0.2, and 1.6 +/- 0.3 for normal control subjects. Baroreceptor gain at low frequency and high frequency in patients with OTS (16 +/- 4 msec/mm Hg, 17 +/- 5) was comparable to that in patients who experienced simple fainting (33 +/- 4, 32 +/- 3) and that in normal control subjects (31 +/- 8, 37 +/- 9). Heart rate variability differed between patients with OTS and patients who experienced simple fainting or normal control subjects, and blood pressure and blood pressure variability were not different, but no parameter changed after i.v. insertion. There were no differences from the groups that did not receive i.v. insertions. Data suggest, at most, a limited effect of i.v. insertion on autonomic function in adolescents.

  14. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure - Pile Internal Capacity

    NASA Astrophysics Data System (ADS)

    Pachla, Henryk

    2017-12-01

    The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  15. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  16. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  17. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  18. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  19. [Measurement of periapical pressure created by occlusal loading].

    PubMed

    Dobó, Nagy Csaba; Fejérdy, Pál; Angyal, János; Harasztosi, Lajos; Daróczi, Lajos; Beke, Dezsó; Wesselink, Paul R

    2004-04-01

    The aim of this study was to develop an in vitro model in which the pressure in the periapical tissues can be measured during loading. Extracted human maxillary central incisors were embedded into resin blocks that had physical characteristics similar to bone and periodontal ligament. Each tooth was loaded with 20, 40, 50, 60, 75, 85, 100, 200, 300 and 450 N vertical forces from the incisal edge of the crown; this procedure was carried out three consecutive times. A minute resistor embedded in the periapical space was used to detect apical pressure changes during occlusal loading. The ratio of apical pressure changes (delta P) to the loading force changes (delta F) was calculated. The periapical pressure detected was in direct proportion to the loading force. The mean value of delta P/delta F was 5.994 kPa/N (SD = 2.04). Direct proportionality was found between the coronal loading and the apical hydrostatic pressure. The (delta P)/(delta F) ratio determined in this study makes it easier to estimate the apical hydrostatic pressure values during occlusal loading of single rooted teeth. In this study the apical pressure generated under occlusal loading was of the same magnitude as that estimated with the finite element method.

  20. Measurement of periapical pressure created by occlusal loading.

    PubMed

    Dobó-Nagy, C; Fejérdy, P; Angyal, J; Harasztosi, L; Daróczi, L; Beke, D; Wesselink, P R

    2003-10-01

    To develop an in vitro model in which the pressure in the periapical tissues can be measured during loading. Extracted human maxillary central incisors were embedded in resin blocks that had physical characteristics similar to those of bone and periodontal ligament. Each tooth was loaded with 20, 40, 50, 60, 75, 85, 100, 200, 300 and 450 N vertical forces from the incisal edge of the crown on three consecutive occasions. A minute resistor embedded in the periapical space was used to detect apical pressure changes during occlusal loading. The ratio of apical pressure changes (DeltaP) to the loading force changes (DeltaF) was calculated. The periapical pressure detected was in direct proportion to the loading force. The mean value of DeltaP/DeltaF was 5.994 kPa N-1 (SD = 2.04). Direct proportionality was found between the coronal loading and the apical hydrostatic pressure. The DeltaP/DeltaF ratio determined in this study makes it easier to estimate the apical hydrostatic pressure values during occlusal loading of single-rooted teeth. In this study, the apical pressure generated under occlusal loading was the same magnitude as that estimated with the finite element method.

  1. Airplane Stress Analysis

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Crook, L H

    1918-01-01

    Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered.

  2. A Self-Reported Adherence Measure to Screen for Elevated HIV Viral Load in Pregnant and Postpartum Women on Antiretroviral Therapy

    PubMed Central

    Brittain, Kirsty; Mellins, Claude A.; Zerbe, Allison; Remien, Robert H.; Abrams, Elaine J.; Myer, Landon; Wilson, Ira B.

    2016-01-01

    Maternal adherence to antiretroviral therapy (ART) is a concern and monitoring adherence presents a significant challenge in low-resource settings. We investigated the association between self-reported adherence, measured using a simple three-item scale, and elevated viral load (VL) among HIV-infected pregnant and postpartum women on ART in Cape Town, South Africa. This is the first reported use of this scale in a non-English speaking setting and it achieved good psychometric characteristics (Cronbach α = 0.79). Among 452 women included in the analysis, only 12 % reported perfect adherence on the self-report scale, while 92 % had a VL <1000 copies/mL. Having a raised VL was consistently associated with lower median adherence scores and the area under the curve for the scale was 0.599, 0.656 and 0.642 using a VL cut-off of ≥50, ≥1000 and ≥10000 copies/mL, respectively. This simple self-report adherence scale shows potential as a first-stage adherence screener in this setting. Maternal adherence monitoring in low resource settings requires attention in the era of universal ART, and the value of this simple adherence scale in routine ART care settings warrants further investigation. PMID:27278548

  3. Load responsive multilayer insulation performance testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dye, S.; Kopelove, A.; Mills, G. L.

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that providemore » high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.« less

  4. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  5. Elastohydrodynamic lubrication of elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1981-01-01

    The determination of the minimum film thickness within contact is considered for both fully flooded and starved conditions. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. The fully flooded results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. These results are applied to materials of high elastic modulus (hard EHL), such as metal, and to materials of low elastic modulus(soft EHL), such as rubber. In addition to the film thickness equations that are developed, contour plots of pressure and film thickness are given which show the essential features of elastohydrodynamically lubricated conjunctions. The crescent shaped region of minimum film thickness, with its side lobes in which the separation between the solids is a minimum, clearly emerges in the numerical solutions. In addition to the 3 presented for the fully flooded results, 15 more cases are used for hard EHL contacts and 18 cases are used for soft EHL contacts in a theoretical study of the influence of lubricant starvation on film thickness and pressure. From the starved results for both hard and soft EHL contacts, a simple and important dimensionless inlet boundary distance is specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Contour plots of pressure and film thickness in and around the contact are shown for conditions.

  6. High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide.

    PubMed

    Li, Shan; Cheng, Ming; Liu, Guannan; Zhao, Lianjing; Zhang, Bo; Gao, Yuan; Lu, Huiying; Wang, Haiyu; Zhao, Jing; Liu, Fangmeng; Yan, Xu; Zhang, Tong; Lu, Geyu

    2018-04-10

    Nitrogen dioxide (NO 2 ), as a typical threatening atmospheric pollutant, is hazardous to the environment and human health. Thus, the development of a gas sensor with high response and low detection limit for NO 2 detection is highly important. The highly ordered mesoporous indium trioxide (In 2 O 3 ) prepared by simple nanocasting method using mesoporous silica as template and decorated with Au nanoparticles was investigated for NO 2 detection. The prepared materials were characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Characterization results showed that the samples exhibited ordered mesostructure and were successfully decorated with Au. The gas sensing performance of the sensors based on a series of Au-loaded mesoporous In 2 O 3 were systematically investigated. The Au loading level strongly affected the sensing performance toward NO 2 . The optimal sensor, which was based on 0.5 wt% Au-loaded In 2 O 3 , displayed high sensor response and low detection limit of 10 ppb at low operating temperature of 65 °C. The excellent sensing properties were mainly attributed to the ordered mesoporous structure and the catalytic performance of Au. We believe that the Au-loaded mesoporous In 2 O 3 can provide a promising platform for NO 2 gas sensors with excellent performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1973-01-01

    The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.

  8. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    PubMed

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-12-01

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  9. [Filtering facepieces: effect of oily aerosol load on penetration through the filtering material].

    PubMed

    Plebani, Carmela; Listrani, S; Di Luigi, M

    2010-01-01

    Electrostatic filters are widely used in applications requiring high filtration efficiency and low pressure drop. However various studies showed that the penetration through electrostatic filters increases during exposure to an aerosol flow. This study investigates the effects of prolonged exposure to an oily aerosol on the penetration through filtering facepieces available on the market. Some samples of FFP1, FFP2 and FFP3 filtering facepieces were exposed for 8 hours consecutively to a paraffin oil polydisperse aerosol. At the end of the exposure about 830 mg of paraffin oil were deposited in the facepiece. All the examined facepieces showed penetration values that increased with paraffin oil load while pressure drop values were substantially the same before and after exposure. The measured maximum penetration values did not exceed the maximum penetration values allowed by the European technical standards, except in one case. According to the literature, 830 mg of oil load in a facepiece is not feasible in workplaces over an eight- hour shift. However, the trend of the penetration versus exposure mass suggests that if the load increases, the penetration may exceed the maximum allowed values. For comparison a mechanical filter was also studied. This showed an initial pressure drop higher than FFP2 filtering facepieces characterized by comparable penetration values. During exposure the pressure drop virtually doubled while penetration did not change. The increase in penetration with no increase in pressure drop in the analyzed facepieces indicates that it is necessary to comply with the information supplied by the manufacturer that restricts their use to a single shift.

  10. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  11. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  12. Relationships of cognitive load on eating and weight-related behaviors of young adults.

    PubMed

    Byrd-Bredbenner, Carol; Quick, Virginia; Koenings, Mallory; Martin-Biggers, Jennifer; Kattelmann, Kendra K

    2016-04-01

    Little is known about the relationship between weight-related behaviors and cognitive load (working memory available to complete mental activities like those required for planning meals, selecting foods, and other health-related decisions). Thus, the purpose of this study was to explore associations between cognitive load and eating behaviors, physical activity, body mass index (BMI), and waist circumference of college students. College students (n=1018) from 13 institutions completed an online survey assessing eating behaviors (e.g., routine and compensatory restraint, emotional eating, and fruit/vegetable intake), stress level, and physical activity level. BMI and waist circumference were measured by trained researchers. A cognitive load score was derived from stress level, time pressure/income needs, race and nationality. High cognitive load participants (n=425) were significantly (P<0.05) more likely to be female, older, and further along in school than those with low cognitive loads (n=593). Compared to low cognitive load participants, high cognitive load participants were significantly more likely to eat <5 cups of fruits/vegetables/day, have greater routine and compensatory restraint, and greater susceptibility to eating in response to external cues and emotional eating. Both males and females with high cognitive load scores had a non-significant trend toward higher BMIs, waist circumferences, and drinking more alcohol than low cognitive load counterparts. In conclusion, cognitive load may be an important contributor to health behaviors. Understanding how cognitive load may affect eating and other weight-related behaviors could potentially lead to improvements in the effectiveness of obesity prevention and intervention programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical simulation, and the physical mechanisms of the inter-blade vortex development is, furthermore, discussed.

  14. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E

    2016-05-01

    Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Magneto-hydrodynamic modeling of gas discharge switches

    NASA Astrophysics Data System (ADS)

    Doiphode, P.; Sakthivel, N.; Sarkar, P.; Chaturvedi, S.

    2002-12-01

    We have performed one-dimensional, time-dependent magneto-hydrodynamic modeling of fast gas-discharge switches. The model has been applied to both high- and low-pressure switches, involving a cylindrical argon-filled cavity. It is assumed that the discharge is initiated in a small channel near the axis of the cylinder. Joule heating in this channel rapidly raises its temperature and pressure. This drives a radial shock wave that heats and ionizes the surrounding low-temperature region, resulting in progressive expansion of the current channel. Our model is able to reproduce this expansion. However, significant difference of detail is observed, as compared with a simple model reported in the literature. In this paper, we present details of our simulations, a comparison with results from the simple model, and a physical interpretation for these differences. This is a first step towards development of a detailed 2-D model for such switches.

  16. Strain measurements of the tibial insert of a knee prosthesis using a knee motion simulator.

    PubMed

    Sera, Toshihiro; Iwai, Yuya; Yamazaki, Takaharu; Tomita, Tetsuya; Yoshikawa, Hideki; Naito, Hisahi; Matsumoto, Takeshi; Tanaka, Masao

    2017-12-01

    The longevity of a knee prosthesis is influenced by the wear of the tibial insert due to its posture and movement. In this study, we assumed that the strain on the tibial insert is one of the main reasons for its wear and investigated the influence of the knee varus-valgus angles on the mechanical stress of the tibial insert. Knee prosthesis motion was simulated using a knee motion simulator based on a parallel-link six degrees-of-freedom actuator and the principal strain and pressure distribution of the tibial insert were measured. In particular, the early stance phase obtained from in vivo X-ray images was examined because the knee is applied to the largest load during extension/flexion movement. The knee varus-valgus angles were 0° (neutral alignment), 3°, and 5° malalignment. Under a neutral orientation, the pressure was higher at the middle and posterior condyles. The first and second principal strains were larger at the high and low pressure areas, respectively. Even for a 3° malalignment, the load was concentrated at one condyle and the positive first principal strain increased dramatically at the high pressure area. The negative second principal strain was large at the low pressure area on the other condyle. The maximum equivalent strain was 1.3-2.1 times larger at the high pressure area. For a 5° malalignment, the maximum equivalent strain increased slightly. These strain and pressure measurements can provide the mechanical stress of the tibial insert in detail for determining the longevity of an artificial knee joint.

  17. High Stress Consolidation, Ultrasonic, and Permeability Measurements: Constraints on Physical Properties and In Situ Stress along the Costa Rica Subduction Plate Interface

    NASA Astrophysics Data System (ADS)

    Winner, A.; Saffer, D. M.; Valdez, R. D.

    2014-12-01

    Sediment permeability and consolidation behavior are key parameters in governing the drainage state and thus potential for excess pore fluid pressure in subduction zones. Elevated pore pressure, in turn, is one important control on the strength and sliding behavior of faults. Along many subduction margins, evidence of elevated, near-lithostatic, in situ pore pressure comes from high seismic reflectivity, low P-wave velocity (Vp), and high Vp/Vs ratios. This inference is broadly supported by numerical modeling studies that indicate elevated pore pressures are likely given high rates of burial and tectonic loading, combined with the low permeability of marine mudstones. Here, we report on a series of high-stress consolidation experiments on sediment core samples from the incoming Cocos plate obtained as part of Integrated Ocean Drilling Program (IODP) Expedition 344. Our experiments were designed to measure the consolidation behavior, permeability, and P-wave velocity of the incoming sediments over a range of confining stresses from .5 to 90 MPa. We explore a range of paths,including isostatic loading (σ1=σ2=σ3), K0 consolidation, in which the ratio of σ3/σ1 is maintained at ~0.6, and the trixial loading paths designed to maintain a near critical-state failure condition. In our tests, load is increased in a series of steps. After equilibration at each step, we conduct constant head permeability tests, and measure P-wave velocities in a "time of flight" mode. Initial results from isostatic loading tests on hemipelagic mudstone samples from 34 mbsf document consolidation and permeability-porosity trends, in which porosity decreases from 69% to 54% as stress in increased from .5 MPa to 15 MPa, and permeability decreases from 8.1 X 10-18 m2 at 1 MPa to 1.1 X 10-19 m2 at 15 MPa. P-wave velocity increases by 486-568 km/s over this effective stress range. Ultimately, data from our experiments will provide a robust basis for quantifying fluid content and pressure from seismic velocity and fault plane reflectivity at this margin, and provide data to parameterize forward models of fluid flow and consolidation.

  18. Pain Management after Laparoscopic Cholecystectomy-A Randomized Prospective Trial of Low Pressure and Standard Pressure Pneumoperitoneum

    PubMed Central

    Singla, Sanjeev; Mittal, Geeta; Raghav; Mittal, Rajinder K

    2014-01-01

    Background: Abdominal pain and shoulder tip pain after laparoscopic cholecystectomy are distressing for the patient. Various causes of this pain are peritoneal stretching and diaphragmatic irritation by high intra-abdominal pressure caused by pneumoperitoneum . We designed a study to compare the post operative pain after laparoscopic cholecystectomy at low pressure (7-8 mm of Hg) and standard pressure technique (12-14 mm of Hg). Aim : To compare the effect of low pressure and standard pressure pneumoperitoneum in post laparoscopic cholecystectomy pain . Further to study the safety of low pressure pneumoperitoneum in laparoscopic cholecystectomy. Settings and Design: A prospective randomised double blind study. Materials and Methods: A prospective randomised double blind study was done in 100 ASA grade I & II patients. They were divided into two groups -50 each. Group A patients underwent laparoscopic cholecystectomy with low pressure pneumoperitoneum (7-8 mm Hg) while group B underwent laparoscopic cholecystectomy with standard pressure pneumoperitoneum (12-13 mm Hg). Both the groups were compared for pain intensity, analgesic requirement and complications. Statistical Analysis: Demographic data and intraoperative complications were analysed using chi-square test. Frequency of pain, intensity of pain and analgesics consumption was compared by applying ANOVA test. Results: Post-operative pain score was significantly less in low pressure group as compared to standard pressure group. Number of patients requiring rescue analgesic doses was more in standard pressure group . This was statistically significant. Also total analgesic consumption was more in standard pressure group. There was no difference in intraoperative complications. Conclusion: This study demonstrates the use of simple expedient of reducing the pressure of pneumoperitoneum to 8 mm results in reduction in both intensity and frequency of post-operative pain and hence early recovery and better outcome.This study also shows that low pressure technique is safe with comparable rate of intraoperative complications. PMID:24701492

  19. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  20. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    PubMed Central

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner. PMID:22559784

  1. Pneumatic load compensating or controlling system

    NASA Technical Reports Server (NTRS)

    Rogers, J. R. (Inventor)

    1975-01-01

    A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

  2. Transitions between strongly correlated and random steady-states for catalytic CO-oxidation on surfaces at high-pressure

    DOE PAGES

    Liu, Da -Jiang; Evans, James W.

    2015-04-02

    We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO 2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure p CO, to a strongly-correlated near-O-covered steady-state for low p CO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low p CO.

  3. The effect of cognitive load and patient race on physicians' decisions to prescribe opioids for chronic low back pain: a randomized trial.

    PubMed

    Burgess, Diana J; Phelan, Sean; Workman, Michael; Hagel, Emily; Nelson, David B; Fu, Steven S; Widome, Rachel; van Ryn, Michelle

    2014-06-01

    To test the hypothesis that racial biases in opioid prescribing would be more likely under high levels of cognitive load, defined as the amount of mental activity imposed on working memory, which may come from environmental factors such as stressful conditions, chaotic workplace, staffing insufficiency, and competing demands, one's own psychological or physiological state, as well as from demands inherent in the task at hand. Two (patient race: White vs Black) by two (cognitive load: low vs high) between-subjects factorial design. Ninety-eight primary care physicians from the Veterans Affairs Healthcare System. Web-based experimental study. Physicians were randomly assigned to read vignettes about either a Black or White patient, under low vs high cognitive load, and to indicate their likelihood of prescribing opioids. High cognitive load was induced by having physicians perform a concurrent task under time pressure. There was a three-way interaction between patient race, cognitive load, and physician gender on prescribing decisions (P = 0.034). Hypotheses were partially confirmed. Male physicians were less likely to prescribe opioids for Black than White patients under high cognitive load (12.5% vs 30.0%) and were more likely to prescribe opioids for Black than White patients under low cognitive load (30.8% vs 10.5%). By contrast, female physicians were more likely to prescribe opioids for Black than White patients in both conditions, with greater racial differences under high (39.1% vs 15.8%) vs low cognitive load (28.6% vs 21.7%). Physician gender affected the way in which patient race and cognitive load influenced decisions to prescribe opioids for chronic pain. Future research is needed to further explore the potential effects of physician gender on racial biases in pain treatment, and the effects of physician cognitive load on pain treatment. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  4. Liner-less Tanks for Space Application - Design and Manufacturing Considerations

    NASA Technical Reports Server (NTRS)

    Jones, Brian H.; Li, Min-Chung

    2003-01-01

    Composite pressure vessels, used extensively for gas and fuel containment in space vehicles, are generally constructed with a metallic liner, while the fiber reinforcement carries the major portion of the pressure-induced load. The design is dominated by the liner s low strain at yield since the reinforcing fibers cannot operate at their potential load-bearing capability without resorting to pre-stressing (or autofrettaging). An ultra high-efficiency pressure vessel, which operates at the optimum strain capability of the fibers, can be potentially achieved with a liner-less construction. This paper discusses the design and manufacturing challenges to be overcome in the development of such a pressure vessel. These include: (1) gas/liquid containment and permeation, (2) design and structural analysis, and (3) manufacturing process development. The paper also presents the development and validation tests on a liner-less pressure vessel developed by Kaiser Compositek Inc. (KCI). It should be noted that KCI s liner-less tank exhibits a highly controlled leak-before-burst mode. This feature results in a structure having the highest level of safety.

  5. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.

    PubMed

    Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi

    2017-01-01

    Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.

  6. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  7. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    NASA Astrophysics Data System (ADS)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  8. Law of damage accumulation and fracture criteria in highly filled polymer materials

    NASA Astrophysics Data System (ADS)

    Bykov, D. L.; Kazakov, A. V.; Konovalov, D. N.; Mel'nikov, V. P.; Milyokhin, Yu. M.; Peleshko, V. A.; Sadovnichii, D. N.

    2014-09-01

    We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation. All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2-3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.

  9. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  10. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  11. Mechanical Behavior and Microcrack Development in Nominally Dry Synthetic Salt-rock During Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Ding, J.; Chester, F. M.; Chester, J. S.; Zhu, C.; Shen, X.; Arson, C. F.

    2016-12-01

    Synthetic salt-rock is produced through uniaxial consolidation of sieved granular salt (0.3-0.355 mm grain diam.) at 75-107 MPa pressure and 100-200 0 C for 15 min duration, to produce low porosity (3%-6%) aggregates. Based on microstructural observations, consolidation mechanisms are grain rearrangement, intragranular plastic flow, and minor microfracture and recrystallization. Following consolidation, the salt-rock is deformed by cyclic, triaxial loading at room temperature and 4 MPa confining pressure to investigate microfracture development, closure and healing effects on elastic properties and flow strength. Load cycles are performed within the elastic regime, up to yielding, and during steady ductile flow. The mechanical properties are determined using an internal load cell and strain gages bonded to the samples. Elastic properties vary systematically during deformation reflecting cracking and pore and grain shape changes. Between triaxial load cycles, samples are held at isostatic loads for durations up to one day to determine healing rates and strength recovery; a change in mechanical behavior is observed when significant healing is induced. The microstructures of all samples are characterized before and after cyclic loading using optical microscopy. The consolidation and cyclic triaxial tests, and optical microscopy investigations, are conducted in a controlled low-humidity environment to ensure nominally dry conditions. The microstructures of samples from different stages of cyclic triaxial deformation indicate that intracrystalline plasticity, accompanied by minor recovery by recrystallization, is dominant; but, grain-boundary crack opening also becomes significant. Grain-boundary microcracks have preferred orientations that are sub-parallel to the load axis. The stress-strain behavior correlates with microcrack fabrics and densities during cyclic loading. These experiments are used to both inform and test continuum damage mechanics models of salt-rock deformation in the semibrittle domain, as well as to help design and optimize salt-rock storage facilities.

  12. Passive and active response of bacteria under mechanical compression

    NASA Astrophysics Data System (ADS)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  13. Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization.

    PubMed

    Chapman, Karena W; Sava, Dorina F; Halder, Gregory J; Chupas, Peter J; Nenoff, Tina M

    2011-11-23

    The release of guest species from within a nanoporous metal-organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I(2), a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I(2) and improve I(2) retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I(2) remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.

  14. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  15. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Wang, Ming; Yang, Chundi

    2009-10-01

    This paper presents a miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only fusion splicing, cleaving, and wet chemical etching. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost. It may also find uses in medical applications.

  16. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Zhou, Junping; Wang, Tingting

    2011-11-01

    A miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber is presented. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only cleaving, wet chemical etching and fusion splicing. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. Experimental results show the sensor has a good linearity. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost.

  17. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  18. Modeling of Permeability Structure Using Pore Pressure and Borehole Strain Monitoring

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Ito, H.

    2011-12-01

    Hydraulic or transport property, especially permeability, of the rock affect the behavior of the fault during earthquake rupture and also interseismic period. The methods to determine permeability underground are hydraulic test utilizing borehole and packer or core measurement in laboratory. Another way to know the permeability around a borehole is to examine responses of pore pressure to natural loading such as barometric pressure change at surface or earth tides. Using response to natural deformation is conventional method for water resource research. The scale of measurement is different among in-situ hydraulic test, response method, and core measurement. It is not clear that the relationship between permeability values form each method for an inhomogeneous medium such as a fault zone. Supposing the measurement of the response to natural loading, we made a model calculation of permeability structure around a fault zone. The model is 2 dimensional and constructed with vertical high-permeability layer in uniform low-permeability zone. We assume the upper and lower boundaries are drained and no-flow condition. We calculated the flow and deformation of the model for step and cyclic loading by numerically solving a two-dimensional diffusion equation. The model calculation shows that the width of the high-permeability zone and contrast of the permeability between high- and low- permeability zones control the contribution of the low-permeability zone. We made a calculation with combinations of permeability and fault width to evaluate the sensitivity of the parameters to in-situ measurement of permeability. We applied the model calculation to the field results of in-situ packer test, and natural response of water level and strain monitoring carried out in the Kamioka mine. The model calculation shows that knowledge of permeability in host rock is also important to obtain permeability of fault zone itself. The model calculations help to design long-term pore pressure monitoring, in-situ hydraulic test, and core measurement using drill holes to better understand fault zone hydraulic properties.

  19. Efficient and highly enantioselective construction of trifluoromethylated quaternary stereogenic centers via high-pressure mediated organocatalytic conjugate addition of nitromethane to β,β-disubstituted enones.

    PubMed

    Kwiatkowski, Piotr; Cholewiak, Agnieszka; Kasztelan, Adrian

    2014-11-21

    A very effective high-pressure-induced acceleration of asymmetric organocatalytic conjugate addition of nitromethane to sterically congested β,β-disubstituted β-CF3 enones has been developed. A combination of pressure (8-10 kbar) and noncovalent catalysis with low-loading of chiral tertiary amine-thioureas (0.5-3 mol %) is shown to provide very efficient access to a wide range of γ-nitroketones containing trifluoromethylated all-carbon quaternary stereogenic centers in the β-position (80-97%, 92-98% ee).

  20. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  1. Child Maltreatment and Allostatic Load: Consequences for Physical and Mental Health in Children from Low-Income Families

    PubMed Central

    Rogosch, Fred A.; Dackis, Melissa N.; Cicchetti, Dante

    2012-01-01

    Child maltreatment and biomarkers of allostatic load were investigated in relation to child health problems and psychological symptomatology. Participants attended a summer research day camp and included 137 maltreated and 110 nonmaltreated low-income children, who were aged 8 to 10 years (M = 9.42) and racially and ethnically diverse; 52% were male. Measurements obtained included salivary cortisol and DHEA, body-mass index, waist-hip ratio, and blood pressure; these indicators provided a composite index of allostatic load. Child self-report and camp adult-rater reports of child symptomatology were obtained; mothers provided information on health problems. The results indicated that higher allostatic load and child maltreatment status independently predicted poorer health outcomes and greater behavior problems. Moderation effects indicated that allostatic load was related to somatic complaints, attention problems, and thought problems only among maltreated children. Risks associated with high waist-hip ratio, low morning cortisol, and high morning DHEA also were related to depressive symptoms only for maltreated children. The results support an allostatic load conceptualization of the impact of high environmental stress and child abuse and neglect on child health and behavioral outcomes and have important implications for long-term physical and mental health. PMID:22018084

  2. A physical interpretation of softening of pressure-sensitive and anisotropic materials

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wang, Z. R.

    2010-07-01

    Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.

  3. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.

  4. Balloon Design Software

    NASA Technical Reports Server (NTRS)

    Farley, Rodger

    2007-01-01

    PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.

  5. Reliability, Durability and Packaging of Fibre Bragg Gratings for Large-Scale Structural Health Monitoring of Defence Platforms

    DTIC Science & Technology

    2013-08-01

    thermoset system designed to achieve good wetting , high-strength and low-creep adhesion. Many commercially-available adhesives were sourced and...Bragg grating: 1. Removal of the fibre coating. 2. Photosensitization of the fibre. 3. Exposure of the grating to UV laser light. 4. Annealing and...molecular hydrogen loading (H2 loading) in a heated pressure vessel . Photosensitisation results in a stronger refractive index contrast for a given

  6. The unlikely high efficiency of a molecular motor based on active motion

    NASA Astrophysics Data System (ADS)

    Ebeling, W.

    2015-07-01

    The efficiency of a simple model of a motor converting chemical into mechanical energy is studied analytically. The model motor shows interesting properties corresponding qualitatively to motors investigated in experiments. The efficiency increases with the load and may for low loss reach high values near to 100 percent in a narrow regime of optimal load. It is shown that the optimal load and the maximal efficiency depend by universal power laws on the dimensionless loss parameter. Stochastic effects decrease the stability of motor regimes with high efficiency and make them unlikely. Numerical studies show efficiencies below the theoretical optimum and demonstrate that special ratchet profiles my stabilize efficient regimes.

  7. Two terminal micropower radar sensor

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  8. Two terminal micropower radar sensor

    DOEpatents

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  9. Analysis and test of low profile aluminum aerospace tank dome

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Wilhelm, J. M.

    1993-12-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  10. Analysis and test of low profile aluminum aerospace tank dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Wilhelm, J. M.

    1993-01-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  11. Low-effort thought promotes political conservatism.

    PubMed

    Eidelman, Scott; Crandall, Christian S; Goodman, Jeffrey A; Blanchar, John C

    2012-06-01

    The authors test the hypothesis that low-effort thought promotes political conservatism. In Study 1, alcohol intoxication was measured among bar patrons; as blood alcohol level increased, so did political conservatism (controlling for sex, education, and political identification). In Study 2, participants under cognitive load reported more conservative attitudes than their no-load counterparts. In Study 3, time pressure increased participants' endorsement of conservative terms. In Study 4, participants considering political terms in a cursory manner endorsed conservative terms more than those asked to cogitate; an indicator of effortful thought (recognition memory) partially mediated the relationship between processing effort and conservatism. Together these data suggest that political conservatism may be a process consequence of low-effort thought; when effortful, deliberate thought is disengaged, endorsement of conservative ideology increases.

  12. Bacteriophage T5 DNA ejection under pressure.

    PubMed

    Leforestier, A; Brasilès, S; de Frutos, M; Raspaud, E; Letellier, L; Tavares, P; Livolant, F

    2008-12-19

    The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for lambda and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and lambda, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.

  13. When immiscible becomes miscible-Methane in water at high pressures.

    PubMed

    Pruteanu, Ciprian G; Ackland, Graeme J; Poon, Wilson C K; Loveday, John S

    2017-08-01

    At low pressures, the solubility of gases in liquids is governed by Henry's law, which states that the saturated solubility of a gas in a liquid is proportional to the partial pressure of the gas. As the pressure increases, most gases depart from this ideal behavior in a sublinear fashion, leveling off at pressures in the 1- to 5-kbar (0.1 to 0.5 GPa) range with solubilities of less than 1 mole percent (mol %). This contrasts strikingly with the well-known marked increase in solubility of simple gases in water at high temperature associated with the critical point (647 K and 212 bar). The solubility of the smallest hydrocarbon, the simple gas methane, in water under a range of pressure and temperature is of widespread importance, because it is a paradigmatic hydrophobe and occurs widely in terrestrial and extraterrestrial geology. We report measurements up to 3.5 GPa of the pressure dependence of the solubility of methane in water at 100°C-well below the latter's critical temperature. Our results reveal a marked increase in solubility between 1 and 2 GPa, leading to a state above 2 GPa where the maximum solubility of methane in water exceeds 35 mol %.

  14. Part 1 - Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    NASA Astrophysics Data System (ADS)

    Houde, S.; Fraser, R.; Ciocan, G. D.; Deschênes, C.

    2012-11-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the major known sources of pressure fluctuation as well as some unexpected ones. The paper first presents the experimental methodology discussing relevant topics such as telemetric system setup, transducers calibration and errors analysis. The main results are then presented to illustrate the relative amplitude of the main source of pressure fluctuations under different operating conditions. The discussion and conclusion addresses the important observations stemming from the data analysis and illustrates that most of the results can be correlated with the known behavior of hydraulic turbines while some require further investigation.

  15. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations

    PubMed Central

    Alay, Eren; Zheng, James Q.; Chandra, Namas

    2018-01-01

    We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521

  16. Safety devices for neonatal intensive care.

    PubMed

    Neuman, M R; Flammer, C M; O'Connor, E

    1982-01-01

    Three relatively simple devices for improving safety in neonatal intensive care are described. When umbilical artery catheters are used, an inexpensive pressure switch is utilized to detect abnormally low pressures associated with catheter withdrawal or excessive fluid leakage from the catheter system. A capacitive, intravenous-line air bubble detector, consisting of a section of the intravenous line as the dielectric of a capacitor, is used to alert the clinical staff when air bubbles pass between the capacitor plates. An electronic temperature controller maintains the temperature of neonatal breathing gases to avoid temperature variations which occur with presently used techniques. These are relatively simple and inexpensive devices which can be fabricated by most hospital clinical engineering services.

  17. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    PubMed

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  18. Gene delivery by direct injection (microinjection) using a controlled-flow system.

    PubMed

    Dean, David A

    2006-12-01

    INTRODUCTIONThis protocol describes a method for constant-flow microinjection using the Pneumatic PicoPump (World Precision Instruments). This type of system is very simple and can be assembled on a relatively low budget. In this method, a constant flow of sample is delivered from the tip of the pipette, and the amount of sample injected into the cell is determined by how long the pipette remains in the cell. A typical system is composed of a pressure regulator that can be adjusted for two pressures (back pressure and injection pressure), a capillary holder, and a coarse and fine micromanipulator.

  19. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations.

    PubMed

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.

  20. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    PubMed Central

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  1. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  2. Premixed Flame Propagation in an Optically Thick Gas

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Ronney, Paul D.

    1993-01-01

    Flame propagation in both the optically thin and the optically thick regime of radiative transport was studied experimentally using particle-laden gas mixtures. Data on flame shapes, propagation rates, peak pressure, maximum rate of pressure rise, and thermal decay in the burned gases are consistent with the hypothesis that, at low particle loadings, the particles act to increase the radiative loss from the gases, whereas at higher loadings, reabsorption of emitted radiation becomes significant. The reabsorption acts to decrease the net radiative loss and augment conductive heat transport. It is speculated that, in sufficiently large systems, in which the absorption length is much smaller than the system size, flammability limits might not exist at microgravity conditions because emitted radiation would not constitute a loss mechanism.

  3. Crystal Thermoelasticity at Extreme Loading Rates and Pressures: Analysis of Higher-Order Energy Potentials

    DTIC Science & Technology

    2015-07-01

    ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...2015 4. TITLE AND SUBTITLE Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of Higher-Order Energy Potentials 5a. CONTRACT

  4. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  5. Ground reaction forces and plantar pressure distribution during occasional loaded gait.

    PubMed

    Castro, Marcelo; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo

    2013-05-01

    This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. 14 CFR 25.365 - Pressurized compartment loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...

  7. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  8. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  9. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  10. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  11. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  12. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks.

    PubMed

    He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun

    2018-04-18

    Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.

  13. FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution

    NASA Astrophysics Data System (ADS)

    Pachava, Vengal Rao; Kamineni, Srimannarayana; Madhuvarasu, Sai Shankar; Putha, Kishore; Mamidi, Venkata Reddy

    2015-12-01

    A fiber Bragg grating (FBG) pressure sensor with high sensitivity and resolution has been designed and demonstrated. The sensor is configured by firmly fixing the FBG with a metal bellows structure. The sensor works by means of measuring the Bragg wavelength shift of the FBG with respect to pressure change. From the experimental results, the pressure sensitivity of the sensor is found to be 90.6 pm/psi, which is approximately 4000 times as that of a bare fiber Bragg grating. A very good linearity of 99.86% is observed between the Bragg wavelength of the FBG and applied pressure. The designed sensor shows good repeatability with a negligible hysteresis error of ± 0.29 psi. A low-cost interrogation system that includes a long period grating (LPG) and a photodiode (PD) accompanied with simple electronic circuitry is demonstrated for the FBG sensor, which enables the sensor to attain high resolution of up to 0.025 psi. Thermal-strain cross sensitivity of the FBG pressure sensor is compensated using a reference FBG temperature sensor. The designed sensor can be used for liquid level, specific gravity, and static/dynamic low pressure measurement applications.

  14. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  15. Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta.

    PubMed

    Kim, Jungsil; Staiculescu, Marius Catalin; Cocciolone, Austin J; Yanagisawa, Hiromi; Mecham, Robert P; Wagenseil, Jessica E

    2017-08-16

    In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln -/- ) or two key proteins (lysyl oxidase, Lox -/- , or fibulin-4, Fbln4 -/- ) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln -/- , Lox -/- , and Fbln4 -/- ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56-97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln -/- aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53-387% in Eln -/- , Lox -/- , and Fbln4 -/- aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  17. Alternate Methods in Refining the SLS Nozzle Plug Loads

    NASA Technical Reports Server (NTRS)

    Burbank, Scott; Allen, Andrew

    2013-01-01

    Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.

  18. Job strain, blood pressure and response to uncontrollable stress.

    PubMed

    Steptoe, A; Cropley, M; Joekes, K

    1999-02-01

    The association between cardiovascular disease risk and job strain (high-demand, low-control work) may be mediated by heightened physiological stress responsivity. We hypothesized that high levels of job strain lead to increased cardiovascular responses to uncontrollable but not controllable stressors. Associations between job strain and blood pressure reductions after the working day (unwinding) were also assessed. Assessment of cardiovascular responses to standardized behavioral tasks, and ambulatory monitoring of blood pressure and heart rate during a working day and evening. We studied 162 school teachers (60 men, 102 women) selected from a larger survey as experiencing high or low job strain. Blood pressure, heart rate and electrodermal responses to an externally paced (uncontrollable) task and a self-paced (controllable) task were assessed. Blood pressure was monitored using ambulatory apparatus from 0900 to 2230 h on a working day. The groups of subjects with high and low job strain did not differ in demographic factors, body mass or resting cardiovascular activity. Blood pressure reactions to the uncontrollable task were greater in high than low job-strain groups, but responses to the controllable task were not significantly different between groups. Systolic and diastolic blood pressure did not differ between groups over the working day, but decreased to a greater extent in the evening in subjects with low job strain. Job strain is associated with a heightened blood pressure response to uncontrollable but not controllable tasks. The failure of subjects with high job strain to show reduced blood pressure in the evening may be a manifestation of chronic allostatic load.

  19. Stressors Among Latino Day Laborers A Pilot Study Examining Allostatic Load

    PubMed Central

    de Castro, A. B.; Voss, Joachim G.; Ruppin, Ayelet; Dominguez, Carlos F.; Seixas, Noah S.

    2010-01-01

    This pilot study evaluated the feasibility of conducting a research project focused on stressors and allostatic load (AL) among day laborers. A total of 30 Latino men were recruited from CASA Latina. a worker center in Seattle. Participants completed an interview and researchers measured six indicators of AL (body mass index, waist-to-hip ratio, systolic blood pressure, diastolic blood pressure, C-reactive protein, and cortisol). Percentages and mean scores were calculated for several self-reported stressors in work, economic, and social contexts and were compared between low and high AL groups. Overall, participants with high AL reported experiencing more stressors than those with low AL. Additionally, those with high AL generally reported being less healthy both physically and mentally. Findings suggest that Latino day laborers experience stressors that place them at risk for high AL. Also, a study of this nature is possible, but must be conducted with trust and collaboration between researchers and community partners. PMID:20507008

  20. Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene

    NASA Astrophysics Data System (ADS)

    Palen, Edward J.; Allen, David T.; Pandis, Spyros N.; Paulson, Suzanne; Seinfeld, John H.; Flagan, Richard C.

    The chemical composition of aerosol generated in the photooxidation of 1-octene was examined using infrared microscopy interfaced with a low pressure impactor. The low pressure impactor segregated the aerosol into eight size fractions and deposited the aerosol onto ZnSe impaction substrates. The ZnSe surfaces were transparent in the mid-infrared region and therefore allowed direct analysis of the aerosol, with no extraction, using infrared microscopy. Infrared spectra of the size segregated aerosol showed strong absorbances due to ketone, alcohol, carboxylic acid and organonitrate functional groups. Absorbance features were relatively independent of particle size, with the exception of the carboxylic acid absorbances, which were found only in the largest aerosol size fractions. Molar loadings for each of the groups were estimated, based on model compound calibration standards. The molar loadings indicate that most aerosol species are multifunctional, with an average of one ketone group per molecule, an alcohol group in two of every three molecules and an organonitrate group in one of every three molecules.

  1. Space shuttle prototype check valve development

    NASA Technical Reports Server (NTRS)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  2. Fitness Level Modulates Intraocular Pressure Responses to Strength Exercises.

    PubMed

    Vera, Jesús; Jiménez, Raimundo; Redondo, Beatríz; Cárdenas, David; García-Ramos, Amador

    2018-06-01

    Purpose/Aim: The execution of strength exercises has demonstrated to increase the intraocular pressure (IOP) levels, and it may have a negative impact on the ocular health. We aimed to explore the influence of fitness level on the acute IOP response to strength exercises performed under different loading conditions, as well as to test whether the IOP responses differ between the bench press and jump squat when performed against the same relative loads. Forty military personnel males were divided in two subgroups (20 high-fit and 20 low-fit) based on their relative to body mass one-repetition maximum (1-RM). Participants performed an incremental loading test in the bench press and jump squat exercises, and IOP was assessed before and after each repetition by rebound tonometry. IOP increased immediately after executing both exercises (p < 0.01 in both cases), being the magnitude of the IOP increment positively and linearly associated with the increment of the load in both groups (i.e., high-fit and low-fit) and in both exercises (R 2 range: 0.81-1.00). Higher fitness level attenuated the IOP rise produced by both exercises (p < 0.01 in both cases). The bench press induced higher IOP increments than the jump squat for both groups at relative loads of ~50%1-RM and ~60%1-RM (p < 0.01 in all cases). These data indicate that IOP increases as a consequence of performing strength exercises, being the increment accentuated with the increase of the load and in the bench press compared to the jump squat exercise. Of special importance would be that the IOP responses were significantly reduced in high-fit individuals. These findings should be addressed in glaucoma patients.

  3. A transient fault-valve mechanism operating in upper crustal level, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Japas, María Silvia; Urbina, Nilda Esther; Sruoga, Patricia; Garro, José Matías; Ibañes, Oscar

    2016-11-01

    Located in the Sierras Pampeanas (the broken-foreland of the Pampean flat slab segment in the southern Central Andes), the Cerro Tiporco volcanic field shows Neogene hydrothermal activity linked to migration of arc-magmatism into the foreland. Late Neogene deposits comprise epithermal vein systems emplaced in Precambrian-Early Palaeozoic igneous-metamorphic basement, Late Miocene sedimentary rocks and Early Pliocene volcaniclastic rocks. Mineralization consists of calcareous onyx, aragonite and calcite veins as well as travertine deposits. Onyx and aragonite occur as fill of low-displacement nearly vertical reverse-sinistral faults striking NW, and nearly horizontal dilatant fractures. The latter consist of load-removal induced fractures affecting the igneous-metamorphic rocks, as well as bedding planes in the Late Miocene sediments. The presence of veins recording multiple fracture episodes and crack-and-seal growth of veins suggests relatively low differential stress and supralithostatic fluid pressure, as well as cyclic changes in pore pressure and high mineral-deposition/fracture-opening ratio. These conditions support a mechanism of fault-valve behaviour during onyx and aragonite vein emplacement. The fault-valve mechanism involves fractures associated with impermeable barriers between environments with different fluid pressure. Faulting generated an appreciable directional permeability triggering fluid migration from the highest to the lowest pressure region, with subsequent deposition and sealing that started a new pressurization-faulting-sealing cycle. Late aragonite and calcite veins suggest a change in kinematics indicating the onset of tectonic-load conditions.

  4. Effects of nozzle-strut integrated design concepton on the subsonic turbine stage flowfield

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Du, Qiang; Liu, Guang; Wang, Pei; Zhu, Junqiang

    2014-10-01

    In order to shorten aero-engine axial length, substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle, LP turbine is integrated with intermediate turbine duct (ITD). In the current paper, five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft, and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement. However, their bulky geometric size represents a more effective obstacle to flow from high pressure (HP) turbine rotor. These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD, and hence cause higher loss. Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades. According to the computational results, three main conclusions are finally obtained. Firstly, a noticeable low speed area is formed near the strut's leading edge, which is no doubt caused by the potential flow effects. Secondly, more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge. Such boundary layer migration is obvious, especially close to the shroud domain. Meanwhile, radial pressure gradient aggravates this phenomenon. Thirdly, velocity distribution along the strut's pressure side on nozzle's suction surface differs, which means loading variation of the nozzle. And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.

  5. The simulation of the alternate turbopump development high pressure oxygen and fuel turbopumps for the space shuttle main engine using the Shaberth computer program

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gary H.

    1988-01-01

    The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.

  6. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOEpatents

    Gray, Joe W.; Alger, Terry W.; Lord, David E.

    1982-01-01

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system, a nozzle with an orifice having a small ratio of length to diameter, and mechanism for vibrating the nozzle along its axis at high frequencies. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separate low pressure reservoirs are transferred into separate high pressure buffer reservoirs through a valve arrangement which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected to high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  7. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low Pressure Drop Systems to Reduce Engine Fuel Consumption (06B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie

    This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.

  8. Parametric analysis of the biomechanical response of head subjected to the primary blast loading--a data mining approach.

    PubMed

    Zhu, Feng; Kalra, Anil; Saif, Tal; Yang, Zaihan; Yang, King H; King, Albert I

    2016-01-01

    Traumatic brain injury due to primary blast loading has become a signature injury in recent military conflicts and terrorist activities. Extensive experimental and computational investigations have been conducted to study the interrelationships between intracranial pressure response and intrinsic or 'input' parameters such as the head geometry and loading conditions. However, these relationships are very complicated and are usually implicit and 'hidden' in a large amount of simulation/test data. In this study, a data mining method is proposed to explore such underlying information from the numerical simulation results. The heads of different species are described as a highly simplified two-part (skull and brain) finite element model with varying geometric parameters. The parameters considered include peak incident pressure, skull thickness, brain radius and snout length. Their interrelationship and coupling effect are discovered by developing a decision tree based on the large simulation data-set. The results show that the proposed data-driven method is superior to the conventional linear regression method and is comparable to the nonlinear regression method. Considering its capability of exploring implicit information and the relatively simple relationships between response and input variables, the data mining method is considered to be a good tool for an in-depth understanding of the mechanisms of blast-induced brain injury. As a general method, this approach can also be applied to other nonlinear complex biomechanical systems.

  9. Transposition of Francis turbine cavitation compliance at partial load to different operating conditions

    NASA Astrophysics Data System (ADS)

    Gomes, J.; Favrel, A.; Landry, C.; Nicolet, C.; Avellan, F.

    2017-04-01

    Francis turbines operating in part load conditions experience a swirling flow at the runner outlet leading to the development of a precessing cavitation vortex rope in the draft tube. This cavitation vortex rope changes drastically the velocity of pressure waves traveling in the draft tube and may lead to resonance conditions in the hydraulic circuit. The wave speed being strongly related to the cavitation compliance, this research work presents a simple model to explain how it is affected by variations of operating conditions and proposes a method to transpose its values. Even though the focus of this paper is on transpositions within the same turbine scale, the methodology is also expected to be tested for the model to prototype transposition in the future. Comparisons between measurements and calculations are in good agreement.

  10. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review.

    PubMed

    Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S

    2017-08-01

    Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  11. A compact nanopower low output impedance CMOS operational amplifier for wireless intraocular pressure recordings.

    PubMed

    Dresher, Russell P; Irazoqui, Pedro P

    2007-01-01

    Wireless sensing has shown potential benefits for the continuous-time measurement of physiological data. One such application is the recording of intraocular pressure (IOP) for patients with glaucoma. Ultra-low-power circuits facilitate the use of inductively-coupled power for implantable wireless systems. Compact circuit size is also desirable for implantable systems. As a first step towards the realization of such circuits, we have designed a compact, ultra-low-power operational amplifier which can be used to record IOP. This paper presents the measured results of a CMOS operational amplifier that can be incorporated with a wireless IOP monitoring system or other low-power application. It has a power consumption of 736 nW, chip area of 0.023 mm2, and output impedance of 69 Omega to drive low-impedance loads.

  12. Dynamic hub load predicts cognitive decline after resective neurosurgery.

    PubMed

    Carbo, Ellen W S; Hillebrand, Arjan; van Dellen, Edwin; Tewarie, Prejaas; de Witt Hamer, Philip C; Baayen, Johannes C; Klein, Martin; Geurts, Jeroen J G; Reijneveld, Jaap C; Stam, Cornelis J; Douw, Linda

    2017-02-07

    Resective neurosurgery carries the risk of postoperative cognitive deterioration. The concept of 'hub (over)load', caused by (over)use of the most important brain regions, has been theoretically postulated in relation to symptomatology and neurological disease course, but lacks experimental confirmation. We investigated functional hub load and postsurgical cognitive deterioration in patients undergoing lesion resection. Patients (n = 28) underwent resting-state magnetoencephalography and neuropsychological assessments preoperatively and 1-year after lesion resection. We calculated stationary hub load score (SHub) indicating to what extent brain regions linked different subsystems; high SHub indicates larger processing pressure on hub regions. Dynamic hub load score (DHub) assessed its variability over time; low values, particularly in combination with high SHub values, indicate increased load, because of consistently high usage of hub regions. Hypothetically, increased SHub and decreased DHub relate to hub overload and thus poorer/deteriorating cognition. Between time points, deteriorating verbal memory performance correlated with decreasing upper alpha DHub. Moreover, preoperatively low DHub values accurately predicted declining verbal memory performance. In summary, dynamic hub load relates to cognitive functioning in patients undergoing lesion resection: postoperative cognitive decline can be tracked and even predicted using dynamic hub load, suggesting it may be used as a prognostic marker for tailored treatment planning.

  13. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders.

    PubMed

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-08-21

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.

  14. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders

    PubMed Central

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-01-01

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672

  15. Real behavior in virtual environments: psychology experiments in a simple virtual-reality paradigm using video games.

    PubMed

    Kozlov, Michail D; Johansen, Mark K

    2010-12-01

    The purpose of this research was to illustrate the broad usefulness of simple video-game-based virtual environments (VEs) for psychological research on real-world behavior. To this end, this research explored several high-level social phenomena in a simple, inexpensive computer-game environment: the reduced likelihood of helping under time pressure and the bystander effect, which is reduced helping in the presence of bystanders. In the first experiment, participants had to find the exit in a virtual labyrinth under either high or low time pressure. They encountered rooms with and without virtual bystanders, and in each room, a virtual person requested assistance. Participants helped significantly less frequently under time pressure but the presence/absence of a small number of bystanders did not significantly moderate helping. The second experiment increased the number of virtual bystanders, and participants were instructed to imagine that these were real people. Participants helped significantly less in rooms with large numbers of bystanders compared to rooms with no bystanders, thus demonstrating a bystander effect. These results indicate that even sophisticated high-level social behaviors can be observed and experimentally manipulated in simple VEs, thus implying the broad usefulness of this paradigm in psychological research as a good compromise between experimental control and ecological validity.

  16. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

    PubMed Central

    Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan

    2017-01-01

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487

  17. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-08-09

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

  18. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE).

    PubMed

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-28

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis.

  19. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)

    PubMed Central

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221

  20. Mechanisms of Exhaust Pollutants and Plume Formation in Continuous Combustion.

    DTIC Science & Technology

    1984-11-30

    drop swirler. A swirled air inlet decreased flame length . Two modes of operation were observed. At higher fuel loadings, reaction could be initiated...and maintained in the recirculation zone in the shadow of the step. The net result was a shorter overall flame length . The low-pressure drop swirler...yielded a shorter flame length relative to the higher pressure drop devices. - • u mmm m -m~amkn Jm• ml AM mmmmm TABLE OF CONTENTS Section Title Page

  1. Effect of contact ratio on spur gear dynamic load

    NASA Technical Reports Server (NTRS)

    Liou, Chuen-Huei; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1992-01-01

    A computer simulation is presented which shows how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented was performed using the NASA gear dynamics code, DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low contact ratio gears (contact ratio less than 2.0), increasing the contact ratio reduced the gear dynamic load. For high contact ratio gears (contact ratio = or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high contact ratio gears minimized dynamic load better than low contact ratio gears.

  2. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  3. A heuristic approach to optimization of structural topology including self-weight

    NASA Astrophysics Data System (ADS)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.

  4. Working memory and spatial judgments: Cognitive load increases the central tendency bias.

    PubMed

    Allred, Sarah R; Crawford, L Elizabeth; Duffy, Sean; Smith, John

    2016-12-01

    Previous work demonstrates that memory for simple stimuli can be biased by information about the distribution of which the stimulus is a member. Specifically, people underestimate values greater than the distribution's average and overestimate values smaller than the average. This is referred to as the central tendency bias. This bias has been explained as an optimal use of both noisy sensory information and category information. In largely separate literature, cognitive load (CL) experiments attempt to manipulate the available working memory of participants in order to observe the effect on choice or judgments. In two experiments, we demonstrate that participants under high cognitive load exhibit a stronger central tendency bias than when under a low cognitive load. Although not anticipated at the outset, we also find that judgments exhibit an anchoring bias not described previously.

  5. Long term cavity closure in salt using a Carreau viscosity model.

    NASA Astrophysics Data System (ADS)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2017-04-01

    The problem of a pressurized hole in an infinite homogenous body is one of the most classical problems in geoscience. The solution is well-known when the rheology is linear but becomes much more complicated when applied to formations such as salt that can behave nonlinearly. Defining a constitutive law for the steady state deformation of salt is already a challenge and we rely on two deformation mechanisms - dislocation creep and pressure solution - to do that. More precisely, we use a Carreau model for viscosity to take into account in a single and smooth manner a linear and a nonlinear process. We use this rheology to revisit the classical two-dimensional problem of a pressurized cylindrical hole in an infinite and homogeneous body under general far field loads. We are interested in characterizing the maximum closure velocity at the rim. We provide analytical solutions for pressure and far field pure shear loads and we give a proxy for the general case based on the two end members. Using this general approach, we show that adding pressure solution to the constitutive law is especially important when studying long term hole closure under low pressure loads or when the grain size is in the order of 0.1 mm. Only considering dislocation creep can lead to underestimating the closure velocity by several orders of magnitude. Adding far field shear stress also dramatically enhances hole closure. The stress situation in salt bodies is often considered as isotropic but some shear exists at the interface between moving salt bodies and cap rock so pressurized holes in these regions experience increased closure. The analytical approach adopted in this study enables us to better understand the influence of all the input parameters on hole closure in salt.

  6. Mycobacterium tuberculosis transmission rates in a sanatorium: implications for new preventive guidelines.

    PubMed

    Jernigan, J A; Adal, K A; Anglim, A M; Byers, K E; Farr, B M

    1994-12-01

    In 1990, the Centers for Disease Control and Prevention recommended substituting dust-mist particulate respirators for simple isolation masks in acid-fast bacillus isolation rooms, reasoning that air leaks around the simple masks could result in a higher rate of purified protein derivative skin-test conversion. In 1993, a Centers for Disease Control and Prevention draft guideline proposed that high-efficiency particulate air filter respirators be used instead of dust-mist particulate respirators. Epidemiologic data were not available to assess the importance of these changes or their cost-effectiveness. The University of Virginia was affiliated with a tuberculosis hospital from 1979 until 1987. We surveyed physicians who had served as residents in internal medicine during this period regarding purified protein derivative skin-test history. duration of work at the tuberculosis sanatorium, and any history of unprotected exposures to patients with active pulmonary or laryngeal tuberculosis. Patients with active tuberculosis at the sanatorium were isolated in negative-pressure rooms with UV lights. Physicians wore simple isolation masks in these rooms. Responses were received from 83 former resident physicians. Fifty-two physicians had worked on the tuberculosis wards for a total of 420 weeks, with no subsequent skin-test conversions (95% CI 0 to 1 conversion/8 physician-years). These data document a low risk of occupational transmission of Mycobacterium tuberculosis to physicians who wear simple isolation masks in negative-pressure ventilation rooms with UV lights. This low rate predicts that the additional protective efficacy and cost-effectiveness of the more expensive high-efficiency particulate air filter respirators and the respiratory protection program will be low.

  7. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  8. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  9. Forebody and Inlet Design for the HIFiRE 2 Flight Test

    NASA Technical Reports Server (NTRS)

    Ferlemann, Paul G.

    2008-01-01

    A forebody and inlet have been designed for the HIFiRE 2 scramjet flight test. The test will explore the operating, performance, and stability characteristics of a simple hydrocarbon-fueled scramjet combustor as it transitions from dual-mode to scramjet-mode operation and during supersonic combustion at Mach 8+ flight conditions. Requirements for the compression system were derived from inlet starting and combustor inflow requirements as well as physical size constraints. The design process is described. A planar, fixed geometry, mixed compression concept was used to produce laterally uniform flow at the inlet entrance and a conservative amount of internal contraction with respect to inlet starting. A grid sensitivity study was performed so that important flow physics caused by three-dimensional shock boundary layer interactions could be captured with confidence. Results from low Mach number operability studies, nominal trajectory cases, and high dynamic pressure heat load cases are discussed. The forebody and inlet solutions provide information for on-going combustor calculations, mass capture across the trajectory for fuel system design, and surface heating rates for thermal/structural analysis. The design has a one freestream Mach number margin for inlet starting, exceeds the high Mach number combustor entrance pressure requirement, produces high quality flow at the inlet exit for all Mach numbers and vehicle attitudes in the design space, and fits inside the booster shroud.

  10. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  11. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant whilemore » phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.« less

  12. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    PubMed

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

  13. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  14. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  15. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  16. The calculated effect of trailing-edge flaps on the take-off of flying boats

    NASA Technical Reports Server (NTRS)

    Parkinson, J E; Bell, J W

    1934-01-01

    The results of take-off calculations are given for an application of simple trailing-edge flaps to two hypothetical flying boats, one having medium wing and power loading and consequently considerable excess of thrust over total resistance during the take-off run, the other having high wing and power loading and a very low excess thrust. For these seaplanes the effect of downward flap settings was: (1) to increase the total resistance below the stalling speed, (2) to decrease the get-away speed, (3) to improve the take-off performance of the seaplane having considerable excess thrust, and (4) to hinder the take-off of the seaplane having low excess thrust. It is indicated that flaps would allow a decrease in the high angles of wing setting necessary with most seaplanes, provided that the excess thrust is not too low.

  17. Biomechanical analysis of INFINITY rehabilitation method for treatment of low back pain

    PubMed Central

    Daniel, Matej; Tomanová, Michaela; Hornová, Jana; Novotná, Iva; Lhotská, Lenka

    2017-01-01

    [Purpose] Low back pain is a pervasive problem in modern societies. Physical rehabilitation in treatment of low back pain should reduce pain, muscle tension and restore spine stability and balance. The INFINITY® rehabilitation method that is based on a figure of eight movement pattern was proved to be effective in low back pain treatment. The aim of the paper is to estimate the effect of a figure of eight motion on the L5/S1 load and lumbar spine muscle activation in comparison to other motion patterns. [Subjects and Methods] Three-dimensional model of lumbar spine musculoskeletal system is used to simulate effect of various load motion pattern induced by displacement of the center of gravity of the upper body. Four motion patterns were examined: lateral and oblique pendulum-like motion, elliptical motion and figure of eight motion. [Results] The simple pendulum-like and elliptical-like patterns induce harmonic muscle activation and harmonic spinal load. The figure of eight motion pattern creates high-frequency spinal loading that activates remodeling of bones and tendons. The figure of eight pattern also requires muscle activity that differs from harmonic frequency and is more demanding on muscle control and could also improve muscle coordination. [Conclusion] The results of the study indicate that complex motion pattern during INFINITY® rehabilitation might enhance the spine stability by influencing its passive, active and neural components. PMID:28603355

  18. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  19. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  20. Ultimate compression after impact load prediction in graphite/epoxy coupons using neural network and multivariate statistical analyses

    NASA Astrophysics Data System (ADS)

    Gregoire, Alexandre David

    2011-07-01

    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.

  1. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.

    PubMed

    Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie

    2017-08-01

    Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Boron Carbide: Stabilization of Highly-Loaded Aqueous Suspensions, Pressureless Sintering, and Room Temperature Injection Molding

    NASA Astrophysics Data System (ADS)

    Diaz-Cano, Andres

    Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.

  3. Launch Vehicle Base Buffeting- Recent Experimental And Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Hannemann, K.; Ludeke, H.; Pallegoix, J.-F.; Ollivier, A.; Lambare, H.; Maseland, J. E. J.; Geurts, E. G. M.; Frey, M.; Deck, S.; Schrijer, F. F. J.; Scarano, F.; Schwane, R.

    2011-05-01

    During atmospheric ascent of launcher configurations, a massively separated flow environment in the base region of the launcher can generate strong low frequency wall pressure fluctuations. The nozzle structure can be subjected to dynamic loads resulting from these pressure fluctuations. The loads are usually most severe during the high dynamic pressure phase of flight at transonic speeds and the aerodynamic excitation can induce a response of the structural modes called buffeting. In order to obtain a deeper insight into base buffeting related to the Ariane 5 launch vehicle, a set of experiments was performed in the DNW HST wind tunnel in close cooperation with the utilization of modern CFD tools (hybrid RANS/LES). During the test campaign a 1/60 scale Ariane 5 launcher test article was utilized, and detailed unsteady pressure measurements in the base region of the model were for the first time performed in conjunction with time resolved velocity field measurements using PIV. The work was performed in the framework of the ESA TRP “Unsteady Subscale Force Measurements within a Launch Vehicle Base Buffeting Environment”.

  4. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  5. PRSEUS Pressure Cube Test Data and Response

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2013-01-01

    NASA s Environmentally Responsible Aviation (ERA) Program is examining the hybrid wing body (HWB) aircraft, among others, in an effort to increase the fuel efficiency of commercial aircraft. The HWB design combines features of a flying wing with features of conventional transport aircraft, and has the advantage of simultaneously increasing both fuel efficiency and payload. Recent years have seen an increased focus on the structural performance of the HWB. The key structural challenge of a HWB airframe is the ability to create a cost and weight efficient, non-circular, pressurized shell. Conventional round fuselage sections react cabin pressure by hoop tension. However, the structural configuration of the HWB subjects the majority of the structural panels to bi-axial, in-plane loads in addition to the internal cabin pressure, which requires more thorough examination and analysis than conventional transport aircraft components having traditional and less complex load paths. To address this issue, while keeping structural weights low, extensive use of advanced composite materials is made. This report presents the test data and preliminary conclusions for a pressurized cube test article that utilizes Boeing's Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), and which is part of the building block approach used for HWB development.

  6. Nacelle Aerodynamic and Inertial Loads (NAIL) project

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A flight test survey of pressures measured on wing, pylon, and nacelle surfaces and of the operating loads on Boeing 747/Pratt & Whitney JT9D-7A nacelles was made to provide information on airflow patterns surrounding the propulsion system installations and to clarify processes responsible for inservice deterioration of fuel economy. Airloads at takeoff rotation were found to be larger than at any other normal service condition because of the combined effects of high angle of attack and high engine airflow. Inertial loads were smaller than previous estimates indicated. A procedure is given for estimating inlet airloads at low speeds and high angles of attack for any underwing high bypass ratio turbofan installation approximately resembling the one tested. Flight procedure modifications are suggested that may result in better fuel economy retention in service. Pressures were recorded on the core cowls and pylons of both engine installations and on adjacent wing surfaces for use in development of computer codes for analysis of installed propulsion system aerodynamic drag interference effects.

  7. Results of a landing gear loads test using a 0.0405-scale model (16-0) of the space shuttle orbiter in the Rockwell International NAAL wind tunnel (OA163), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted scale representation of the 140C outer mold line space shuttle orbiter configuration in the low speed wind tunnel. The primary test objectives were to define the orbiter landing gear system pressure loading and to record landing gear door and strut hingemoment levels. Secondary objectives included recording the aerodynamic influence of various landing gear configurations on orbiter force data as well as investigating 40 x 80 ft. Ames Wind Tunnel strut simulation effects on both orbiter landing gear loads and aerodynamic characteristics. Testing was conducted at a Mach number of 0.17, free stream dynamic pressure of 42.5 PSF, and Reynolds number per unit length of 1.2 million per foot. Angle of attack variation was 0 to 20 while yaw angles ranged from -10 to 10 deg.

  8. Fabrication of liquid-rocket thrust chambers by electroforming

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  9. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2008-02-01

    A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.

  10. Load and inflation pressure effects on soil compaction of forwarder tires

    Treesearch

    Tim McDonald; Tom Way; Bjorn Lofgren; Fernando Seixas; Mats Landstrom

    1996-01-01

    A standard forwarder tire (600/55-26.5) was tested to determine its range of soil compaction with various inflation pressures and dynamic loads. Past research has shown that compaction of heavier equipment can be somewhat mitigated by operating with lower inflation pressures. Results indicated a significant effect of both load and inflation pressure on bulk density,...

  11. Mountain Bike Wheel Endurance Testing and Modeling

    DTIC Science & Technology

    2012-01-01

    at a tire pressure of 276 kPa. At very low load the rubber casing of the tire is relatively compliant, but its stiffness increases rapidly as the...Empirical Model for Determining the Radial Force-Deflection Characteristics of Off-Road bicycle Tyres ,” International Journal of Vehicle Design, 17 (4

  12. Cosmic ray driven outflows in an ultraluminous galaxy

    NASA Astrophysics Data System (ADS)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  13. Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor

    USGS Publications Warehouse

    Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.

    2012-01-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.

  14. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature.

    PubMed

    Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg

    2014-02-01

    We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. HIGH SPEED PARTICLE BEAM GENERATION: SIMPLE FOCUSING MECHANISMS. (R823980)

    EPA Science Inventory

    Modern chemical characterization instruments employ an aerosol inlet that transmits atmospheric aerosols to the low pressure source region of a time-of-flight mass spectrometer, where particles are ablated and ionized using high energy irradiation. The ions when analyzed in the m...

  16. Heel blood flow during loading and off-loading in bedridden older adults with low and normal ankle-brachial pressure index: a quasi-experimental study.

    PubMed

    Masaki, Nami; Sugama, Junko; Okuwa, Mayumi; Inagaki, Misako; Matsuo, Junko; Nakatani, Tosio; Sanada, Hiromi

    2013-07-01

    The purpose of this study was to evaluate the differences in heel blood flow during loading and off-loading in bedridden adults older than 65 years. The patients were divided into three groups based on ankle-brachial pressure index (ABI) and transcutaneous oxygen tension (tcPO₂): (1) patients with an ABI ≥ 0.8 (Group A); (2) patients with an ABI < 0.8 and heel tcPO₂ ≥ 10 mmHg (Group B); and (3) patients with an ABI < 0.8 and heel tcPO₂ < 10 mmHg (Group C). Heel blood flow was monitored using tcPO₂ sensors. Data were collected with the heel (1) suspended above the bed surface (preload), (2) on the bed surface for 30 min (loading), and (3) again suspended above the bed surface for 60 min (off-loading). Heel blood flow during off-loading was assessed using three parameters: oxygen recovery index (ORI), total tcPO₂ for the first 10 min, and change in tcPO₂ after 60 min of off-loading. ORI in Group C (n = 8) was significantly shorter than in Groups A (n = 22) and B (n = 15). Total tcPO₂ for the first 10 min of off-loading in Group C was significantly less than that in Groups A and B. Change in tcPO₂ after 60 min of off-loading in Group C was less than in Group A. Based on these findings, additional preventive care against heel blood flow decrease in older adults with an ABI < 0.8 and heel tcPO₂ < 10 mmHg might be necessary after loading.

  17. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.

  18. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  19. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1990-01-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  20. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  1. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  2. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur.

    PubMed

    Moon, Jinyoung; Hwang, Yongwoo; Kim, Junbeum; Kwak, Inho

    Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3(-). Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3(-) and HCO3(-), and actual plating wastewater, which was collected from the effluent water of a plating company called 'H Metals'. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 0.9 kg NO3(-)-N/m(3)·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 1.11 kg NO3(-)-N/m(3)·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO4(2-) production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio.

  3. The "Parachute" Technique: A Simple and Effective Single-Row Procedure to Achieve an Increased Contact Area Between the Cuff-Tendon and Its Footprint.

    PubMed

    Natera, Luis; Consigliere, Paolo; Witney-Lagen, Caroline; Brugera, Juan; Sforza, Giuseppe; Atoun, Ehud; Levy, Ofer

    2017-10-01

    Many techniques of arthroscopic rotator cuff repair have been described. No significant differences in clinical outcomes or rerupture rates have been observed when comparing single-row with double-row methods. Not all single- and double-row repairs are the same. The details of the technique used are crucial. It has been shown that the suture-tendon interface is the weakest point of the reconstruction. Therefore, the biomechanical properties of rotator cuff repairs might be influenced more by the suture configuration than by the number of anchors or by the number of rows involved. Techniques that secure less amount of tendon over a smaller area of the healing zone might be expected to have higher failure rates. The way the sutures of the "parachute technique" are configured represents a quadruple mattress that increases the contact and pressure between the tendon and its footprint and increases the primary load to failure of the repair. We present a simple and effective single-row technique that involves the biomechanical and biological advantages related to the increased contact area and pressure between the cuff and its footprint.

  4. Broadband Noise Prediction When Turbulence Simulation Is Available - Derivation of Formulation 2B and Its Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Casper, Jay H.

    2012-01-01

    We show that a simple modification of Formulation 1 of Farassat results in a new analytic expression that is highly suitable for broadband noise prediction when extensive turbulence simulation is available. This result satisfies all the stringent requirements, such as permitting the use of the exact geometry and kinematics of the moving body, that we have set as our goal in the derivation of useful acoustic formulas for the prediction of rotating blade and airframe noise. We also derive a simple analytic expression for the autocorrelation of the acoustic pressure that is valid in the near and far fields. Our analysis is based on the time integral of the acoustic pressure that can easily be obtained at any resolution for any observer time interval and digitally analyzed for broadband noise prediction. We have named this result as Formulation 2B of Farassat. One significant consequence of Formulation 2B is the derivation of the acoustic velocity potential for the thickness and loading terms of the Ffowcs Williams-Hawkings (FW-H) equation. This will greatly enhance the usefulness of the Fast Scattering Code (FSC) by providing a high fidelity boundary condition input for scattering predictions.

  5. Gas loading apparatus for the Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocian, A.; Kamenev, K. V.; Bull, C. L.

    2010-09-15

    We describe the design and operation of an apparatus for loading gases into the sample volume of the Paris-Edinburgh press at room temperature and high pressure. The system can be used for studies of samples loaded as pure or mixed gases as well as for loading gases as pressure-transmitting media in neutron-scattering experiments. The apparatus consists of a high-pressure vessel and an anvil holder with a clamp mechanism. The vessel, designed to operate at gas pressures of up to 150 MPa, is used for applying the load onto the anvils located inside the clamp. This initial load is sufficient formore » sealing the pressurized gas inside the sample containing gasket. The clamp containing the anvils and the sample is then transferred into the Paris-Edinburgh press by which further load can be applied to the sample. The clamp has apertures for scattered neutron beams and remains in the press for the duration of the experiment. The performance of the gas loading system is illustrated with the results of neutron-diffraction experiments on compressed nitrogen.« less

  6. Biomolecular Materials. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on December 1-3, 1992. Volume 292

    DTIC Science & Technology

    1992-12-03

    and thereby eliminating some of the poaching pressures on the animal populations. This could impact significantly on their survival and possibly remove...purposes, might help alleviate the pressure on the rhino population due to poaching . We are investigating this possibility. The structure of the rhino ...skate boards! Sdrnples cut from the coconut shell were tested in impact using a weight swinging on a pendulum and at low loading rates in three-point

  7. A Study of the Time Dependence in Fracture Processes Relating to Service Life Prediction of Adhesive Joints and Advanced Composites.

    DTIC Science & Technology

    1981-04-30

    fluid temperature should exceed 145°F. The flow control module contains all the hydraulic circuit elements necessary for both the pressure line to and...are contained in three basic modules : 1) the hydraulic power supply, 2) a flow control module containing valving, accumulators and filters, and 3) the...hydraulic transient overpressures, is located in the flow control module , as are the high and low pressure filters. The load frame (MTS Systems Corp

  8. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  9. F-16B Pacer Aircraft Trailing Cone Length Extension Tube Investigative Study (HAVE CLETIS)

    DTIC Science & Technology

    2007-06-01

    the axial load experienced during high incompressible dynamic pressures and prevent the coupling from locking up as was observed for the 35-foot... axial loads due to incompressible dynamic pressure. (R4) “Guitar stringing” was used to describe the high frequency vibration of the pressure tube...Modify the design of the pressure tube and drag cone coupling to allow independent pressure tube and drag cone rotation under axial loads due to

  10. Experimental development of low-frequency shear modulus and attenuation measurements in mated rock fractures: Shear mechanics due to asperity contact area changes with normal stress

    DOE PAGES

    Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.; ...

    2017-02-16

    Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less

  11. Experimental development of low-frequency shear modulus and attenuation measurements in mated rock fractures: Shear mechanics due to asperity contact area changes with normal stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.

    Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less

  12. Terminal area energy management regime investigations utilizing an 0.030-scale model (47-0) of the space shuttle vehicle orbiter configuration 140A/B/C/R in the Ames Research Center 11 x 11 foot transonic wind tunnel (OH/48)

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1976-01-01

    Data obtained in a wind tunnel test were examined to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 7.57 x 1 million to 2.74 x 1 million per foot. Model angle of attack was varied from -4 to 16 degrees and angles of sideslip ranged from -8 to 8 degrees.

  13. Temperature and initial curvature effects in low-density panel flutter

    NASA Technical Reports Server (NTRS)

    Resende, Hugo B.

    1992-01-01

    The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. Both the pressure and shear loadings are functions of the panel temperature, which can lead to great variations on the location of the stability boundaries for parametric studies. Different locations can, however, be 'collapsed' onto one another by using as ordinate an appropriately normalized dynamic pressure parameter. This procedure works better for higher values of the panel temperature for a fixed undisturbed flow temperature. Finally, the behavior of the system is studied when the panel has some initial curvature. This leads to the conclusion that it may be unrealistic to try to distinguish between a parabolic or sinusoidal initial shape.

  14. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  15. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    DOE PAGES

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  16. Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers.

    PubMed

    Guillot, Pierre; Colin, Annie; Utada, Andrew S; Ajdari, Armand

    2007-09-07

    Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.

  17. IPPP GPS for tracking loading deformations induced by the storm Xynthia

    NASA Astrophysics Data System (ADS)

    Ferenc, Marcell; Nicolas, Joëlle; Durand, Frédéric; Li, Zhao; Boy, Jean-Paul; Perosanz, Félix; van Dam, Tonie

    2015-04-01

    Xynthia was a violent windstorm that progressed over Western Europe between the 27th of February and the 1st of March 2010. The huge low-pressure system (pressure drop of 40 mbar and storm surge of 1.5 m at La Rochelle tide gauge) crossed France from the southwest to the northeast over the course of about 20 hours. In this study, we first investigate the detailed spatial and temporal characteristics of the Xynthia storm. Then we analyse the effect of this storm on sub-daily 3D GPS (Global Positioning System) position time series computed with the iPPP (integer fixed ambiguity Precise Point Positioning) GINS-PC software method using the REPRO 2 products for about 100 stations of the French GNSS permanent network (RGP). We compare the GPS observations with the predicted time series derived from different geodynamical models for non-tidal atmospheric, oceanic and hydrological loading effects. These predicted time series are computed using different environmental data sets. For atmospheric pressure we used the ECMWF (the European Centre for Medium-Range Weather Forecasts) or MERRA (Modern-Era Retrospective Analysis for Research and Applications) pressure fields. Concerning the ocean's response we use different hypotheses such as inverse barometer (IB), non-IB or a dynamic ocean's response to winds and pressure forcing applying 2 Dimensions Gravity Waves model (MOG2D). We perform a spatial analysis to study the different behaviour of the coastal and inland sites. This study allows us to identify the ocean's dynamics on the continental shelf during the passage of this fast moving low pressure system. For comparison, these analyses are also performed for calm periods.

  18. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOEpatents

    Gray, J.W.; Alger, T.W.; Lord, D.E.

    1978-11-26

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system of high pressure in the range of 250 to 1000 psi for greater flow velocity, a nozzle with an orifice having a small ratio of length to diameter for laminar flow rates well above the critical Reynolds number for the high flow velocity, and means for vibrating the nozzle along its axis at high frequencies in a range of about 300 kHz to 800 kHz ae described. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separte low pressure reservoirs are transferred into separate high pressure buffer reservoirs through valve means which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected ato high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder for breaking up the coherency of the laser, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  19. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  20. Early Planetary Differentiation: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2006-01-01

    We currently have extensive data for four different terrestrial bodies of the inner solar system: Earth, the Moon, Mars, and the Eucrite Parent Body [EPB]. All formed early cores; but all(?) have mantles with elevated concentrations of highly sidero-phile elements, suggestive of the addition of a late "veneer". Two appear to have undergone extensive differentiation consistent with a global magma ocean. One appears to be inconsistent with a simple model of "low-pressure" chondritic differentiation. Thus, there seems to be no single, simple paradigm for understand-ing early differentiation.

  1. Deep Part Load Flow Analysis in a Francis Model turbine by means of two-phase unsteady flow simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Philipp; Weber, Wilhelm; Jung, Alexander

    2017-04-01

    Hydropower plants are indispensable to stabilize the grid by reacting quickly to changes of the energy demand. However, an extension of the operating range towards high and deep part load conditions without fatigue of the hydraulic components is desirable to increase their flexibility. In this paper a model sized Francis turbine at low discharge operating conditions (Q/QBEP = 0.27) is analyzed by means of computational fluid dynamics (CFD). Unsteady two-phase simulations for two Thoma-number conditions are conducted. Stochastic pressure oscillations, observed on the test rig at low discharge, require sophisticated numerical models together with small time steps, large grid sizes and long simulation times to cope with these fluctuations. In this paper the BSL-EARSM model (Explicit Algebraic Reynolds Stress) was applied as a compromise between scale resolving and two-equation turbulence models with respect to computational effort and accuracy. Simulation results are compared to pressure measurements showing reasonable agreement in resolving the frequency spectra and amplitude. Inner blade vortices were predicted successfully in shape and size. Surface streamlines in blade-to-blade view are presented, giving insights to the formation of the inner blade vortices. The acquired time dependent pressure fields can be used for quasi-static structural analysis (FEA) for fatigue calculations in the future.

  2. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  3. A multiphase ion-transport analysis of the electrostatic disjoining pressure: implications for binary droplet coalescence

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Gebauer, Felix; Bart, Hans-Jörg; Stevens, Geoffrey; Harvie, Dalton

    2016-11-01

    Understanding the physics of emulsion coalescence is critical for the robust simulation of industrial solvent extraction processes, in which loaded organic and raffinate phases are separated via the coalescence of dispersed droplets. At the droplet scale, predictive collision-outcome models require an accurate description of the repulsive surface forces arising from electrical-double-layer interactions. The conventional disjoining-pressure treatment of double-layer forces, however, relies on assumptions which do not hold generally for deformable droplet collisions: namely, low interfacial curvature and negligible advection of ion species. This study investigates the validity bounds of the disjoining pressure approximation for low-inertia droplet interactions. A multiphase ion-transport model, based on a coupling of droplet-scale Nernst-Planck and Navier-Stokes equations, predicts ion-concentration fields that are consistent with the equilibrium Boltzmann distribution; indicating that the disjoining-pressure approach is valid for both static and dynamic interactions in low-Reynolds-number settings. The present findings support the development of coalescence kernels for application in macro-scale population balance modelling.

  4. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    NASA Astrophysics Data System (ADS)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  5. Sensate Scaffolds Can Reliably Detect Joint Loading

    PubMed Central

    Bliss, C. L.; Szivek, J. A.; Tellis, B. C.; Margolis, D. S.; Schnepp, A. B.; Ruth, J. T.

    2008-01-01

    Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage. PMID:16941586

  6. Reduced-Smoke Solid Propellant Combustion Products Analysis. Development of a Micromotor Combustor Technique.

    DTIC Science & Technology

    1976-10-01

    A low-cost micromotor combustor technique has been devised to support the development of reduced-smoke solid propellant formulations. The technique...includes a simple, reusable micromotor capable of high chamber pressures, a combustion products collection system, and procedures for analysis of

  7. Dynamic Hydrostatic Pressure Regulates Nucleus Pulposus Phenotypic Expression and Metabolism in a Cell Density-Dependent Manner.

    PubMed

    Shah, Bhranti S; Chahine, Nadeen O

    2018-02-01

    Dynamic hydrostatic pressure (HP) loading can modulate nucleus pulposus (NP) cell metabolism, extracellular matrix (ECM) composition, and induce transformation of notochordal NP cells into mature phenotype. However, the effects of varying cell density and dynamic HP magnitude on NP phenotype and metabolism are unknown. This study examined the effects of physiological magnitudes of HP loading applied to bovine NP cells encapsulated within three-dimensional (3D) alginate beads. Study 1: seeding density (1 M/mL versus 4 M/mL) was evaluated in unloaded and loaded (0.1 MPa, 0.1 Hz) conditions. Study 2: loading magnitude (0, 0.1, and 0.6 MPa) applied at 0.1 Hz to 1 M/mL for 7 days was evaluated. Study 1: 4 M/mL cell density had significantly lower adenosine triphosphate (ATP), glycosaminoglycan (GAG) and collagen content, and increased lactate dehydrogenase (LDH). HP loading significantly increased ATP levels, and expression of aggrecan, collagen I, keratin-19, and N-cadherin in HP loaded versus unloaded groups. Study 2: aggrecan expression increased in a dose dependent manner with HP magnitude, whereas N-cadherin and keratin-19 expression were greatest in low HP loading compared to unloaded. Overall, the findings of the current study indicate that cell seeding density within a 3D construct is a critical variable influencing the mechanobiological response of NP cells to HP loading. NP mechanobiology and phenotypic expression was also found to be dependent on the magnitude of HP loading. These findings suggest that HP loading and culture conditions of NP cells may require complex optimization for engineering an NP replacement tissue.

  8. NanTroSEIZE observatories: Installation of a long-term borehole monitoring systems offshore the Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Saffer, D. M.; Davis, E. E.; Araki, E.; Kinoshita, M.; Lauer, R. M.; Wheat, C. G.; Kitada, K.; Kimura, T.; Toczko, S.; Eguchi, N. O.; Science Parties, E.

    2010-12-01

    The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multi-expedition drilling program designed to investigate fault mechanics, fault slip behavior, and strain accumulation along subduction megathrusts, through coring, logging, and long-term monitoring experiments. One key objective is the development and installation of a borehole observatory network extending from locations above the outer, presumably aseismic accretionary wedge to the seismogenic and interseismically locked plate interface, to record seismicity and slip transients, monitor strain accumulation, document hydraulic transients associated with deformation events, and quantify in situ pore fluid pressure and temperature. As part of recent NanTroSEIZE operations, borehole instruments have been developed for deployment at two sites: (1) Site C0010, which penetrates a major out-of-sequence thrust fault termed the “megasplay” at ca. 400 mbsf, and (2) Site C0002 in the Kumano forearc basin at a location that overlies both the updip edge of the inferred interseismically locked portion of the plate interface, and clusters of very low frequency thrust and reverse earthquakes located within the accretionary prism and potentially on the megasplay fault. In 2009, Site C0010 was drilled and cased with screens to access the megasplay fault, and a simple pore pressure and temperature monitoring system (a ”smartplug”) was installed. The simple observatory unit includes pressure and temperature sensors and a data logging package mounted beneath a mechanically set retrievable casing packer, and includes two pressure sensors, one in hydraulic communication with the formation through the casing screens below the packer, and the other to the open borehole above the packer to record hydrostatic reference pressure and ocean loading signals. Temperatures are recorded within the instrument package using a platinum thermometer and by a self-contained miniature temperature logger (MTL). In fall 2010, the smartplug will be retrieved and replaced with an upgraded instrument package that also includes an autonomous osmotic geochemical sampling system and microbial colonization experiment. Fall 2010 operations will also drill and case Site C0002 to ca. 1000 m depth and install a newly developed multi-sensor permanent observatory system, which includes a volumetric strainmeter, a broadband seismometer, tiltmeter, thermister string, and multi-level pore-pressure sensors. The strain, seismometer, and tilt sensors will be cemented with the basal mudstones of the Kumano basin, and pore pressure will be monitored within both the underlying accretionary prism and within the lower basin sediments. The observatory will ultimately be connected to the seafloor fiber-optic cable network DONET. Here, we report on the retrieval of the smartplug, installation and configuration of the new multi-sensor permanent observatory, and preliminary data obtained from the smartplug deployment.

  9. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.

  10. Do Dispositional Pessimism and Optimism Predict Ambulatory Blood Pressure During Schooldays and Nights in Adolescents?

    PubMed Central

    Räikkönen, Katri; Matthews, Karen A.

    2010-01-01

    We tested the hypotheses that (1) high pessimism and low optimism (LOT-R overall and subscale scores) would predict high ambulatory blood pressure (ABP) level and 24-hour load (percentage of ABP values exceeding the pediatric 95th percentile) among healthy Black and White adolescents (n = 201; 14–16 yrs) across 2 consecutive school days and (2) that the relationships for the pessimism and optimism subscales would show nonlinear effects. The hypotheses were confirmed for pessimism but not for optimism. The results suggest that high pessimism may have different effects than low optimism on ABP and that even moderate levels of pessimism may effect blood pressure regulation. These results suggest that optimism and pessimism are not the opposite poles on a single continuum but ought to be treated as separate constructs. PMID:18399951

  11. Mechanical and chemical compaction in fine-grained shallow-water limestones.

    USGS Publications Warehouse

    Shinn, E.A.; Robbin, D.M.

    1983-01-01

    Significant mechanical compaction resulted from pressures simulating less than 305 m of burial. Increasing loads to an equivalent of more than 3400 m did not significantly increase compaction or reduce sediment core length. Chemical compaction (pressure dissolution) was detected only in sediment cores compacted to pressures greater than 3400 m of burial. These short-term experiments suggest that chemical compaction would begin at much shallower depths given geologic time. Compaction experiments that caused chemical compaction lend support to the well-established hypothesis; that cement required to produce a low-porosity/low-permeability fine-grained limestone is derived internally. Dissolution, ion diffusion, and reprecipitation are considered the most likely processes for creating significant thicknesses of dense limestone in the geologic record. Continuation of chemical compaction after significant porosity reduction necessitates expulsion of connate fluids, possibly including hydrocarbons. -from Authors

  12. Applied and engineering versions of the theory of elastoplastic processes of active complex loading part 2: Identification and verification

    NASA Astrophysics Data System (ADS)

    Peleshko, V. A.

    2016-06-01

    The deviator constitutive relation of the proposed theory of plasticity has a three-term form (the stress, stress rate, and strain rate vectors formed from the deviators are collinear) and, in the specialized (applied) version, in addition to the simple loading function, contains four dimensionless constants of the material determined from experiments along a two-link strain trajectory with an orthogonal break. The proposed simple mechanism is used to calculate the constants of themodel for four metallic materials that significantly differ in the composition and in the mechanical properties; the obtained constants do not deviate much from their average values (over the four materials). The latter are taken as universal constants in the engineering version of the model, which thus requires only one basic experiment, i. e., a simple loading test. If the material exhibits the strengthening property in cyclic circular deformation, then the model contains an additional constant determined from the experiment along a strain trajectory of this type. (In the engineering version of the model, the cyclic strengthening effect is not taken into account, which imposes a certain upper bound on the difference between the length of the strain trajectory arc and the module of the strain vector.) We present the results of model verification using the experimental data available in the literature about the combined loading along two- and multi-link strain trajectories with various lengths of links and angles of breaks, with plane curvilinear segments of various constant and variable curvature, and with three-dimensional helical segments of various curvature and twist. (All in all, we use more than 80 strain programs; the materials are low- andmedium-carbon steels, brass, and stainless steel.) These results prove that the model can be used to describe the process of arbitrary active (in the sense of nonnegative capacity of the shear) combine loading and final unloading of originally quasi-isotropic elastoplastic materials. In practical calculations, in the absence of experimental data about the properties of a material under combined loading, the use of the engineering version of the model is quite acceptable. The simple identification, wide verifiability, and the availability of a software implementation of the method for solving initial-boundary value problems permit treating the proposed theory as an applied theory.

  13. Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Smith, C. A.; Mendenhall, M. R.

    1977-01-01

    Theoretical methods are being developed to predict the mutual interference between rotor wakes and the hull for semibuoyant vehicles. The objective of the investigation is to predict the pressure distribution and overall loads on the hull in the presence of rotors whose locations, tilt angles, and disk loading are arbitrarily specified. The methods involve development of potential flow models for the hull alone in a nonuniform onset flow, a rotor wake which has the proper features to predict induced flow outside the wake, and a wake centerline specification technique which accounts for the reactions of the wake to a nonuniform crossflow. The flow models are used in sequence to solve for the mutual influence of the hull and rotor(s) on each other and the resulting loads. A flow separation model is included to estimate the influence of separation on hull loads at high sideslip angles. Only limited results have been obtained to date. These were obtained on a configuration which was tested in the Ames Research Center 7- by 10-Foot Low Speed Tunnel under Goodyear Aircraft Corporation sponsorship and indicate the nature of the interference pressure distribution on a configuration in hover.

  14. Predicting Tail Buffet Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  15. Different seismic signatures of fractures slip and their correlations with fluid pressures in in-situ rupture experiments

    NASA Astrophysics Data System (ADS)

    Derode, B.; Cappa, F.; Guglielmi, Y.

    2012-04-01

    The recent observations of non-volcanic tremors (NVT), slow-slip events (SSE), low- (LFE) and very-low (VLF) frequency earthquakes on seismogenic faults reveal that unexpected, large, non-linear transient deformations occur during the interseismic loading of the earthquake cycle. Such phenomena modify stress to the adjacent locked zones bringing them closer to failure. Recent studies indicated various driving factors such as high-fluid pressures and frictional processes. Here we focus on the role of fluids in the different seismic signatures observed in in-situ fractures slip experiments. Experiments were conducted in critically stressed fractures zone at 250 m-depth within the LSBB underground laboratory (south of France). This experiment seeks to explore the field measurements of temporal variations in fluid and stress through continuous monitoring of seismic waves, fluid pressures and mechanical deformations between boreholes and the ground surface. The fluid pressure was increased step-by-step in a fracture isolated between packers until a maximum value of 35 bars; a pressure analog to ones known to trigger earthquakes at crustal depths. We observed in the seismic signals: (1) Tremor-like signatures, (2) Low Frequency signatures, and (3) sudden and short ruptures like micro-earthquakes. By analogy, we suggest that fluid pressures may trigger these different seismic signatures in active faults.

  16. Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; Huff, Shean P; West, Brian H

    To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated withmore » the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.« less

  17. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    NASA Technical Reports Server (NTRS)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  18. Evaluative pressure overcomes perceptual load effects.

    PubMed

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.

  19. Fatigue of reinforcing bars during hydro-demolition

    NASA Astrophysics Data System (ADS)

    Hyland, C. W. K.; Ouwejan, A.

    2017-05-01

    Reinforcing steel fractured during hydro-demolition of a reinforced concrete pier head due to low cycle flexural fatigue from vibration caused by impact of the high pressure water jet on the exposed length of the bars. Research into the fatigue performance of steel reinforcing steel tends to focus on the high cycle axial performance in reinforced concrete members and re-bending behaviour. However with the increasing use of hydro-demolition of concrete structures as part of remediation works care is required to ensure the steel reinforcement exposed to the high pressure jet of water is not going to suffer relatively low cycle flexural damage that may compromise the designed performance of the completed reinforced concrete structure. This paper describes the failure assessment, fatigue analysis, and metallographic examination that was undertaken. It was found that the rib to flank transition radius on the reinforcement steel was small enough to cause a significant stress concentration effect and was the location of fatigue crack growth. A relatively simple analysis using the maximum unrestrained cantilevered bar length and force exerted by the water jet was used to calculate the maximum expected bending moment. This was compared to the bending capacity at initiation of yielding at the rib flank transition accounting for stress concentration effects. This showed that the observed cyclic reversing ductile crack growth and fracture of the H25 bars was consistent with the loading applied. A method is proposed based on these observations to assess suitable limits for unrestrained bar lengths or maximum working offset of the water jet from the point of bar restraint when undertaking hydro-demolition work. The fatigue critical performance requirements of AS/NZS4671 500E bars are also therefore compared with those of BS4449:2005 and PN EN/ISO 15630-1:2011 for comparable 500C bars

  20. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  1. Study on transient beam loading compensation for China ADS proton linac injector II

    NASA Astrophysics Data System (ADS)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  2. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  3. Time-varying wall stress: an index of ventricular vascular coupling.

    PubMed

    Dell'Italia, L J; Blackwell, G G; Thorn, B T; Pearce, D J; Bishop, S P; Pohost, G M

    1992-08-01

    Previous work in the isolated heart and intact circulation has suggested that the relationship between wall stress and time during left ventricular (LV) ejection is linear and that the slope, which will be referred to as time-varying wall stress, increases in response to augmentation in afterload. However, the etiology of the increase in slope has not been determined in an intact animal. Magnetic resonance imaging coupled with high-fidelity LV pressure measurement using a nonferrous catheter-tip manometer generates a detailed assessment of wall stress in an animal model where the thorax and pericardium have never been disturbed. Accordingly, six anesthetized dogs were studied during autonomic blockade with atropine and propranolol during angiotensin infusion, producing three widely disparate left ventricular systolic pressures (87 +/- 7 vs. 124 +/- 13 vs. 152 +/- 10 mmHg, P less than 0.001). Time-varying wall stress did not change from low to medium load (-42.4 +/- 9.5 to -27.3 +/- 22.3 g.cm-2.ms-1) but increased significantly at high load (-21.7 +/- 14.9 g.cm-2.ms-1, P less than 0.05). Analysis of the relative contribution of pressure, chamber radius, wall thickness, and long-axis dimension to the changes in time-varying wall stress demonstrated only the pressure component to change its relative contribution at medium (P less than 0.001) and high load (P less than 0.001). Therefore, we conclude that the increase in time-varying wall stress results from augmentation of pressure in the latter one-half of systole that is incompletely offset by shortening and wall thickening.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Advances in Developing HIV-1 Viral Load Assays for Resource-Limited Settings

    PubMed Central

    Wang, ShuQi; Xu, Feng; Demirci, Utkan

    2010-01-01

    Commercial HIV-1 RNA viral load assays have been routinely used in developed countries to monitor antiretroviral treatment (ART). However, these assays require expensive equipment and reagents, well-trained operators, and established laboratory infrastructure. These requirements restrict their use in resource-limited settings where people are most afflicted with the HIV-1 epidemic. Inexpensive alternatives such as the Ultrasensitive p24 assay, the Reverse Transcriptase (RT) assay and in-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been developed. However, they are still time-consuming, technologically complex and inappropriate for decentralized laboratories as point-of-care (POC) tests. Recent advances in microfluidics and nanotechnology offer new strategies to develop low-cost, rapid, robust and simple HIV-1 viral load monitoring systems. We review state-of-the-art technologies used for HIV-1 viral load monitoring in both developed and developing settings. Emerging approaches based on microfluidics and nanotechnology, which have potential to be integrated into POC HIV-1 viral load assays, are also discussed. PMID:20600784

  5. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  6. Systemic vascular load in calcific degenerative aortic valve stenosis: insight from percutaneous valve replacement.

    PubMed

    Yotti, Raquel; Bermejo, Javier; Gutiérrez-Ibañes, Enrique; Pérez del Villar, Candelas; Mombiela, Teresa; Elízaga, Jaime; Benito, Yolanda; González-Mansilla, Ana; Barrio, Alicia; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Fernández-Avilés, Francisco

    2015-02-10

    Systemic arterial load impacts the symptomatic status and outcome of patients with calcific degenerative aortic stenosis (AS). However, assessing vascular properties is challenging because the arterial tree's behavior could be influenced by the valvular obstruction. This study sought to characterize the interaction between valvular and vascular functions in patients with AS by using transcatheter aortic valve replacement (TAVR) as a clinical model of isolated intervention. Aortic pressure and flow were measured simultaneously using high-fidelity sensors in 23 patients (mean 79 ± 7 years of age) before and after TAVR. Blood pressure and clinical response were registered at 6-month follow-up. Systolic and pulse arterial pressures, as well as indices of vascular function (vascular resistance, aortic input impedance, compliance, and arterial elastance), were significantly modified by TAVR, exhibiting stiffer vascular behavior post-intervention (all, p < 0.05). Peak left ventricular pressure decreased after TAVR (186 ± 36 mm Hg vs. 162 ± 23 mm Hg, respectively; p = 0.003) but remained at >140 mm Hg in 70% of patients. Wave intensity analysis showed abnormally low forward and backward compression waves at baseline, increasing significantly after TAVR. Stroke volume decreased (-21 ± 19%; p < 0.001) and correlated with continuous and pulsatile indices of arterial load. In the 48 h following TAVR, a hypertensive response was observed in 12 patients (52%), and after 6-month follow-up, 5 patients required further intensification of discharge antihypertensive therapy. Vascular function in calcific degenerative AS is conditioned by the upstream valvular obstruction that dampens forward and backward compression waves in the arterial tree. An increase in vascular load after TAVR limits the procedure's acute afterload relief. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Pressure driven spin transition in siderite and magnesiosiderite single crystals.

    PubMed

    Weis, Christopher; Sternemann, Christian; Cerantola, Valerio; Sahle, Christoph J; Spiekermann, Georg; Harder, Manuel; Forov, Yury; Kononov, Alexander; Sakrowski, Robin; Yavaş, Hasan; Tolan, Metin; Wilke, Max

    2017-11-28

    Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO 3 and magnesiosiderite (Mg 0.74 Fe 0.26 )CO 3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.

  8. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    NASA Technical Reports Server (NTRS)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.

    2011-01-01

    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (<10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an ambulatory control period. Average skin temperature of the unloaded calf declined from 27.4 C to 26.8 C (-2.1%), while there was a slight increase (+1.1%) in skin temperature in the loaded calf (27.6 C to 27.9 C). Collectively, these measures indicate strong subject compliance with the ULLS analog. Unloaded limb work performed during leg press (1514 +/- 334 vs. 576 +/- 103) and calf raise (2886 +/- 508 vs. 1233 +/- 153) exercises sessions was greater in HRE vs. BFR, respectively. Leg press training loads were 44 +/- 7 kg in HRE compared to 11 +/- 1 kg in BFR. Similarly, calf raise training loads were 81 +/- 11 kg in HRE and 16 +/- 1 kg in BFR. Pre to post-ULLS training adaptations in the unloaded leg are shown in the table. CONCLUSION: The preliminary results of this investigation suggest when HRE is optimized for muscle anabolism during unloading muscle size and strength are preserved (or enhanced) at the expense of muscle endurance. In contrast, when BFR exercise is optimized for muscle anabolism during unloading muscle endurance is preserved (or enhanced) at the expense of muscle size and strength

  9. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    PubMed

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  10. Space shuttle solid rocket booster water entry cavity collapse loads

    NASA Technical Reports Server (NTRS)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  11. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma.

    PubMed

    Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru

    2014-04-16

    Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.

  12. A General Interface Method for Aeroelastic Analysis of Aircraft

    NASA Technical Reports Server (NTRS)

    Tzong, T.; Chen, H. H.; Chang, K. C.; Wu, T.; Cebeci, T.

    1996-01-01

    The aeroelastic analysis of an aircraft requires an accurate and efficient procedure to couple aerodynamics and structures. The procedure needs an interface method to bridge the gap between the aerodynamic and structural models in order to transform loads and displacements. Such an interface method is described in this report. This interface method transforms loads computed by any aerodynamic code to a structural finite element (FE) model and converts the displacements from the FE model to the aerodynamic model. The approach is based on FE technology in which virtual work is employed to transform the aerodynamic pressures into FE nodal forces. The displacements at the FE nodes are then converted back to aerodynamic grid points on the aircraft surface through the reciprocal theorem in structural engineering. The method allows both high and crude fidelities of both models and does not require an intermediate modeling. In addition, the method performs the conversion of loads and displacements directly between individual aerodynamic grid point and its corresponding structural finite element and, hence, is very efficient for large aircraft models. This report also describes the application of this aero-structure interface method to a simple wing and an MD-90 wing. The results show that the aeroelastic effect is very important. For the simple wing, both linear and nonlinear approaches are used. In the linear approach, the deformation of the structural model is considered small, and the loads from the deformed aerodynamic model are applied to the original geometry of the structure. In the nonlinear approach, the geometry of the structure and its stiffness matrix are updated in every iteration and the increments of loads from the previous iteration are applied to the new structural geometry in order to compute the displacement increments. Additional studies to apply the aero-structure interaction procedure to more complicated geometry will be conducted in the second phase of the present contract.

  13. National Launch System cycle 1 loads and models data book

    NASA Technical Reports Server (NTRS)

    Bugg, F.; Brunty, J.; Ernsberger, G.; Mcghee, D.; Gagliano, L.; Harrington, F.; Meyer, D.; Blades, E.

    1992-01-01

    This document contains preliminary cycle 1 loads for the National Launch System (NLS) 1 and 2 vehicles. The loads provided and recommended as design loads represent the maximum load expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.

  14. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors, part 8

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D. R.

    1974-01-01

    An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.

  15. Catalase measurement: A new field procedure for rapidly estimating microbial loads in fuels and water-bottoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passman, F.J.; Daniels, D.A.; Chesneau, H.F.

    1995-05-01

    Low-grade microbial infections of fuel and fuel systems generally go undetected until they cause major operational problems. Three interdependent factors contribute to this: mis-diagnosis, incorrect or inadequate sampling procedures and perceived complexity of microbiological testing procedures. After discussing the first two issues, this paper describes a rapid field test for estimating microbial loads in fuels and associated water. The test, adapted from a procedure initially developed to measure microbial loads in metalworking fluids, takes advantage of the nearly universal presence of the enzyme catalase in the microbes that contaminated fuel systems. Samples are reacted with a peroxide-based reagent; liberating oxygenmore » gas. The gas generates a pressure-head in a reaction tube. At fifteen minutes, a patented, electronic pressure-sensing device is used to measure that head-space pressure. The authors present both laboratory and field data from fuels and water-bottoms, demonstrating the excellent correlation between traditional viable test data (acquired after 48-72 hours incubation) and catalase test data (acquired after 15 min.-4 hours). We conclude by recommending procedures for developing a failure analysis data-base to enhance our industry`s understanding of the relationship between uncontrolled microbial contamination and fuel performance problems.« less

  16. Correcting the thermal inefficiencies of a cogeneration and boiler plant by low-pressure steam conversions and hot water thermal energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pals, C.M.

    1998-12-31

    A liberal arts college in Los Angeles was plagued by inefficient use of low-pressure (LP) steam produced by its two 150 kWe cogeneration units. Poor integration of the LP cogen system into the college`s existing high-pressure (HP) steam boiler plant led to under-utilization of cogenerated steam during the non-space-heating season. Six years of inefficient operation was estimated to have cost the college $750,000 in lost utility and maintenance savings. To improve steam-plant operations, the college`s facilities management staff implemented a plan to convert HP steam loads to LP, replace HP steam boilers with LP equipment, and improve the use ofmore » cogenerated steam through the installation of a hot water thermal energy storage (TES) system. A study was commissioned that identified the plant`s peak winter steam requirements and the typical steam profile for the non-space-heating season. Data from this work helped draw two conclusions: (1) converting HP steam loads to LP would boost demand for cogenerated steam, and (2) a hot water thermal energy storage (TES) system could further utilize a portion of remaining excess cogen steam for the manufacture and storage of the kitchen`s domestic water for use during peak steam demand periods. Combined, these two measures were estimated to improve utilization of cogenerated LP steam by 11,000 pounds (5,000 kg) per day and reduce boiler fuel consumption by 40,000 therms (4,220,000 MJ) each season. In addition to this work, a major plant renovation project was completed, which included the replacement of a 60-year-old, 280 bhp (2,747 kW) HP steam boiler, with two new LP boilers. Conversion to LP and the start-up of the hot water TES was completed in May 1997. During the first year of operation, after the improvement, boiler gas savings exceeded 52,000 therms (5,486,000 MJ). Maintenance savings of $100,000 were also accrued by eliminating licensed HP boiler operators. All construction work described to improve energy efficiency and rehabilitate the steam plant cost $687,000 and is on track to produce a simple payback of 5.5 years. Overall, this paper demonstrates the energy and cost inefficiencies that may result if the opportunities to use waste heat from cogeneration systems are incorrectly identified.« less

  17. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical and Internal Pressure Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.

    2003-01-01

    Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.

  18. Unusual properties of high-compliance porosity extracted from measurements of pressure-dependent wave velocities in rocks

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S-wave velocities with hydrostatic compression of different dry and saturated rocks (sandstones, Westerly granite and Webatuck dolomite, etc.) shows that our model is accurate in a wide range of pressures with constant (i.e., pressure-independent) values of parameter q. Furthermore, the determined values of the latter are considerably different from those of conventional cracks. In particular, although all saturated samples have values q <1, the simplified approximation q=0 (i.e., the absence of normal compressibility that is often assumed for wet cracks) leads to large errors in the prediction of complementary variations in the shear- and bulk elastic moduli. Among dry sandstones, the majority have q >2 and many sandstones exhibit unusually high q»1 suggesting quite rough and tortoise nature of real cracks in those rocks. We demonstrate that in such cases, the use of the conventional assumption q ˜2 typical of penny-shape cracks leads to striking inconsistency between the predicted and experimentally observed crack-induced complementary variations in different elastic moduli. Furthermore, among samples with q»1, we revealed numerous examples that demonstrate negative Poisson's ratio at low pressures. VYZ and AVR acknowledge the financial support by RFBR grant No 15-05-05143.

  19. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  20. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

Top