Development of a Launch Vehicle Manufacturing Process. Chapter 4
NASA Technical Reports Server (NTRS)
Vickers, John; Munafo, Paul M. (Technical Monitor)
2002-01-01
One of the goals of this chapter is to provide sufficient information so that you can develop a manufacturing process for a potential launch vehicle. With the variety of manufacturing options available, you might ask how this can possibly be done in the span of a single chapter. Actually, it will be quite simple because a basic manufacturing process is nothing more than a set of logical steps that are iterated until they produce a desired product. Although these statements seem simple and logical, don't let this simplicity fool you. Manufacturing problems with launch vehicles and their subassemblies have been the primary cause of project failures because the vehicle concept delivered to the manufacturing floor could not be built as designed.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2017-11-01
Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manufacturing Squares: An Integrative Statistical Process Control Exercise
ERIC Educational Resources Information Center
Coy, Steven P.
2016-01-01
In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…
Ono, Daiki; Bamba, Takeshi; Oku, Yuichi; Yonetani, Tsutomu; Fukusaki, Eiichiro
2011-09-01
In this study, we constructed prediction models by metabolic fingerprinting of fresh green tea leaves using Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression analysis to objectively optimize of the steaming process conditions in green tea manufacture. The steaming process is the most important step for manufacturing high quality green tea products. However, the parameter setting of the steamer is currently determined subjectively by the manufacturer. Therefore, a simple and robust system that can be used to objectively set the steaming process parameters is necessary. We focused on FT-NIR spectroscopy because of its simple operation, quick measurement, and low running costs. After removal of noise in the spectral data by principal component analysis (PCA), PLS regression analysis was performed using spectral information as independent variables, and the steaming parameters set by experienced manufacturers as dependent variables. The prediction models were successfully constructed with satisfactory accuracy. Moreover, the results of the demonstrated experiment suggested that the green tea steaming process parameters could be predicted on a larger manufacturing scale. This technique will contribute to improvement of the quality and productivity of green tea because it can objectively optimize the complicated green tea steaming process and will be suitable for practical use in green tea manufacture. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
3D Printing: Downstream Production Transforming the Supply Chain
2017-01-01
generative designs , and tailorable material properties will transform the way both military and civilian products are manufactured —from simple objects... design . Traditional and established subtractive manufacturing (SM) creates objects by removing material (e.g., through drilling or lathing) from solid... manufacturers to build products with highly complex geometry in a single process rather than by combining multiple components manufactured by
Determination of Process Parameters for High-Density, Ti-6Al-4V Parts Using Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamath, C.
In our earlier work, we described an approach for determining the process parameters that re- sult in high-density parts manufactured using the additive-manufacturing process of selective laser melting (SLM). Our approach, which combines simple simulations and experiments, was demon- strated using 316L stainless steel. We have also used the approach successfully for several other materials. This short note summarizes the results of our work in determining process parameters for Ti-6Al-4V using a Concept Laser M2 system.
NASA Technical Reports Server (NTRS)
Bao, Han P.; Samareh, J. A.
2000-01-01
The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.
2018-03-01
The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... novel, simple to use automation and process monitoring products for industrial customers. Methods.... Nursery Supplies, Inc........ 1415 Orchard Drive, 26-Jul-11 The firm manufactures plastic containers... containers. Technautic International, 141 Robert E. Lee 22-Jul-11 The firm manufactures automated dissolved...
Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walczyk, Daniel F.
2015-08-26
The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurementmore » techniques for use by industry.« less
MODIFICATIONS TO REDUCE DRAG OUT AT A PRINTED CIRCUIT BOARD MANUFACTURER
This MnTAP/EPA Waste Reduction Innovative Technology Evaluation project at Micom, Inc., demonstrated the waste reducing capability of two simple rinsing modifications on an etchant and an electroless copper process. he simple, tow (or no) cost, low technology changes that were ma...
Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.
Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua
2016-08-31
Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.
Hereford Garland
1949-01-01
The use of aspen for the manufacture of excelsior is well established in the Lake States. The properties of the wood make it suitable for this general use, and there are adequate supplies available for increased productive capacity. The process of manufacturing exceisior is relatively uncomplicated, and the production equipment is simple and relatively low in cost....
Study of simple CFRP-metal joint failure
NASA Astrophysics Data System (ADS)
Cheng, Jingquan; Rodriguez, Antonio; Emerson, Nicolas; Symmes, Arthur
2008-07-01
In millimeter wavelength telescope design and construction, there have been a number of mysterious failures of simple CFRF-metal joints. Telescope designers have not had satisfactory interpretations of these failures. In this paper, factors which may influence the failure of joints are discussed. These include stress concentration, material creep, joint fatigue, reasons related to chemical process and manufacture process. Extrapolation formulas for material creep, joint fatigue, and differential thermal stresses are derived in this paper. Detailed chemical and manufacturing factors are also discussed. All these issues are the causes of a number of early failures under a loading which is significantly lower than the strength of adhesives used. For ensuring reliability of a precision instrument structure joint, the designer should have a thorough understanding of all these factors.
Microeconomics of process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.
Interferometric surface mapping with variable sensitivity.
Jaerisch, W; Makosch, G
1978-03-01
In the photolithographic process, presently employed for the production of integrated circuits, sets of correlated masks are used for exposing the photoresist on silicon wafers. Various sets of masks which are printed in different printing tools must be aligned correctly with respect to the structures produced on the wafer in previous process steps. Even when perfect alignment is considered, displacements and distortions of the printed wafer patterns occur. They are caused by imperfections of the printing tools or/and wafer deformations resulting from high temperature processes. Since the electrical properties of the final integrated circuits and therefore the manufacturing yield depend to a great extent on the precision at which such patterns are superimposed, simple and fast overlay measurements and flatness measurements as well are very important in IC-manufacturing. A simple optical interference method for flatness measurements will be described which can be used under manufacturing conditions. This method permits testing of surface height variations by nearly grazing light incidence by absence of a physical reference plane. It can be applied to polished surfaces and rough surfaces as well.
Plasmid fermentation process for DNA immunization applications.
Carnes, Aaron E; Williams, James A
2014-01-01
Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.
Recursive solution of number of reachable states of a simple subclass of FMS
NASA Astrophysics Data System (ADS)
Chao, Daniel Yuh
2014-03-01
This paper aims to compute the number of reachable (forbidden, live and deadlock) states for flexible manufacturing systems (FMS) without the construction of reachability graph. The problem is nontrivial and takes, in general, an exponential amount of time to solve. Hence, this paper focusses on a simple version of Systems of Simple Sequential Processes with Resources (S3PR), called kth-order system, where each resource place holds one token to be shared between two processes. The exact number of reachable (forbidden, live and deadlock) states can be computed recursively.
Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions
NASA Astrophysics Data System (ADS)
Li, Er Qiang; Zhang, Jia Ming; Thoroddsen, Sigurdur T.
2014-01-01
Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions.
NASA Astrophysics Data System (ADS)
Yoo, C. J.; Shin, B. S.; Kang, B. S.; Yun, D. H.; You, D. B.; Hong, S. M.
2017-09-01
In this paper, we propose a new porous polymer printing technology based on CBA(chemical blowing agent), and describe the optimization process according to the process parameters. By mixing polypropylene (PP) and CBA, a hybrid CBA filament was manufactured; the diameter of the filament ranged between 1.60 mm and 1.75 mm. A porous polymer structure was manufactured based on the traditional fused deposition modelling (FDM) method. The process parameters of the three-dimensional (3D) porous polymer printing (PPP) process included nozzle temperature, printing speed, and CBA density. Porosity increase with an increase in nozzle temperature and CBA density. On the contrary, porosity increase with a decrease in the printing speed. For porous structures, it has excellent mechanical properties. We manufactured a simple shape in 3D using 3D PPP technology. In the future, we will study the excellent mechanical properties of 3D PPP technology and apply them to various safety fields.
Microeconomics of advanced process window control for 50-nm gates
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.
2002-07-01
Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.
The application of pentaprism scanning technology on the manufacturing of M3MP
NASA Astrophysics Data System (ADS)
Qi, Erhui; Hu, Haixiang; Hu, Haifei; Cole, Glen; Luo, Xiao; Ford, Virginia; Zhang, Xuejun
2016-10-01
The PSS (pentaprism scanning system) has advantages of simple structure, needless of reference flat, be able of on-site testing, etc, it plays an important role in large flat reflective mirror's manufacturing, especially the high accuracy testing of low order aberrations. The PSS system measures directly the slope information of the tested flat surface. Aimed at the unique requirement of M3MP, which is the prototype mirror of the tertiary mirror in TMT (Thirty Meter Telescope) project, this paper analyzed the slope distribution of low order aberrations, power and astigmatism, which is very important in the manufacturing process of M3MP. Then the sample route lines of PSS are reorganized and new data process algorism is implemented. All this work is done to improve PSS's measure sensitivity of power and astigmatism, for guiding the manufacturing process of M3MP.
NASA Technical Reports Server (NTRS)
Aster, R. W.; Chamberlain, R. G.; Zendejas, S. C.; Lee, T. S.; Malhotra, S.
1986-01-01
Company-wide or process-wide production simulated. Price Estimation Guidelines (IPEG) program provides simple, accurate estimates of prices of manufactured products. Simplification of SAMIS allows analyst with limited time and computing resources to perform greater number of sensitivity studies. Although developed for photovoltaic industry, readily adaptable to standard assembly-line type of manufacturing industry. IPEG program estimates annual production price per unit. IPEG/PC program written in TURBO PASCAL.
Simple construction and performance of a conical plastic cryocooler
NASA Technical Reports Server (NTRS)
Lambert, N.
1985-01-01
Low power cryocoolers with conical displacers offer several advantages over stepped displacers. The described fabrication process allows quick and reproducible manufacturing of plastic conical displacer units. This could be of commercial interest, but it also makes systematic optimization feasible by constructing a number of different models. The process allows for a wide range of displacer profiles. Low temperature performance as dominated by regenerator losses, and several effects are discussed. A simple device is described which controls gas flow during expansion.
Farrell, Patrick; Sun, Jacob; Gao, Meg; Sun, Hong; Pattara, Ben; Zeiser, Arno; D'Amore, Tony
2012-08-17
A simple approach to the development of an aerobic scaled-down fermentation model is presented to obtain more consistent process performance during the scale-up of recombinant protein manufacture. Using a constant volumetric oxygen mass transfer coefficient (k(L)a) for the criterion of a scale-down process, the scaled-down model can be "tuned" to match the k(L)a of any larger-scale target by varying the impeller rotational speed. This approach is demonstrated for a protein vaccine candidate expressed in recombinant Escherichia coli, where process performance is shown to be consistent among 2-L, 20-L, and 200-L scales. An empirical correlation for k(L)a has also been employed to extrapolate to larger manufacturing scales. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin
2014-04-01
Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.; Aster, R. W.; Firnett, P. J.; Miller, M. A.
1985-01-01
Improved Price Estimation Guidelines, IPEG4, program provides comparatively simple, yet relatively accurate estimate of price of manufactured product. IPEG4 processes user supplied input data to determine estimate of price per unit of production. Input data include equipment cost, space required, labor cost, materials and supplies cost, utility expenses, and production volume on industry wide or process wide basis.
Determination of the robot location in a workcell of a flexible production line
NASA Astrophysics Data System (ADS)
Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.
NASA Astrophysics Data System (ADS)
Patou, J.; De Luycker, E.; Bonnaire, R.; Cutard, T.; Bernhart, G.
2018-05-01
In this research work, the influence of the forming process on commingled thermoplastic composite parts mechanical behavior was investigated. The aim of this work is to evaluate the influence of fabric shearing on the mechanical response of composite laminate. Different sheets with a given shear angle are manufactured. Tensile experimental results are compared with the properties obtained from a simple model based on the laminate plate theory for various off angles. Later, the link with a tetrahedron shape 3D part manufactured by punch deep drawing will be made.
Manufacturing PDMS micro lens array using spin coating under a multiphase system
NASA Astrophysics Data System (ADS)
Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei
2017-05-01
The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.
NASA Astrophysics Data System (ADS)
Ward, M. J.; Walløe, S. J.
2004-06-01
Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.
USDA-ARS?s Scientific Manuscript database
The purpose of the cotton ginning process is to separate a field crop into its salable components. It is a necessary step between the farmer and the textile manufacturer. The original gin was a simple manually operated device that took hand harvested cotton and separated fiber from the cottonseed. T...
1994-02-01
rework, repair, and maintenance of electronic hardware as well as the initial manufacture. Chemically, HF1 189 is simply citric acid (derived from citrus...fruit) in water. Citric acid is highly soluble in water which allows simple water washing of hardware after soldering totally eliminating the need for...of citric acid in water. PCA’s soldered with either wave or hand techniques presented no cleaning problems if they were cleaned within one-half hour of
Personal manufacturing systems
NASA Astrophysics Data System (ADS)
Bailey, P.
1992-04-01
Personal Manufacturing Systems are the missing link in the automation of the design-to- manufacture process. A PMS will act as a CAD peripheral, closing the loop around the designer enabling him to directly produce models, short production runs or soft tooling with as little fuss as he might otherwise plot a drawing. Whereas conventional 5-axis CNC machines are based on orthogonal axes and simple incremental movements, the PMS is based on a geodetic structure and complex co-ordinated 'spline' movements. The software employs a novel 3D pixel technique for give itself 'spatial awareness' and an expert system to determine the optimum machining conditions. A completely automatic machining strategy can then be determined.
NASA Astrophysics Data System (ADS)
Hilburn, Monty D.
Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These factors are critical inputs into the support staffing resources calculation used by the lean planning model. Null hypothesis related to functional support staff resources was rejected for most functional groups, indicating that the baseline site plan inadequately provided for cross-functional staff involvement to support the lean transformation plan. Null hypotheses related to total lean transformation staffing could not be rejected, indicating that while total staffing plans were not significantly different than plans developed during the on-site review and through the use of the lean planning model, the allocation of staffing among various functional groups such as engineering, production, and materials planning was an issue. The on-site review process and simple lean transformation plan developed was determined to be useful in identifying short-comings in lean transformation planning within aerospace manufacturing and assembly sites. It was concluded that the differences uncovered were likely contributing factors affecting the effectiveness of aerospace manufacturing sites' implementation of lean cellular manufacturing.
Commercial Parts Technology Qualification Processes
NASA Technical Reports Server (NTRS)
Cooper, Mark S.
2013-01-01
Many high-reliability systems, including space systems, use selected commercial parts (including Plastic Encapsulated Microelectronics or PEMs) for unique functionality, small size, low weight, high mechanical shock resistance, and other factors. Predominantly this usage is subjected to certain 100% tests (typically called screens) and certain destructive tests usually (but not always) performed on the flight lot (typically called qualification tests). Frequently used approaches include those documented in EEE-INST-002 and JPL DocID62212 (which are sometimes modified by the particular aerospace space systems manufacturer). In this study, approaches from these documents and several space systems manufacturers are compared to approaches from a launch systems manufacturer (SpaceX), an implantable medical electronics manufacturer (Medtronics), and a high-reliability transport system process (automotive systems). In the conclusions section, these processes are outlined for all of these cases and presented in tabular form. Then some simple comparisons are made. In this introduction section, the PEM technology qualification process is described, as documented in EEE-INST-002 (written by the Goddard Space Flight Center, GSFC), as well as the somewhat modified approach employed at the Jet Propulsion Laboratory (JPL). Approaches used at several major NASA contractors are also described
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Adam
For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10more » billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).« less
Armant, Myriam; Brandwein, Harvey; Burger, Scott; Campbell, Andrew; Carpenito, Carmine; Clarke, Dominic; Fong, Timothy; Karnieli, Ohad; Niss, Knut; Van't Hof, Wouter; Wagey, Ravenska
2013-01-01
Cell therapy is poised to play an enormous role in regenerative medicine. However, little guidance is being made available to academic and industrial entities in the start-up phase. In this technical review, members of the International Society for Cell Therapy provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Special emphasis is placed on providing guidance to small academic or biotech researchers as to what simple questions can be addressed or answered at the bench in order to make their cell therapy products more feasible for commercial-scale production. We discuss the processes that are required for scale-out at the manufacturing level, and how many questions can be addressed at the bench level. The goal of this review is to provide guidance in the form of topics that can be addressed early in the process of development to better the chances of the product being successful for future commercialization. PMID:24101671
Flexible polymeric rib waveguide with self-align couplers system
Huang, Cheng-Sheng; Wang, Wei-Chih
2011-01-01
The authors report a polymeric based rib waveguide with U shape self-align fiber couplers system using a simple micromolding process with SU8 as a molding material and polydimethysiloxane as a waveguide material. The material is used for its good optical transparency, low surface tension, biocompatibility, and durability. Furthermore, the material is highly formable. This unique fabrication molding technique provides a means of keeping the material and manufacturing costs to a minimum. The self-align fiber couplers system also proves a fast and simple means of light coupling. The flexible nature of the waveguide material makes this process ideal for a potential wearable optical sensor. PMID:22171151
Development of simplified process for environmentally resistant cells
NASA Technical Reports Server (NTRS)
King, W. J.
1980-01-01
This report describes a program to develop a simple, foolproof, all vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (SI, Al2O3, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press formed metallic superstructure with a separated glass cover for missile, etc., protection.
Advanced Q-switched DPSS lasers for ID-card marking
NASA Astrophysics Data System (ADS)
Hertwig, Michael; Paster, Martin; Terbrueggen, Ralf
2008-02-01
Increased homeland security concerns across the world have generated a strong demand for forgery-proof ID documents. Manufacturers currently employ a variety of high technology techniques to produce documents that are difficult to copy. However, production costs and lead times are still a concern when considering any possible manufacturing technology. Laser marking has already emerged as an important tool in the manufacturer's arsenal, and is currently being utilized to produce a variety of documents, such as plastic ID cards, drivers' licenses, health insurance cards and passports. The marks utilized can range from simple barcodes and text to high resolution, true grayscale images. The technical challenges posed by these marking tasks include delivering adequate mark legibility, minimizing substrate burning or charring, accurately reproducing grayscale data, and supporting the required process throughput. This article covers the advantages and basic requirements on laser marking of cards and reviews how laser output parameters affect marking quality, speed and overall process economics.
NASA Astrophysics Data System (ADS)
Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan
2017-01-01
Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.
Manufacturing Processes for Long-Life Gas Turbines
NASA Astrophysics Data System (ADS)
Hoppin, G. S.; Danesi, W. P.
1986-07-01
Dual-alloy turbine wheels produced by solid-state diffusion bonding of vacuum investment cast blade rings of one superalloy to preconsolidated powder metal hubs of a second superalloy have the long cyclic lives characteristic of wrought or powder superalloys combined with the high creep strength and net-shape blades characteristic of cast superalloys. A wide variety of superalloys and turbine configurations are compatible with this technology. Improved temperature capability turbine blades and vanes of the MAR-M 247 alloy made by directional solidification casting processes are now in volume production for Garrett gas turbines. Single-crystal alloys derivative to MAR-M 247 further extend the temperature capability of turbine blades and have been successfully engine tested. These blades are produced by a relatively simple modification of the processes used to manufacture directionally solidified blades.
NASA Astrophysics Data System (ADS)
López de Ipiña, JM; Vaquero, C.; Gutierrez-Cañas, C.
2017-06-01
It is expected a progressive increase of the industrial processes that manufacture of intermediate (iNEPs) and end products incorporating ENMs (eNEPs) to bring about improved properties. Therefore, the assessment of occupational exposure to airborne NOAA will migrate, from the simple and well-controlled exposure scenarios in research laboratories and ENMs production plants using innovative production technologies, to much more complex exposure scenarios located around processes of manufacture of eNEPs that, in many cases, will be modified conventional production processes. Here will be discussed some of the typical challenging situations in the process of risk assessment of inhalation exposure to NOAA in Multi-Source Industrial Scenarios (MSIS), from the basis of the lessons learned when confronted to those scenarios in the frame of some European and Spanish research projects.
Automatic centring and bonding of lenses
NASA Astrophysics Data System (ADS)
Krey, Stefan; Heinisch, J.; Dumitrescu, E.
2007-05-01
We present an automatic bonding station which is able to center and bond individual lenses or doublets to a barrel with sub micron centring accuracy. The complete manufacturing cycle includes the glue dispensing and UV curing. During the process the state of centring is continuously controlled by the vision software, and the final result is recorded to a file for process statistics. Simple pass or fail results are displayed to the operator at the end of the process.
Advances in High Temperature Materials for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin
2017-08-01
In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.
Brixner, Diana; Maniadakis, Nikos; Kaló, Zoltán; Hu, Shanlian; Shen, Jie; Wijaya, Kalman
2017-09-01
Off-patent pharmaceuticals (OPPs) represent more than 60% of the pharmaceutical market in many emerging countries, where they are frequently evaluated primarily on cost rather than with health technology assessment. OPPs are assumed to be identical to the originators. Branded and unbranded generic versions can, however, vary from the originator in active pharmaceutical ingredients, dosage, consistency formulation, excipients, manufacturing processes, and distribution, for example. These variables can alter the efficacy and safety of the product, negatively impacting both the anticipated cost savings and the population's health. In addition, many health care systems lack the resources or expertise to evaluate such products, and current assessment methods can be complex and difficult to adapt to a health system's needs. Multicriteria decision analysis (MCDA) simple scoring is an evidence-based health technology assessment methodology for evaluating OPPs, especially in emerging countries in which resources are limited but decision makers still must balance affordability with factors such as drug safety, level interchangeability, manufacturing site and active pharmaceutical ingredient quality, supply track record, and real-life outcomes. MCDA simple scoring can be applied to pharmaceutical pricing, reimbursement, formulary listing, and drug procurement. In November 2015, a workshop was held at the International Society for Pharmacoeconomics and Outcomes Research Annual Meeting in Milan to refine and prioritize criteria that can be used in MCDA simple scoring for OPPs, resulting in an example MCDA process and 22 prioritized criteria that health care systems in emerging countries can easily adapt to their own decision-making processes. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Spoerl, Silvia; Peter, Robert; Wäscher, Dagmar; Verbeek, Mareike; Menzel, Helge; Peschel, Christian; Krackhardt, Angela M
2015-11-01
In several European countries, preparation of cellular products with open manufacturing systems as used for cryopreservation of peripheral blood stem cells (PBSCs) needs to be performed in a clean-room facility. However, this form of manufacturing is highly expensive and laborious. Thus, safe techniques providing improved efficacy regarding time and material, which are in accordance with legal requirements are highly desirable. We have developed, validated, and applied a simple method for cryopreservation of PBSCs within a functionally closed-bag system using the closed cryo freeze prep set. This process fulfills good manufacturing practice requirements and allows for the cryopreservation of PBSCs without a clean-room facility. In addition to cryopreservation of PBSCs, we have recently successfully modified our system for processing, portioning, and cryopreservation of allogeneic donor lymphocytes. Since 2010, cryopreservation of PBSCs using a closed-bag system has been performed in our facility on a routine basis and 210 patients and healthy donors have been included in this analysis. No significant reduction in viability of CD34+ cells and no process-related contamination were observed. Outcome of hematopoietic stem cell transplantation regarding time of engraftment and infectious complications is comparable to products manufactured in conventional clean-room facilities. Our data confirm that cryopreservation of PBSCs within a functionally closed-bag system is safe, effective, and economical. Furthermore, the system has the potential to be extended to other manufacturing processes of cellular products. © 2015 AABB.
A simple approach to industrial laser safety.
Lewandowski, Michael A; Hinz, Michael W
2005-02-01
Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.
NASA Astrophysics Data System (ADS)
Cullen, Andrew T.; Price, Aaron D.
2017-04-01
Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.
Organic photovoltaic cells: from performance improvement to manufacturing processes.
Youn, Hongseok; Park, Hui Joon; Guo, L Jay
2015-05-20
Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using pattern enumeration to accelerate process development and ramp yield
NASA Astrophysics Data System (ADS)
Zhuang, Linda; Pang, Jenny; Xu, Jessy; Tsai, Mengfeng; Wang, Amy; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua
2016-03-01
During a new technology node process setup phase, foundries do not initially have enough product chip designs to conduct exhaustive process development. Different operational teams use manually designed simple test keys to set up their process flows and recipes. When the very first version of the design rule manual (DRM) is ready, foundries enter the process development phase where new experiment design data is manually created based on these design rules. However, these IP/test keys contain very uniform or simple design structures. This kind of design normally does not contain critical design structures or process unfriendly design patterns that pass design rule checks but are found to be less manufacturable. It is desired to have a method to generate exhaustive test patterns allowed by design rules at development stage to verify the gap of design rule and process. This paper presents a novel method of how to generate test key patterns which contain known problematic patterns as well as any constructs which designers could possibly draw based on current design rules. The enumerated test key patterns will contain the most critical design structures which are allowed by any particular design rule. A layout profiling method is used to do design chip analysis in order to find potential weak points on new incoming products so fab can take preemptive action to avoid yield loss. It can be achieved by comparing different products and leveraging the knowledge learned from previous manufactured chips to find possible yield detractors.
Challenges in Catalytic Manufacture of Renewable Pyrrolidinones from Fermentation Derived Succinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, James F.; Holladay, Johnathan E.; Zacher, Alan H.
2014-09-05
Fermentation derived succinic acid ammonium salt is an ideal precursor for manufacture of renewable N-methyl pyrrolidinone (NMP) or 2-pyrrolidinone (2P) via heterogeneous catalysis. However, there are many challenges to making this a practical reality. Chief among the challenges is avoiding catalyst poisoning by fermentation by- and co-products. Battelle / Pacific Northwest National Laboratory (PNNL) have developed an economically effective technology strategy for this purpose. The technology is a combination of purely thermal processing, followed by simple catalytic hydrogenation that together avoids catalyst poisoning from fermentation impurities and provides high selectivity and yields of NMP or 2P.
NASA Astrophysics Data System (ADS)
Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.
2017-02-01
In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.
Sadjadi, Seyed Jafar; Asadi, Hashem; Sadeghian, Ramin; Sahebi, Hadi
2018-01-01
This paper studies the Retailer Stackelberg game in a supply chain consisting of two manufacturers and one retailer where they compete simultaneously under three factors including price, service and simple price discount contract. It is assumed that the second manufacturer provides service directly to his customers, and the retailer provides service for the first product's customers, while the retailer buys the first product under price discount from the first manufacturer. The analysis of the optimal equilibrium solutions and the results of the numerical examples show that if a manufacturer chooses the appropriate range of discount rate, he will gain more profit than when there is no discount given to the retailer. This situation can be considered as an effective tool for the coordination of the first manufacturer and the retailer to offer discount by manufacturer and to provide the service by the retailer. We obtain equilibrium solution of Retailer Stackelberg game and analyze the numerical examples under two cases: a) the manufacturers sell their products to the retailer without price discount contract. b) The first manufacturer sells his products to the retailer with the simple price discount contract. The preliminary results show that the service and the price discount contract can improve the performance of supply chain.
Sadjadi, Seyed Jafar; Sadeghian, Ramin; Sahebi, Hadi
2018-01-01
This paper studies the Retailer Stackelberg game in a supply chain consisting of two manufacturers and one retailer where they compete simultaneously under three factors including price, service and simple price discount contract. It is assumed that the second manufacturer provides service directly to his customers, and the retailer provides service for the first product’s customers, while the retailer buys the first product under price discount from the first manufacturer. The analysis of the optimal equilibrium solutions and the results of the numerical examples show that if a manufacturer chooses the appropriate range of discount rate, he will gain more profit than when there is no discount given to the retailer. This situation can be considered as an effective tool for the coordination of the first manufacturer and the retailer to offer discount by manufacturer and to provide the service by the retailer. We obtain equilibrium solution of Retailer Stackelberg game and analyze the numerical examples under two cases: a) the manufacturers sell their products to the retailer without price discount contract. b) The first manufacturer sells his products to the retailer with the simple price discount contract. The preliminary results show that the service and the price discount contract can improve the performance of supply chain. PMID:29649315
Integration of Machining and Inspection in Aerospace Manufacturing
NASA Astrophysics Data System (ADS)
Simpson, Bart; Dicken, Peter J.
2011-12-01
The main challenge for aerospace manufacturers today is to develop the ability to produce high-quality products on a consistent basis as quickly as possible and at the lowest-possible cost. At the same time, rising material prices are making the cost of scrap higher than ever so making it more important to minimise waste. Proper inspection and quality control methods are no longer a luxury; they are an essential part of every manufacturing operation that wants to grow and be successful. However, simply bolting on some quality control procedures to the existing manufacturing processes is not enough. Inspection must be fully-integrated with manufacturing for the investment to really produce significant improvements. The traditional relationship between manufacturing and inspection is that machining is completed first on the company's machine tools and the components are then transferred to dedicated inspection equipment to be approved or rejected. However, as machining techniques become more sophisticated, and as components become larger and more complex, there are a growing number of cases where closer integration is required to give the highest productivity and the biggest reductions in wastage. Instead of a simple linear progression from CAD to CAM to machining to inspection, a more complicated series of steps is needed, with extra data needed to fill any gaps in the information available at the various stages. These new processes can be grouped under the heading of "adaptive machining". The programming of most machining operations is based around knowing three things: the position of the workpiece on the machine, the starting shape of the material to be machined, and the final shape that needs to be achieved at the end of the operation. Adaptive machining techniques allow successful machining when at least one of those elements is unknown, by using in-process measurement to close the information gaps in the process chain. It also allows any errors to be spotted earlier in the manufacturing process, so helping the problems to be resolved more quickly and at lower cost.
Laser micromachining of biofactory-on-a-chip devices
NASA Astrophysics Data System (ADS)
Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.
2002-06-01
Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.
Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist
NASA Astrophysics Data System (ADS)
Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey
1999-06-01
In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.
Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi
2018-05-17
Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.
NASA Astrophysics Data System (ADS)
Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.
2017-05-01
Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
Manufacture of multi-layer woven preforms
NASA Technical Reports Server (NTRS)
Mohamed, M. H.; Zhang, Z.; Dickinson, L.
1988-01-01
This paper reviews current three-dimensional weaving processes and discusses a process developed at the Mars Mission Research Center of North Carolina State University to weave three-dimensional multilayer fabrics. The fabrics may vary in size and complexity from simple panels to T-section or I-section beams to large stiffened panels. Parameters such as fiber orientation, volume fraction of the fiber required in each direction, yarn spacings or density, etc., which determine the physical properties of the composites are discussed.
A Black-Scholes Approach to Satisfying the Demand in a Failure-Prone Manufacturing System
NASA Technical Reports Server (NTRS)
Chavez-Fuentes, Jorge R.; Gonzalex, Oscar R.; Gray, W. Steven
2007-01-01
The goal of this paper is to use a financial model and a hedging strategy in a systems application. In particular, the classical Black-Scholes model, which was developed in 1973 to find the fair price of a financial contract, is adapted to satisfy an uncertain demand in a manufacturing system when one of two production machines is unreliable. This financial model together with a hedging strategy are used to develop a closed formula for the production strategies of each machine. The strategy guarantees that the uncertain demand will be met in probability at the final time of the production process. It is assumed that the production efficiency of the unreliable machine can be modeled as a continuous-time stochastic process. Two simple examples illustrate the result.
Rainer, Alberto; Giannitelli, Sara M; Accoto, Dino; De Porcellinis, Stefano; Guglielmelli, Eugenio; Trombetta, Marcella
2012-04-01
Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.
Production of oxygen from lunar soil by molten salt electrolysis
NASA Technical Reports Server (NTRS)
Keller, Rudolf
1989-01-01
A simple approach to utilizing lunar resources proposes to dissolve lunar soil, without or with little beneficiation, in a suitable molten salt and to electrolyze the oxides to oxygen and a metal byproduct. The envisioned process and the required technological advances are discussed. Promising electrolysis conditions have been identified in a recent experimental program to manufacture silicon and aluminum from anorthite.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Method of low pressure and/or evaporative drying of aerogel
Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.
1995-01-01
A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.
Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.
Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd
2018-01-08
We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
A convenient method of manufacturing liquid-gated MoS2 field effect transistors
NASA Astrophysics Data System (ADS)
Lin, Kabin; Yuan, Zhishan; Yu, Yu; Li, Kun; Li, Zhongwu; Sha, Jingjie; Li, Tie; Chen, Yunfei
2017-10-01
In this paper, we present a simple and convenient method of manufacturing liquid-gated MoS2 field effect transistors (FETs). A Si3N4 chip is firstly fabricated by the semiconductor manufacturing process, then the mechanical exfoliation MoS2 is transferred onto the Si3N4 chip and is connected with the gold electrodes by depositing platinum to construct the MoS2 FETs. The liquid-gated is formed by injecting 0.1 M NaCl solution into reservoir to contact the back side of the Si3N4. Our measured results show that the contact properties between MoS2 and electrodes are in well condition and the liquid-gated MoS2 FETs have a high mobility that can reach up to 109 cm2 V-1 s-1.
Ravibabu, K; Barman, T; Rajmohan, H R
2015-01-01
The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests---simple reaction time (SRT), symbol digit substitution test (SDST), and serial digit learning test (SDLT). There was a significant correlation (r 0.199, p<0.05) between SDST and BLL. SDLT and SRT had also a significant positive correlation (r 0.238, p<0.01). NSE had a negative correlation (r -0.194, p<0.05) with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the "attention and perception" (SDST).
FDA 2011 process validation guidance: lifecycle compliance model.
Campbell, Cliff
2014-01-01
This article has been written as a contribution to the industry's efforts in migrating from a document-driven to a data-driven compliance mindset. A combination of target product profile, control engineering, and general sum principle techniques is presented as the basis of a simple but scalable lifecycle compliance model in support of modernized process validation. Unit operations and significant variables occupy pole position within the model, documentation requirements being treated as a derivative or consequence of the modeling process. The quality system is repositioned as a subordinate of system quality, this being defined as the integral of related "system qualities". The article represents a structured interpretation of the U.S. Food and Drug Administration's 2011 Guidance for Industry on Process Validation and is based on the author's educational background and his manufacturing/consulting experience in the validation field. The U.S. Food and Drug Administration's Guidance for Industry on Process Validation (2011) provides a wide-ranging and rigorous outline of compliant drug manufacturing requirements relative to its 20(th) century predecessor (1987). Its declared focus is patient safety, and it identifies three inter-related (and obvious) stages of the compliance lifecycle. Firstly, processes must be designed, both from a technical and quality perspective. Secondly, processes must be qualified, providing evidence that the manufacturing facility is fully "roadworthy" and fit for its intended purpose. Thirdly, processes must be verified, meaning that commercial batches must be monitored to ensure that processes remain in a state of control throughout their lifetime.
Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir
2015-08-04
Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.
Simple solution to the medical instrumentation software problem
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Leif, Suzanne B.; Leif, Stephanie H.; Bingue, E.
1995-04-01
Medical devices now include a substantial software component, which is both difficult and expensive to produce and maintain. Medical software must be developed according to `Good Manufacturing Practices', GMP. Good Manufacturing Practices as specified by the FDA and ISO requires the definition and compliance to a software processes which ensures quality products by specifying a detailed method of software construction. The software process should be based on accepted standards. US Department of Defense software standards and technology can both facilitate the development and improve the quality of medical systems. We describe the advantages of employing Mil-Std-498, Software Development and Documentation, and the Ada programming language. Ada provides the very broad range of functionalities, from embedded real-time to management information systems required by many medical devices. It also includes advanced facilities for object oriented programming and software engineering.
Hümmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard
2016-03-16
Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.
ERIC Educational Resources Information Center
GLOVER, J.H.
THE CHIEF OBJECTIVE OF THIS STUDY OF SPEED-SKILL ACQUISITION WAS TO FIND A MATHEMATICAL MODEL CAPABLE OF SIMPLE GRAPHIC INTERPRETATION FOR INDUSTRIAL TRAINING AND PRODUCTION SCHEDULING AT THE SHOP FLOOR LEVEL. STUDIES OF MIDDLE SKILL DEVELOPMENT IN MACHINE AND VEHICLE ASSEMBLY, AIRCRAFT PRODUCTION, SPOOLMAKING AND THE MACHINING OF PARTS CONFIRMED…
NASA Astrophysics Data System (ADS)
Choi, Hong-seok; Ha, Se-yoon; Cha, Seung-hoon; kang, Chung-gil; Kim, Byung-min
2011-08-01
The hot stamping process has been used in the automotive industry to reduce the weight of the body-in-white and to increase passenger safety via improved crashworthiness. In this study, a new form die with a simple structure that can prevent defects such as wrinkle and fracture is proposed for the manufacture of hot stamped components. The wrinkling at the flange cannot be eliminated when using a conventional form die. It is known that the initiation of wrinkling is influenced by many factors such as the mechanical properties of the sheet material, geometry of the sheet and tool, and other process parameters, including the blank holding force (BHF) and the contact conditions. In this research, channel type indirect blank holder (CIBH) is introduced to replace general blank holder for manufacturing the hot stamped center pillar. First, we investigate the tension force acting on the blank according to the channel shapes. We determine the appropriate range by comparing the tension force with the upper and lower BHFs in a conventional stamping process. We then use FE-analysis to study the influence of the slope angle and corner radius of the channel on the formability. Finally, the center pillar is manufactured using the form die with the selected channel.
Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan
2016-12-21
Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Muminovic, A.; Epple, S.; Barz, C.; Nasui, V.
2017-05-01
With increasing automation, many work processes become more and more complex. Most technical products can no longer be developed and manufactured by a single department. They are often the product of different divisions and require cooperation from different specialist areas. For example, in the Western world, a simple coffee maker is no longer so much in demand. If the buyer has the possibility to choose between a simple coffee maker and a coffee machine with very complex functions, the choice will probably fall to the more complex variant. Technical progress also applies to other technical products, such as grippers and manipulators. In this paper, it is shown how grasping processes can be redefined and developed with interdisciplinary technical approaches. Both conventional and latest developments in mechanical engineering, production technology, mechatronics and sensor technology will be considered.
Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J
2015-03-01
This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Verification and Validation of Residual Stresses in Bi-Material Composite Rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy Michelle; Hanson, Alexander Anthony; Briggs, Timothy
Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time andmore » cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh convergence study, sensitivity analysis, and uncertainty quantification. The simulations’ final results show adequate agreement with the experimental measurements, indicating the validity of a simple modeling approach, as well as a necessity for the inclusion of material parameter uncertainty in the final residual stress predictions.« less
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel
2011-04-01
A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).
Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao
2018-01-01
Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters. PMID:29772802
Very large scale monoclonal antibody purification: the case for conventional unit operations.
Kelley, Brian
2007-01-01
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.
Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony
2015-11-27
A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Homberg, Werner; Hornjak, Daniel
2011-05-01
Friction spinning is a new innovative and promising incremental forming technology implying high potential regarding the manufacturing of complex functionally graded workpieces and enhancing existing forming limits of conventional metal spinning processes. The friction spinning process is based on the integration of thermo-mechanical friction subprocesses in this incremental forming process. By choosing the appropriate process parameters, e.g. axial feed rate or relative motion, the contact conditions between tool and workpiece can be influenced in a defined way and, thus, a required temperature profile can be obtained. Friction spinning allows the extension of forming limits compared to conventional metal spinning in order to produce multifunctional components with locally varying properties and the manufacturing of e.g. complex hollow parts made of tubes, profiles, or sheet metals. In this way, it meets the demands regarding efficiency and the manufacturing of functionally graded lightweight components. There is e.g. the possibility of locally increasing the wall thickness in joining zones and, as a consequence, achieving higher quality of the joint at decreased expense. These products are not or only hardly producible by conventional processes so far. In order to benefit from the advantages and potentials of this new innovative process new tooling systems and concepts are indispensable which fulfill the special requirements of this thermo-mechanical process concerning thermal and tribological loads and which allow simultaneous and defined forming and friction operations. An important goal of the corresponding research work at the Chair of Forming and Machining Technology at the University of Paderborn is the development of tool systems that allow the manufacturing of such complex parts by simple uniaxial or sequential biaxial linear tool paths. In the paper, promising tool systems and geometries as well as results of theoretical and experimental research work (e.g. regarding the influence and interaction of process parameters on the workpiece quality) will be discussed. Furthermore, possibilities regarding the manufacturing of geometries (demonstrator workpieces) which are not or only hardly producible with conventional processes will be presented.
Wadley, Lyn; Trower, Gary; Backwell, Lucinda; d'Errico, Francesco
2015-01-01
Ju/'hoan hunters from Nyae Nyae, near Tsumkwe in Namibia, demonstrate the manufacture of three fixative pastes made from plant extracts, and poison made from grubs and plant extracts. Ammocharis coranica and Terminalia sericea produce simple glue. Ozoroa schinzii latex mixed with carbonized Aristeda adscensionis grass is a compound adhesive. Composite poison is made from Chrysomelid grub viscera mixed with salivary extracts of Acacia mellifera inner bark and the tuber sap of Asparagus exuvialis. In order to document potential variability in the chaîne opératoire, and to eliminate inherent biases associated with unique observations, we studied manufacturing processes in three separate Nyae Nyae villages. Although there are methodological similarities in the Nyae Nyae area, we observed a few differences in contemporary traditions of poison manufacture. For example, some hunters make powder from Asparagus exuvialis tuber sap by boiling, reducing, hardening and grinding it, while others simply use heated sap. The Ju/'hoan hunting kit provides insights for archaeologists, but we must exercise caution when looking for continuity between prehistoric and historical technical systems. Some traditions have been lost to modern hunters, while others are new. We should also expect variability in the Stone Age because of geographically restricted resources. Simple glue, compound adhesive, and poison recipes identified in the Stone Age have no modern equivalents. By about 60,000 years ago at Diepkloof, simple glue was used for hafting tools, but at similarly-aged Sibudu there are recipes that combine red ochre powder with plant and/or animal ingredients. At Border Cave, novel poisons and compound adhesives were used in the Early Later Stone Age. It is possible that the complexity that we record in the manufacture of fixative pastes and poison used by Ju/'hoan hunters represents a hafting system both similar to and different from that observed at the Stone Age sites of Diepkloof, Sibudu, and Border Cave.
Cherroud, Sanâa; Cachaldora, Aida; Fonseca, Sonia; Laglaoui, Amin; Carballo, Javier; Franco, Inmaculada
2014-10-01
The objective of this work was to define a simple technological process for dry-cured Halal goat meat elaboration. The aims of this study were to analyze physicochemical parameters and to enumerate the microbial population at the end of the different manufacturing processes (two salting times and the addition of olive oil and paprika covering) on 36 units of meat product. A total of 532 strains were isolated from several selective culture media and then identified using classical and molecular methods. In general, salt effect and the addition of olive oil and paprika were significant for all the studied microbial groups as well as on NaCl content and water activity. Molecular analysis proves that staphylococci, especially Staphylococcus xylosus and Staphylococcus equorum, were the most common naturally occurring microbiota. The best manufacturing process would be obtained with a longer salting time and the addition of the olive oil and paprika covering. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method of low pressure and/or evaporative drying of aerogel
Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.
1995-05-30
A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.
Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norwood, D.P.
1989-01-31
A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.
Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors
Norwood, David P.
1989-01-01
A standard thin film circuit containing Ta.sub.2 N (100 ohms/square) resirs is fabricated by depositing on a dielectric substrate successive layers of Ta.sub.2 N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standeard TFN manufacturing process enables the formation of Ta.sub.2 N+Ti (10 ohms/square) and Ta.sub.2 N+Ti+Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy
2015-06-14
It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less
Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique
Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi
2009-01-01
In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581
Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique.
Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi
2009-01-01
In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.
Scalable Production of Graphene-Based Wearable E-Textiles.
Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S
2017-12-26
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.
System-level protection and hardware Trojan detection using weighted voting.
Amin, Hany A M; Alkabani, Yousra; Selim, Gamal M I
2014-07-01
The problem of hardware Trojans is becoming more serious especially with the widespread of fabless design houses and design reuse. Hardware Trojans can be embedded on chip during manufacturing or in third party intellectual property cores (IPs) during the design process. Recent research is performed to detect Trojans embedded at manufacturing time by comparing the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third party IP cores is more challenging than other logic modules especially that there is no golden chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party IP cores. The method works by gradually building trust in suspected IP cores by comparing the outputs of different untrusted implementations of the same IP core. Simulation results show that our method achieves higher probability of Trojan detection over a naive implementation of simple voting on the output of different IP cores. In addition, experimental results show that the proposed method requires less hardware overhead when compared with a simple voting technique achieving the same degree of security.
Craniofacial Reconstruction by a Cost-Efficient Template-Based Process Using 3D Printing
Beiglboeck, Fabian; Honigmann, Philipp; Jaquiéry, Claude; Thieringer, Florian
2017-01-01
Summary: Craniofacial defects often result in aesthetic and functional deficits, which affect the patient’s psyche and wellbeing. Patient-specific implants remain the optimal solution, but their use is limited or impractical due to their high costs. This article describes a fast and cost-efficient workflow of in-house manufactured patient-specific implants for craniofacial reconstruction and cranioplasty. As a proof of concept, we present a case of reconstruction of a craniofacial defect with involvement of the supraorbital rim. The following hybrid manufacturing process combines additive manufacturing with silicone molding and an intraoperative, manual fabrication process. A computer-aided design template is 3D printed from thermoplastics by a fused deposition modeling 3D printer and then silicone molded manually. After sterilization of the patient-specific mold, it is used intraoperatively to produce an implant from polymethylmethacrylate. Due to the combination of these 2 straightforward processes, the procedure can be kept very simple, and no advanced equipment is needed, resulting in minimal financial expenses. The whole fabrication of the mold is performed within approximately 2 hours depending on the template’s size and volume. This reliable technique is easy to adopt and suitable for every health facility, especially those with limited financial resources in less privileged countries, enabling many more patients to profit from patient-specific treatment. PMID:29263977
A research factory for polymer microdevices: muFac
NASA Astrophysics Data System (ADS)
Anthony, Brian W.; Hardt, David E.; Hale, Melinda; Zarrouati, Nadege
2010-02-01
As part of our research on the manufacturing science of micron scale polymer-based devices, an automated production cell has been developed to explore its use in a volume manufacturing environment. This "micro-factory" allows the testing of models and hardware that have resulted from research on material characterization and simulation, tooling and equipment design and control, and process control and metrology. More importantly it has allowed us to identify the problems that exist between and within unit-processes. This paper details our efforts to produce basic micro-fluidic products in high volume at acceptable production rates and quality levels. The device chosen for our first product is a simple binary micromixer with 40×50 micron channel cross section manufactured by embossing of PMMA. The processes in the cell include laser cutting and drilling, hot embossing, thermal bonding and high-speed inspection of the components. Our goal is to create a "lights-out" factory that can make long production runs (e.g. an 8 hour shift) at high rates (Takt time of less than 3 minutes) with consistent quality. This contrasts with device foundries where prototypes in limited quantities but with high variety are the goal. Accordingly, rate and yield are dominant factors in this work, along with the need for precise material handling strategies. Production data will be presented to include process run charts, sampled functional testing of the products and measures of the overall system throughput.
Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy
2017-09-11
Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Aitomäki, Yvonne; Westin, Mikael; Korpimäki, Jani; Oksman, Kristiina
2016-07-01
In this study a model based on simple scattering is developed and used to predict the distribution of nanofibrillated cellulose in composites manufactured by resin transfer moulding (RTM) where the resin contains nanofibres. The model is a Monte Carlo based simulation where nanofibres are randomly chosen from probability density functions for length, diameter and orientation. Their movements are then tracked as they advance through a random arrangement of fibres in defined fibre bundles. The results of the model show that the fabric filters the nanofibres within the first 20 µm unless clear inter-bundle channels are available. The volume fraction of the fabric fibres, flow velocity and size of nanofibre influence this to some extent. To verify the model, an epoxy with 0.5 wt.% Kraft Birch nanofibres was made through a solvent exchange route and stained with a colouring agent. This was infused into a glass fibre fabric using an RTM process. The experimental results confirmed the filtering of the nanofibres by the fibre bundles and their penetration in the fabric via the inter-bundle channels. Hence, the model is a useful tool for visualising the distribution of the nanofibres in composites in this manufacturing process.
Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng
2012-04-01
As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
NASA Astrophysics Data System (ADS)
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-08-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-01-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059
NASA Astrophysics Data System (ADS)
Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu
2017-04-01
We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.
Stephan, Anett; Hahn-Löbmann, Simone; Rosche, Fred; Buchholz, Mirko; Giritch, Anatoli; Gleba, Yuri
2017-12-29
Colicins are natural non-antibiotic bacterial proteins with a narrow spectrum but an extremely high antibacterial activity. These proteins are promising food additives for the control of major pathogenic Shiga toxin-producing E. coli serovars in meats and produce. In the USA, colicins produced in edible plants such as spinach and leafy beets have already been accepted by the U. S. Food and Drug Administration (FDA) and U. S. Department of Agriculture (USDA) as food-processing antibacterials through the GRAS (generally recognized as safe) regulatory review process. Nicotiana benthamiana , a wild relative of tobacco, N. tabacum , has become the preferred production host plant for manufacturing recombinant proteins-including biopharmaceuticals, vaccines, and biomaterials-but the purification procedures that have been employed thus far are highly complex and costly. We describe a simple and inexpensive purification method based on specific acidic extraction followed by one chromatography step. The method provides for a high recovery yield of purified colicins, as well as a drastic reduction of nicotine to levels that could enable the final products to be used on food. The described purification method allows production of the colicin products at a commercially viable cost of goods and might be broadly applicable to other cost-sensitive proteins.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
An evolutionary sensor approach for self-organizing production chains
NASA Astrophysics Data System (ADS)
Mocan, M.; Gillich, E. V.; Mituletu, I. C.; Korka, Z. I.
2018-01-01
Industry 4.0 is the actual great step in industrial progress. Convergence of industrial equipment with the power of advanced computing and analysis, low-cost sensing, and new connecting technologies are presumed to bring unexpected advancements in automation, flexibility, and efficiency. In this context, sensors ensure information regarding three essential areas: the number of processed elements, the quality of production and the condition of tools and equipment. To obtain this valuable information, the data resulted from a sensor has to be firstly processed and afterward used by the different stakeholders. If machines are linked together, this information can be employed to organize the production chain with few or without human intervention. We describe here the implementation of a sensor in a milling machine that is part of a simple production chain, capable of providing information regarding the number of manufactured pieces. It is used by the other machines in the production chain, in order to define the type and number of pieces to be manufactured by them and/or to set optimal parameters for their working regime. Secondly, the information achieved by monitoring the machine and manufactured piece dynamic behavior is used to evaluate the product quality. This information is used to warn about the need of maintenance, being transmitted to the specialized department. It is also transmitted to the central unit, in order to reorganize the production by involving other machines or by reconsidering the manufacturing regime of the existing machines. A special attention is drawn on analyzing and classifying the signals acquired via optical sensor from simulated processes.
Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process
NASA Astrophysics Data System (ADS)
Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue
2014-04-01
The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.
1984-10-10
major producer of many manufacturing products." Mr Robinson says there are cost advantages in China in basic, simple products. Its manufacturing ...says, China is reliable and trusting. And it is prepared to manufacture to specification. The man who landed the job of heading the Government’s China...same way as it is in Australia. "It goes into brewing, softdrink and confectionery manufacture and things like that." It has all led to an almost
Friction Stir Additive Manufacturing: Route to High Structural Performance
NASA Astrophysics Data System (ADS)
Palanivel, S.; Sidhar, H.; Mishra, R. S.
2015-03-01
Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.
Engineering muscle cell alignment through 3D bioprinting.
Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele; Trombetta, Marcella; Rainer, Alberto
2017-09-01
Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic ® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017. © 2017 Wiley Periodicals, Inc.
Charge pump-based MOSFET-only 1.5-bit pipelined ADC stage in digital CMOS technology
NASA Astrophysics Data System (ADS)
Singh, Anil; Agarwal, Alpana
2016-10-01
A simple low-power and low-area metal-oxide-semiconductor field-effect transistor-only fully differential 1.5-bit pipelined analog-to-digital converter stage is proposed and designed in Taiwan Semiconductor Manufacturing Company 0.18 μm-technology using BSIM3v3 parameters with supply voltage of 1.8 V in inexpensive digital complementary metal-oxide semiconductor (CMOS) technology. It is based on charge pump technique to achieve the desired voltage gain of 2, independent of capacitor mismatch and avoiding the need of power hungry operational amplifier-based architecture to reduce the power, Si area and cost. Various capacitances are implemented by metal-oxide semiconductor capacitors, offering compatibility with cheaper digital CMOS process in order to reduce the much required manufacturing cost.
Producing optical (contact) lenses by a novel low cost process
NASA Astrophysics Data System (ADS)
Skipper, Richard S.; Spencer, Ian D.
2005-09-01
The rapid and impressive growth of China has been achieved on the back of highly labour intensive industries, often in manufacturing, and at the cost of companies and jobs in Europe and America. Approaches that worked well in the 1990's to reduce production costs in the developed countries are no longer effective when confronted with the low labour costs of China and India. We have looked at contact lenses as a product that has become highly available to consumers here but as an industry that has reduced costs by moving to low labour cost countries. The question to be answered was, "Do we have the skill to still make the product in the UK, and can we make it cheap enough to export to China?" if we do not, then contact lens manufacture will move to China sooner or later. The challenge to enter the markets of the BRIC (Brazil, Russia, India and China) countries is extremely exciting as here is the new money, high growth and here is a product that sells to those with disposable incomes. To succeed we knew we had to be radical in our approach; the radical step was very simple: to devise a process in which each step added value to the customer and not cost to the product. The presentation examines the processes used by the major producers and how, by applying good manufacturing practice sound scientific principles to them, the opportunity to design a new low cost patented process was identified.
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.
Maier, Manfred; Radtke, Carsten P; Hubbuch, Jürgen; Niemeyer, Christof M; Rabe, Kersten S
2018-05-04
The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three-dimensional (3D) printing techniques offer high-throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose-based inks for a simple temperature-controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D-printed parts for a continuous, two-step sequential biotransformation in a fluidic setup. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells
Bieback, Karen; Kinzebach, Sven; Karagianni, Marianna
2010-01-01
It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs), and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed. PMID:21318154
2015-01-01
Ju/’hoan hunters from Nyae Nyae, near Tsumkwe in Namibia, demonstrate the manufacture of three fixative pastes made from plant extracts, and poison made from grubs and plant extracts. Ammocharis coranica and Terminalia sericea produce simple glue. Ozoroa schinzii latex mixed with carbonized Aristeda adscensionis grass is a compound adhesive. Composite poison is made from Chrysomelid grub viscera mixed with salivary extracts of Acacia mellifera inner bark and the tuber sap of Asparagus exuvialis. In order to document potential variability in the chaîne opératoire, and to eliminate inherent biases associated with unique observations, we studied manufacturing processes in three separate Nyae Nyae villages. Although there are methodological similarities in the Nyae Nyae area, we observed a few differences in contemporary traditions of poison manufacture. For example, some hunters make powder from Asparagus exuvialis tuber sap by boiling, reducing, hardening and grinding it, while others simply use heated sap. The Ju/’hoan hunting kit provides insights for archaeologists, but we must exercise caution when looking for continuity between prehistoric and historical technical systems. Some traditions have been lost to modern hunters, while others are new. We should also expect variability in the Stone Age because of geographically restricted resources. Simple glue, compound adhesive, and poison recipes identified in the Stone Age have no modern equivalents. By about 60,000 years ago at Diepkloof, simple glue was used for hafting tools, but at similarly-aged Sibudu there are recipes that combine red ochre powder with plant and/or animal ingredients. At Border Cave, novel poisons and compound adhesives were used in the Early Later Stone Age. It is possible that the complexity that we record in the manufacture of fixative pastes and poison used by Ju/’hoan hunters represents a hafting system both similar to and different from that observed at the Stone Age sites of Diepkloof, Sibudu, and Border Cave. PMID:26509730
Lachaud, Christian Claude; Rodriguez-Campins, Berta; Hmadcha, Abdelkrim; Soria, Bernat
2015-01-01
Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.
Lachaud, Christian Claude; Rodriguez-Campins, Berta; Hmadcha, Abdelkrim; Soria, Bernat
2015-01-01
Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions. PMID:26347862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keshner, M. S.; Arya, R.
2004-10-01
Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the pricemore » of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.« less
Chocolate: A Marvelous Natural Product of Chemistry
NASA Astrophysics Data System (ADS)
Tannenbaum, Ginger
2004-08-01
Chocolate is a natural product as ubiquitous as television. Of course, it is eaten, but it is also found in air fresheners, marking pens, flavoring in a multitude of products including soda pop, and as an aroma in "chocolate-dyed" T-shirts. However, most of us are completely unaware of the complex chemical reactions that take place to produce chocolate and the necessary technology that has evolved to produce chocolate and all its byproducts. Processing results in a mixture of many components, an interesting contrast to most of the simple, one-step reactions introduced at the high school level. This article is a survey of chocolate from tree to table. After a brief introduction to the history of chocolate and how and where it is grown, the manufacturing process is examined, and the chemistry is explored. A bit of the jargon used in the industry is mentioned. Cocoa butter is a significant ingredient in chocolate, and an investigation of it introduces triglycerides, fatty acids, polymorphic behavior, and molecular packing of the fats in chocolate and how they affect the tempering process. There is a brief discussion of chocolate's non-Newtonian behavior and the resulting challenges presented in the manufacturing process. See Featured Molecules Featured on the Cover
Fabrication of superhydrophobic film by microcellular plastic foaming method
NASA Astrophysics Data System (ADS)
Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk
2014-08-01
To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1983-01-01
Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.
Collection, Measurement and Treatment of Microorganism Using Dielectrophoretic Micro Devices
NASA Astrophysics Data System (ADS)
Uchida, Satoshi
Constant monitoring of manufacturing processes has been essential in food industry because of global expansion of microbial infection. Micro-scale dielectrophoretic method is an attractive technique for direct operation and quantitative detection of bioparticles. The electrical system is capable of rapid and simple treatments corresponding to severe legal control for food safety. In this paper, newly developed techniques are reviewed for bacterial concentration, detection and sterilization using dielectrophoresis in a micro reactor. The perspective to an integrated micro device of those components is also discussed.
Scalable Production of Graphene-Based Wearable E-Textiles
2017-01-01
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706
A simple and inexpensive external fixator.
Noor, M A
1988-11-01
A simple and inexpensive external fixator has been designed. It is constructed of galvanized iron pipe and mild steel bolts and nuts. It can easily be manufactured in a hospital workshop with a minimum of tools.
Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon
2018-01-22
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
NASA Astrophysics Data System (ADS)
Dolimont, Adrien; Michotte, Sebastien; Rivière-Lorphèvre, Edouard; Ducobu, François; Vivès, Solange; Godet, Stéphane; Henkes, Tom; Filippi, Enrico
2017-10-01
The use of additive manufacturing processes keeps growing in aerospace and biomedical industry. Among the numerous existing technologies, the Electron Beam Melting process has advantages (good dimensional accuracy, fully dense parts) and disadvantages (powder handling, support structure, high surface roughness). Analyzes of the surface characteristics are interesting to get a better understanding of the EBM operations. But that kind of analyzes is not often found in the literature. The main goal of this study is to determine if it is possible to improve the surface roughness by modifying some parameters of the process (scan speed function, number of contours, order of contours, etc.) on samples with different thicknesses. The experimental work on the surface roughness leads to a statistical analysis of 586 measures of EBM simple geometry parts.
Laser-induced Forward Transfer of Ag Nanopaste.
Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto
2016-03-31
Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.
Laser-induced Forward Transfer of Ag Nanopaste
Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto
2016-01-01
Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645
Technology for High Pure Aluminum Oxide Production from Aluminum Scrap
NASA Astrophysics Data System (ADS)
Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.
2017-10-01
In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.
Manufacture of Sparse-Spectrum Optical Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Kossakovski, Dimitri
2006-01-01
An alternative design for dielectric optical microresonators and a relatively simple process to fabricate them have been proposed. The proposed microresonators would exploit the same basic physical phenomena as those of microtorus optical resonators and of the microsphere optical resonators described elsewhere. The resonances in such devices are associated with the propagation of electromagnetic waves along circumferential paths in "whispering-gallery" modes. The main advantage afforded by the proposal is that the design and the fabrication process are expected to be amenable to production of multiple microresonators having reproducible spectral parameters -- including, most notably, high values of the resonance quality factor (Q) and reproducible resonance frequencies.
Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norwood, D P
1989-01-31
A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN (thin film network) manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure. All three types of resistors are temperature-stable and laser-trimmable for precise definition of resistance values.
Cost Models for MMC Manufacturing Processes
NASA Technical Reports Server (NTRS)
Elzey, Dana M.; Wadley, Haydn N. G.
1996-01-01
The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.
Microeconomics of yield learning and process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Simple microeconomic models that directly link yield learning to profitability in semiconductor manufacturing have been rare or non-existent. In this work, we review such a model and provide links to inspection capability and cost. Using a small number of input parameters, we explain current yield management practices in 200mm factories. The model is then used to extrapolate requirements for 300mm factories, including the impact of technology transitions to 130nm design rules and below. We show that the dramatic increase in value per wafer at the 300mm transition becomes a driver for increasing metrology and inspection capability and sampling. These analyses correlate well wtih actual factory data and often identify millions of dollars in potential cost savings. We demonstrate this using the example of grating-based overlay metrology for the 65nm node.
Laser-based additive manufacturing: where it has been, where it needs to go
NASA Astrophysics Data System (ADS)
Cooper, Khershed P.
2014-03-01
It is no secret that the laser was the driver for additive manufacturing (AM) of 3D objects since such objects were first demonstrated in the mid-1980s. A myriad of techniques utilizing the directed energy of lasers were invented. Lasers are used to selectively sinter or fuse incremental layers in powder-beds, melt streaming powder following a programmed path, and polymerize photopolymers in a liquid vat layer-by-layer. The laser is an energy source of choice for repair of damaged components, for manufacture of new or replacement parts, and for rapid prototyping of concept designs. Lasers enable microstructure gradients and heterogeneous structures designed to exhibit unique properties and behavior. Laserbased additive manufacturing has been successful in producing relatively simple near net-shape metallic parts saving material and cost, but requiring finish-machining and in repair and refurbishment of worn components. It has been routinely used to produce polymer parts. These capabilities have been widely recognized as evidenced by the explosion in interest in AM technology, nationally. These successes are, however, tempered by challenges facing practitioners such as process and part qualification and verification, which are needed to bring AM as a true manufacturing technology. The ONR manufacturing science program, in collaboration with other agencies, invested in basic R&D in AM since its beginnings. It continues to invest, currently focusing on developing cyber-enabled manufacturing systems for AM. It is believed that such computation, communication and control approaches will help in validating AM and moving it to the factory floor along side CNC machines.
NASA Astrophysics Data System (ADS)
Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt
2017-02-01
To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2018-03-01
Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.
Yan, Sheng; Li, Yuxing; Zhu, Yuanqing; Liu, Minsu; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Shiwu; Wen, Weijia; Tang, Shi-Yang; Li, Weihua
2018-06-01
This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis. This approach avoids complicated fabrication processes and expensive facilities and thus has the potential to be a useful tool for lab-on-a-chip applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers
NASA Astrophysics Data System (ADS)
Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan
2009-03-01
Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.
NASA Astrophysics Data System (ADS)
Hester, Michael Wayne
Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece pressing proved very successful. With three passes through the system, 4043 processed material experienced an 88.88% increase in microhardness, 203.4% increase in converted yield strength, and a 98.5% reduction in theoretical final grain size to 103 nanometers using the Hall-Petch relation. The process factor, number of passes, was statistically significant at the 95% confidence level; whereas, temperature was significant at the 90% confidence level. Limitations of system components precluded completion of studies involving continuous pressing. Proposed system redesigns, however, will ensure mainstream commercialization of continuous length work piece processing.
Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.
Array servo scanning micro EDM of 3D micro cavities
NASA Astrophysics Data System (ADS)
Tong, Hao; Li, Yong; Yi, Futing
2011-05-01
Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.
High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes
NASA Astrophysics Data System (ADS)
Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried
2017-09-01
As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.
High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes.
Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried
2017-09-01
As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.
Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Hales, S. J.; Tayon, W. A.; Domack, M. S.
2012-01-01
Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.
Dexosomes as a therapeutic cancer vaccine: from bench to bedside.
Le Pecq, Jean-Bernard
2005-01-01
Exosomes released from dendritic cells, now referred as dexosomes, have recently been extensively characterized. Preclinical studies in mice have shown that, when properly loaded with tumor antigens, dexosomes can elicit a strong antitumor activity. Before dexosomes could be used in humans as a therapeutic vaccine, extensive development work had to be performed to meet the present regulatory requirements. First a manufacturing process amenable to cGMP for isolating and purifying dexosomes was established. Methods for loading the Major Histocompatibility Complex (MHC) molecules class II and I in a quantitative and reproducible way were developed. The most challenging task was the establishment of a quality control method for accessing the biological activity of individual lots. Such a method must remain relatively simple and reflect the mechanism of action of dexosomes. This was accomplished by measuring the transfer of a MHC class II superantigen complex to an antigen presenting cell that was MHC class II negative. More than 100 separate dexosome lots were prepared from blood cells of healthy volunteers to evaluate the variability of the manufacturing process. The analysis of the data showed that the main source of variability was related to the heterogeneity of the human population and not to the manufacturing process. These studies allowed to perform two phase I clinical trials. A total of 24 cancer patients received Dex therapy. Dexosome production from cells of cancer patient was found equivalent to that of normal volunteer. No adverse events related to this therapy were reported. Evidence of dexosome bioactivity was observed.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-01-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Astrophysics Data System (ADS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-02-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
Use of gases in dairy manufacturing: A review.
Adhikari, Bhaskar Mani; Truong, Tuyen; Bansal, Nidhi; Bhandari, Bhesh
2017-06-13
Use of gases (air, carbon dioxide and nitrogen) has been practiced in the manufacture of dairy products (i.e., ice cream, whipped cream and butter) to improve their texture, mouthfeel and shelf-life extension. Many attempts have also been made to incorporate other gases such as hydrogen, nitrous oxide, argon, xenon, and helium into the dairy systems for various product functionalities such as whipping, foaming, texture, aroma enhancement, and therapeutic properties. The gases can be dissolved in aqueous and fat phases or remain in the form of bubbles stabilized by protein or fat particles. The gas addition or infusion processes are typically simple and have been used commercially. This review focuses on the use of various gases in relation to their individually physical properties along with their specific roles in manufacturing and controlling quality of dairy products. It also recaps on how gases are included in the dairy systems. The information is important in understanding of addition of specific gas(es) into food systems, particularly dairy products, that potentially provide intervention opportunities for modifying and/or creating innovative food structures and functionalities.
Plasma Diagnostics: Use and Justification in an Industrial Environment
NASA Astrophysics Data System (ADS)
Loewenhardt, Peter
1998-10-01
The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.
Application of spherical silicate to prepare solid dispersion dosage forms with aqueous polymers.
Nagane, Kentaro; Kimura, Susumu; Ukai, Koji; Takahashi, Chisato; Ogawa, Noriko; Yamamoto, Hiromitsu
2015-09-30
The objective of this study is to prepare and characterize solid dispersions of nifedipine (NP) using porous spherical silicate micro beads (MB) that were approximately 100 μm in diameter with vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) and a Wurster-type fluidized bed granulator. Compared with previously reported solid dispersion using only MB, the supersaturation of NP dissolved from the proposed system of MB and PVP/VA was maintained during dissolution tests. The proposed system produced a solid dispersion product coated on MB, and morphology was maintained after the coating process to prepare solid dispersion; therefore, the powder characteristics, such as flowability of the proposed solid dispersion product, was tremendously preferable to that of the conventional spray-dried solid dispersions of NP with PVP/VA, expecting to make the consequent manufacturing processes easy for development. Another advantage in the terms of manufacturing is its simple process to prepare solid dispersion by spraying the drug and polymer that were dissolved in an organic solvent onto a MB in a Wurster-type fluidized bed granulator, thus, simplifying the optimization and scale-up with ease. Copyright © 2015 Elsevier B.V. All rights reserved.
Modelling Polymer Deformation and Welding Behaviour during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
2016-11-01
3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.
Modelling Polymer Deformation during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing... attributable to the finishing of knit fabrics through simple manufacturing operations employing a natural and..., controlled by this section and attributable to the finishing of knit fabrics through complex manufacturing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing... attributable to the finishing of knit fabrics through simple manufacturing operations employing a natural and..., controlled by this section and attributable to the finishing of knit fabrics through complex manufacturing...
Reduced cost and improved figure of sapphire optical components
NASA Astrophysics Data System (ADS)
Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate
2015-10-01
Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.
An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.
McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E
2017-08-25
We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.
Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2017-04-15
We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.
A low cost, disposable cable-shaped Al-air battery for portable biosensors
NASA Astrophysics Data System (ADS)
Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun
2016-05-01
A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.
Highly Conductive Nano-Silver Circuits by Inkjet Printing
NASA Astrophysics Data System (ADS)
Zhu, Dongbin; Wu, Minqiang
2018-06-01
Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.
Additive Manufacturing of Transparent Silica Glass from Solutions.
Cooperstein, Ido; Shukrun, Efrat; Press, Ofir; Kamyshny, Alexander; Magdassi, Shlomo
2018-06-06
A sol, aqueous solution-based ink is presented for fabrication of 3D transparent silica glass objects with complex geometries, by a simple 3D printing process conducted at room temperature. The ink combines a hybrid ceramic precursor that can undergo both the photopolymerization reaction and a sol-gel process, both in the solution form, without any particles. The printing is conducted by localized photopolymerization with the use of a low-cost 3D printer. Following printing, upon aging and densifying, the resulting objects convert from a gel to a xerogel and then to a fused silica. The printed objects, which are composed of fused silica, are transparent and have tunable density and refractive indices.
A laboratory evaluation of four quality control devices for radiographic processing.
Rushton, V E; Horner, K
1994-08-01
Quality assurance programmes for radiographic processing traditionally employ expensive sensitometric and densitometric techniques. However cheap and simple devices for monitoring radiographic processing are available. The aim of this study was to make a comparison of four such devices in terms of their ability to detect variations in radiographic density of clinical significance. Three of the devices are commercially available while the fourth is easily manufactured from waste materials. Ideal bitewing exposure times were selected for four different kilovoltage/film speed combinations. Phantom bitewing radiographs, exposed using these exposure times, were processed using a variety of times and developer temperatures to simulate variations in radiographic quality due to inadequate processing conditions. Test films, produced using the four monitoring devices, were exposed and processed under identical conditions. The phantom bitewings were judged to have 'acceptable' quality when the optical density of that part of the film not showing calcified structures was within +/- 0.5 of that of the film processed under optimal conditions. The efficacy of the monitoring devices in indicating the adequacy of processing was assessed by a comparison of their readings with those made from the phantom bitewings. None of the monitoring devices was ideal for all the kilovoltage/film speed combinations tested, but the homemade device proved to be the most generally effective. We conclude that guidelines to dentists on radiographic quality assurance should include reference to and details of this simple device.
CAD Services: an Industry Standard Interface for Mechanical CAD Interoperability
NASA Technical Reports Server (NTRS)
Claus, Russell; Weitzer, Ilan
2002-01-01
Most organizations seek to design and develop new products in increasingly shorter time periods. At the same time, increased performance demands require a team-based multidisciplinary design process that may span several organizations. One approach to meet these demands is to use 'Geometry Centric' design. In this approach, design engineers team their efforts through one united representation of the design that is usually captured in a CAD system. Standards-based interfaces are critical to provide uniform, simple, distributed services that enable the 'Geometry Centric' design approach. This paper describes an industry-wide effort, under the Object Management Group's (OMG) Manufacturing Domain Task Force, to define interfaces that enable the interoperability of CAD, Computer Aided Manufacturing (CAM), and Computer Aided Engineering (CAE) tools. This critical link to enable 'Geometry Centric' design is called: Cad Services V1.0. This paper discusses the features of this standard and proposed application.
NASA Astrophysics Data System (ADS)
Chao, Daniel Yuh
2015-01-01
Recently, a novel and computationally efficient method - based on a vector covering approach - to design optimal control places and an iteration approach that computes the reachability graph to obtain a maximally permissive liveness enforcing supervisor for FMS (flexible manufacturing systems) have been reported. However, it is unclear as to the relationship between the structure of the net and the minimal number of monitors required. This paper develops a theory to show that the minimal number of monitors required cannot be less than that of basic siphons in α-S3PR (systems of simple sequential processes with resources). This confirms that two of the three controlled systems by Chen et al. are of a minimal monitor configuration since they belong to α-S3PR and their number in each example equals that of basic siphons.
NASA Astrophysics Data System (ADS)
Zhang, Tian-Yu; Wang, Qian; Deng, Ning-Qin; Zhao, Hai-Ming; Wang, Dan-Yang; Yang, Zhen; Liu, Ying; Yang, Yi; Ren, Tian-Ling
2017-09-01
In this paper, we have developed a high-performance graphene electrothermal actuator (ETA). The fabrication method is easy, fast, environmentally friendly, and suitable for preparing both large-size and miniature graphene ETAs. When applied with the driving voltage of 65 V, the graphene ETA achieves a large bending angle of 270° with a fast response of 8 s and the recovery process costs 19 s. The large bending deformation is reversible and can be precisely controlled by the driving voltage. A simple robotic hand prepared by using a single graphene ETA can hold the object, which is more than ten times the weight of itself. By virtue of its large-strain, fast response, and easy-to-manufacture, we believe that the graphene ETA has tremendous potential in extensive applications involving biomimetic robotics, artificial muscles, switches, and microsensors in both macroscopic and microscopic fields.
1968-01-01
Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly mandrel. The condom is then ready for packaging, either on automatic equipment or manually into small envelopes of highly polished paper. Although their present design is based on a heat-sealed blank, it may be possible shortly to manufacture plastic condoms on the same principle as rubber ones. A dipping process would be used, but with less sophisticated technology and with higher outputs per increment of capital investment. The present equipment used to make plastic condoms cost about 3,000 for one stamping machine and 22 assembly and testing machines. On a three shift per day, 300-day working year, it is possible, with experienced workers, to make 100,000 gross of plastic condoms for each manufacturing unit annually. As the technology is refined, the output should improve significantly.
Melocchi, Alice; Loreti, Giulia; Del Curto, Maria Dorly; Maroni, Alessandra; Gazzaniga, Andrea; Zema, Lucia
2015-06-01
The exploitation of hot-melt extrusion and injection molding for the manufacturing of immediate-release (IR) tablets was preliminarily investigated in view of their special suitability for continuous manufacturing, which represents a current goal of pharmaceutical production because of its possible advantages in terms of improved sustainability. Tablet-forming agents were initially screened based on processability by single-screw extruder and micromolding machine as well as disintegration/dissolution behavior of extruded/molded prototypes. Various polymers, such as low-viscosity hydroxypropylcellulose, polyvinyl alcohol, polyvinyl alcohol-polyethylene glycol graft copolymer, various sodium starch glycolate grades (e.g., Explotab(®) CLV) that could be processed with no need for technological aids, except for a plasticizer, were identified. Furthermore, the feasibility of both extruded and molded IR tablets from low-viscosity hydroxypropylcellulose or Explotab(®) CLV was assessed. Explotab(®) CLV, in particular, showed thermoplastic properties and a very good aptitude as a tablet-forming agent, starting from which disintegrating tablets were successfully obtained by either techniques. Prototypes containing a poorly soluble model drug (furosemide), based on both a simple formulation (Explotab(®) CLV and water/glycerol as plasticizers) and formulations including dissolution/disintegration adjuvants (soluble and effervescent excipients) were shown to fulfill the USP 37 dissolution requirements for furosemide tablets. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-03
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Paradigm Shift Additive Manufacturing and the New Way of War
2016-12-01
keep costs low: Simple parts are easier to make. Once a product design has been selected and tooling has been obtained, a change in design becomes...adversary’s OODA loop through rapid design and manufacturing . We need to do this; enable this capabil- ity now before our adversaries do, as they might not...35 Defense AT&L: November-December 2016 Paradigm Shift Additive Manufacturing and the New Way of War Brett P. Conner Conner is an associate
Portable design rules for bulk CMOS
NASA Technical Reports Server (NTRS)
Griswold, T. W.
1982-01-01
It is pointed out that for the past several years, one school of IC designers has used a simplified set of nMOS geometric design rules (GDR) which is 'portable', in that it can be used by many different nMOS manufacturers. The present investigation is concerned with a preliminary set of design rules for bulk CMOS which has been verified for simple test structures. The GDR are defined in terms of Caltech Intermediate Form (CIF), which is a geometry-description language that defines simple geometrical objects in layers. The layers are abstractions of physical mask layers. The design rules do not presume the existence of any particular design methodology. Attention is given to p-well and n-well CMOS processes, bulk CMOS and CMOS-SOS, CMOS geometric rules, and a description of the advantages of CMOS technology.
Training in the '80's: An Economic Perspective.
ERIC Educational Resources Information Center
Klein, Carl
During the last decade, the manufacture of commodities has become increasingly simple, and as a result, has increasingly been exported from the United States to low-wage regions of the world. On the other hand, the U.S. economy has become increasingly service oriented, with service-sector jobs growing rapidly while manufacturing jobs decline. In…
Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion.
Slots, Casper; Jensen, Martin Bonde; Ditzel, Nicholas; Hedegaard, Martin A B; Borg, Søren Wiatr; Albrektsen, Ole; Thygesen, Torben; Kassem, Moustapha; Andersen, Morten Østergaard
2017-02-01
Craniofacial bone trauma is a leading reason for surgery at most hospitals. Large pieces of destroyed or resected bone are often replaced with non-resorbable and stock implants, and these are associated with a variety of problems. This paper explores the use of a novel fatty acid/calcium phosphate suspension melt for simple additive manufacturing of ceramic tricalcium phosphate implants. A wide variety of non-aqueous liquids were tested to determine the formulation of a storable 3D printable tricalcium phosphate suspension ink, and only fatty acid-based inks were found to work. A heated stearic acid-tricalcium phosphate suspension melt was then 3D printed, carbonized and sintered, yielding implants with controllable macroporosities. Their microstructure, compressive strength and chemical purity were analyzed with electron microscopy, mechanical testing and Raman spectroscopy, respectively. Mesenchymal stem cell culture was used to assess their osteoconductivity as defined by collagen deposition, alkaline phosphatase secretion and de-novo mineralization. After a rapid sintering process, the implants retained their pre-sintering shape with open pores. They possessed clinically relevant mechanical strength and were chemically pure. They supported adhesion of mesenchymal stem cells, and these were able to deposit collagen onto the implants, secrete alkaline phosphatase and further mineralize the ceramic. The tricalcium phosphate/fatty acid ink described here and its 3D printing may be sufficiently simple and effective to enable rapid, on-demand and in-hospital fabrication of individualized ceramic implants that allow clinicians to use them for treatment of bone trauma. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo
2018-07-05
The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p=0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo
2018-07-01
The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4 mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p = 0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes.
NASA Astrophysics Data System (ADS)
Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.
2016-02-01
The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.
``Sweetening'' Technical Physics with Hershey's Kisses
NASA Astrophysics Data System (ADS)
Stone, Chuck
2003-04-01
This paper describes an activity in which students measure the mass of each candy in one full bag of Hershey's Kisses and then use a simple spreadsheet program to construct a histogram showing the number of candies as a function of mass. Student measurements indicate that one single bag of 80 Kisses yields enough data to produce a noticeable variation in the candy's mass distribution. The bimodal character of this distribution provides a useful discussion topic. This activity can be performed as a classroom project, a laboratory exercise, or an interactive lecture demonstration. In all these formats, students have the opportunity to collect, organize, process, and analyze real data. In addition to strengthening graphical analysis skills, this activity introduces students to fundamentals of statistics, manufacturing processes in the industrial workplace, and process control techniques.
Tissue Engineering the Cornea: The Evolution of RAFT
Levis, Hannah J.; Kureshi, Alvena K.; Massie, Isobel; Morgan, Louise; Vernon, Amanda J.; Daniels, Julie T.
2015-01-01
Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro. PMID:25809689
Lead oxide as used in lead acid storage batteries, part two
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsino, J.A.
1986-06-01
Without oxide controls, the battery manufacturing business can become one of the most confusing and frustrating experiences known. Inexplicable things happen during mixing, pasting and assembly, and testing, in the laboratory or in the field becomes an unhappy event. Almost any oxide of sufficient purity can be processed to make a good battery, but the characteristics must be known to be able to process it right, and once the process has been established, the oxide must be uniformly made to make the resulting batteries uniformly good. Fortunately, the tests required to assure uniformity are few, and simple to perform. Assumingmore » pure pig lead from primary sources or from carefully refined secondary sources, three tests can tell the whole story. These tests are described.« less
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
Warpage Measurement of Thin Wafers by Reflectometry
NASA Astrophysics Data System (ADS)
Ng, Chi Seng; Asundi, Anand Krishna
To cope with advances in the electronic and portable devices, electronic packaging industries have employed thinner and larger wafers to produce thinner packages/ electronic devices. As the thickness of the wafer decrease (below 250um), there is an increased tendency for it to warp. Large stresses are induced during manufacturing processes, particularly during backside metal deposition. The wafers bend due to these stresses. Warpage results from the residual stress will affect subsequent manufacturing processes. For example, warpage due to this residual stresses lead to crack dies during singulation process which will severely reorient the residual stress distributions, thus, weakening the mechanical and electrical properties of the singulated die. It is impossible to completely prevent the residual stress induced on thin wafers during the manufacturing processes. Monitoring of curvature/flatness is thus necessary to ensure reliability of device and its uses. A simple whole-field curvature measurement system using a novel computer aided phase shift reflection grating method has been developed and this project aims to take it to the next step for residual stress and full field surface shape measurement. The system was developed from our earlier works on Computer Aided Moiré Methods and Novel Techniques in Reflection Moiré, Experimental Mechanics (1994) in which novel structured light approach was shown for surface slope and curvature measurement. This method uses similar technology but coupled with a novel phase shift system to accurately measure slope and curvature. In this study, slope of the surface were obtain using the versatility of computer aided reflection grating method to manipulate and generate gratings in two orthogonal directions. The curvature and stress can be evaluated by performing a single order differentiation on slope data.
15 CFR 400.33 - Restrictions on manufacturing and processing activity.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...
21 CFR 1005.25 - Service of process on manufacturers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...
Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2017-01-11
A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.
Technical manual for manufacturing autologous fibrin tissue adhesive.
Park, J J; Cintron, J R; Siedentop, K H; Orsay, C P; Pearl, R K; Nelson, R L; Abcarian, H
1999-10-01
The aim of this article is to provide a concise and simple technical manual for manufacturing autologous fibrin tissue adhesive derived from the precipitation of fibrinogen using a combination of ethanol and freezing for surgery. All materials and equipment needed to manufacture ethanol-based autologous fibrin tissue adhesive are listed. In addition, step-by-step instructions are provided to allow for easy and rapid fibrin adhesive production. Ethanol-based autologous fibrin tissue adhesive can be manufactured in under 60 minutes. Furthermore, at our institution the startup cost for manufacturing ethanol-based autologous fibrin tissue adhesive was under $2,500.00. Ethanol-based autologous fibrin tissue adhesive is a safe, reliable, and easily manufactured autologous fibrin tissue adhesive that can be made by a trained technician in any blood bank, pharmacy, or surgical laboratory.
Quality management of manufacturing process based on manufacturing execution system
NASA Astrophysics Data System (ADS)
Zhang, Jian; Jiang, Yang; Jiang, Weizhuo
2017-04-01
Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.
NASA Astrophysics Data System (ADS)
Kuo, Cynthia; Walker, Jesse; Perrig, Adrian
Bluetooth Simple Pairing and Wi-Fi Protected Setup specify mechanisms for exchanging authentication credentials in wireless networks. Both Simple Pairing and Protected Setup support multiple setup mechanisms, which increases security risks and hurts the user experience. To improve the security and usability of these specifications, we suggest defining a common baseline for hardware features and a consistent, interoperable user experience across devices.
An Overview of Cloud Implementation in the Manufacturing Process Life Cycle
NASA Astrophysics Data System (ADS)
Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed
2017-08-01
The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.
Don't Lose Your Marbles!: Game Project Teaches Introductory Manufacturing Skills
ERIC Educational Resources Information Center
Kapur, Arjun; Carter, Horlin; Dillon, Dave
2006-01-01
This article describes a lab activity conducted in an introductory manufacturing class. In this good, simple, mass-production project, the students designed and produced a small game composed of a piece of plywood and 14 glass marbles. In appearance, the game is something like Chinese checkers, but it involves jumping over marbles, then removing…
New Solar Cell Is More Efficient, Less Costly | News | NREL
rules for solar cells. Credit: Dennis Schroeder American innovators still have some cards to play when significant cost advantage when it comes to high-volume manufacturing. "It's a potentially disruptive . solar manufacturing when the approach hits the assembly line next year. The innovative design, simple
Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory
NASA Technical Reports Server (NTRS)
Rice, Brian P.; Lee, C. William; Curliss, David B.
2003-01-01
Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...
Work-related heat stress concerns in automotive industries: a case study from Chennai, India
Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana
2009-01-01
Background Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. Methods We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. Conclusions The study re-emphasises the need for recognising heat stress as an important occupational health risk in both formal and informal sectors in India. Making available good baseline data is critical for estimating future impacts. PMID:20052426
NASA Astrophysics Data System (ADS)
Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.
A Simple Approach for Monitoring Business Service Time Variation
2014-01-01
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries comes from processes having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. In this paper, we propose a new asymmetric EWMA variance chart (EWMA-AV chart) and an asymmetric EWMA mean chart (EWMA-AM chart) based on two simple statistics to monitor process variance and mean shifts simultaneously. Further, we explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using both the EWMA-AV chart and the EWMA-AM chart. The performance of the EWMA-AV and EWMA-AM charts and that of some existing variance and mean charts are compared. A numerical example involving nonnormal service times from the service system of a bank branch in Taiwan is used to illustrate the applications of the EWMA-AV and EWMA-AM charts and to compare them with the existing variance (or standard deviation) and mean charts. The proposed EWMA-AV chart and EWMA-AM charts show superior detection performance compared to the existing variance and mean charts. The EWMA-AV chart and EWMA-AM chart are thus recommended. PMID:24895647
Deciding the liveness for a subclass of weighted Petri nets based on structurally circular wait
NASA Astrophysics Data System (ADS)
Liu, GuanJun; Chen, LiJing
2016-05-01
Weighted Petri nets as a kind of formal language are widely used to model and verify discrete event systems related to resource allocation like flexible manufacturing systems. System of Simple Sequential Processes with Multi-Resources (S3PMR, a subclass of weighted Petri nets and an important extension to the well-known System of Simple Sequential Processes with Resources, can model many discrete event systems in which (1) multiple processes may run in parallel and (2) each execution step of each process may use multiple units from multiple resource types. This paper gives a necessary and sufficient condition for the liveness of S3PMR. A new structural concept called Structurally Circular Wait (SCW) is proposed for S3PMR. Blocking Marking (BM) associated with an SCW is defined. It is proven that a marked S3PMR is live if and only if each SCW has no BM. We use an example of multi-processor system-on-chip to show that SCW and BM can precisely characterise the (partial) deadlocks for S3PMR. Simultaneously, two examples are used to show the advantages of SCW in preventing deadlocks of S3PMR. These results are significant for the further research on dealing with the deadlock problem.
A simple approach for monitoring business service time variation.
Yang, Su-Fen; Arnold, Barry C
2014-01-01
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries comes from processes having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. In this paper, we propose a new asymmetric EWMA variance chart (EWMA-AV chart) and an asymmetric EWMA mean chart (EWMA-AM chart) based on two simple statistics to monitor process variance and mean shifts simultaneously. Further, we explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using both the EWMA-AV chart and the EWMA-AM chart. The performance of the EWMA-AV and EWMA-AM charts and that of some existing variance and mean charts are compared. A numerical example involving nonnormal service times from the service system of a bank branch in Taiwan is used to illustrate the applications of the EWMA-AV and EWMA-AM charts and to compare them with the existing variance (or standard deviation) and mean charts. The proposed EWMA-AV chart and EWMA-AM charts show superior detection performance compared to the existing variance and mean charts. The EWMA-AV chart and EWMA-AM chart are thus recommended.
Simple laser vision sensor calibration for surface profiling applications
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.
2016-09-01
Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Dong, Qingfeng; Li, Tao
Here, we demonstrated that inserting a tunneling layer between perovskite and electron transport layer could significantly increase device performance by suppressing carrier recombination at the cathode contact. The tunneling layer can also serve as an encapsulation layer to prevent perovskite film from damage caused by water or moisture. This method is simple because it does not need lattice matching between the buffer layer and perovskite. The low temperature solution process makes it compatible with many types of perovskite materials, and may be applied for anode contact as well. The freedom to choose any insulating layer for contact enables more devicemore » designs and manufacturing.« less
Sol-gel layers for ceramic microsystems application
NASA Astrophysics Data System (ADS)
Czok, Mateusz; Golonka, Leszek
2016-11-01
This paper describes research on sol-gel solutions preparation process. Utilize of a sol-gel layers in the LTCC technology for reduction of surface roughness and influence on the ceramics properties is examined and described. The influence of sol-gel layer on possible sedimentation of dyes or biological substances in channels, mixers or chambers of ceramic microfluidic structures was investigated. Moreover, properties of sol-gel coated surfaces have been precisely examined and described. Finally, positive results of conducted experiments made it possible to design and manufacture a simple microfluidic ceramic structure, with embedded protective layer of sol-gel, for fluorescence measurements.
Salvaging and Conserving Water Damaged Photographic Materials
NASA Astrophysics Data System (ADS)
Suzuki, Ryuji
Degradation of water damaged photographic materials is discussed; the most vulnerable elements are gelatin layers and silver image. A simple and inexpensive chemical treatment is proposed, consisting of a bath containing a gelatin-protecting biocide and a silver image protecting agent. These ingredients were selected among those used in manufacturing of silver halide photographic emulsions or processing chemicals. Experiments confirmed that this treatment significantly reduced oxidative attacks to silver image and bacterial degradation of gelatin layers. The treated material was also stable under intense light fading test. Method of hardening gelatin to suppress swelling is also discussed.
Nontoxic Resins Advance Aerospace Manufacturing
NASA Technical Reports Server (NTRS)
2009-01-01
The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.
NASA Astrophysics Data System (ADS)
Kumbhar, N. N.; Mulay, A. V.
2016-08-01
The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.
Dohi, Masafumi; Momose, Wataru; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Noguchi, Shuji; Terada, Katsuhide
2017-02-01
Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.
Measurement and analysis of flow in 3D preforms for aerospace composites
NASA Astrophysics Data System (ADS)
Stewart, Andrew Lawrence
Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles. This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches.
A flexible architecture for advanced process control solutions
NASA Astrophysics Data System (ADS)
Faron, Kamyar; Iourovitski, Ilia
2005-05-01
Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue Control Technologies has developed an advance service oriented architecture Run to Run Control System which addresses these requirements.
An evaluation of MPI message rate on hybrid-core processors
Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; ...
2014-11-01
Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insightmore » into how MPI implementations for future hybrid-core processors should be designed.« less
Efficient green methanol synthesis from glycerol
NASA Astrophysics Data System (ADS)
Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.
2015-12-01
The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.
Design of flat pneumatic artificial muscles
NASA Astrophysics Data System (ADS)
Wirekoh, Jackson; Park, Yong-Lae
2017-03-01
Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.
Inverse kinematic solution for near-simple robots and its application to robot calibration
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Roston, Gerald P.
1986-01-01
This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.
Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.
Kesner, Samuel B; Howe, Robert D
2011-07-21
Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.
Biomimetic small scale variable focal length lens unit using synthetic elastomer actuators
NASA Astrophysics Data System (ADS)
Kim, Baek-chul; Chung, Jinah; Lee, Y.; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.
2011-04-01
Having a combination of a gel-like soft lens, ligaments, and the Ciliary muscles, the human eyes are effectively working for various focal lengths without a complicated group of lens. The simple and compact but effective optical system should deserve numerous attentions from various technical field especially portable information technology device industry. Noting the limited physical space of those deivces, demanding shock durability, and massive volume productivity, the present paper proposes a biomimetic optical lens unit that is organized with a circular silicone lens and an annular dielectric polymer actuator. Unlike the traditional optical lens mechanism that normally acquires a focus by changing its focal distance with moving lens or focal plane. the proposed optical system changes its lens thickness using a annulary connected polymer actuator in order to get image focuses. The proposed biomimetic lens system ensures high shock durability, compact physical dimensions, fast actuations, simple manufacturing process, and low production cost.
Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion
NASA Astrophysics Data System (ADS)
Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth
2013-04-01
A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Practical exergy analysis of centrifugal compressor performance using ASME-PTC-10 data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranti, F.J.
1997-07-01
It has been shown that measures of performance currently in use for industrial and process compressors do not give a true measure of energy utilization, and that the required assumptions of isentropic or adiabatic behavior are now always valid. A better indication of machine or process performance can be achieved using exergetic (second law) efficiencies and by employing the second law of thermodynamics to indicate the nature of irreversibilities and entropy generation in the compression process. In this type of analysis, performance is related to an environmental equilibrium condition, or dead state. Often, the differences between avoidable and unavoidable irreversibilitiesmore » ca be interpreted from these results. A general overview of the techniques involved in exergy analysis as applied to compressors and blowers is presented. A practical method to allow the calculation of exergetic efficiencies by manufacturers and end users is demonstrated using data from ASME Power Test Code input. These data are often readily available from compressor manufacturers for both design and off-design conditions, or can sometimes be obtained from field measurements. The calculations involved are simple and straightforward, and can demonstrate the energy usage situation for a variety of conditions. Here off-design is taken to mean at different rates of flow, as well as at different environmental states. The techniques presented are also applicable to many other equipment and process types.« less
Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange
Shkrob, Ilya A.; Gilbert, James A.; Phillips, Patrick J.; ...
2017-05-13
Lithiated ternary oxides containing nickel, cobalt, and manganese are intercalation compounds that are used as positive electrodes in high-energy lithium-ion batteries. These materials undergo compositional changes that adversely affect their cycling performance when they are stored in humid air or exposed to moisture. There is a new urgency to better understanding of these “weathering” processes as manufacturing moves towards a more environmentally benign aqueous processing of the positive electrode. Delithiation in the oxide subsurface regions and the formation of lithium salts (such as hydroxides and carbonates) coating the surface, have been suggested as chemical drivers for these processes, but themore » mechanistic details remain poorly known. The redox reactions which follow oxide delithiation are believed to cause all of the observed transformations. In this article we suggest another possibility: namely, the proton – lithium exchange. We argue that this hypothesis provides a simple, comprehensive rationale for our observations from X-ray diffraction, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and electrochemical measurements. These observations include contraction of the c-axis (unit cell) lattice parameter, strain in the crystalline oxide bulk, directionality of the chemical damage, formation of amorphous surface films, and the partial recovery of capacity loss by electrochemical relithiation of the material. Lastly, these effects need to be mitigated before aqueous processing of the positive electrode can find widespread adoption during cell manufacturing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, Ilya A.; Gilbert, James A.; Phillips, Patrick J.
Lithiated ternary oxides containing nickel, cobalt, and manganese are intercalation compounds that are used as positive electrodes in high-energy lithium-ion batteries. These materials undergo compositional changes that adversely affect their cycling performance when they are stored in humid air or exposed to moisture. There is a new urgency to better understanding of these “weathering” processes as manufacturing moves towards a more environmentally benign aqueous processing of the positive electrode. Delithiation in the oxide subsurface regions and the formation of lithium salts (such as hydroxides and carbonates) coating the surface, have been suggested as chemical drivers for these processes, but themore » mechanistic details remain poorly known. The redox reactions which follow oxide delithiation are believed to cause all of the observed transformations. In this article we suggest another possibility: namely, the proton – lithium exchange. We argue that this hypothesis provides a simple, comprehensive rationale for our observations from X-ray diffraction, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and electrochemical measurements. These observations include contraction of the c-axis (unit cell) lattice parameter, strain in the crystalline oxide bulk, directionality of the chemical damage, formation of amorphous surface films, and the partial recovery of capacity loss by electrochemical relithiation of the material. Lastly, these effects need to be mitigated before aqueous processing of the positive electrode can find widespread adoption during cell manufacturing.« less
24 CFR 954.300 - Eligible activities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... is held in fee-simple title, land-trust, or long-term ground lease with a term at least equal to that... manufactured housing unit does not hold fee-simple title to the land on which the unit is located, the owner... purchase. (b) Forms of assistance. A grantee may invest HOME funds as equity investments, interest-bearing...
NASA Astrophysics Data System (ADS)
Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.
2018-03-01
Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.
Process-based quality for thermal spray via feedback control
NASA Astrophysics Data System (ADS)
Dykhuizen, R. C.; Neiser, R. A.
2006-09-01
Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.
Size-dependent surface phase change of lithium iron phosphate during carbon coating
NASA Astrophysics Data System (ADS)
Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang
2014-03-01
Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.
Biocatalysis for Biobased Chemicals
de Regil, Rubén; Sandoval, Georgina
2013-01-01
The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192
Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt
Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified and used to identify the technologies which offer the greatest cumulative sector-level energy savings over a period of 20 years. Preliminary analysis indicates that relatively simple technologies, such as efficient furnaces, will be adopted more quickly and result in greater cumulative energy savings compared to more complex technologies that require process retrofitting, such as advanced control systems.« less
A simple, low-cost conductive composite material for 3D printing of electronic sensors.
Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-01
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
NASA Technical Reports Server (NTRS)
Crowell, H. A.
1979-01-01
The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.
Stitch modeling of non crimp fabric in forming simulations
NASA Astrophysics Data System (ADS)
Steer, Q.; Colmars, J.; Boisse, P.
2018-05-01
The use of Non Crimp Fabric composite has increased during the last years due to cheaper cost of manufacturing and high mechanicals properties suitable for applications such as aeronautic, automotive and wind turbines. The main difference between Non Crimp Fabric (NCF) and textile reinforcement is the mean of manufacturing: where in textile fibers are woven, in NCF layers of unidirectional oriented fibers are assembled with a stitch. As a consequence, the stitch especially its geometry (stitch pattern) will have a major influence on the deformation of this type of reinforcement during forming process. Experimental campaigns on NCF samples compared to textile with the same fibers orientation have showed that the stitch affects the shear behavior of the reinforcement which is the main mode of deformation in the forming process. A description of the stitch has been implemented in a shell element for macro scale forming simulation as a first approach based on simple hypothesis. Further works are focus on the specific behavior of the stitch along the fabric and interaction with the fibers layers during shear deformation of the reinforcement and a method to implement the stitch in a more refined model of the fabric.
Code of Federal Regulations, 2013 CFR
2013-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying
NASA Astrophysics Data System (ADS)
Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre
2010-01-01
Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.
Application of lap laser welding technology on stainless steel railway vehicles
NASA Astrophysics Data System (ADS)
Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo
2016-10-01
Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big change of railway vehicles manufacturing technology.
Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects
NASA Astrophysics Data System (ADS)
Goutianos, Stergios
2017-07-01
Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts.
Near net shape processing: A necessity for advanced materials applications
NASA Technical Reports Server (NTRS)
Kuhn, Howard A.
1993-01-01
High quality discrete parts are the backbones for successful operation of equipment used in transportation, communication, construction, manufacturing, and appliances. Traditional shapemaking for discrete parts is carried out predominantly by machining, or removing unwanted material to produce the desired shape. As the cost and complexity of modern materials escalates, coupled with the expense and environmental hazards associated with handling of scrap, it is increasingly important to develop near net shape processes for these materials. Such processes involve casting of liquid materials, consolidation of powder materials, or deformation processing of simple solid shapes into the desired shape. Frequently, several of these operations may be used in sequence to produce a finished part. The processes for near net shape forming may be applied to any type of material, including metals, polymers, ceramics, and their composites. The ability to produce shapes is the key to implementation of laboratory developments in materials science into real world applications. This seminar presents an overview of near net shapemaking processes, some application examples, current developments, and future research opportunities.
ERIC Educational Resources Information Center
Obi, Samuel C.
2004-01-01
Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…
21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...
The presence of Enterococcus, coliforms and E. coli in a commercial yeast manufacturing process.
O'Brien, S S; Lindsay, D; von Holy, A
2004-07-01
This study evaluated a typical commercial yeast manufacturing process for bacterial contamination. Product line samples of a commercial yeast manufacturing process and the corresponding seed yeast manufacturing process were obtained upstream from the final compressed and dry yeast products. All samples were analysed before (non-PI) and after preliminary incubation (PI) at 37 degrees C for 24 h. The PI procedure was incorporated for amplification of bacterial counts below the lower detection limit. Enterococcus, coliform and Escherichia coli counts were quantified by standard pour-plate techniques using selective media. Presence at all stages and progressive increases in counts of Enterococcus, coliforms and E. coli during processing in the commercial manufacturing operation suggested that the primary source of contamination of both compressed and dry yeast with these bacteria was the seed yeast manufacturing process and that contamination was amplified throughout the commercial yeast manufacturing process. This was confirmed by surveys of the seed yeast manufacturing process which indicated that contamination of the seed yeast with Enterococcus, coliforms and E. coli occurred during scale up of seed yeast biomass destined as inoculum for the commercial fermentation.
SU-8 negative photoresist for optical mask manufacturing
NASA Astrophysics Data System (ADS)
Bogdanov, Alexei L.
2000-06-01
The requirements for better control, linearity, and uniformity of critical dimension (CD) on photomasks in fabrication of 180 and 150 nm generation devices result in increasing demand for thinner, more etching durable, and more sensitive e-beam resists. Novolac based resists with chemical amplification have been a choice for their sensitivity and stability during etching. However, difficult CD control due to the acid catalyzer diffusion and quite narrow post exposure bake (PEB) process window are some of the major drawbacks of these resists. SU-8 is recently introduced to the market negative photoresist. High sensitivity, fairly good adhesion properties, and relatively simple processing of SU-8 make it a good substitution for novolac based chemically amplified negative e-beam resists in optical mask manufacturing. The replacement of traditional chemically amplified resists by SU- 8 can increase the process latitude and reduce resist costs. Among the obvious drawbacks of SU-8 are the use of solvent- based developer and demand of oxygen plasma for resist removal. In this paper the use of SU-8 for optical mask manufacturing is reported. All steps of resist film preparation, exposure and development are paid a share of attention. Possibilities to use reactive ion etching (RIE) with oxygen in order to increase resist mask contrast are discussed. Special exposure strategy (pattern outlining) was employed to further improve the edge definition. The resist PEB temperature and time were studied to estimate their weight in overall CD control performance. Specially designed test patterns with 0.25 micrometer design rule could be firmly transferred into a chromium layer both by wet etching and ion milling. Influence of exposure dose variation on the pattern CD change was studied.
A platform for the discovery of new macrolide antibiotics
NASA Astrophysics Data System (ADS)
Seiple, Ian B.; Zhang, Ziyang; Jakubec, Pavol; Langlois-Mercier, Audrey; Wright, Peter M.; Hog, Daniel T.; Yabu, Kazuo; Allu, Senkara Rao; Fukuzaki, Takehiro; Carlsen, Peter N.; Kitamura, Yoshiaki; Zhou, Xiang; Condakes, Matthew L.; Szczypiński, Filip T.; Green, William D.; Myers, Andrew G.
2016-05-01
The chemical modification of structurally complex fermentation products, a process known as semisynthesis, has been an important tool in the discovery and manufacture of antibiotics for the treatment of various infectious diseases. However, many of the therapeutics obtained in this way are no longer effective, because bacterial resistance to these compounds has developed. Here we present a practical, fully synthetic route to macrolide antibiotics by the convergent assembly of simple chemical building blocks, enabling the synthesis of diverse structures not accessible by traditional semisynthetic approaches. More than 300 new macrolide antibiotic candidates, as well as the clinical candidate solithromycin, have been synthesized using our convergent approach. Evaluation of these compounds against a panel of pathogenic bacteria revealed that the majority of these structures had antibiotic activity, some efficacious against strains resistant to macrolides in current use. The chemistry we describe here provides a platform for the discovery of new macrolide antibiotics and may also serve as the basis for their manufacture.
Inexpensive demonstration set for teaching geometrical optics made by 3D printer
NASA Astrophysics Data System (ADS)
Havlíček, Karel; Ryston, Matěj
2018-03-01
Good sets for teaching geometric optics are relatively expensive to buy and difficult to make on your own, which often forces teachers to use less than ideal instruments and methods. This is a great shame, since this is a visually appealing topic that can motivate students. For this reason, we have designed a set that is relatively cheap, easy to use and can therefore (in some cases) remedy this situation. Our set is manufactured using 3D printing technology, which limits its users to those that have access to it; however, 3D printing technology is becoming more and more accessible every day (even in schools). On the other hand, 3D printing allows us to let the machines do the majority of the manufacturing work, making the process of building the set almost as simple as ‘download and press print’. This article presents this set, what it consists of, how it is done and where can you find all the necessary files and instructions.
NASA Astrophysics Data System (ADS)
Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng
2017-04-01
Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).
Ambipolar Graphene-Quantum Dot Hybrid Vertical Photodetector with a Graphene Electrode.
Che, Yongli; Zhang, Yating; Cao, Xiaolong; Zhang, Haiting; Song, Xiaoxian; Cao, Mingxuan; Yu, Yu; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan
2017-09-20
A strategy to fabricate an ambipolar near-infrared vertical photodetector (VPD) by sandwiching a photoactive material as a channel film between the bottom graphene and top metal electrodes was developed. The channel length in the vertical architecture was determined by the channel layer thickness, which can provide an ultrashort channel length without the need for a high-precision manufacturing process. The performance of VPDs with two types of semiconductor layers, a graphene-PbS quantum dot hybrid (GQDH) and PbS quantum dots (QDs), was measured. The GQDH VPD showed better photoelectric properties than the QD VPD because of the high mobility of graphene doped in the channel. The GQDH VPD exhibited excellent photoresponse properties with a responsivity of 1.6 × 10 4 A/W in the p-type regime and a fast response speed with a rise time of 8 ms. The simple manufacture and the promising photoresponse of the GQDH VPDs reveal that an easy and effective way to fabricate high-performance ambipolar photodetectors was developed.
Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels
NASA Astrophysics Data System (ADS)
Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.
2014-09-01
Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.
Career Focus: CAD/CAM. A New Dimension in Design and Manufacturing
ERIC Educational Resources Information Center
Reese, Susan
2005-01-01
Many a great idea has first taken shape as a simple drawing sketched by hand on a piece of paper, but in an increasingly high-tech world, such drawings are more often being created--or at the very least perfected--with the aid of a computer. And in today's highly automated workplace, manufacturing a finished product from that great idea will…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
..., Glass Manufacturing and Secondary Nonferrous Metals Processing Area Sources (Renewal) AGENCY... for Clay Ceramics Manufacturing, Glass Manufacturing and Secondary Nonferrous Metals Processing Area..., glass manufacturing, and secondary nonferrous metals processing area sources. Estimated Number of...
A Process Management System for Networked Manufacturing
NASA Astrophysics Data System (ADS)
Liu, Tingting; Wang, Huifen; Liu, Linyan
With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Architecting Graphene Oxide Rolled-Up Micromotors: A Simple Paper-Based Manufacturing Technology.
Baptista-Pires, Luis; Orozco, Jahir; Guardia, Pablo; Merkoçi, Arben
2018-01-01
A graphene oxide rolled-up tube production process is reported using wax-printed membranes for the fabrication of on-demand engineered micromotors at different levels of oxidation, thickness, and lateral dimensions. The resultant graphene oxide rolled-up tubes can show magnetic and catalytic movement within the addition of magnetic nanoparticles or sputtered platinum in the surface of graphene-oxide-modified wax-printed membranes prior to the scrolling process. As a proof of concept, the as-prepared catalytic graphene oxide rolled-up micromotors are successfully exploited for oil removal from water. This micromotor production technology relies on an easy, operator-friendly, fast, and cost-efficient wax-printed paper-based method and may offer a myriad of hybrid devices and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ordinal optimization and its application to complex deterministic problems
NASA Astrophysics Data System (ADS)
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Harnessing the Potential of Additive Manufacturing
2016-12-01
manufacturing age, which is dominated by standards for materials, processes and process control. Conventional manufacturing is based upon a design that is...documented either in a drawing or a computer-aided design (CAD) file. The manufacturing team then develops a docu- mented public or private process for...31 Defense AT&L: November-December 2016 Harnessing the Potential of Additive Manufacturing Bill Decker Decker is director of Technology
Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides
NASA Astrophysics Data System (ADS)
Wei, Yuxin; Li, Guoyi; Hao, Yinlei; Li, Yubo; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing
2011-08-01
The undercut long-wave infrared (LWIR) waveguide components with air-gap beneath are analyzed and fabricated on the Si-wafer with simple manufacturing process. A 1 × 2 multimode interference (MMI) splitter based on this structure is presented and measured under the 10.6μm wavelength experimental setup. The uniformity of the MMI fabricated is 0.76 dB. The relationship among the output power, slab thickness and air-gap width is also fully discussed. Furthermore, undercut straight waveguides based on SOI platform are fabricated for propagation loss evaluation. Ways to reduce the loss are discussed either.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith
ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less
Computational Design of Tunable UV-Vis-IR Filters Based on Silver Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Waters, Michael; Shi, Guangsha; Kioupakis, Emmanouil
We propose design strategies to develop selective optical filters in the UV-Vis-IR spectrum using the surface plasmon response of silver nanoparticle arrays. Our finite-difference time-domain simulations allow us to rapidly evaluate many nanostructures comprising simple geometries while varying their shape, height, width, and spacing. Our results allow us to identify trends in the filtering spectra as well as the relative amount of absorption and reflection. Optical filtering with nanoparticles is applicable to any transparent substrate and can be easily adapted to existing manufacturing processes while keeping the total cost of materials low. This work was supported by Guardian Industries Corp.
Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin
2010-01-01
A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex: simple models of technological equipment, conveyors models, models of the obstacles and like that. Using these elements it could be formed various production spaces (robotized workcells), in which it is possible to virtually track the operation of an industrial robot arm modelled in the system.
76 FR 40052 - Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Current Good Manufacturing 0910-AG10 Practice in Manufacturing, Processing, Packing or Holding Animal Food... in Manufacturing, Processing, Packing or Holding Animal Food Legal Authority: 21 U.S.C. 342; 21 U.S.C... constitute on farm manufacturing or processing of food that is not grown, raised, or consumed on a farm or...
NASA Astrophysics Data System (ADS)
Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.
2016-03-01
This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.
NASA Astrophysics Data System (ADS)
Mahajan, Dinakar Rajaram
2017-09-01
The Bhatghar dam is having 81 vertical lift gates (fixed wheel type) on waste ways. The design of these gates is so beautiful and based on simple principles of science and engineering that these gates outlast for 100 years without failure, performing their intended purpose satisfactorily. It is achieved by meticulous design, manufacturing, erection, subsequent use and maintenance practices. It has become guiding and inspiration for further practices in design, manufacturing, erection, and maintenance for dam gates as well as all other disciplines of engineering today.
The effect of membrane filtration on dissolved trace element concentrations
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.
Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...
2015-04-13
Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunez, L.; Kaminski, M.; Chemical Engineering
2000-11-01
The Chernobyl nuclear reactor disaster in 1986 contaminated vast regions of prime grazing land. Subsequently, milk produced in the region has been contaminated with small amounts of the long-lived fission product cesium-137, and the Ukraine is seeking to deploy a simple separation process that will remove the Cs and preserve the nutritional value of the milk. Tiny magnetic particles containing crystalline silicotitanates (CST) have been manufactured and tested to this end. The results show that partitioning efficiency is optimized with low ratios of particle mass to volume. To achieve 90% Cs decontamination in a single-stage process, <3 g of magneticmore » CST per l milk is sufficient with a 30-min mixing time. A two-stage process would utilize <0.4 g/l per stage. The modeling of the magnetic CST system described herein can be achieved rather simply which is important for deployment in the affected Ukraine region.« less
Manufacturing Process Simulation of Large-Scale Cryotanks
NASA Technical Reports Server (NTRS)
Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)
2002-01-01
NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.
Application of lean manufacturing techniques in the Emergency Department.
Dickson, Eric W; Singh, Sabi; Cheung, Dickson S; Wyatt, Christopher C; Nugent, Andrew S
2009-08-01
"Lean" is a set of principles and techniques that drive organizations to continually add value to the product they deliver by enhancing process steps that are necessary, relevant, and valuable while eliminating those that fail to add value. Lean has been used in manufacturing for decades and has been associated with enhanced product quality and overall corporate success. To evaluate whether the adoption of Lean principles by an Emergency Department (ED) improves the value of emergency care delivered. Beginning in December 2005, we implemented a variety of Lean techniques in an effort to enhance patient and staff satisfaction. The implementation followed a six-step process of Lean education, ED observation, patient flow analysis, process redesign, new process testing, and full implementation. Process redesign focused on generating improvement ideas from frontline workers across all departmental units. Value-based and operational outcome measures, including patient satisfaction, expense per patient, ED length of stay (LOS), and patient volume were compared for calendar year 2005 (pre-Lean) and periodically after 2006 (post-Lean). Patient visits increased by 9.23% in 2006. Despite this increase, LOS decreased slightly and patient satisfaction increased significantly without raising the inflation adjusted cost per patient. Lean improved the value of the care we delivered to our patients. Generating and instituting ideas from our frontline providers have been the key to the success of our Lean program. Although Lean represents a fundamental change in the way we think of delivering care, the specific process changes we employed tended to be simple, small procedure modifications specific to our unique people, process, and place. We, therefore, believe that institutions or departments aspiring to adopt Lean should focus on the core principles of Lean rather than on emulating specific process changes made at other institutions.
Semantic markup of sensor capabilities: how simple it too simple?
NASA Astrophysics Data System (ADS)
Rueda-Velasquez, C. A.; Janowicz, K.; Fredericks, J.
2016-12-01
Semantics plays a key role for the publication, retrieval, integration, and reuse of observational data across the geosciences. In most cases, one can safely assume that the providers of such data, e.g., individual scientists, understand the observation context in which their data are collected,e.g., the used observation procedure, the sampling strategy, the feature of interest being studied, and so forth. However, can we expect that the same is true for the technical details of the used sensors and especially the nuanced changes that can impact observations in often unpredictable ways? Should the burden of annotating the sensor capabilities, firmware, operation ranges, and so forth be really part of a scientist's responsibility? Ideally, semantic annotations should be provided by the parties that understand these details and have a vested interest in maintaining these data. With manufactures providing semantically-enabled metadata for their sensors and instruments, observations could more easily be annotated and thereby enriched using this information. Unfortunately, today's sensor ontologies and tool chains developed for the Semantic Web community require expertise beyond the knowledge and interest of most manufacturers. Consequently, knowledge engineers need to better understand the sweet spot between simple ontologies/vocabularies and sufficient expressivity as well as the tools required to enable manufacturers to share data about their sensors. Here, we report on the current results of EarthCube's X-Domes project that aims to address the questions outlined above.
NASA Astrophysics Data System (ADS)
Beaman, Joseph
2015-03-01
Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flemish, Joseph; Soer, Wouter
2015-11-30
Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed formore » highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.« less
NASA Astrophysics Data System (ADS)
Budhi Utomo, R.; Lasminiasih; Prajaka, S.
2018-03-01
Small and Medium Enterprises (SMEs) are business activities that can expand the level of employment rate and provide economic services to the wider community and can play a role in the process of equalizing and improving people’s income, stimulating economic growth as well as realizing national stabilities. The aim of this study is to identify the factors of the success rate for Small and Medium Enterprises (SMEs) in furniture manufacturing sector in Klaten regency, Central Java, Indonesia. The method employed in this study was descriptive qualitative by also employing quantitative analysis of which the data were collected through observations, interviews and by administering questionnaires. The results seemed to indicate that the furniture business in Klaten is still experiencing difficulties in managing its various aspects of business, namely in terms of marketing (either directly or indirectly or by making the best use media of technology) and managing capital. All this time, the SMEs in furniture manufacturing sector in Klaten have been utilizing a very simple system in producing tables, chairs, wardrobes and any other furniture products which are then distributed to be sold by larger furniture companies. This condition makes the SMEs unable to be independent in running their business.
Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2003-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.
Code of Federal Regulations, 2010 CFR
2010-07-01
... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of... open systems within a chemical manufacturing process unit. (a) The owner or operator shall comply with... Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2014 CFR
2014-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2013 CFR
2013-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2011 CFR
2011-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings
Code of Federal Regulations, 2012 CFR
2012-04-01
... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...
High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools
NASA Astrophysics Data System (ADS)
Valls, I.; Hamasaiid, A.; Padré, A.
2017-09-01
In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily available gas-quenching, whereas the other new grade enables a faster manufacturing of the tool at reduced cost by eliminating the time and money consuming high temperature hardening altogether. The latter newly developed grade can be hardened from a soft delivery state for easy machining to 52 HRc by way of a simple low temperature precipitation hardening. In this work, these new grades and the role of the tool material’s thermal, mechanical and tribological properties as well as their processing features will be discussed in light of enabling the manufacture of intelligent hot stamping tools.
Boosting Manufacturing through Modular Chemical Process Intensification
None
2018-06-12
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Boosting Manufacturing through Modular Chemical Process Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-09
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkowski, A.; Kirka, M. M.; Babu, S. S.
A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less
Plotkowski, A.; Kirka, M. M.; Babu, S. S.
2017-10-16
A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less
Improving the large scale purification of the HIV microbicide, griffithsin.
Fuqua, Joshua L; Wanga, Valentine; Palmer, Kenneth E
2015-02-22
Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of griffithsin. The methodology can be readily scaled to the bench top or industry and process components can be used for purification of additional proteins based on biophysical characteristics.
Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing.
Burcham, Christopher L; Florence, Alastair J; Johnson, Martin D
2018-06-07
The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.
Potential of Continuous Manufacturing for Liposomal Drug Products.
Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S
2018-05-21
Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.
21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...
Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira
2018-08-24
Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.
Perucho, Beatriz; Micó, Vicente
2014-01-01
Progressive addition lenses (PALs) are engraved with permanent marks at standardized locations in order to guarantee correct centering and alignment throughout the manufacturing and mounting processes. Out of the production line, engraved marks provide useful information about the PAL as well as act as locator marks to re-ink again the removable marks. Even though those marks should be visible by simple visual inspection with the naked eye, engraving marks are often faint and weak, obscured by scratches, and partially occluded and difficult to recognize on tinted or antireflection-coated lenses. Here, we present an extremely simple optical device (named as wavefront holoscope) for visualization and characterization of permanent marks in PAL based on digital in-line holography. Essentially, a point source of coherent light illuminates the engraved mark placed just before a CCD camera that records a classical Gabor in-line hologram. The recorded hologram is then digitally processed to provide a set of high-contrast images of the engraved marks. Experimental results are presented showing the applicability of the proposed method as a new ophthalmic instrument for visualization and characterization of engraved marks in PALs.
Ionic Modification Turns Commercial Rubber into a Self-Healing Material.
Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert
2015-09-23
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
Printing method for organic light emitting device lighting
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol
2013-03-01
Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.
Advanced Material Strategies for Next-Generation Additive Manufacturing
Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen
2018-01-01
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754
Advanced Material Strategies for Next-Generation Additive Manufacturing.
Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin
2018-01-22
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.
NASA Astrophysics Data System (ADS)
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.
NASA Astrophysics Data System (ADS)
Petrila, S.; Brabie, G.; Chirita, B.
2016-08-01
The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319
Code of Federal Regulations, 2010 CFR
2010-04-01
... (see § 191.8(a)).) LOCATION OF FACTORY (Give the address of the factory(s) where the process of... article described under the PROCESS OF MANUFACTURE OR PRODUCTION section below and each article listed... manufacture or production by giving a thorough description of the manufacturing process. This description...
Research on manufacturing service behavior modeling based on block chain theory
NASA Astrophysics Data System (ADS)
Zhao, Gang; Zhang, Guangli; Liu, Ming; Yu, Shuqin; Liu, Yali; Zhang, Xu
2018-04-01
According to the attribute characteristics of processing craft, the manufacturing service behavior is divided into service attribute, basic attribute, process attribute, resource attribute. The attribute information model of manufacturing service is established. The manufacturing service behavior information is successfully divided into public and private domain. Additionally, the block chain technology is introduced, and the information model of manufacturing service based on block chain principle is established, which solves the problem of sharing and secreting information of processing behavior, and ensures that data is not tampered with. Based on the key pairing verification relationship, the selective publishing mechanism for manufacturing information is established, achieving the traceability of product data, guarantying the quality of processing quality.
27 CFR 40.525 - Discontinuance of operations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... operations. 40.525 Section 40.525 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... AND TUBES, AND PROCESSED TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.525 Discontinuance of operations. Every manufacturer of processed tobacco who desires...
Key technologies for manufacturing and processing sheet materials: A global perspective
NASA Astrophysics Data System (ADS)
Demeri, Mahmoud Y.
2001-02-01
Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.
Optimization evaluation of cutting technology based on mechanical parts
NASA Astrophysics Data System (ADS)
Wang, Yu
2018-04-01
The relationship between the mechanical manufacturing process and the carbon emission is studied on the basis of the process of the mechanical manufacturing process. The formula of carbon emission calculation suitable for mechanical manufacturing process is derived. Based on this, a green evaluation method for cold machining process of mechanical parts is proposed. The application verification and data analysis of the proposed evaluation method are carried out by an example. The results show that there is a great relationship between the mechanical manufacturing process data and carbon emissions.
2004-01-01
Laboratories performing waived testing must follow the manufacturer's instructions as well as good laboratory practices to ensure that test results are reliable. Four things to concentrate on to maximize the performance and reliability of waived tests are to: 1. Read and follow the information found in the package inserts. 2. Follow the manufacturer's recommendations for running quality control. 3. Train staff members to perform tests correctly. 4. Follow established policies and procedures for patient testing in the practice.
Current manufacturing processes of drug-eluting sutures.
Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine
2017-11-01
Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.
NASA Astrophysics Data System (ADS)
Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong
2018-05-01
A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.
Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong
2018-05-04
A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.
Laser welding on trough panel: 3D body part
NASA Astrophysics Data System (ADS)
Shirai, Masato; Hisano, Hirohiko
2003-03-01
Laser welding for automotive bodies has been introduced mainly by European car manufacturers since more than 10 years ago. Their purposes of laser welding introduction were mainly vehicle performance improvement and lightweight. And laser welding was applied to limited portion where shapes of panels are simple and easy to fit welded flanges. Toyota also has introduced laser welding onto 3 dimensional parts named trough panel since 1999. Our purpose of the introduction was common use of equipment. Trough panel has a complex shape and different shapes in each car type. In order to realize common use of welding equipment, we introduced parts locating equipment which had unique, small & simple jigs fo each car type and NC (Numerical Controlled) locators and air-cooled small laser head developed by ourselves to the trough welding process. Laser welding replaced spot welding and was applied linearly like stitches. Length of laser welding was determined according to comparison with statistic tensile strength and fatigue strength of spot welding.
Reliability Standards of Complex Engineering Systems
NASA Astrophysics Data System (ADS)
Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.
2017-11-01
Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.
75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
..., Methods for Estimating Air Emissions from Chemical Manufacturing Facilities; Protocol for Equipment Leak... chemical vapor deposition process (CVD) or other manufacturing processes use N 2 O. Production processes.... N 2 O emissions from chemical vapor deposition and other electronics manufacturing processes...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Inventories. 40.523... PROCESSED TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.523 Inventories. Every manufacturer of processed tobacco must provide a true and accurate inventory on TTB F 5210...
Manufacturing Process Simulation of Large-Scale Cryotanks
NASA Technical Reports Server (NTRS)
Babai, Majid; Phillips, Steven; Griffin, Brian
2003-01-01
NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing simulation support. This paper highlights the accomplishments of this task agreement, while also introducing the capabilities of simulation software.
Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.
Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti
2016-10-18
Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... chemical that is produced coincidentally during the production of another chemical. Chemical manufacturing... manufacture an intended product. A chemical manufacturing process unit consists of more than one unit... ethylene process does not include the manufacture of SOCMI chemicals such as the production of butadiene...
Microstructure characterisation of Ti-6Al-4V from different additive manufacturing processes
NASA Astrophysics Data System (ADS)
Neikter, M.; Åkerfeldt, P.; Pederson, R.; Antti, M.-L.
2017-10-01
The focus of this work has been microstructure characterisation of Ti-6Al-4V manufactured by five different additive manufacturing (AM) processes. The microstructure features being characterised are the prior β size, grain boundary α and α lath thickness. It was found that material manufactured with powder bed fusion processes has smaller prior β grains than the material from directed energy deposition processes. The AM processes with fast cooling rate render in thinner α laths and also thinner, and in some cases discontinuous, grain boundary α. Furthermore, it has been observed that material manufactured with the directed energy deposition processes has parallel bands, except for one condition when the parameters were changed, while the powder bed fusion processes do not have any parallel bands.
Meaning Metrics: Measure, Mix, Manipulate, and Mold.
ERIC Educational Resources Information Center
Shaw, Jean M.
1981-01-01
Many learning activities designed to make metric measurement meaningful to children are described. The manufacture and use of play dough is featured. Several simple recipes for preparing dough are included. (MP)
NASA Astrophysics Data System (ADS)
Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur
In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.
Manufacturing of GLARE Parts and Structures
NASA Astrophysics Data System (ADS)
Sinke, J.
2003-07-01
GLARE is a hybrid material consisting of alternating layers of metal sheets and composite layers, requiring special attention when manufacturing of parts and structures is concerned. On one hand the applicable manufacturing processes for GLARE are limited, on the other hand, due to the constituents and composition of the laminate, it offers new opportunities for production. One of the opportunities is the manufacture of very large skin panels by lay-up techniques. Lay-up techniques are common for full composites, but uncommon for metallic structures. Nevertheless, large GLARE skin panels are made by lay-up processes. In addition, the sequences of forming and laminating processes, that can be selected, offer manufacturing options that are not applicable to metals or full composites. With respect to conventional manufacturing processes, the possibilities for Fibre Metal Laminates in general, are limited. The limits are partly due to the different failure modes, partly due to the properties of the constituents in the laminate. For machining processes: the wear of the cutting tools during machining operations of GLARE stems from the abrasive nature of the glass fibres. For the forming processes: the limited formability, expressed by a small failure strain, is related to the glass fibres. However, although these manufacturing issues may restrict the use of manufacturing processes for FMLs, application of these laminates in aircraft is not hindered.
Numerical simulation of complex part manufactured by selective laser melting process
NASA Astrophysics Data System (ADS)
Van Belle, Laurent
2017-10-01
Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.
Free-world microelectronic manufacturing equipment
NASA Astrophysics Data System (ADS)
Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.
1988-12-01
Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.
77 FR 48992 - Tobacco Product Manufacturing Facility Visits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... manufacturing operations--from the receipt of raw materials to the distribution of finished products, and Learn... Manufacturing facilities for materials used for further processing in finished tobacco products (including, but..., parts, accessories, and Manufacturers of materials used for further processing in finished tobacco...
Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka
2018-06-01
An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.
Jenke, Dennis
2012-01-01
An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.
Agile manufacturing: The factory of the future
NASA Technical Reports Server (NTRS)
Loibl, Joseph M.; Bossieux, Terry A.
1994-01-01
The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.
21 CFR 110.80 - Processes and controls.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN FOOD Production and Process Controls § 110.80 Processes and controls. All operations in the receiving, inspecting, transporting, segregating, preparing, manufacturing, packaging, and storing of food shall be conducted in...
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
Struijs, J; van de Meent, D; Schowanek, D; Buchholz, H; Patoux, R; Wolf, T; Austin, T; Tolls, J; van Leeuwen, K; Galay-Burgos, M
2016-09-01
The multimedia model SimpleTreat, evaluates the distribution and elimination of chemicals by municipal sewage treatment plants (STP). It is applied in the framework of REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). This article describes an adaptation of this model for application to industrial sewage treatment plants (I-STP). The intended use of this re-parametrized model is focused on risk assessment during manufacture and subsequent uses of chemicals, also in the framework of REACH. The results of an inquiry on the operational characteristics of industrial sewage treatment installations were used to re-parameterize the model. It appeared that one property of industrial sewage, i.e. Biological Oxygen Demand (BOD) in combination with one parameter of the activated sludge process, the hydraulic retention time (HRT) is satisfactory to define treatment of industrial wastewater by means of the activated sludge process. The adapted model was compared to the original municipal version, SimpleTreat 4.0, by means of a sensitivity analysis. The consistency of the model output was assessed by computing the emission to water from an I-STP of a set of fictitious chemicals. This set of chemicals exhibit a range of physico-chemical and biodegradability properties occurring in industrial wastewater. Predicted removal rates of a chemical from raw sewage are higher in industrial than in municipal STPs. The latter have typically shorter hydraulic retention times with diminished opportunity for elimination of the chemical due to volatilization and biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
40 CFR 98.70 - Definition of source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...
Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.
1979-01-01
An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.
This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources
Space Manufacturing: The Next Great Challenge
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.
1998-01-01
Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.
A risk-based auditing process for pharmaceutical manufacturers.
Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan
2014-01-01
The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Edwards, Kevin; Fox, Eric; Boothe, Richard
2017-01-01
Additive Manufacturing processes allow for the manufacture of complex three dimensional components that otherwise could not be manufactured. Post treatment processes require the removal of any remnant bulk powder that may become entrapped within small cavities and channels within a component. This project focuses on several gross cleaning methods and the verification metrics associated with additive manufactured parts for oxygen propulsion usage.
ERIC Educational Resources Information Center
Beckett, Stephen
1988-01-01
Presented is a brief history of manufacturing chocolate and an outline of production methods. Describes laboratory techniques used to monitor liquid chocolate viscosity. Discusses a simple experiment which can be performed in the classroom. (Author/CW)
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2012 CFR
2012-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
Printing Processes Used to Manufacture Photovoltaic Solar Cells
ERIC Educational Resources Information Center
Rardin, Tina E.; Xu, Renmei
2011-01-01
There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2013 CFR
2013-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2011 CFR
2011-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2010 CFR
2010-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.
Code of Federal Regulations, 2014 CFR
2014-04-01
... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...
NASA Technical Reports Server (NTRS)
Nanzetta, Philip
1992-01-01
The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.
75 FR 17645 - Polychlorinated Biphenyls (PCBs); Reassessment of Use Authorizations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... reassessing the definitions of ``excluded manufacturing process,'' ``quantifiable level/level of detection... reassessing the definitions of ``excluded manufacturing process,'' ``quantifiable level/level of detection... to authorize by rule the manufacturing, processing, distribution in commerce, and use of PCBs in a...
Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W
2016-05-18
Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.
Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells
Wang, Qi; Dong, Qingfeng; Li, Tao; ...
2016-05-17
Here, we demonstrated that inserting a tunneling layer between perovskite and electron transport layer could significantly increase device performance by suppressing carrier recombination at the cathode contact. The tunneling layer can also serve as an encapsulation layer to prevent perovskite film from damage caused by water or moisture. This method is simple because it does not need lattice matching between the buffer layer and perovskite. The low temperature solution process makes it compatible with many types of perovskite materials, and may be applied for anode contact as well. The freedom to choose any insulating layer for contact enables more devicemore » designs and manufacturing.« less
NASA Astrophysics Data System (ADS)
Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng
2017-03-01
A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2016-01-01
A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.
Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.
1974-01-01
A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
..., including warehousing and distribution; research and development; technology manufacturing; food processing... warehousing and distribution; research and development; technology manufacturing; food processing and... defense manufacturing, sensor manufacturing, or medical devices; (iv) Food/Agriculture--such as wine, food...
Towards a commercial process for the manufacture of genetically modified T cells for therapy
Kaiser, A D; Assenmacher, M; Schröder, B; Meyer, M; Orentas, R; Bethke, U; Dropulic, B
2015-01-01
The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital. PMID:25613483
TMC Behavior Modeling and Life Prediction Under Multiaxial Stresses
NASA Technical Reports Server (NTRS)
Merrick, H. F.; Aksoy, S. Z.; Costen, M.; Ahmad, J.
1998-01-01
The goal of this program was to manufacture and burst test small diameter SCS-6/Ti-6Al-4V composite rings for use in the design of an advanced titanium matrix composite (TMC) impeller. The Textron Specialty Metals grooved foil-fiber process was successfully used to make high quality TMC rings. A novel spin test arbor with "soft touch" fingers to retain the TMC ring was designed and manufactured. The design of the arbor took into account its use for cyclic experiments as well as ring burst tests. Spin testing of the instrumented ring was performed at ambient, 149C (300F), and 316C (600F) temperatures. Assembly vibration was encountered during spin testing but this was overcome through simple modification of the arbor. A spin-to-burst test was successfully completed at 316C (600F). The rotational speed of the TMC ring at burst was close to that predicted. In addition to the spin test program, a number of SCS-6/Ti-6Al-4V test panels were made. Neat Ti-6Al-4V panels also were made.
2018-01-01
A simple, sensitive, accurate, robust headspace gas chromatographic method was developed for the quantitative determination of acetone and isopropyl alcohol in tartaric acid-based pellets of dipyridamole modified release capsules. The residual solvents acetone and isopropyl alcohol were used in the manufacturing process of the tartaric acid-based pellets of dipyridamole modified release capsules by considering the solubility of the dipyridamole and excipients in the different manufacturing stages. The method was developed and optimized by using fused silica DB-624 (30 m × 0.32 mm × 1.8 µm) column with the flame ionization detector. The method validation was carried out with regard to the guidelines for validation of analytical procedures Q2 demanded by the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). All the validation characteristics were meeting the acceptance criteria. Hence, the developed and validated method can be applied for the intended routine analysis. PMID:29686931
Valavala, Sriram; Seelam, Nareshvarma; Tondepu, Subbaiah; Jagarlapudi, V Shanmukha Kumar; Sundarmurthy, Vivekanandan
2018-01-01
A simple, sensitive, accurate, robust headspace gas chromatographic method was developed for the quantitative determination of acetone and isopropyl alcohol in tartaric acid-based pellets of dipyridamole modified release capsules. The residual solvents acetone and isopropyl alcohol were used in the manufacturing process of the tartaric acid-based pellets of dipyridamole modified release capsules by considering the solubility of the dipyridamole and excipients in the different manufacturing stages. The method was developed and optimized by using fused silica DB-624 (30 m × 0.32 mm × 1.8 µ m) column with the flame ionization detector. The method validation was carried out with regard to the guidelines for validation of analytical procedures Q2 demanded by the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). All the validation characteristics were meeting the acceptance criteria. Hence, the developed and validated method can be applied for the intended routine analysis.
Precision production: enabling deterministic throughput for precision aspheres with MRF
NASA Astrophysics Data System (ADS)
Maloney, Chris; Entezarian, Navid; Dumas, Paul
2017-10-01
Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.
Fastrac Nozzle Design, Performance and Development
NASA Technical Reports Server (NTRS)
Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy
2000-01-01
With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.
NASA Astrophysics Data System (ADS)
Bickerton, Simon
Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold cavities. The molds applied in this study have required careful consideration of cavity thickness variations. Any effects on mold filling due to corner radii have been overshadowed by those due to preform compression. While numerical tools are available to study actively controlled mold filling in a virtual environment, some development is required for the physical equipment to implement this in practice. A versatile, multiple line fluid injection system is developed here. The equipment and control algorithms employed have provided servo control of flow rate, or injection pressure, and have been tested under very challenging conditions. The single injection line developed is expanded to a multiple line system, and shows great potential for application to actual resin systems. A case study is presented, demonstrating design and implementation of a simple actively controlled injection scheme. The experimental facility developed provides an excellent testbed for application of actively controlled mold filling concepts, an area that is providing great promise for the advancement of LCM processes.
NASA Astrophysics Data System (ADS)
Saavedra, Juan Alejandro
Quality Control (QC) and Quality Assurance (QA) strategies vary significantly across industries in the manufacturing sector depending on the product being built. Such strategies range from simple statistical analysis and process controls, decision-making process of reworking, repairing, or scraping defective product. This study proposes an optimal QC methodology in order to include rework stations during the manufacturing process by identifying the amount and location of these workstations. The factors that are considered to optimize these stations are cost, cycle time, reworkability and rework benefit. The goal is to minimize the cost and cycle time of the process, but increase the reworkability and rework benefit. The specific objectives of this study are: (1) to propose a cost estimation model that includes energy consumption, and (2) to propose an optimal QC methodology to identify quantity and location of rework workstations. The cost estimation model includes energy consumption as part of the product direct cost. The cost estimation model developed allows the user to calculate product direct cost as the quality sigma level of the process changes. This provides a benefit because a complete cost estimation calculation does not need to be performed every time the processes yield changes. This cost estimation model is then used for the QC strategy optimization process. In order to propose a methodology that provides an optimal QC strategy, the possible factors that affect QC were evaluated. A screening Design of Experiments (DOE) was performed on seven initial factors and identified 3 significant factors. It reflected that one response variable was not required for the optimization process. A full factorial DOE was estimated in order to verify the significant factors obtained previously. The QC strategy optimization is performed through a Genetic Algorithm (GA) which allows the evaluation of several solutions in order to obtain feasible optimal solutions. The GA evaluates possible solutions based on cost, cycle time, reworkability and rework benefit. Finally it provides several possible solutions because this is a multi-objective optimization problem. The solutions are presented as chromosomes that clearly state the amount and location of the rework stations. The user analyzes these solutions in order to select one by deciding which of the four factors considered is most important depending on the product being manufactured or the company's objective. The major contribution of this study is to provide the user with a methodology used to identify an effective and optimal QC strategy that incorporates the number and location of rework substations in order to minimize direct product cost, and cycle time, and maximize reworkability, and rework benefit.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... of Agriculture (USDA) Recommended Requirements for Milk for Manufacturing Purposes and its Production and Processing (Milk for Manufacturing Purposes and Its Production and Processing; Requirements... for Manufacturing Purposes and its Production and Processing, or equivalent State dairy regulatory...
Simulation of a Start-Up Manufacturing Facility for Nanopore Arrays
ERIC Educational Resources Information Center
Field, Dennis W.
2009-01-01
Simulation is a powerful tool in developing and troubleshooting manufacturing processes, particularly when considering process flows for manufacturing systems that do not yet exist. Simulation can bridge the gap in terms of setting up full-scale manufacturing for nanotechnology products if limited production experience is an issue. An effective…
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
40 CFR 98.73 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
...] Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes... Substances, Including Food Ingredients That Are Color Additives; Availability AGENCY: Food and Drug... Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food...
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
31 CFR 500.412 - Process vs. manufacture.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Process vs. manufacture. 500.412... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN ASSETS CONTROL REGULATIONS Interpretations § 500.412 Process vs. manufacture. A commodity subject to § 500.204 remains subject howsoever it...
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1979-01-01
The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.
Low Cost Manufacturing of Composite Cryotanks
NASA Technical Reports Server (NTRS)
Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)
2002-01-01
This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.
Additive Manufacturing of Functional Elements on Sheet Metal
NASA Astrophysics Data System (ADS)
Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion
Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.
UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction
NASA Astrophysics Data System (ADS)
Delistoian, Dmitri; Chirchor, Mihael
2017-12-01
UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.
OPERATOR BURDEN IN METAL ADDITIVE MANUFACTURING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Amy M; Love, Lonnie J
2016-01-01
Additive manufacturing (AM) is an emerging manufacturing process that creates usable machine parts via layer-by-layer joining of a stock material. With this layer-wise approach, high-performance geometries can be created which are impossible with traditional manufacturing methods. Metal AM technology has the potential to significantly reduce the manufacturing burden of developing custom hardware; however, a major consideration in choosing a metal AM system is the required amount of operator involvement (i.e., operator burden) in the manufacturing process. The operator burden not only determines the amount of operator training and specialization required but also the usability of the system in a facility.more » As operators of several metal AM processes, the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Labs is uniquely poised to provide insight into requirements for operator involvement in each of the three major metal AM processes. The paper covers an overview of each of the three metal AM technologies, focusing on the burden on the operator to complete the build cycle, process the part for final use, and reset the AM equipment for future builds.« less
Additive Manufacturing in Production: A Study Case Applying Technical Requirements
NASA Astrophysics Data System (ADS)
Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni
Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.
Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field
NASA Astrophysics Data System (ADS)
Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.
2017-08-01
Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell; Nettles, Mindy
2015-01-01
The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
40 CFR 98.72 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...
75 FR 28335 - Testing and Labeling Pertaining to Product Certification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... material change in the product's design or manufacturing process, including the sourcing of component parts... ``material change'' in a product's design or manufacturing process? Are there criteria by which one might... production begins. Some comments stated that neither the same materials nor the same manufacturing processes...
40 CFR 63.100 - Applicability and designation of source.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturing process unit has two or more products that have the same maximum annual design capacity on a mass... subject to this subpart. (3) For chemical manufacturing process units that are designed and operated as... chemical manufacturing process units that are designed and operated as flexible operation units shall be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS General Records and Reports § 761.193 Maintenance of monitoring records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing...
Encapsulation Processing and Manufacturing Yield Analysis
NASA Technical Reports Server (NTRS)
Willis, P. B.
1984-01-01
The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.
Encapsulation processing and manufacturing yield analysis
NASA Astrophysics Data System (ADS)
Willis, P. B.
1984-10-01
The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Reports. 40.522 Section 40... TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.522 Reports. (a) General. Every manufacturer of processed tobacco must prepare a monthly report on TTB F 5250.1 in...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Reports. 40.522 Section 40... TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.522 Reports. (a) General. Every manufacturer of processed tobacco must prepare a monthly report on TTB F 5250.1 in...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 2 2013-04-01 2013-04-01 false Reports. 40.522 Section 40... TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.522 Reports. (a) General. Every manufacturer of processed tobacco must prepare a monthly report on TTB F 5250.1 in...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...
High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer.
Meng, Tianyu; Liu, Chang; Wang, Kai; He, Tianda; Zhu, Yu; Al-Enizi, Abdullah; Elzatahry, Ahmed; Gong, Xiong
2016-01-27
Perovskite hybrid solar cells (pero-HSCs) have drawn great attention in the last 5 years. The efficiencies of pero-HSCs have been boosted from 3.8% to over 20%. However, one of the bottlenecks for commercialization of pero-HSCs is to make a high electrical conductive TiOx electron extraction layer (EEL). In this study, we report high performance pero-HSCs with TiOx EEL, where the TiOx EEL is fabricated by electron beam (e-beam) evaporation, which has been proved to be a well-developed manufacturing process. The resistance of the e-beam evaporated TiOx EEL is smaller than that of sol-gel processed TiOx EEL. Moreover, the dark current densities and interfacial charge carrier recombination of pero-HSCs incorporated with e-beam processed TiOx EEL is also smaller than that of pero-HSCs incorporated with sol-gel processed TiOx EEL. All these result in efficient pero-HSCs with high reproducibility. These results demonstrate that our method provides a simple and facile way to approach high performance pero-HSCs.
Comparison of optimization algorithms for the slow shot phase in HPDC
NASA Astrophysics Data System (ADS)
Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie
2018-05-01
High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.
NASA Astrophysics Data System (ADS)
Baciu, M. A.; Baciu, E. R.; Bejinariu, C.; Toma, S. L.; Danila, A.; Baciu, C.
2018-06-01
Selective Laser Melting (SLM) represents an Additive Manufacturing method widely used in medical practice, mainly in dental medicine. The powder of 59% Co, 25% Cr, 2.5% W alloy (Starbond CoS Powder 55, S&S Scheftner C, Germany) was processed (SLM) on a Realizer SLM 50 device (SLM Solution, Germany). After laser processing and simple sanding with Al2O3 or two-phase sanding (Al2O3 and glass balls), measurements of surface roughness were conducted. This paper presents the influences exercised by laser power (P = 60 W, 80 W and 100 W), the scanning speed (vscan = 333 mm/s, 500 mm/s and 1000 mm/s) and exposure time (te = 20 µs, 40 µs and 60 µs) on the roughness of surfaces obtained by SLM processing. Based on the experimental results obtained for roughness (Ra), some recommendations regarding the choice of favorable combinations among the values of technological parameters under study in order to obtain the surface quality necessary for subsequent applications of the processed parts (SLM) have been made.
Hengsbach, Stefan; Lantada, Andrés Díaz
2014-08-01
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
Additive Manufacturing of Metal Structures at the Micrometer Scale.
Hirt, Luca; Reiser, Alain; Spolenak, Ralph; Zambelli, Tomaso
2017-05-01
Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raul, Pramod R; Pagilla, Prabhakar R
2015-05-01
In this paper, two adaptive Proportional-Integral (PI) control schemes are designed and discussed for control of web tension in Roll-to-Roll (R2R) manufacturing systems. R2R systems are used to transport continuous materials (called webs) on rollers from the unwind roll to the rewind roll. Maintaining web tension at the desired value is critical to many R2R processes such as printing, coating, lamination, etc. Existing fixed gain PI tension control schemes currently used in industrial practice require extensive tuning and do not provide the desired performance for changing operating conditions and material properties. The first adaptive PI scheme utilizes the model reference approach where the controller gains are estimated based on matching of the actual closed-loop tension control systems with an appropriately chosen reference model. The second adaptive PI scheme utilizes the indirect adaptive control approach together with relay feedback technique to automatically initialize the adaptive PI gains. These adaptive tension control schemes can be implemented on any R2R manufacturing system. The key features of the two adaptive schemes is that their designs are simple for practicing engineers, easy to implement in real-time, and automate the tuning process. Extensive experiments are conducted on a large experimental R2R machine which mimics many features of an industrial R2R machine. These experiments include trials with two different polymer webs and a variety of operating conditions. Implementation guidelines are provided for both adaptive schemes. Experimental results comparing the two adaptive schemes and a fixed gain PI tension control scheme used in industrial practice are provided and discussed. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
2012-01-01
A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.
NASA Astrophysics Data System (ADS)
Murphy, L. M.; Hauser, S. G.; Clyne, R. J.
1992-05-01
Concentrated solar radiation is now a viable alternative energy source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar-induced surface transformation of materials (SISTM), solar-based manufacturing, and solar-pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offers even greater potential for tomorrow, especially as applied to the radiation-abundant environment available in space and on the lunar surface.
NASA Astrophysics Data System (ADS)
Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.
1991-12-01
Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.
NASA Technical Reports Server (NTRS)
Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.
1991-01-01
Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.
Technological Improvements for Digital Fire Control Systems
2017-09-30
Final Technical Status Report For DOTC-12-01-INIT061 Technological Improvements for Digital Fire Control Systems Reporting Period: 30 Sep...Initiative Information Develop and fabricate next generation designs using advanced materials and processes. This will include but is not limited to...4.2 Develop manufacturing processes 100% 4.3 Develop manufacturing processes 100% 4.4 Develop manufacturing processes 100% 5 Design Tooling
Energetic additive manufacturing process with feed wire
Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.
2000-11-07
A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.
Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.
Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P
2014-11-21
Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation.
NASA Astrophysics Data System (ADS)
Xian, Ji; Xiaodong, Zhang; Weihua, Kang; Zhili, Zhang; Jiahui, Zhou; Wenjun, Xu; Qi, Li; Gongli, Xiao; Zhijun, Yin; Yong, Cai; Baoshun, Zhang; Haiou, Li
2016-02-01
An 80-nm gate length metamorphic high electron mobility transistor (mHEMT) on a GaAs substrate with high indium composite compound-channels In0.7Ga0.3 As/In0.6Ga0.4 As and an optimized grade buffer scheme is presented. High 2-DEG Hall mobility values of 10200 cm2/(V·s) and a sheet density of 3.5 × 1012 cm-2 at 300 K have been achieved. The device's T-shaped gate was made by utilizing a simple three layers electron beam resist, instead of employing a passivation layer for the T-share gate, which is beneficial to decreasing parasitic capacitance and parasitic resistance of the gate and simplifying the device manufacturing process. The ohmic contact resistance Rc is 0.2 ω·mm when using the same metal system with the gate (Pt/Ti/Pt/Au), which reduces the manufacturing cycle of the device. The mHEMT device demonstrates excellent DC and RF characteristics. The peak extrinsic transconductance of 1.1 S/mm and the maximum drain current density of 0.86 A/mm are obtained. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are 246 and 301 GHz, respectively. Project supported by the Key Laboratory of Nano-Devices and Applications, Nano-Fabrication Facility of SINANO, Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 61274077, 61474031, 61464003), the Guangxi Natural Science Foundation (Nos. 2013GXNSFGA019003, 2013GXNSFAA019335), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Project (No. 9140C140101140C14069), and the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449, YJCXS201529).
Overview of the production of sintered SiC optics and optical sub-assemblies
NASA Astrophysics Data System (ADS)
Williams, S.; Deny, P.
2005-08-01
The following is an overview on sintered silicon carbide (SSiC) material properties and processing requirements for the manufacturing of components for advanced technology optical systems. The overview will compare SSiC material properties to typical materials used for optics and optical structures. In addition, it will review manufacturing processes required to produce optical components in detail by process step. The process overview will illustrate current manufacturing process and concepts to expand the process size capability. The overview will include information on the substantial capital equipment employed in the manufacturing of SSIC. This paper will also review common in-process inspection methodology and design rules. The design rules are used to improve production yield, minimize cost, and maximize the inherent benefits of SSiC for optical systems. Optimizing optical system designs for a SSiC manufacturing process will allow systems designers to utilize SSiC as a low risk, cost competitive, and fast cycle time technology for next generation optical systems.
Advanced Manufacturing Processes in the Motor Vehicle Industry
DOT National Transportation Integrated Search
1983-05-01
Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...
The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level
NASA Astrophysics Data System (ADS)
Inrawan Wiratmadja, Iwan; Mufid, Anas
2016-02-01
In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.
Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing
NASA Astrophysics Data System (ADS)
Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy
2017-06-01
In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.
Reusable anaerobic system for microbiological studies - A concept
NASA Technical Reports Server (NTRS)
Murawczyk, C.
1971-01-01
Simple, low cost system consists of semirigid incubation chamber with clear Teflon window, airtight zipper and internal compartments for petri dishes or microbial plates. Device interests schools, medical laboratories, and manufacturers of biological and pharmaceutical supplies.
Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin
2015-12-01
Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.
Redundant via insertion in self-aligned double patterning
NASA Astrophysics Data System (ADS)
Song, Youngsoo; Jung, Jinwook; Shin, Youngsoo
2017-03-01
Redundant via (RV) insertion is employed to enhance via manufacturability, and has been extensively studied. Self-aligned double patterning (SADP) process, brings a new challenge to RV insertion since newly created cut for each RV insertion has to be taken care of. Specifically, when a cut for RV, which we simply call RV-cut, is formed, cut conflict may occur with nearby line-end cuts, which results in a decrease in RV candidates. We introduce cut merging to reduce the number of cut conflicts; merged cuts are processed with stitch using litho-etch-litho-etch (LELE) multi-patterning method. In this paper, we propose a new RV insertion method with cut merging in SADP for the first time. In our experiments, a simple RV insertion yields 55.3% vias to receives RVs; our proposed method that considers cut merging increases that number to 69.6% on average of test circuits.
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; ...
2015-06-25
The efficiency of organometal trihalide perovskites (OTP) solar cells have reached that parity of single crystal silicon, and its nature abundant raw material and solution-process capability promise a bright future for commercialization. However, the vacuum based techniques for metal electrode deposition and additional encapsulation layer increase the cost of the perovskite solar cells dramatically and impede their commercialization process. Here, we report a vacuum-free low temperature lamination technique to fabricate the top electrode by commercial conductive tapes (C-tape). The simple fabrication method yields good quality contact and high efficiency device of 12.7%. The C-tapes also encapsulated the devices effectively, resultingmore » in greatly improved device stability. As a result, the combination of lamination of electrodes and encapsulation layers into a single step significantly reduce the cost of device fabrication.« less
Magagna, Federico; Guglielmetti, Alessandro; Liberto, Erica; Reichenbach, Stephen E; Allegrucci, Elena; Gobino, Guido; Bicchi, Carlo; Cordero, Chiara
2017-08-02
This study investigates chemical information of volatile fractions of high-quality cocoa (Theobroma cacao L. Malvaceae) from different origins (Mexico, Ecuador, Venezuela, Columbia, Java, Trinidad, and Sao Tomè) produced for fine chocolate. This study explores the evolution of the entire pattern of volatiles in relation to cocoa processing (raw, roasted, steamed, and ground beans). Advanced chemical fingerprinting (e.g., combined untargeted and targeted fingerprinting) with comprehensive two-dimensional gas chromatography coupled with mass spectrometry allows advanced pattern recognition for classification, discrimination, and sensory-quality characterization. The entire data set is analyzed for 595 reliable two-dimensional peak regions, including 130 known analytes and 13 potent odorants. Multivariate analysis with unsupervised exploration (principal component analysis) and simple supervised discrimination methods (Fisher ratios and linear regression trees) reveal informative patterns of similarities and differences and identify characteristic compounds related to sample origin and manufacturing step.
Fiber optic sensor design for chemical process and environmental monitoring
NASA Astrophysics Data System (ADS)
Mahendran, R. S.; Harris, D.; Wang, L.; Machavaram, V. R.; Chen, R.; Kukureka, St. N.; Fernando, G. F.
2007-07-01
Cure monitoring is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composites can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in-situ cure monitoring of a model thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture in the cured resin system.
[Purification of complicated industrial organic waste gas by complex absorption].
Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang
2011-12-01
Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.
Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures
NASA Astrophysics Data System (ADS)
Peng, Qin; Yang, Bin; Friedrich, Bernd
2018-01-01
A new simple powder metallurgy process by sintering TiH2 powders was used to manufacture porous Ti components. The effects of the processing parameters (pressure of cold isostatic pressing and sintering temperature) and the TiH2/Ti ratio in the powder mixtures on the impurities, the linear shrinkage and the pore properties (including overall and open porosities) were comprehensively determined. The addition of TiH2 as a reactant has been found beneficial for the synthesis of porous Ti components. The formation mechanisms of pores were demonstrated based on the dehydrogenation process of TiH2 during sintering, resulting in highest reactivity due to the "in statu nascendi" generation of the metal. In addition, the hardness and corrosion resistance of all the sintered samples were evaluated, related to the overall and open porosities. As a result, an optimal composition of Ti-40 wt.% TiH2 was defined, as its maximum open porosity was about 23%.
Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri
2011-01-01
We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158
Nonterrestrial material processing and manufacturing of large space systems
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1978-01-01
An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.
24 CFR 3282.53 - Service of process on foreign manufacturers and importers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Service of process on foreign manufacturers and importers. 3282.53 Section 3282.53 Housing and Urban Development Regulations Relating to... REGULATIONS Formal Procedures § 3282.53 Service of process on foreign manufacturers and importers. The...
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This guide is intended for use in teaching an introductory course in manufacturing materials and processes. The course centers around four basic materials--metallics, polymers, ceramics, and composites--and seven manufacturing processes--casting, forming, molding, separating, conditioning, assembling, and finishing. Concepts and classifications of…
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2011 CFR
2011-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
27 CFR 24.250 - Application for use of new treating material or process.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from the testing program conducted by the chemical manufacturer demonstrating the function of the material or process; (7) A list of all chemicals used in compounding the treating material and the quantity... manufacturer or supplier of the treating material or process may be forwarded by the manufacturer or supplier...
Pharmaceutical quality by design: product and process development, understanding, and control.
Yu, Lawrence X
2008-04-01
The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
Measurement science and manufacturing science research
NASA Technical Reports Server (NTRS)
Phillips, D. Howard
1987-01-01
The research program of Semiconductor Research Corp. is managed as three overlapping areas: Manufacturing Sciences, Design Sciences and Microstructure Sciences. A total of 40 universities are participating in the performance of over 200 research tasks. The goals and direction of Manufacturing Sciences research became more clearly focused through the efforts of the Manufacturing Sciences Committee of the SRC Technical Advisory Board (TAB). The mission of the SRC Manufacturing Research is the quantification, control, and understanding of semiconductor manufacturing process necessary to achieve a predictable and profitable product output in the competitive environment of the next decade. The 1994 integrated circuit factory must demonstrate a three level hierarchy of control: (1) operation control, (2) process control, and (3) process design. These levels of control are briefly discussed.
Large-area copper indium diselenide (CIS) process, control and manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, T.J.; Lanning, B.R.; Marshall, C.H.
1997-12-31
Lockheed Martin Astronautics (LMA) has developed a large-area (30x30cm) sequential CIS manufacturing approach amenable to low-cost photovoltaics (PV) production. A prototype CIS manufacturing system has been designed and built with compositional uniformity (Cu/In ratio) verified within {+-}4 atomic percent over the 30x30cm area. CIS device efficiencies have been measured by the National Renewable Energy Laboratory (NREL) at 7% on a flexible non-sodium-containing substrate and 10% on a soda-lime-silica (SLS) glass substrate. Critical elements of the manufacturing capability include the CIS sequential process selection, uniform large-area material deposition, and in-situ process control. Details of the process and large-area manufacturing approach aremore » discussed and results presented.« less
Park, Jae Chul; Lee, Ho-Nyeon; Im, Seongil
2013-08-14
Thin-film transistor (TFT) is a key component of active-matrix flat-panel displays (AMFPDs). These days, the low-temperature poly silicon (LTPS) TFTs are to match with advanced AMFPDs such as the active matrix organic light-emitting diode (AMOLED) display, because of their high mobility for fast pixel switching. However, the manufacturing process of LTPS TFT is quite complicated, costly, and scale-limited. Amorphous oxide semiconductor (AOS) TFT technology is another candidate, which is as simple as that of conventioanl amorphous (a)-Si TFTs in fabrication but provides much superior device performances to those of a-Si TFTs. Hence, various AOSs have been compared with LTPS for active channel layer of the advanced TFTs, but have always been found to be relatively inferior to LTPS. In the present work, we clear the persistent inferiority, innovating the device performaces of a-IZO TFT by adopting a self-aligned coplanar top-gate structure and modifying the surface of a-IZO material. Herein, we demonstrate a high-performance simple-processed a-IZO TFT with mobility of ∼157 cm(2) V(-1) s(-1), SS of ∼190 mV dec(-1), and good bias/photostabilities, which overall surpass the performances of high-cost LTPS TFTs.
A Knowledge Database on Thermal Control in Manufacturing Processes
NASA Astrophysics Data System (ADS)
Hirasawa, Shigeki; Satoh, Isao
A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.
Feasibility of Carbon Fiber/PEEK Composites for Cryogenic Fuel Tank Applications
NASA Astrophysics Data System (ADS)
Doyle, K.; Doyle, A.; O Bradaigh, C. M.; Jaredson, D.
2012-07-01
This paper investigates the feasibility of CF/PEEK composites for manufacture of cryogenic fuel tanks for Next Generation Space Launchers. The material considered is CF/PEEK tape from Suprem SA and the proposed manufacturing process for the fuel tank is Automated Tape Placement. Material characterization was carried out on test laminates manufactured in an autoclave and also by Automated Tape Placement with in-situ consolidation. The results of the two processes were compared to establish if there is any knock down in properties for the automated tape placement process. A permeability test rig was setup with a helium leak detector and the effect of thermal cycling on the permeability properties of CF/PEEK was measured. A 1/10th scale demonstrator was designed and manufactured consisting of a cylinder manufactured by automated tape placement and an upper dome manufactured by autoclave processing. The assembly was achieved by Amorphous Interlayer Bonding with PEI.
NASA Astrophysics Data System (ADS)
Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne
2017-06-01
Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an attractive tool that may be implemented for general tissue engineering and neuroscience research.
Additive Manufacturing: Ensuring Quality for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Swanson, Theodore; Stephenson, Timothy
2014-01-01
Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.
Advance Manufacturing Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
Nonterrestrial material processing and manufacturing of large space systems
NASA Technical Reports Server (NTRS)
Von Tiesenhausen, G.
1979-01-01
Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.
Flexible Manufacturing Systems: What's in It for the Manufacturer.
ERIC Educational Resources Information Center
Chowdhury, A. R.; Peckman, Donald C.
1987-01-01
The authors define the Flexible Manufacturing System and outline its history. They describe what the processing time includes and provide advantages and disadvantages of Flexible Manufacturing Systems compared to conventional manufacturing. (CH)
In-situ acoustic signature monitoring in additive manufacturing processes
NASA Astrophysics Data System (ADS)
Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.
2018-04-01
Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.
Wellbore manufacturing processes for in situ heat treatment processes
Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles
2012-12-11
A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.
Discrete State Change Model of Manufacturing Quality to Aid Assembly Process Design
NASA Astrophysics Data System (ADS)
Koga, Tsuyoshi; Aoyama, Kazuhiro
This paper proposes a representation model of the quality state change in an assembly process that can be used in a computer-aided process design system. In order to formalize the state change of the manufacturing quality in the assembly process, the functions, operations, and quality changes in the assembly process are represented as a network model that can simulate discrete events. This paper also develops a design method for the assembly process. The design method calculates the space of quality state change and outputs a better assembly process (better operations and better sequences) that can be used to obtain the intended quality state of the final product. A computational redesigning algorithm of the assembly process that considers the manufacturing quality is developed. The proposed method can be used to design an improved manufacturing process by simulating the quality state change. A prototype system for planning an assembly process is implemented and applied to the design of an auto-breaker assembly process. The result of the design example indicates that the proposed assembly process planning method outputs a better manufacturing scenario based on the simulation of the quality state change.
SAMICS: Input data preparation. [Solar Array Manufacturing Industry Costing Standards
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.; Aster, R. W.
1979-01-01
The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for estimating the price that a manufacturer would have to charge for the product of a specified manufacturing process sequence. A line-by-line explanation is given of those standard formats which describe the economically important characteristics of the manufacturing processes and the technological structure of the companies and the industry. This revision provides an updated presentation of Format A Process Description, consistent with the October 1978 version of that form. A checklist of items which should be entered on Format A as direct expenses is included.
Gui, Jiadong; Fu, Xiumin; Zhou, Ying; Katsuno, Tsuyoshi; Mei, Xin; Deng, Rufang; Xu, Xinlan; Zhang, Linyun; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin
2015-08-12
It was generally thought that aroma of oolong tea resulted from hydrolysis of glycosidically bound volatiles (GBVs). In this study, most GBVs showed no reduction during the oolong tea manufacturing process. β-Glycosidases either at protein or gene level were not activated during the manufacturing process. Subcellular localization of β-primeverosidase provided evidence that β-primeverosidase was located in the leaf cell wall. The cell wall remained intact during the enzyme-active manufacturing process. After the leaf cell disruption, GBV content was reduced. These findings reveal that, during the enzyme-active process of oolong tea, nondisruption of the leaf cell walls resulted in impossibility of interaction of GBVs and β-glycosidases. Indole, jasmine lactone, and trans-nerolidol were characteristic volatiles produced from the manufacturing process. Interestingly, the contents of the three volatiles was reduced after the leaf cell disruption, suggesting that mechanical damage with the cell disruption, which is similar to black tea manufacturing, did not induce accumulation of the three volatiles. In addition, 11 volatiles with flavor dilution factor ≥4(4) were identified as relatively potent odorants in the oolong tea. These results suggest that enzymatic hydrolysis of GBVs was not involved in the formation of volatiles of oolong tea, and some characteristic volatiles with potent odorants were produced from the manufacturing process.
Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system
NASA Technical Reports Server (NTRS)
Tso, W.; Hou, T. H.; Tiwari, S. N.
1993-01-01
Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables us to estimate the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance our knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.
Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan
2016-11-01
Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.
Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James
2016-01-01
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220
Manufacturing development for the SAFE 100 kW core
NASA Astrophysics Data System (ADS)
Carter, Robert; Roman, Jose; Salvail, Pat
2002-01-01
In stark contrast to what is sometimes considered the norm in traditional manufacturing processes, engineers at the Marshall Space Flight Center (MSFC) arc in the practice of altering the standard in an effort to realize other potential methods in core manufacturing. While remaining within the bounds of the materials database, we are researching into core manufacturing techniques that may have been overlooked in the past due to funding and/or time constraints. To augment proven core fabrication capabilities we are pursuing plating processes as another possible method for core build-up and assembly. Although brazing and a proprietary HIP cycle are used for module assembly (proven track record for stability and endurance), it is prudent to pursue secondary or backup methods of module and core assembly. For this reason heat tube manufacture and module assembly by means of plating is being investigated. Potentially, the plating processes will give engineers the ability to manufacture replacement modules for any module that might fail to perform nominally, and to assemble/disassemble a complete core in much less time than would be required for the conventional Braze-HIP process. Another area of improvement in core manufacturing capabilities is the installation of a sodium and lithium liquid metal heat pipe fill machine. This, along with the ability to Electron Beam Weld heat pipe seals and wet-in the pipes in the necessary vacuum atmosphere, will eliminate the need to ship potentially hazardous components outside for processing. In addition to developing core manufacturing techniques, the SAFE manufacturing team has been evaluating the thermal heat transfer characteristics, and manufacturability of several heat exchanger design concepts. .
Performance measurement integrated information framework in e-Manufacturing
NASA Astrophysics Data System (ADS)
Teran, Hilaida; Hernandez, Juan Carlos; Vizán, Antonio; Ríos, José
2014-11-01
The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.
Wang, Zhi; Liang, Jiabin; Rong, Xing; Zhou, Hao; Duan, Chuanwei; Du, Weijia; Liu, Yimin
2015-12-01
To investigate noise hazard and its influence on hearing loss in workers in the automotive component manufacturing industry. Noise level in the workplace of automotive component manufacturing enterprises was measured and hearing examination was performed for workers to analyze the features and exposure levels of noise in each process, as well as the influence on hearing loss in workers. In the manufacturing processes for different products in this industry, the manufacturing processes of automobile hub and suspension and steering systems had the highest degrees of noise hazard, with over-standard rates of 79.8% and 57.1%, respectively. In the different technical processes for automotive component manufacturing, punching and casting had the highest degrees of noise hazard, with over-standard rates of 65.0% and 50%, respectively. The workers engaged in the automotive air conditioning system had the highest rate of abnormal hearing ability (up to 3.1%). In the automotive component manufacturing industry, noise hazard exceeds the standard seriously. Although the rate of abnormal hearing is lower than the average value of the automobile manufacturing industry in China, this rate tends to increase gradually. Enough emphasis should be placed on the noise hazard in this industry.
A new chapter in pharmaceutical manufacturing: 3D-printed drug products.
Norman, James; Madurawe, Rapti D; Moore, Christine M V; Khan, Mansoor A; Khairuzzaman, Akm
2017-01-01
FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo
2004-06-01
In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less
Producing Hybrid Metal Composites by Combining Additive Manufacturing and Casting
Pawlowski, Alex E.; Splitter, Derek A.; Muth, Thomas R.; ...
2017-10-01
Additive manufacturing by itself provides many benefits, but by combining different materials processing techniques like traditional casting with additive manufacturing to create hybrid processes, custom materials can be tailor-made and mass produced for applications with specific performance needs.
40 CFR 415.551 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...
40 CFR 415.551 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...
40 CFR 415.551 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...
Automated manufacturing process for DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2014-03-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.
Tracking the course of the manufacturing process in selective laser melting
NASA Astrophysics Data System (ADS)
Thombansen, U.; Gatej, A.; Pereira, M.
2014-02-01
An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.
Engineering of mechanical manufacturing from the cradle to cradle
NASA Astrophysics Data System (ADS)
Peralta, M. E.; Aguayo, F.; Lama, J. R.
2012-04-01
The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.
PVEX: An expert system for producibility/value engineering
NASA Technical Reports Server (NTRS)
Lam, Chun S.; Moseley, Warren
1991-01-01
PVEX is described as an expert system that solves the problem of selection of the material and process in missile manufacturing. The producibility and the value problem has been deeply studied in the past years, and was written in dBase III and PROLOG before. A new approach is presented in that the solution is achieved by introducing hypothetical reasoning, heuristic criteria integrated with a simple hypertext system and shell programming. PVEX combines KMS with Unix scripts which graphically depicts decision trees. The decision trees convey high level qualitative problem solving knowledge to users, and a stand-alone help facility and technical documentation is available through KMS. The system developed is considerably less development costly than any other comparable expert system.
A Novel Approach to Monitoring the Curing of Epoxy in Closed Tools by Use of Ultrasonic Spectroscopy
2017-01-01
The increasing use of composite materials has led to a greater demand for efficient curing cycles to reduce costs and speed up production cycles in manufacturing. One method to achieve this goal is in-line cure monitoring to determine the exact curing time. This article proposes a novel method through which to monitor the curing process inside closed tools by employing ultrasonic spectroscopy. A simple experiment is used to demonstrate the change in the ultrasonic spectrum during the cure cycle of an epoxy. The results clearly reveal a direct correlation between the amplitude and state of cure. The glass transition point is indicated by a global minimum of the reflected amplitude. PMID:29301222
NASA Astrophysics Data System (ADS)
Liu, GaiYun; Chao, Daniel Yuh
2015-08-01
To date, research on the supervisor design for flexible manufacturing systems focuses on speeding up the computation of optimal (maximally permissive) liveness-enforcing controllers. Recent deadlock prevention policies for systems of simple sequential processes with resources (S3PR) reduce the computation burden by considering only the minimal portion of all first-met bad markings (FBMs). Maximal permissiveness is ensured by not forbidding any live state. This paper proposes a method to further reduce the size of minimal set of FBMs to efficiently solve integer linear programming problems while maintaining maximal permissiveness using a vector-covering approach. This paper improves the previous work and achieves the simplest structure with the minimal number of monitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhere, N.G.; Wollam, M.E.; Gadre, K.S.
1997-12-31
Silicon solar cell/EVA composite is being studied with an objective to further improve the manufacturing technology of PV modules. Sample extraction and adhesion strength measurement process has been modified. Silicon and EVA samples were extracted from solar cells of new and field-deployed modules. Optical microscopy, SEM, and AES of samples from new modules revealed EVA islands covering most of the silicon cell surface indicating a cohesive failure. A good correlation was observed between the adhesive strength and surface concentration of carbon. A low carbon concentration which indicated less EVA clinging to cell surface always resulted in low adhesive strengths. Themore » correlation provides a simple technique for inferring properties of EVA.« less
Advances in solid dosage form manufacturing technology.
Andrews, Gavin P
2007-12-15
Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.
77 FR 18752 - Benzidine-Based Chemical Substances; Di-n
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... persons who intend to manufacture, import, or process these chemical substances for an activity that is.... Benzidine-based chemical substances. You may be potentially affected by this action if you manufacture... manufacturing, 313-textile manufacturers, 316-leather and allied products manufacturers, 322-paper manufacturers...
An In-Depth Review on Direct Additive Manufacturing of Metals
NASA Astrophysics Data System (ADS)
Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum
2018-03-01
Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.
Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review
NASA Astrophysics Data System (ADS)
Singh, K.; Sultan, I.
2017-07-01
Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.
NASA Technical Reports Server (NTRS)
Waid, Michael
2011-01-01
Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Nicholas C.
The growth of additive manufacturing as a disruptive technology poses nuclear proliferation concerns worthy of serious consideration. Additive manufacturing began in the early 1980s with technological advances in polymer manipulation, computer capabilities, and computer-aided design (CAD) modeling. It was originally limited to rapid prototyping; however, it eventually developed into a complete means of production that has slowly penetrated the consumer market. Today, additive manufacturing machines can produce complex and unique items in a vast array of materials including plastics, metals, and ceramics. These capabilities have democratized the manufacturing industry, allowing almost anyone to produce items as simple as cup holdersmore » or as complex as jet fuel nozzles. Additive manufacturing, or three-dimensional (3D) printing as it is commonly called, relies on CAD files created or shared by individuals with additive manufacturing machines to produce a 3D object from a digital model. This sharing of files means that a 3D object can be scanned or rendered as a CAD model in one country, and then downloaded and printed in another country, allowing items to be shared globally without physically crossing borders. The sharing of CAD files online has been a challenging task for the export controls regime to manage over the years, and additive manufacturing could make these transfers more common. In this sense, additive manufacturing is a disruptive technology not only within the manufacturing industry but also within the nuclear nonproliferation world. This paper provides an overview of additive manufacturing concerns of proliferation.« less
Li, Jia; Rossignol, Fabrice; Macdonald, Joanne
2015-06-21
Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.
NASA Astrophysics Data System (ADS)
Ajay Guru Dev, C.; Senthil Kumar, V. S.
2016-09-01
Manufacturing industries are facing challenges in the implementation of agile manufacturing in their products and processes. Agility is widely accepted as a new competitive concept in the manufacturing sector in fulfilling varying customer demand. Thus, evaluation of agile manufacturing in industries has become a necessity. The success of an organisation depends on its ability to manage finding the critical success factors and give them special and continued attention in order to bring about high performance. This paper proposes a set of critical success factors (CSFs) for evaluating agile manufacturing considered appropriate for the manufacturing sector. The analytical hierarchy process (AHP) method is applied for prioritizing the success factors, by summarizing the opinions of experts. It is believed that the proposed CSFs enable and assist manufacturing industries to achieve a higher performance in agile manufacturing so as to increase competitiveness.
Reverse engineering of wörner type drilling machine structure.
NASA Astrophysics Data System (ADS)
Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.
2018-03-01
A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled
Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less
CIMOSA process classification for business process mapping in non-manufacturing firms: A case study
NASA Astrophysics Data System (ADS)
Latiffianti, Effi; Siswanto, Nurhadi; Wiratno, Stefanus Eko; Saputra, Yudha Andrian
2017-11-01
A business process mapping is one important means to enable an enterprise to effectively manage the value chain. One of widely used approaches to classify business process for mapping purpose is Computer Integrated Manufacturing System Open Architecture (CIMOSA). CIMOSA was initially designed for Computer Integrated Manufacturing (CIM) system based enterprises. This paper aims to analyze the use of CIMOSA process classification for business process mapping in the firms that do not fall within the area of CIM. Three firms of different business area that have used CIMOSA process classification were observed: an airline firm, a marketing and trading firm for oil and gas products, and an industrial estate management firm. The result of the research has shown that CIMOSA can be used in non-manufacturing firms with some adjustment. The adjustment includes addition, reduction, or modification of some processes suggested by CIMOSA process classification as evidenced by the case studies.
Design of efficient and simple interface testing equipment for opto-electric tracking system
NASA Astrophysics Data System (ADS)
Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao
2016-10-01
Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.
NASA Astrophysics Data System (ADS)
Schagerl, M.; Viechtbauer, C.; Hörrmann, S.
2015-07-01
Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.
Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.
Wang, Zhijun; Mirdamadi, Reza; Wang, Qing
2016-01-01
Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.
Simple, robust storage of drops and fluids in a microfluidic device.
Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth
2009-01-21
We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.
Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks
Wang, Zhijun; Mirdamadi, Reza; Wang, Qing
2016-01-01
Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284
Fürst, Rafael Vilhena de Carvalho; Polimanti, Afonso César; Galego, Sidnei José; Bicudo, Maria Claudia; Montagna, Erik; Corrêa, João Antônio
2017-03-01
To present a simple and affordable model able to properly simulate an ultrasound-guided venous access. The simulation was made using a latex balloon tube filled with water and dye solution implanted in a thawed chicken breast with bones. The presented model allows the simulation of all implant stages of a central catheter. The obtained echogenicity is similar to that observed in human tissue, and the ultrasound identification of the tissues, balloon, needle, wire guide and catheter is feasible and reproducible. The proposed model is simple, economical, easy to manufacture and capable of realistically and effectively simulating an ultrasound-guided venous access.
Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R
2017-01-01
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.
Defect recognition in CFRP components using various NDT methods within a smart manufacturing process
NASA Astrophysics Data System (ADS)
Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe
2018-04-01
The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.
21 CFR 108.12 - Manufacturing, processing, or packing without a permit, or in violation of a permit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Manufacturing, processing, or packing without a permit, or in violation of a permit. 108.12 Section 108.12 Food and Drugs FOOD AND DRUG ADMINISTRATION... General Provisions § 108.12 Manufacturing, processing, or packing without a permit, or in violation of a...
NASA Astrophysics Data System (ADS)
Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.
2014-07-01
Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
NASA Astrophysics Data System (ADS)
Gentry, Jeffery D.
2000-05-01
A relational database is a powerful tool for collecting and analyzing the vast amounts of inner-related data associated with the manufacture of composite materials. A relational database contains many individual database tables that store data that are related in some fashion. Manufacturing process variables as well as quality assurance measurements can be collected and stored in database tables indexed according to lot numbers, part type or individual serial numbers. Relationships between manufacturing process and product quality can then be correlated over a wide range of product types and process variations. This paper presents details on how relational databases are used to collect, store, and analyze process variables and quality assurance data associated with the manufacture of advanced composite materials. Important considerations are covered including how the various types of data are organized and how relationships between the data are defined. Employing relational database techniques to establish correlative relationships between process variables and quality assurance measurements is then explored. Finally, the benefits of database techniques such as data warehousing, data mining and web based client/server architectures are discussed in the context of composite material manufacturing.
NASA Astrophysics Data System (ADS)
Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli
Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.
Analyzing industrial energy use through ordinary least squares regression models
NASA Astrophysics Data System (ADS)
Golden, Allyson Katherine
Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... production process for the manufacture of low density polyethylene in which a reaction pressure of about 15... terephthalate) (PET) manufacture using dimethyl terephthalate means the manufacturing of poly(ethylene.... Poly(ethylene terephthalate) (PET) manufacture using terephthalic acid means the manufacturing of poly...
Manufacturing of diamond windows for synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schildkamp, W.; Nikitina, L.
2012-09-15
A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.
Prepreg effects on honeycomb composite manufacturing
NASA Astrophysics Data System (ADS)
Martin, Cary Joseph
Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... one portion of a chemical manufacturing process unit does not affect the ability of a particular...
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... one portion of a chemical manufacturing process unit does not affect the ability of a particular...
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry § 63... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... one portion of a chemical manufacturing process unit does not affect the ability of a particular...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell
2014-01-01
Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.
NASA Astrophysics Data System (ADS)
Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.
2016-06-01
Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.
Development of a novel cold forging process to manufacture eccentric shafts
NASA Astrophysics Data System (ADS)
Pasler, Lukas; Liewald, Mathias
2018-05-01
Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander
2016-01-01
Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.
Manufacture and quality control of interconnecting wire hardnesses, Volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.