Low Reynolds number two-equation modeling of turbulent flows
NASA Technical Reports Server (NTRS)
Michelassi, V.; Shih, T.-H.
1991-01-01
A k-epsilon model that accounts for viscous and wall effects is presented. The proposed formulation does not contain the local wall distance thereby making very simple the application to complex geometries. The formulation is based on an existing k-epsilon model that proved to fit very well with the results of direct numerical simulation. The new form is compared with nine different two-equation models and with direct numerical simulation for a fully developed channel flow at Re = 3300. The simple flow configuration allows a comparison free from numerical inaccuracies. The computed results prove that few of the considered forms exhibit a satisfactory agreement with the channel flow data. The model shows an improvement with respect to the existing formulations.
NASA Astrophysics Data System (ADS)
Cubrovic, Mihailo
2005-02-01
We report on our theoretical and numerical results concerning the transport mechanisms in the asteroid belt. We first derive a simple kinetic model of chaotic diffusion and show how it gives rise to some simple correlations (but not laws) between the removal time (the time for an asteroid to experience a qualitative change of dynamical behavior and enter a wide chaotic zone) and the Lyapunov time. The correlations are shown to arise in two different regimes, characterized by exponential and power-law scalings. We also show how is the so-called “stable chaos” (exponential regime) related to anomalous diffusion. Finally, we check our results numerically and discuss their possible applications in analyzing the motion of particular asteroids.
Supply based on demand dynamical model
NASA Astrophysics Data System (ADS)
Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.
2018-04-01
We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
Simple Elasticity Modeling and Failure Prediction for Composite Flexbeams
NASA Technical Reports Server (NTRS)
Makeev, Andrew; Armanios, Erian; OBrien, T. Kevin (Technical Monitor)
2001-01-01
A simple 2D boundary element analysis, suitable for developing cost effective models for tapered composite laminates, is presented. Constant stress and displacement elements are used. Closed-form fundamental solutions are derived. Numerical results are provided for several configurations to illustrate the accuracy of the model.
Rubber friction and tire dynamics.
Persson, B N J
2011-01-12
We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.
Steady flow model user's guide
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.
1984-07-01
Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.
Correcting the SIMPLE Model of Free Recall
ERIC Educational Resources Information Center
Lee, Michael D.; Pooley, James P.
2013-01-01
The scale-invariant memory, perception, and learning (SIMPLE) model developed by Brown, Neath, and Chater (2007) formalizes the theoretical idea that scale invariance is an important organizing principle across numerous cognitive domains and has made an influential contribution to the literature dealing with modeling human memory. In the context…
Statistical validity of using ratio variables in human kinetics research.
Liu, Yuanlong; Schutz, Robert W
2003-09-01
The purposes of this study were to investigate the validity of the simple ratio and three alternative deflation models and examine how the variation of the numerator and denominator variables affects the reliability of a ratio variable. A simple ratio and three alternative deflation models were fitted to four empirical data sets, and common criteria were applied to determine the best model for deflation. Intraclass correlation was used to examine the component effect on the reliability of a ratio variable. The results indicate that the validity, of a deflation model depends on the statistical characteristics of the particular component variables used, and an optimal deflation model for all ratio variables may not exist. Therefore, it is recommended that different models be fitted to each empirical data set to determine the best deflation model. It was found that the reliability of a simple ratio is affected by the coefficients of variation and the within- and between-trial correlations between the numerator and denominator variables. It was recommended that researchers should compute the reliability of the derived ratio scores and not assume that strong reliabilities in the numerator and denominator measures automatically lead to high reliability in the ratio measures.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
Numerical Modeling in Geodynamics: Success, Failure and Perspective
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2005-12-01
A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.
Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation
NASA Technical Reports Server (NTRS)
Rule, William K.
1992-01-01
Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.
Numerical model for the thermal behavior of thermocline storage tanks
NASA Astrophysics Data System (ADS)
Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.
2018-03-01
Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.
Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train
NASA Astrophysics Data System (ADS)
Sytov, E. S.; Bratus, A. S.; Yurchenko, D.
2018-04-01
This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
A Simple Model to Demonstrate the Balance of Forces at Functional Residual Capacity
ERIC Educational Resources Information Center
Kanthakumar, Praghalathan; Oommen, Vinay
2012-01-01
Numerous models have been constructed to aid teaching respiratory mechanics. A simple model using a syringe and a water-filled bottle has been described by Thomas Sherman to explain inspiration and expiration. The elastic recoil of the chest wall and lungs has been described using a coat hanger or by using rods and rubber bands. A more complex…
Simple Numerical Modelling for Gasdynamic Design of Wave Rotors
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Nagashima, Toshio
The precise estimation of pressure waves generated in the passages is a crucial factor in wave rotor design. However, it is difficult to estimate the pressure wave analytically, e.g. by the method of characteristics, because the mechanism of pressure-wave generation and propagation in the passages is extremely complicated as compared to that in a shock tube. In this study, a simple numerical modelling scheme was developed to facilitate the design procedure. This scheme considers the three dominant factors in the loss mechanism —gradual passage opening, wall friction and leakage— for simulating the pressure waves precisely. The numerical scheme itself is based on the one-dimensional Euler equations with appropriate source terms to reduce the calculation time. The modelling of these factors was verified by comparing the results with those of a two-dimensional numerical simulation, which were previously validated by the experimental data in our previous study. Regarding wave rotor miniaturization, the leakage flow effect, which involves the interaction between adjacent cells, was investigated extensively. A port configuration principle was also examined and analyzed in detail to verify the applicability of the present numerical modelling scheme to the wave rotor design.
Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing
2003-05-01
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
NASA Astrophysics Data System (ADS)
Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.
2015-09-01
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095; Huang, C.-K., E-mail: huangck@lanl.gov
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTDmore » scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.« less
Valuation of financial models with non-linear state spaces
NASA Astrophysics Data System (ADS)
Webber, Nick
2001-02-01
A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.
Computation of rare transitions in the barotropic quasi-geostrophic equations
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bouchet, Freddy
2015-01-01
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
NASA Astrophysics Data System (ADS)
Parumasur, N.; Willie, R.
2008-09-01
We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.
Investigating decoherence in a simple system
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1991-01-01
The results of some simple calculations designed to study quantum decoherence are presented. The physics of quantum decoherence are briefly reviewed, and a very simple 'toy' model is analyzed. Exact solutions are found using numerical techniques. The type of incoherence exhibited by the model can be changed by varying a coupling strength. The author explains why the conventional approach to studying decoherence by checking the diagonality of the density matrix is not always adequate. Two other approaches, the decoherence functional and the Schmidt paths approach, are applied to the toy model and contrasted to each other. Possible problems with each are discussed.
A SIMPLE, EFFICIENT SOLUTION OF FLUX-PROFILE RELATIONSHIPS IN THE ATMOSPHERIC SURFACE LAYER
This note describes a simple scheme for analytical estimation of the surface layer similarity functions from state variables. What distinguishes this note from the many previous papers on this topic is that this method is specifically targeted for numerical models where simplici...
Prediction and measurements of vibrations from a railway track lying on a peaty ground
NASA Astrophysics Data System (ADS)
Picoux, B.; Rotinat, R.; Regoin, J. P.; Le Houédec, D.
2003-10-01
This paper introduces a two-dimensional model for the response of the ground surface due to vibrations generated by a railway traffic. A semi-analytical wave propagation model is introduced which is subjected to a set of harmonic moving loads and based on a calculation method of the dynamic stiffness matrix of the ground. In order to model a complete railway system, the effect of a simple track model is taken into account including rails, sleepers and ballast especially designed for the study of low vibration frequencies. The priority has been given to a simple formulation based on the principle of spatial Fourier transforms compatible with good numerical efficiency and yet providing quick solutions. In addition, in situ measurements for a soft soil near a railway track were carried out and will be used to validate the numerical implementation. The numerical and experimental results constitute a significant body of useful data to, on the one hand, characterize the response of the environment of tracks and, on the other hand, appreciate the importance of the speed and weight on the behaviour of the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Christopher A.
In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Towards a General Model of Temporal Discounting
ERIC Educational Resources Information Center
van den Bos, Wouter; McClure, Samuel M.
2013-01-01
Psychological models of temporal discounting have now successfully displaced classical economic theory due to the simple fact that many common behavior patterns, such as impulsivity, were unexplainable with classic models. However, the now dominant hyperbolic model of discounting is itself becoming increasingly strained. Numerous factors have…
Comparing an annual and daily time-step model for predicting field-scale phosphorus loss
USDA-ARS?s Scientific Manuscript database
Numerous models exist for describing phosphorus (P) losses from agricultural fields. The complexity of these models varies considerably ranging from simple empirically-based annual time-step models to more complex process-based daily time step models. While better accuracy is often assumed with more...
Barlow, Paul M.
1997-01-01
Steady-state, two- and three-dimensional, ground-water-flow models coupled with particle tracking were evaluated to determine their effectiveness in delineating contributing areas of wells pumping from stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by use of the three-dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques and included discontinuous areas of the water table.
Use of paired simple and complex models to reduce predictive bias and quantify uncertainty
NASA Astrophysics Data System (ADS)
Doherty, John; Christensen, Steen
2011-12-01
Modern environmental management and decision-making is based on the use of increasingly complex numerical models. Such models have the advantage of allowing representation of complex processes and heterogeneous system property distributions inasmuch as these are understood at any particular study site. The latter are often represented stochastically, this reflecting knowledge of the character of system heterogeneity at the same time as it reflects a lack of knowledge of its spatial details. Unfortunately, however, complex models are often difficult to calibrate because of their long run times and sometimes questionable numerical stability. Analysis of predictive uncertainty is also a difficult undertaking when using models such as these. Such analysis must reflect a lack of knowledge of spatial hydraulic property details. At the same time, it must be subject to constraints on the spatial variability of these details born of the necessity for model outputs to replicate observations of historical system behavior. In contrast, the rapid run times and general numerical reliability of simple models often promulgates good calibration and ready implementation of sophisticated methods of calibration-constrained uncertainty analysis. Unfortunately, however, many system and process details on which uncertainty may depend are, by design, omitted from simple models. This can lead to underestimation of the uncertainty associated with many predictions of management interest. The present paper proposes a methodology that attempts to overcome the problems associated with complex models on the one hand and simple models on the other hand, while allowing access to the benefits each of them offers. It provides a theoretical analysis of the simplification process from a subspace point of view, this yielding insights into the costs of model simplification, and into how some of these costs may be reduced. It then describes a methodology for paired model usage through which predictive bias of a simplified model can be detected and corrected, and postcalibration predictive uncertainty can be quantified. The methodology is demonstrated using a synthetic example based on groundwater modeling environments commonly encountered in northern Europe and North America.
Simple, Flexible, Trigonometric Taper Equations
Charles E. Thomas; Bernard R. Parresol
1991-01-01
There have been numerous approaches to modeling stem form in recent decades. The majority have concentrated on the simpler coniferous bole form and have become increasingly complex mathematical expressions. Use of trigonometric equations provides a simple expression of taper that is flexible enough to fit both coniferous and hard-wood bole forms. As an illustration, we...
The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
NASA Astrophysics Data System (ADS)
Vuik, C.; Saghir, A.; Boerstoel, G. P.
2000-08-01
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright
Flowfield computation of entry vehicles
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
1990-01-01
The equations governing the multidimensional flow of a reacting mixture of thermally perfect gasses were derived. The modeling procedures for the various terms of the conservation laws are discussed. A numerical algorithm, based on the finite-volume approach, to solve these conservation equations was developed. The advantages and disadvantages of the present numerical scheme are discussed from the point of view of accuracy, computer time, and memory requirements. A simple one-dimensional model problem was solved to prove the feasibility and accuracy of the algorithm. A computer code implementing the above algorithm was developed and is presently being applied to simple geometries and conditions. Once the code is completely debugged and validated, it will be used to compute the complete unsteady flow field around the Aeroassist Flight Experiment (AFE) body.
Numerical modeling of reverse recovery characteristic in silicon pin diodes
NASA Astrophysics Data System (ADS)
Yamashita, Yusuke; Tadano, Hiroshi
2018-07-01
A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.
Difference-Equation/Flow-Graph Circuit Analysis
NASA Technical Reports Server (NTRS)
Mcvey, I. M.
1988-01-01
Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2018-04-01
Plasma-surface interactions are ubiquitous in the field of plasma science and technology. Much of the physics of these interactions can be captured with a simple model comprising a cold ion fluid and electrons which satisfy the Boltzmann relation. However, this model permits analytical solutions in a very limited number of cases. This paper presents a versatile and robust numerical implementation of the model for arbitrary surface geometries in cartesian and axisymmetric cylindrical coordinates. Specific examples of surfaces with sinusoidal corrugations, trenches, and hemi-ellipsoidal protrusions verify this numerical implementation. The application of the code to problems involving plasma-liquid interactions, plasma etching, and electron emission from the surface is discussed.
Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
Sadeghi, Hossein; Kniesburges, Stefan; Kaltenbacher, Manfred; Schützenberger, Anne; Döllinger, Michael
2018-02-07
Human phonation is based on the interaction between tracheal airflow and laryngeal dynamics. This fluid-structure interaction is based on the energy exchange between airflow and vocal folds. Major challenges in analyzing the phonatory process in-vivo are the small dimensions and the poor accessibility of the region of interest. For improved analysis of the phonatory process, numerical simulations of the airflow and the vocal fold dynamics have been suggested. Even though most of the models reproduced the phonatory process fairly well, development of comprehensive larynx models is still a subject of research. In the context of clinical application, physiological accuracy and computational model efficiency are of great interest. In this study, a simple numerical larynx model is introduced that incorporates the laryngeal fluid flow. It is based on a synthetic experimental model with silicone vocal folds. The degree of realism was successively increased in separate computational models and each model was simulated for 10 oscillation cycles. Results show that relevant features of the laryngeal flow field, such as glottal jet deflection, develop even when applying rather simple static models with oscillating flow rates. Including further phonatory components such as vocal fold motion, mucosal wave propagation, and ventricular folds, the simulations show phonatory key features like intraglottal flow separation and increased flow rate in presence of ventricular folds. The simulation time on 100 CPU cores ranged between 25 and 290 hours, currently restricting clinical application of these models. Nevertheless, results show high potential of numerical simulations for better understanding of phonatory process. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Foxes and Rabbits - and a Spreadsheet.
ERIC Educational Resources Information Center
Carson, S. R.
1996-01-01
Presents a numerical simulation of a simple food chain together with a set of mathematical rules generalizing the model to a food web of any complexity. Discusses some of the model's interesting features and its use by students. (Author/JRH)
Numerical Simulation of Fluid Flow in a Simple Rotor/Stator Pair
1991-06-01
describes a series of numerical experiments dealing with rotor/stator interactions in hydroturbines . The means of analysis was a nonconforming sliding...science and industry is the improvement of the efficiency of the hydroturbine . Numerical flow analysis is essential in order to properly conduct this...evaluation. The hydroturbine is typically modeled as an infinite series of rotor/stator pairs. Figure 1 is an illustration of an axial-flow machine with
Experimental and Numerical Correlation of Gravity Sag in Solar Sail Quality Membranes
NASA Technical Reports Server (NTRS)
Black, Jonathan T.; Leifer, Jack; DeMoss, Joshua A.; Walker, Eric N.; Belvin, W. Keith
2004-01-01
Solar sails are among the most studied members of the ultra-lightweight and inflatable (Gossamer) space structures family due to their potential to provide propellentless propulsion. They are comprised of ultra-thin membrane panels that, to date, have proven very difficult to experimentally characterize and numerically model due to their reflectivity and flexibility, and the effects of gravity sag and air damping. Numerical models must be correlated with experimental measurements of sub-scale solar sails to verify that the models can be scaled up to represent full-sized solar sails. In this paper, the surface shapes of five horizontally supported 25 micron thick aluminized Kapton membranes were measured to a 1.0 mm resolution using photogrammetry. Several simple numerical models closely match the experimental data, proving the ability of finite element simulations to predict actual behavior of solar sails.
Numerical and analytical bounds on threshold error rates for hypergraph-product codes
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.
2018-06-01
We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires
Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn
2005-01-01
The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....
The Freter model: a simple model of biofilm formation.
Jones, Don; Kojouharov, Hristo V; Le, Dung; Smith, Hal
2003-08-01
A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grutzik, Scott Joseph; Reedy, Jr., E. D.
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
Grutzik, Scott Joseph; Reedy, Jr., E. D.
2017-08-04
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Laminar flamelet modeling of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Mell, W. E.; Kosaly, G.; Planche, O.; Poinsot, T.; Ferziger, J. H.
1990-01-01
In modeling turbulent combustion, decoupling the chemistry from the turbulence is of great practical significance. In cases in which the equilibrium chemistry model breaks down, laminar flamelet modeling (LFM) is a promising approach to decoupling. Here, the validity of this approach is investigated using direct numerical simulation of a simple chemical reaction in two-dimensional turbulence.
The unsaturated or vadose zone provides a complex system for the simulation of water movement and contaminant transport and fate. Numerous models are available for performing simulations related to the movement of water. There exists extensive documentation of these models. Ho...
This paper presents three simple techniques for fusing observations and numerical model predictions. The techniques rely on model/observation bias being considered either as error free, or containing some uncertainty, the latter mitigated with a Kalman filter approach or a spati...
Suggestion of a Numerical Model for the Blood Glucose Adjustment with Ingesting a Food
NASA Astrophysics Data System (ADS)
Yamamoto, Naokatsu; Takai, Hiroshi
In this study, we present a numerical model of the time dependence of blood glucose value after ingesting a meal. Two numerical models are proposed in this paper to explain a digestion mechanism and an adjustment mechanism of blood glucose in the body, respectively. It is considered that models are exhibited by using simple equations with a transfer function and a block diagram. Additionally, the time dependence of blood glucose was measured, when subjects ingested a sucrose or a starch. As a result, it is clear that the calculated result of models using a computer can be fitted very well to the measured result of the time dependence of blood glucose. Therefore, it is considered that the digestion model and the adjustment model are useful models in order to estimate a blood glucose value after ingesting meals.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
NASA Astrophysics Data System (ADS)
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.; Van Meter, James R.
2005-01-01
A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.
Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M
2010-06-01
Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.
Numerical modelling of strain in lava tubes
NASA Astrophysics Data System (ADS)
Merle, Olivier
The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.
Low Order Modeling Tools for Preliminary Pressure Gain Combustion Benefits Analyses
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2012-01-01
Pressure gain combustion (PGC) offers the promise of higher thermodynamic cycle efficiency and greater specific power in propulsion and power systems. This presentation describes a model, developed under a cooperative agreement between NASA and AFRL, for preliminarily assessing the performance enhancement and preliminary size requirements of PGC components either as stand-alone thrust producers or coupled with surrounding turbomachinery. The model is implemented in the Numerical Propulsion Simulation System (NPSS) environment allowing various configurations to be examined at numerous operating points. The validated model is simple, yet physics-based. It executes quickly in NPSS, yet produces realistic results.
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Two simple models of classical heat pumps.
Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek
2007-03-01
Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.
Nakasaki, Kiyohiko; Ohtaki, Akihito
2002-01-01
Using dog food as a model of the organic waste that comprises composting raw material, the degradation pattern of organic materials was examined by continuously measuring the quantity of CO2 evolved during the composting process in both batch and fed-batch operations. A simple numerical model was made on the basis of three suppositions for describing the organic matter decomposition in the batch operation. First, a certain quantity of carbon in the dog food was assumed to be recalcitrant to degradation in the composting reactor within the retention time allowed. Second, it was assumed that the decomposition rate of carbon is proportional to the quantity of easily degradable carbon, that is, the carbon recalcitrant to degradation was subtracted from the total carbon remaining in the dog food. Third, a certain lag time is assumed to occur before the start of active decomposition of organic matter in the dog food; this lag corresponds to the time required for microorganisms to proliferate and become active. It was then ascertained that the decomposition pattern for the organic matter in the dog food during the fed-batch operation could be predicted by the numerical model with the parameters obtained from the batch operation. This numerical model was modified so that the change in dry weight of composting materials could be obtained. The modified model was found suitable for describing the organic matter decomposition pattern in an actual fed-batch composting operation of the garbage obtained from a restaurant, approximately 10 kg d(-1) loading for 60 d.
NASA Astrophysics Data System (ADS)
De Lucas, Javier
2015-03-01
A simple geometrical model for calculating the effective emissivity in blackbody cylindrical cavities has been developed. The back ray tracing technique and the Monte Carlo method have been employed, making use of a suitable set of coordinates and auxiliary planes. In these planes, the trajectories of individual photons in the successive reflections between the cavity points are followed in detail. The theoretical model is implemented by using simple numerical tools, programmed in Microsoft Visual Basic for Application and Excel. The algorithm is applied to isothermal and non-isothermal diffuse cylindrical cavities with a lid; however, the basic geometrical structure can be generalized to a cylindro-conical shape and specular reflection. Additionally, the numerical algorithm and the program source code can be used, with minor changes, for determining the distribution of the cavity points, where photon absorption takes place. This distribution could be applied to the study of the influence of thermal gradients on the effective emissivity profiles, for example. Validation is performed by analyzing the convergence of the Monte Carlo method as a function of the number of trials and by comparison with published results of different authors.
A simple model for indentation creep
NASA Astrophysics Data System (ADS)
Ginder, Ryan S.; Nix, William D.; Pharr, George M.
2018-03-01
A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.
Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings
NASA Astrophysics Data System (ADS)
Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas
2013-11-01
A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.
NASA Astrophysics Data System (ADS)
Lu, Xiao-Ping; Huang, Xiang-Jie; Ip, Wing-Huen; Hsia, Chi-Hao
2018-04-01
In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an important role in the lightcurve inversion process, although the shape variations of asteroids dominate the morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in numerical applications. Numerical simulations are implemented for the comparison of the Hapke model with the other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results show that the numerical models with simple function expressions can fit well with the synthetic lightcurves generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena
NASA Astrophysics Data System (ADS)
Pastor, M.; Fernández Merodo, J. A.; Herreros, M. I.; Mira, P.; González, E.; Haddad, B.; Quecedo, M.; Tonni, L.; Drempetic, V.
2008-02-01
Mathematical and numerical models are a fundamental tool for predicting the behaviour of geostructures and their interaction with the environment. The term “mathematical model” refers to a mathematical description of the more relevant physical phenomena which take place in the problem being analyzed. It is indeed a wide area including models ranging from the very simple ones for which analytical solutions can be obtained to those more complicated requiring the use of numerical approximations such as the finite element method. During the last decades, mathematical, constitutive and numerical models have been very much improved and today their use is widespread both in industry and in research. One special case is that of fast catastrophic landslides, for which simplified methods are not able to provide accurate solutions in many occasions. Moreover, many finite element codes cannot be applied for propagation of the mobilized mass. The purpose of this work is to present an overview of the different alternative mathematical and numerical models which can be applied to both the initiation and propagation mechanisms of fast catastrophic landslides and other related problems such as waves caused by landslides.
Spreadsheets in Science Teaching.
ERIC Educational Resources Information Center
Elliot, Chris
1988-01-01
Described is the use of a spreadsheet to model dynamic phenomena using numerical iterative methods. Uses the discharge of a capacitor, simple and damped harmonic motion, and the flow of heat along a bar as examples. (Author/CW)
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz, A.S., E-mail: asanz@iff.csic.es; Davidović, M.; Božić, M.
2015-02-15
Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically,more » giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and momentum representations is considered. • Wave and particle aspects are shown to coexist within the same experiment, thus removing the old wave-corpuscle dichotomy. • A good agreement between numerical simulations and experimental data is found without appealing to best-fit procedures.« less
Deviation of Long-Period Tides from Equilibrium: Kinematics and Geostrophy
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Ray, Richard D.
2003-01-01
New empirical estimates of the long-period fortnightly (Mf) tide obtained from TOPEX/Poseidon (T/P) altimeter data confirm significant basin-scale deviations from equilibrium. Elevations in the low-latitude Pacific have reduced amplitude and lag those in the Atlantic by 30 deg or more. These interbasin amplitude and phase variations are robust features that are reproduced by numerical solutions of the shallow-water equations, even for a constant-depth ocean with schematic interconnected rectangular basins. A simplified analytical model for cooscillating connected basins also reproduces the principal features observed in the empirical solutions. This simple model is largely kinematic. Zonally averaged elevations within a simple closed basin would be nearly in equilibrium with the gravitational potential, except for a constant offset required to conserve mass. With connected basins these offsets are mostly eliminated by interbasin mass flux. Because of rotation, this flux occurs mostly in a narrow boundary layer across the mouth and at the western edge of each basin, and geostrophic balance in this zone supports small residual offsets (and phase shifts) between basins. The simple model predicts that this effect should decrease roughly linearly with frequency, a result that is confirmed by numerical modeling and empirical T/P estimates of the monthly (Mm) tidal constituent. This model also explains some aspects of the anomalous nonisostatic response of the ocean to atmospheric pressure forcing at periods of around 5 days.
Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section
NASA Technical Reports Server (NTRS)
Taflove, Allen; Umashankar, Korada R.
1989-01-01
Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.
Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.
2018-04-01
A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.
Effect of lethality on the extinction and on the error threshold of quasispecies.
Tejero, Hector; Marín, Arturo; Montero, Francisco
2010-02-21
In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crull, E W; Brown Jr., C G; Perkins, M P
2008-07-30
For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Numerical Polynomial Homotopy Continuation Method and String Vacua
Mehta, Dhagash
2011-01-01
Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.
2017-12-01
Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.
Numerical modeling of materials processing applications of a pulsed cold cathode electron gun
NASA Astrophysics Data System (ADS)
Etcheverry, J. I.; Martínez, O. E.; Mingolo, N.
1998-04-01
A numerical study of the application of a pulsed cold cathode electron gun to materials processing is performed. A simple semiempirical model of the discharge is used, together with backscattering and energy deposition profiles obtained by a Monte Carlo technique, in order to evaluate the energy source term inside the material. The numerical computation of the heat equation with the calculated source term is performed in order to obtain useful information on melting and vaporization thresholds, melted radius and depth, and on the dependence of these variables on processing parameters such as operating pressure, initial voltage of the discharge and cathode-sample distance. Numerical results for stainless steel are presented, which demonstrate the need for several modifications of the experimental design in order to achieve a better efficiency.
Li, Lifeng
2012-04-01
I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.
Mathematical modelling of risk reduction in reinsurance
NASA Astrophysics Data System (ADS)
Balashov, R. B.; Kryanev, A. V.; Sliva, D. E.
2017-01-01
The paper presents a mathematical model of efficient portfolio formation in the reinsurance markets. The presented approach provides the optimal ratio between the expected value of return and the risk of yield values below a certain level. The uncertainty in the return values is conditioned by use of expert evaluations and preliminary calculations, which result in expected return values and the corresponding risk levels. The proposed method allows for implementation of computationally simple schemes and algorithms for numerical calculation of the numerical structure of the efficient portfolios of reinsurance contracts of a given insurance company.
Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire
NASA Astrophysics Data System (ADS)
Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai
2018-02-01
According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.
2012-01-31
This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimum in situ compressive stress, so the fractures are not completely open but permeability improvement can be achieved through shear dilation. We found that in this low pressure regime, the coupling between the fluid phase and the rock solid phase becomes very simple, and the numerical model can achieve a low computational cost. Using this modified model, we study the behavior of a single fracture and a random fracture network.
Numerical simulation of damage evolution for ductile materials and mechanical properties study
NASA Astrophysics Data System (ADS)
El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.
2015-12-01
This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Kavetski, Dmitri
2010-10-01
A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.
NASA Astrophysics Data System (ADS)
Eremin, M. O.; Makarov, P. V.
2017-12-01
On the basis of a quite simple structural model of rock mass, containing coal seams on two horizons, coal mining is numerically modeled. A finite difference numerical technique is applied. At first, mining starts at the upper horizon and then moves to the lower horizon. It is shown that a mining process at the lower horizon has a significant triggering influence on the growth of damage zones in the roof and floor at the upper horizon. The features of spatiotemporal migration of deformation activity are studied numerically. Foci of large-scale fracture are located at the boundary of the seismic silence zone and the zone where the deformation activity migrates. This boundary has an additional characteristic: the maximum gradient of rock pressure is observed in this zone.
Supercomputer use in orthopaedic biomechanics research: focus on functional adaptation of bone.
Hart, R T; Thongpreda, N; Van Buskirk, W C
1988-01-01
The authors describe two biomechanical analyses carried out using numerical methods. One is an analysis of the stress and strain in a human mandible, and the other analysis involves modeling the adaptive response of a sheep bone to mechanical loading. The computing environment required for the two types of analyses is discussed. It is shown that a simple stress analysis of a geometrically complex mandible can be accomplished using a minicomputer. However, more sophisticated analyses of the same model with dynamic loading or nonlinear materials would require supercomputer capabilities. A supercomputer is also required for modeling the adaptive response of living bone, even when simple geometric and material models are use.
Review of Thawing Time Prediction Models Depending on Process Conditions and Product Characteristics
Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna
2016-01-01
Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387
3PE: A Tool for Estimating Groundwater Flow Vectors
Evaluation of hydraulic gradients and the associated groundwater flow rates and directions is a fundamental aspect of hydrogeologic characterization. Many methods, ranging in complexity from simple three-point solution techniques to complex numerical models of groundwater flow, ...
When push comes to shove: Exclusion processes with nonlocal consequences
NASA Astrophysics Data System (ADS)
Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.
2015-11-01
Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less
Simple Parametric Model for Airfoil Shape Description
NASA Astrophysics Data System (ADS)
Ziemkiewicz, David
2017-12-01
We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Lin, Yuh-Lang
2005-01-01
The purpose of the research was to develop and test improved hazard algorithms that could result in the development of sensors that are better able to anticipate potentially severe atmospheric turbulence, which affects aircraft safety. The research focused on employing numerical simulation models to develop improved algorithms for the prediction of aviation turbulence. This involved producing both research simulations and real-time simulations of environments predisposed to moderate and severe aviation turbulence. The research resulted in the following fundamental advancements toward the aforementioned goal: 1) very high resolution simulations of turbulent environments indicated how predictive hazard indices could be improved resulting in a candidate hazard index that indicated the potential for improvement over existing operational indices, 2) a real-time turbulence hazard numerical modeling system was improved by correcting deficiencies in its simulation of moist convection and 3) the same real-time predictive system was tested by running the code twice daily and the hazard prediction indices updated and improved. Additionally, a simple validation study was undertaken to determine how well a real time hazard predictive index performed when compared to commercial pilot observations of aviation turbulence. Simple statistical analyses were performed in this validation study indicating potential skill in employing the hazard prediction index to predict regions of varying intensities of aviation turbulence. Data sets from a research numerical model where provided to NASA for use in a large eddy simulation numerical model. A NASA contractor report and several refereed journal articles where prepared and submitted for publication during the course of this research.
Test Driven Development of a Parameterized Ice Sheet Component
NASA Astrophysics Data System (ADS)
Clune, T.
2011-12-01
Test driven development (TDD) is a software development methodology that offers many advantages over traditional approaches including reduced development and maintenance costs, improved reliability, and superior design quality. Although TDD is widely accepted in many software communities, the suitability to scientific software is largely undemonstrated and warrants a degree of skepticism. Indeed, numerical algorithms pose several challenges to unit testing in general, and TDD in particular. Among these challenges are the need to have simple, non-redundant closed-form expressions to compare against the results obtained from the implementation as well as realistic error estimates. The necessity for serial and parallel performance raises additional concerns for many scientific applicaitons. In previous work I demonstrated that TDD performed well for the development of a relatively simple numerical model that simulates the growth of snowflakes, but the results were anecdotal and of limited relevance to far more complex software components typical of climate models. This investigation has now been extended by successfully applying TDD to the implementation of a substantial portion of a new parameterized ice sheet component within a full climate model. After a brief introduction to TDD, I will present techniques that address some of the obstacles encountered with numerical algorithms. I will conclude with some quantitative and qualitative comparisons against climate components developed in a more traditional manner.
Toxin effect on protein biosynthesis in eukaryotic cells: a simple kinetic model.
Skakauskas, Vladas; Katauskis, Pranas; Skvortsov, Alex; Gray, Peter
2015-03-01
A model for toxin inhibition of protein synthesis inside eukaryotic cells is presented. Mitigation of this effect by introduction of an antibody is also studied. Antibody and toxin (ricin) initially are delivered outside the cell. The model describes toxin internalization from the extracellular into the intracellular domain, its transport to the endoplasmic reticulum (ER) and the cleavage inside the ER into the RTA and RTB chains, the release of RTA into the cytosol, inactivation (depurination) of ribosomes, and the effect on translation. The model consists of a set of ODEs which are solved numerically. Numerical results are illustrated by figures and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Nonequilibrium thermodynamics of the shear-transformation-zone model
NASA Astrophysics Data System (ADS)
Luo, Alan M.; Ã-ttinger, Hans Christian
2014-02-01
The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.
NASA Astrophysics Data System (ADS)
Okuda, Takashi; Horio, Kohji; Ohmura, Yoshihiro; Mizuno, Yukio
2018-06-01
The well-known interacting-electron-gas model of metallic states is modified by replacing the Coulomb interaction by a truncated one to weaken the repulsive force between electrons at short distances. The new model is applied to the so-called simple metals and is found far superior to the old one. Most of the calculations are carried out successfully on the basis of the random-phase-approximation (RPA), which is known much too poor for the old familiar model. In the present paper the numerical value of the new parameter peculiar to the new model is determined systematically with the help of the observed plasmon spectrum for each metal.
A numerical tool for reproducing driver behaviour: experiments and predictive simulations.
Casucci, M; Marchitto, M; Cacciabue, P C
2010-03-01
This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.
A System for Measurement of Convection Aboard Space Station
NASA Technical Reports Server (NTRS)
Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.
1996-01-01
A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.
NASA Astrophysics Data System (ADS)
McCarthy, S.; Rachinskii, D.
2011-01-01
We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Compact divided-pupil line-scanning confocal microscope for investigation of human tissues
NASA Astrophysics Data System (ADS)
Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind
2013-03-01
Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.
The propagation of sound in tunnels
NASA Astrophysics Data System (ADS)
Li, Kai Ming; Iu, King Kwong
2002-11-01
The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.
1990-01-01
Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.
Effect of inlet conditions for numerical modelling of the urban boundary layer
NASA Astrophysics Data System (ADS)
Gnatowska, Renata
2018-01-01
The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.
A Simple and Accurate Rate-Driven Infiltration Model
NASA Astrophysics Data System (ADS)
Cui, G.; Zhu, J.
2017-12-01
In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1975-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.
Mathematical, numerical and experimental analysis of the swirling flow at a Kaplan runner outlet
NASA Astrophysics Data System (ADS)
Muntean, S.; Ciocan, T.; Susan-Resiga, R. F.; Cervantes, M.; Nilsson, H.
2012-11-01
The paper presents a novel mathematical model for a-priori computation of the swirling flow at Kaplan runners outlet. The model is an extension of the initial version developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial velocity and of the variable rothalpy. Simple analytical expressions are derived for these additional data from three-dimensional numerical simulations of the Kaplan turbine. The final results, i.e. velocity components profiles, are validated against experimental data at two operating points, with the same Kaplan runner blades opening, but variable discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerstein, Alan R.; Sayler, Bentley J.; Wunsch, Scott Edward
2010-11-01
Numerical simulations using the One-Dimensional-Turbulence model are compared to water-tank measurements [B. J. Sayler and R. E. Breidenthal, J. Geophys. Res. 103 (D8), 8827 (1998)] emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number, molecular transport coefficients, and other experimental parameters are reproduced. Additional parameter variations suggest more complicated dependences of the entrainment rate than previously anticipated. A simple algebraic model indicates the ways in which laboratory and cloud entrainment behaviors might be similar and different.
Role of sediment transport model to improve the tsunami numerical simulation
NASA Astrophysics Data System (ADS)
Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.
2015-12-01
Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport. Limitations of the conventional model and future challenges are discussed regarding further improvement of numerical modeling of tsunami and sediment transport. Improved numerical modeling may provide useful information for assessing sediment-related damages and planning post-disaster recovery.
Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman
2015-01-01
The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.
Mathematical and computational model for the analysis of micro hybrid rocket motor
NASA Astrophysics Data System (ADS)
Stoia-Djeska, Marius; Mingireanu, Florin
2012-11-01
The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
A simple theoretical model for ⁶³Ni betavoltaic battery.
Zuo, Guoping; Zhou, Jianliang; Ke, Guotu
2013-12-01
A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelanti, Marica, E-mail: marica.pelanti@ensta-paristech.fr; Shyue, Keh-Ming, E-mail: shyue@ntu.edu.tw
2014-02-15
We model liquid–gas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of Saurel–Petitpas–Berry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxationmore » terms to model heat and mass transfer and hence liquid–vapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquid–vapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.« less
NASA Astrophysics Data System (ADS)
Crnomarkovic, Nenad; Belosevic, Srdjan; Tomanovic, Ivan; Milicevic, Aleksandar
2017-12-01
The effects of the number of significant figures (NSF) in the interpolation polynomial coefficients (IPCs) of the weighted sum of gray gases model (WSGM) on results of numerical investigations and WSGM optimization were investigated. The investigation was conducted using numerical simulations of the processes inside a pulverized coal-fired furnace. The radiative properties of the gas phase were determined using the simple gray gas model (SG), two-term WSGM (W2), and three-term WSGM (W3). Ten sets of the IPCs with the same NSF were formed for every weighting coefficient in both W2 and W3. The average and maximal relative difference values of the flame temperatures, wall temperatures, and wall heat fluxes were determined. The investigation showed that the results of numerical investigations were affected by the NSF unless it exceeded certain value. The increase in the NSF did not necessarily lead to WSGM optimization. The combination of the NSF (CNSF) was the necessary requirement for WSGM optimization.
Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Maddox, J. A.; Sovinec, C. R.
2017-10-01
Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.
Experimental study of the oscillation of spheres in an acoustic levitator.
Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C
2014-10-01
The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.
NASA Astrophysics Data System (ADS)
Karandish, Fatemeh; Šimůnek, Jiří
2016-12-01
Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a better choice for predicting SWCs with lower uncertainties when required data are available, and thus for designing water saving strategies for agriculture and for other environmental applications requiring estimates of SWCs.
Two-way ANOVA Problems with Simple Numbers.
ERIC Educational Resources Information Center
Read, K. L. Q.; Shihab, L. H.
1998-01-01
Describes how to construct simple numerical examples in two-way ANOVAs, specifically randomized blocks, balanced two-way layouts, and Latin squares. Indicates that working through simple numerical problems is helpful to students meeting a technique for the first time and should be followed by computer-based analysis of larger, real datasets when…
Simple Numerical Analysis of Longboard Speedometer Data
ERIC Educational Resources Information Center
Hare, Jonathan
2013-01-01
Simple numerical data analysis is described, using a standard spreadsheet program, to determine distance, velocity (speed) and acceleration from voltage data generated by a skateboard/longboard speedometer (Hare 2012 "Phys. Educ." 47 409-17). This simple analysis is an introduction to data processing including scaling data as well as…
Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque
NASA Astrophysics Data System (ADS)
Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter
2018-05-01
While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.
Rigid aggregates: theory and applications
NASA Astrophysics Data System (ADS)
Richardson, D. C.
2005-08-01
Numerical models employing ``perfect'' self-gravitating rubble piles that consist of monodisperse rigid spheres with configurable contact dissipation have been used to explore collisional and rotational disruption of gravitational aggregates. Applications of these simple models include numerical simulations of planetesimal evolution, asteroid family formation, tidal disruption, and binary asteroid formation. These studies may be limited by the idealized nature of the rubble pile model, since perfect identical spheres stack and shear in a very specific, possibly over-idealized way. To investigate how constituent properties affect the overall characteristics of a gravitational aggregate, particularly its failure modes, we have generalized our numerical code to model colliding, self-gravitating, rigid aggregates made up of variable-size spheres. Euler's equation of rigid-body motion in the presence of external torques are implemented, along with a self-consistent prescription for handling non-central impacts. Simple rules for sticking and breaking are also included. Preliminary results will be presented showing the failure modes of gravitational aggregates made up of smaller, rigid, non-idealized components. Applications of this new capability include more realistic aggregate models, convenient modeling of arbitrary rigid shapes for studies of the stability of orbiting companions (replacing one or both bodies with rigid aggregates eliminates expensive interparticle collisions while preserving the shape, spin, and gravity field of the bodies), and sticky particle aggregation in dense planetary rings. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NAG511722 issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0307549.
Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.; Destouni, G.
2017-12-01
The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow hillslope compartments are controlled by topography, and therefore application and further development of the simple "kinematic pathway" approach is promising for their modeling.
Simulations of Flame Acceleration and Deflagration-to-Detonation Transitions in Methane-Air Systems
2010-03-17
are neglected. 3. Model parameter calibration The one-step Arrhenius kinetics used in this model cannot ex- actly reproduce all properties of laminar...with obstacles are compared to previ- ously reported experimental data. The results obtained using the simple reaction model qualitatively, and in...have taken in developing a multidimensional numerical model to study explosions in large-scale systems containing mixtures of nat- ural gas and air
Break-up of Gondwana and opening of the South Atlantic: Review of existing plate tectonic models
Ghidella, M.E.; Lawver, L.A.; Gahagan, L.M.
2007-01-01
each model. We also plot reconstructions at four selected epochs for all models using the same projection and scale to facilitate comparison. The diverse simplifying assumptions that need to be made in every case regarding plate fragmentation to account for the numerous syn-rift basins and periods of stretching are strong indicators that rigid plate tectonics is too simple a model for the present problem.
NASA Technical Reports Server (NTRS)
Poole, L. R.; Huckins, E. K., III
1972-01-01
A general theory on mathematical modeling of elastic parachute suspension lines during the unfurling process was developed. Massless-spring modeling of suspension-line elasticity was evaluated in detail. For this simple model, equations which govern the motion were developed and numerically integrated. The results were compared with flight test data. In most regions, agreement was satisfactory. However, poor agreement was obtained during periods of rapid fluctuations in line tension.
Theory and applications of a deterministic approximation to the coalescent model
Jewett, Ethan M.; Rosenberg, Noah A.
2014-01-01
Under the coalescent model, the random number nt of lineages ancestral to a sample is nearly deterministic as a function of time when nt is moderate to large in value, and it is well approximated by its expectation E[nt]. In turn, this expectation is well approximated by simple deterministic functions that are easy to compute. Such deterministic functions have been applied to estimate allele age, effective population size, and genetic diversity, and they have been used to study properties of models of infectious disease dynamics. Although a number of simple approximations of E[nt] have been derived and applied to problems of population-genetic inference, the theoretical accuracy of the formulas and the inferences obtained using these approximations is not known, and the range of problems to which they can be applied is not well understood. Here, we demonstrate general procedures by which the approximation nt ≈ E[nt] can be used to reduce the computational complexity of coalescent formulas, and we show that the resulting approximations converge to their true values under simple assumptions. Such approximations provide alternatives to exact formulas that are computationally intractable or numerically unstable when the number of sampled lineages is moderate or large. We also extend an existing class of approximations of E[nt] to the case of multiple populations of time-varying size with migration among them. Our results facilitate the use of the deterministic approximation nt ≈ E[nt] for deriving functionally simple, computationally efficient, and numerically stable approximations of coalescent formulas under complicated demographic scenarios. PMID:24412419
Improved modeling of turbulent forced convection heat transfer in straight ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokni, M.; Sunden, B.
1999-08-01
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the nonlinear {kappa}-{epsilon} model combined with the heat flux models of simple eddy diffusivity (SED), low Reynolds number version of generalized gradient diffusion hypothesis (GGDH), and wealth {proportional_to} earning {times} time (WET) in general three-dimensional geometries. The numerical approach is based on the finite volume technique with a nonstaggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the nonlinear {kappa}-{epsilon} model, combined with themore » Lam-Bremhorst and the Abe-Kondoh-Nagano damping functions for low Reynolds numbers.« less
Richtmyer-Meshkov flow in elastic solids.
Piriz, A R; López Cela, J J; Tahir, N A; Hoffmann, D H H
2006-09-01
Richtmyer-Meshkov flow is studied by means of an analytical model which describes the asymptotic oscillations of a corrugated interface between two perfectly elastic solids after the interaction with a shock wave. The model shows that the flow stability is due to the restoring effect of the elastic force. It provides a simple approximate but still very accurate formula for the oscillation period. It also shows that as it is observed in numerical simulations, the amplitude oscillates around a mean value equal to the post-shock amplitude, and that this is a consequence of the stress free conditions of the material immediately after the shock interaction. Extensive numerical simulations are presented to validate the model results.
Numerical detection of the Gardner transition in a mean-field glass former.
Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco
2015-07-01
Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.
Assessing predation risk: optimal behaviour and rules of thumb.
Welton, Nicky J; McNamara, John M; Houston, Alasdair I
2003-12-01
We look at a simple model in which an animal makes behavioural decisions over time in an environment in which all parameters are known to the animal except predation risk. In the model there is a trade-off between gaining information about predation risk and anti-predator behaviour. All predator attacks lead to death for the prey, so that the prey learns about predation risk by virtue of the fact that it is still alive. We show that it is not usually optimal to behave as if the current unbiased estimate of the predation risk is its true value. We consider two different ways to model reproduction; in the first scenario the animal reproduces throughout its life until it dies, and in the second scenario expected reproductive success depends on the level of energy reserves the animal has gained by some point in time. For both of these scenarios we find results on the form of the optimal strategy and give numerical examples which compare optimal behaviour with behaviour under simple rules of thumb. The numerical examples suggest that the value of the optimal strategy over the rules of thumb is greatest when there is little current information about predation risk, learning is not too costly in terms of predation, and it is energetically advantageous to learn about predation. We find that for the model and parameters investigated, a very simple rule of thumb such as 'use the best constant control' performs well.
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet
NASA Astrophysics Data System (ADS)
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-10-01
This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.
NASA Astrophysics Data System (ADS)
Kimiaghalam, Navid; Goharrokhi, Masoud; Clark, Shawn P.; Ahmari, Habib
2015-10-01
Riverbank erosion on the Red River in Winnipeg, Manitoba has raised concerns over the last 20 years and more. Although several recent studies have shown that fluvial erosion can reduce riverbank stability and promote geotechnical slope failure, there are too few that have focused on this phenomenon. The present study includes field measurements, experimental testing, and numerical modelling to quantify fluvial erosion through a 10 km reach of the Red River. Results have shown that seasonal freeze-thaw processes can dramatically reduce the critical shear stress and increase erodibility of the riverbanks. Moreover, a simple method has been employed using hydrodynamic numerical models to define the applied shear stresses on the river banks based on the river water level, which will be useful for further research and design purposes. The TEMP/W numerical model was used to define seasonal frost depth to estimate freeze-thaw effects. Finally all field measurements, experimental and numerical models results were used to predict annual fluvial erosion through this reach of the river.
IoGET: Internet of Geophysical and Environmental Things
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar
The objective of this project is to provide novel and fast reduced-order models for onboard computation at sensor nodes for real-time analysis. The approach will require that LANL perform high-fidelity numerical simulations, construct simple reduced-order models (ROMs) using machine learning and signal processing algorithms, and use real-time data analysis for ROMs and compressive sensing at sensor nodes.
Experimental and numerical modeling of shrub crown fire initiation
Watcharapong Tachajapong; Jesse Lozano; Shakar Mahalingam; Xiangyang Zhou; David Weise
2009-01-01
The transition of fire from dry surface fuels to wet shrub crown fuels was studied using laboratory experiments and a simple physical model to gain a better understanding of the transition process. In the experiments, we investigated the effects of varying vertical distances between surface and crown fuels (crown base height), and of the wind speed on crown fire...
A simple ecological model, coupled to a primitive equation circulation model, is able to replicate the observed alongshore transport of the toxic dinoflagellate Karenia brevis on the West Florida shelf during a fall red tide in 1979. Initial land fall o...
A Numerical and Experimental Study of Damage Growth in a Composite Laminate
NASA Technical Reports Server (NTRS)
McElroy, Mark; Ratcliffe, James; Czabaj, Michael; Wang, John; Yuan, Fuh-Gwo
2014-01-01
The present study has three goals: (1) perform an experiment where a simple laminate damage process can be characterized in high detail; (2) evaluate the performance of existing commercially available laminate damage simulation tools by modeling the experiment; (3) observe and understand the underlying physics of damage in a composite honeycomb sandwich structure subjected to low-velocity impact. A quasi-static indentation experiment has been devised to provide detailed information about a simple mixed-mode damage growth process. The test specimens consist of an aluminum honeycomb core with a cross-ply laminate facesheet supported on a stiff uniform surface. When the sample is subjected to an indentation load, the honeycomb core provides support to the facesheet resulting in a gradual and stable damage growth process in the skin. This enables real time observation as a matrix crack forms, propagates through a ply, and then causes a delamination. Finite element analyses were conducted in ABAQUS/Explicit(TradeMark) 6.13 that used continuum and cohesive modeling techniques to simulate facesheet damage and a geometric and material nonlinear model to simulate core crushing. The high fidelity of the experimental data allows a detailed investigation and discussion of the accuracy of each numerical modeling approach.
Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems
2011-02-23
INTRODUCTION 35 2.2 GENERAL MODEL SETUP 36 2.2.1 Co-Simulation Principles 36 2.2.2 Double pendulum : a simple example 38 2.2.3 Description of numerical... pendulum sample problem 45 2.3 DISCUSSION OF APPROACH WITH RESPECT TO PROPOSED SUBTASKS 49 2.4 RESULTS DISCUSSION AND FUTURE WORK 49 TASK 3...Kim and Praehofer 2000]. 2.2.2 Double pendulum : a simple example In order to be able to evaluate co-simulation principles, specifically an
A second-order impact model for forest fire regimes.
Maggi, Stefano; Rinaldi, Sergio
2006-09-01
We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.
Driven tracer with absolute negative mobility
NASA Astrophysics Data System (ADS)
Cividini, J.; Mukamel, D.; Posch, H. A.
2018-02-01
Instances of negative mobility, where a system responds to a perturbation in a way opposite to naive expectation, have been studied theoretically and experimentally in numerous nonequilibrium systems. In this work we show that absolute negative mobility (ANM), whereby current is produced in a direction opposite to the drive, can occur around equilibrium states. This is demonstrated with a simple one-dimensional lattice model with a driven tracer. We derive analytical predictions in the linear response regime and elucidate the mechanism leading to ANM by studying the high-density limit. We also study numerically a model of hard Brownian disks in a narrow planar channel, for which the lattice model can be viewed as a toy model. We find that the model exhibits negative differential mobility (NDM), but no ANM.
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Fu, Pengcheng; Carrigan, Charles R.
2012-01-01
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine the geomechanical and hydraulic behaviors of natural fracture systems subjected to hydro-shearing stimulation and develop a coupled numerical model within the framework of discrete fracture network modeling. We found that in the low pressure hydro-shearing regime, the coupling between the fluid phase and the rock solid phase is relatively simple, and the numerical model is computationally efficient. Using this modified model, we study the behavior of a random fracture network subjected to hydro-shearing stimulation.
On the formation of fold-type oscillation marks in the continuous casting of steel.
Vynnycky, M; Saleem, S; Devine, K M; Florio, B J; Mitchell, S L; O'Brien, S B G
2017-06-01
Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains.
On the formation of fold-type oscillation marks in the continuous casting of steel
Saleem, S.; Devine, K. M.; Florio, B. J.; Mitchell, S. L.; O’Brien, S. B. G.
2017-01-01
Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains. PMID:28680666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less
Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Zalecki, Władysław; Kuziak, Roman; Jakubowicz, Aleksandra; Weglarczyk, Stanisław
2011-05-01
Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 °C and 1320 °C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.
A comparison between numerically modelled and experimentally measured loss mechanisms in wave rotors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1993-01-01
A numerical model has been developed which is capable of predicting the performance of a wave rotor (pressure exchanger) of specified geometry over a wide range of operating conditions. The model can account for the major loss mechanisms of leakage from the tube ends, fluid viscosity, heat transfer to the tube wails, finite tube opening time, shock waves, and non-uniform port flows. It is a one dimensional flow model which follows a single tube as it rotates past the various stationary ports. Since the model is relatively simple (i.e., one dimensional) it uses little computer time. This makes it suitable for design as well as analytical purposes. This paper will present a brief description of the model then discuss a comparison between the model predictions and several wave rotor experiments.
A Comparison Between Numerically Modelled and Experimentally Measured Loss Mechanisms in Wave Rotors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1993-01-01
A numerical model has been developed which is capable of predicting the performance of a wave rotor (pressure exchanger) of specified geometry over a wide range of operating conditions. The model can account for the major loss mechanisms of leakage from the tube ends, fluid viscosity, heat transfer to the tube walls, finite tube opening time, shock waves, and non-uniform port flows. It is a one dimensional flow model which follows a single tube as it rotates past the various stationary ports. Since the model is relatively simple (i.e. one dimensional) it uses little computer time. This makes it suitable for design as well as analytical purposes. This paper will present a brief description of the model then discuss a comparison between the model predictions and several wave rotor experiments.
NASA Technical Reports Server (NTRS)
Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.
1988-01-01
A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.
Spatial structures in a simple model of population dynamics for parasite-host interactions
NASA Astrophysics Data System (ADS)
Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.
2015-08-01
Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the population's long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.
NASA Astrophysics Data System (ADS)
Lin, Yinwei
2018-06-01
A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system
Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2000-01-01
In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.
[Characteristics of Waves Generated Beneath the Solar Convection Zone by Penetrative Overshoot
NASA Technical Reports Server (NTRS)
Julien, Keith
2000-01-01
The goal of this project was to theoretically and numerically characterize the waves generated beneath the solar convection zone by penetrative overshoot. Three dimensional model simulations were designed to isolate the effects of rotation and shear. In order to overcome the numerically imposed limitations of finite Reynolds numbers (Re) below solar values, series of simulations were designed to elucidate the Reynolds-number dependence (hoped to exhibit mathematically simple scaling on Re) so that one could cautiously extrapolate to solar values.
Science and Society Test VI: Energy Economics.
ERIC Educational Resources Information Center
Hafemeister, David W.
1982-01-01
Develops simple numerical estimates to quantify a variety of energy economics issues, including among others, a modified Verhulst equation (considers effect of finite resources on petroleum) for supply/demand economics and a phenomenological model for market penetration also presents an analysis of economic returns of an energy conservation…
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean
2016-01-01
Dropping objects into a tunnel bored through Earth has been used to visualize simple harmonic motion for many years, and even imagined for use as rapid transport systems. Unlike previous studies that assumed a constant density Earth, here we calculate the fall-through time of polytropes, models of Earth's interior where the pressure varies as a power of the density. This means the fall-through time can be calculated as the central condensation varies from one to large within the family of polytropes. Having a family of models, rather than a single model, helps to explore the properties of planets and stars. Comparing the family of phase space solutions shows that the fall-through time and velocity approach the limit of radial free-fall onto a point mass as the central condensation increases. More condensed models give higher maximum velocities but do not have the right global properties for Earth. The angular distance one can travel along the surface is calculated as a brachistochrone (path of least time) tunnel that is a function of the depth to which the tunnel is bored. We also show that completely degenerate objects, simple models of white dwarf stars supported by completely degenerate electrons, have sizes similar to Earth but their much higher masses mean a much larger gravitational strength and a shorter fall-through time. Numerical integrations of the equations describing polytropes and completely degenerate objects are used to generate the initial models. Analytic solutions and numerical integration of the equations of motion are used to calculate the fall-through time for each model, and numerical integrations with analytic approximations at the boundaries are used to calculate the brachistochrones in the polytropes. Scaling relationships are provided to help use these results in other planets and stars.
Numerical study on the effect of configuration of a simple box solar cooker for boiling water
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-02-01
In this work, a numerical study is carried out to investigate the effect of configuration of a simple box solar cooker. In order to validate the numerical results, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. The solar box cooker is employed to boil water by exposing to the solar radiation in Medan city of Indonesia. In the numerical method, a set of transient governing equations are developed. The governing equations are solved using forward time step marching technique. The main objective is to explore the effect of double glasses cover, dimensions of the cooking vessel, and depth of the box cooker to the performance of the solar box cooker. The results show that the experimental and numerical results show good agreement. The performance of the solar box cooker strongly affected by the distance of the double glass cover, the solar cooker depth, and the solar collector length.
Scherzinger, William M.
2016-05-01
The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity
NASA Astrophysics Data System (ADS)
Kuiroukidis, A.
We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc
NASA Technical Reports Server (NTRS)
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.
2000-01-01
PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.
Developing a reversible rapid coordinate transformation model for the cylindrical projection
NASA Astrophysics Data System (ADS)
Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai
2016-04-01
Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Fujio; Kuwagata, Tuneo
1995-02-01
The thermally induced local circulation over a periodic valley is simulated by a two-dimensional numerical model that does-not include condensational processes. During the daytime of a clear, calm day, heat is transported from the mountainous region to the valley area by anabatic wind and its return flow. The specific humidity is, however, transported in an inverse manner. The horizontal exchange rate of sensible heat has a horizontal scale similarity, as long as the horizontal scale is less than a critical width of about 100 km. The sensible heat accumulated in an atmospheric column over an arbitrary point can be estimatedmore » by a simple model termed the uniform mixed-layer model (UML). The model assumes that the potential temperature is both vertically and horizontally uniform in the mixed layer, even over the complex terrain. The UML model is valid only when the horizontal scale of the topography is less than the critical width and the maximum difference in the elevation of the topography is less than about 1500 m. Latent heat is accumulated over the mountainous region while the atmosphere becomes dry over the valley area. When the horizontal scale is close to the critical width, the largest amount of humidity is accumulated during the late afternoon over the mountainous region. 18 refs., 15 figs., 1 tab.« less
Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Fagundo, Arturo
1994-01-01
Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.
Numerical tests of local scale invariance in ageing q-state Potts models
NASA Astrophysics Data System (ADS)
Lorenz, E.; Janke, W.
2007-01-01
Much effort has been spent over the last years to achieve a coherent theoretical description of ageing as a non-linear dynamics process. Long supposed to be a consequence of the slow dynamics of glassy systems only, ageing phenomena could also be identified in the phase-ordering kinetics of simple ferromagnets. As a phenomenological approach Henkel et al. developed a group of local scale transformations under which two-time autocorrelation and response functions should transform covariantly. This work is to extend previous numerical tests of the predicted scaling functions for the Ising model by Monte Carlo simulations of two-dimensional q-state Potts models with q=3 and 8, which, in equilibrium, undergo temperature-driven phase transitions of second and first order, respectively.
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-07
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1997-01-01
Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.
Numerical modelling of multi-vane expander operating conditions in ORC system
NASA Astrophysics Data System (ADS)
Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr
2017-11-01
Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.
A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics
NASA Astrophysics Data System (ADS)
McDermott, Randall; Weinschenk, Craig
2013-11-01
A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz
2017-04-01
In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
NASA Astrophysics Data System (ADS)
Roger, J.; Simao, N.; Ruegg, J.-C.; Briole, P.; Allgeyer, S.
2010-05-01
On the 27th February 2010, a magnitude Mw=8.8 earthquake shook a wide part of Chile. It was the result of a release of energy due to a rupture on the subduction fault plane of the Pacific oceanic plate beneath the South-American plate. It generated a widespread tsunami that struck the whole Pacific Ocean Coasts. In addition to the numerous casualties and destructions fathered by the earthquake itself, the tsunami reached several meters high in some near-field locations inundating important urban areas (for example in Talcahano). In some far-field places as in the Marquesas Islands (FR), it reached several meters high too. This tsunami has been recorded by numerous coastal tide gages and DART buoys and, more particularly, some sea level records are available in the rupture area (Valparaiso, Talcahano, Arica, Ancud, Corral, Coquimbo). The aim of this study is to use a simple dislocation model determined from a moment tensor solution, aftershocks locations and GPS measurements, to calculate the initial offshore bottom deformation. This deformation is introduced in a tsunami propagation code to produce synthetic mareogramms on specific points that are compared to the real recorded maregraphic data.
Martins, G B; Büsser, C A; Al-Hassanieh, K A; Anda, E V; Moreo, A; Dagotto, E
2006-02-17
Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig, Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.
Effect of vorticity on polycrystalline ice deformation
NASA Astrophysics Data System (ADS)
Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka
2017-04-01
Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our results further show that subgrain boundaries can be developed by the activity of the non-basal slip systems. The implementation of the polygonisation routine reduces grain size and SPO, but does not significantly change the final LPO, because newly nucleated grains approximately keep the c-axis orientations of their parental grains. However, it enables the establishment of an equilibrium grain size, and therefore the differential stress reaches a steady-state. Lebensohn. 2001 N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Materialia, 49(14), 2723-2737. Llorens, et al., 2016a. Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach. Journal of Glaciology, 62(232), 359-377. Llorens, et al., 2016b. Full-field predictions of ice dynamic recrystallisation under simple shear conditions, Earth and Planetary Science Letters, 450, 233-242. Llorens, et al., 2017. Dynamic recrystallisation during deformation of polycrystalline ice: insights from numerical simulations, Philosophical Transactions of the Royal Society A, 375 (2086), 20150346.
Design of ground test suspension systems for verification of flexible space structures
NASA Technical Reports Server (NTRS)
Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.
1988-01-01
A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.
NASA Astrophysics Data System (ADS)
Imre, B.
2003-04-01
NUMERICAL SLOPE STABILITY SIMULATIONS OF CHASMA WALLS IN VALLES MARINERIS/MARS USING A DISTINCT ELEMENT METHOD (DEM). B. Imre (1) (1) German Aerospace Center, Berlin Adlershof, bernd.imre@gmx.net The 8- to 10-km depths of Valles Marineris (VM) offer excellent views into the upper Martian crust. Layering, fracturing, lithology, stratigraphy and the content of volatiles have influenced the evolution of the Valles Marineris wallslopes. But these parameters also reflect the development of VM and its wall slopes. The scope of this work is to gain understanding in these parameters by back-simulating the development of wall slopes. For that purpose, the two dimensional Particle Flow Code PFC2D has been chosen (ITASCA, version 2.00-103). PFC2D is a distinct element code for numerical modelling of movements and interactions of assemblies of arbitrarily sized circular particles. Particles may be bonded together to represent a solid material. Movements of particles are unlimited. That is of importance because results of open systems with numerous unknown variables are non-unique and therefore highly path dependent. This DEM allows the simulation of whole development paths of VM walls what makes confirmation of the model more complete (e.g. Oreskes et al., Science 263, 1994). To reduce the number of unknown variables a proper (that means as simple as possible) field-site had to be selected. The northern wall of eastern Candor Chasma has been chosen. This wall is up to 8-km high and represents a significant outcrop of the upper Martian crust. It is quite uncomplex, well-aligned and of simple morphology. Currently the work on the model is at the stage of performing the parameter study. Results will be presented via poster by the EGS-Meeting.
Modeling Kelvin Wave Cascades in Superfluid Helium
NASA Astrophysics Data System (ADS)
Boffetta, G.; Celani, A.; Dezzani, D.; Laurie, J.; Nazarenko, S.
2009-09-01
We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM.
Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation
NASA Astrophysics Data System (ADS)
Ekiz, C.
2017-02-01
In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.
The Role of Wakes in Modelling Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Conley, Daniel; Roc, Thomas; Greaves, Deborah
2010-05-01
The eventual proper development of arrays of Tidal Current Turbines (TCT) will require a balance which maximizes power extraction while minimizing environmental impacts. Idealized analytical analogues and simple 2-D models are useful tools for investigating questions of a general nature but do not represent a practical tool for application to realistic cases. Some form of 3-D numerical simulations will be required for such applications and the current project is designed to develop a numerical decision-making tool for use in planning large scale TCT projects. The project is predicated on the use of an existing regional ocean modelling framework (the Regional Ocean Modelling System - ROMS) which is modified to enable the user to account for the effects of TCTs. In such a framework where mixing processes are highly parametrized, the fidelity of the quantitative results is critically dependent on the parameter values utilized. In light of the early stage of TCT development and the lack of field scale measurements, the calibration of such a model is problematic. In the absence of explicit calibration data sets, the device wake structure has been identified as an efficient feature for model calibration. This presentation will discuss efforts to design an appropriate calibration scheme which focuses on wake decay and the motivation for this approach, techniques applied, validation results from simple test cases and limitations shall be presented.
Numerical Experiments with a Turbulent Single-Mode Rayleigh-Taylor Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cloutman, L.D.
2000-04-01
Direct numerical simulation is a powerful tool for studying turbulent flows. Unfortunately, it is also computationally expensive and often beyond the reach of the largest, fastest computers. Consequently, a variety of turbulence models have been devised to allow tractable and affordable simulations of averaged flow fields. Unfortunately, these present a variety of practical difficulties, including the incorporation of varying degrees of empiricism and phenomenology, which leads to a lack of universality. This unsatisfactory state of affairs has led to the speculation that one can avoid the expense and bother of using a turbulence model by relying on the grid andmore » numerical diffusion of the computational fluid dynamics algorithm to introduce a spectral cutoff on the flow field and to provide dissipation at the grid scale, thereby mimicking two main effects of a large eddy simulation model. This paper shows numerical examples of a single-mode Rayleigh-Taylor instability in which this procedure produces questionable results. We then show a dramatic improvement when two simple subgrid-scale models are employed. This study also illustrates the extreme sensitivity to initial conditions that is a common feature of turbulent flows.« less
Modeling ventilation time in forage tower silos.
Bahloul, A; Chavez, M; Reggio, M; Roberge, B; Goyer, N
2012-10-01
The fermentation process in forage tower silos produces a significant amount of gases, which can easily reach dangerous concentrations and constitute a hazard for silo operators. To maintain a non-toxic environment, silo ventilation is applied. Literature reviews show that the fermentation gases reach high concentrations in the headspace of a silo and flow down the silo from the chute door to the feed room. In this article, a detailed parametric analysis of forced ventilation scenarios built via numerical simulation was performed. The methodology is based on the solution of the Navier-Stokes equations, coupled with transport equations for the gas concentrations. Validation was achieved by comparing the numerical results with experimental data obtained from a scale model silo using the tracer gas testing method for O2 and CO2 concentrations. Good agreement was found between the experimental and numerical results. The set of numerical simulations made it possible to establish a simple analytical model to predict the minimum time required to ventilate a silo to make it safe to enter. This ventilation time takes into account the headspace above the forage, the airflow rate, and the initial concentrations of O2 and CO2. The final analytical model was validated with available results from the literature.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
On Diffusive Climatological Models.
NASA Astrophysics Data System (ADS)
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
A point particle model of lightly bound skyrmions
NASA Astrophysics Data System (ADS)
Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin
2017-04-01
A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.
NASA Astrophysics Data System (ADS)
Pelamatti, Alice; Goiffon, Vincent; Chabane, Aziouz; Magnan, Pierre; Virmontois, Cédric; Saint-Pé, Olivier; de Boisanger, Michel Breart
2016-11-01
The charge transfer time represents the bottleneck in terms of temporal resolution in Pinned Photodiode (PPD) CMOS image sensors. This work focuses on the modeling and estimation of this key parameter. A simple numerical model of charge transfer in PPDs is presented. The model is based on a Montecarlo simulation and takes into account both charge diffusion in the PPD and the effect of potential obstacles along the charge transfer path. This work also presents a new experimental approach for the estimation of the charge transfer time, called pulsed Storage Gate (SG) method. This method, which allows reproduction of a ;worst-case; transfer condition, is based on dedicated SG pixel structures and is particularly suitable to compare transfer efficiency performances for different pixel geometries.
NASA Technical Reports Server (NTRS)
Cain, Bruce L.
1990-01-01
The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.
Numerical evidences of universal trap-like aging dynamics
NASA Astrophysics Data System (ADS)
Cammarota, Chiara; Marinari, Enzo
2018-04-01
Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio
2014-10-01
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet's mechanism. The results obtained are compared with those provided by the numerical model.
Tidally induced residual current over the Malin Sea continental slope
NASA Astrophysics Data System (ADS)
Stashchuk, Nataliya; Vlasenko, Vasiliy; Hosegood, Phil; Nimmo-Smith, W. Alex M.
2017-05-01
Tidally induced residual currents generated over shelf-slope topography are investigated analytically and numerically using the Massachusetts Institute of Technology general circulation model. Observational support for the presence of such a slope current was recorded over the Malin Sea continental slope during the 88-th cruise of the RRS ;James Cook; in July 2013. A simple analytical formula developed here in the framework of time-averaged shallow water equations has been validated against a fully nonlinear nonhydrostatic numerical solution. A good agreement between analytical and numerical solutions is found for a wide range of input parameters of the tidal flow and bottom topography. In application to the Malin Shelf area both the numerical model and analytical solution predicted a northward moving current confined to the slope with its core located above the 400 m isobath and with vertically averaged maximum velocities up to 8 cm s-1, which is consistent with the in-situ data recorded at three moorings and along cross-slope transects.
Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebensohn, Ricardo A.; Needleman, Alan
Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less
Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
Lebensohn, Ricardo A.; Needleman, Alan
2016-03-28
Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less
NASA Technical Reports Server (NTRS)
Thanedar, B. D.
1972-01-01
A simple repetitive calculation was used to investigate what happens to the field in terms of the signal paths of disturbances originating from the energy source. The computation allowed the field to be reconstructed as a function of space and time on a statistical basis. The suggested Monte Carlo method is in response to the need for a numerical method to supplement analytical methods of solution which are only valid when the boundaries have simple shapes, rather than for a medium that is bounded. For the analysis, a suitable model was created from which was developed an algorithm for the estimation of acoustic pressure variations in the region under investigation. The validity of the technique was demonstrated by analysis of simple physical models with the aid of a digital computer. The Monte Carlo method is applicable to a medium which is homogeneous and is enclosed by either rectangular or curved boundaries.
Optimizing Aerobot Exploration of Venus
NASA Astrophysics Data System (ADS)
Ford, Kevin S.
1997-03-01
Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.
Optimizing Aerobot Exploration of Venus
NASA Technical Reports Server (NTRS)
Ford, Kevin S.
1997-01-01
Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.
B-dot algorithm steady-state motion performance
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Penkov, V. I.
2018-05-01
Satellite attitude motion subject to the well-known B-dot magnetic control is considered. Unlike the majority of studies the present work focuses on the slowly rotating spacecraft. The attitude and the angular velocity acquired after detumbling the satellite is determined. This task is performed using two relatively simple geomagnetic field models. First the satellite is considered moving in the simplified dipole model. Asymptotically stable rotation around the axis of the maximum moment of inertia is found. This axis direction in the inertial space and the rotation rate are found. This result is then refined using the direct dipole geomagnetic field. Simple stable rotation transforms into the periodical motion, the rotation rate is also refined. Numerical analysis with the gravitational torque and the inclined dipole model verifies the analytical results.
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
Understanding complex host-microbe interactions in Hydra
Bosch, Thomas C.G.
2012-01-01
Any multicellular organism may be considered a metaorganism or holobiont—comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species. PMID:22688725
How Fast Can You Go on a Bicycle?
ERIC Educational Resources Information Center
Dunning, R. B.
2009-01-01
The bicycle provides a context-rich problem accessible to students in a first-year physics course, encircling several core physics principles such as conservation of total energy and angular momentum, dissipative forces, and vectors. In this article, I develop a simple numerical model that can be used by any first-year physics student to…
ERIC Educational Resources Information Center
Abramovich, Sergei; Pieper, Anne
1996-01-01
Describes the use of manipulatives for solving simple combinatorial problems which can lead to the discovery of recurrence relations for permutations and combinations. Numerical evidence and visual imagery generated by a computer spreadsheet through modeling these relations can enable students to experience the ease and power of combinatorial…
G-Jitter Effects in Protein Crystal Growth - A Numerical Study
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Baugher, C. R.
1995-01-01
The impact of spacecraft acceleration environment on Protein Crystal Growth (PCG) is studied. A brief overview of the Space Shuttle acceleration environment is provided followed by a simple scaling procedure used to obtain estimates of the flow and concentration field characteristics in PCG. A detailed two-dimensional numerical model is then used to simulate the PCG system response to different disturbance scenarios; viz. residual g effects, impulse type disturbances and oscillatory inputs. The results show that PCG is susceptible to g-jitter and is a good candidate for vibration isolation.
Computer modeling of pulsed CO2 lasers for lidar applications
NASA Technical Reports Server (NTRS)
Spiers, Gary D.; Smithers, Martin E.; Murty, Rom
1991-01-01
The experimental results will enable a comparison of the numerical code output with experimental data. This will ensure verification of the validity of the code. The measurements were made on a modified commercial CO2 laser. Results are listed as following. (1) The pulse shape and energy dependence on gas pressure were measured. (2) The intrapulse frequency chirp due to plasma and laser induced medium perturbation effects were determined. A simple numerical model showed quantitative agreement with these measurements. The pulse to pulse frequency stability was also determined. (3) The dependence was measured of the laser transverse mode stability on cavity length. A simple analysis of this dependence in terms of changes to the equivalent fresnel number and the cavity magnification was performed. (4) An analysis was made of the discharge pulse shape which enabled the low efficiency of the laser to be explained in terms of poor coupling of the electrical energy into the vibrational levels. And (5) the existing laser resonator code was changed to allow it to run on the Cray XMP under the new operating system.
Rotation of a spheroid in a Couette flow at moderate Reynolds numbers.
Yu, Zhaosheng; Phan-Thien, Nhan; Tanner, Roger I
2007-08-01
The rotation of a single spheroid in a planar Couette flow as a model for simple shear flow is numerically simulated with the distributed Lagrangian multiplier based fictitious domain method. The study is focused on the effects of inertia on the orbital behavior of prolate and oblate spheroids. The numerical orbits are found to be well described by a simple empirical model, which states that the rate of the spheroid rotation about the vorticity axis is a sinusoidal function of the corresponding projection angle in the flow-gradient plane, and that the exponential growth rate of the orbit function is a constant. The following transitions in the steady state with increasing Reynolds number are identified: Jeffery orbit, tumbling, quasi-Jeffery orbit, log rolling, and inclined rolling for a prolate spheroid; and Jeffery orbit, log rolling, inclined rolling, and motionless state for an oblate spheroid. In addition, it is shown that the orbit behavior is sensitive to the initial orientation in the case of strong inertia and there exist different steady states for certain shear Reynolds number regimes.
Numerical modelling of CIGS/CdS solar cell
NASA Astrophysics Data System (ADS)
Devi, Nisha; Aziz, Anver; Datta, Shouvik
2018-05-01
In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.
Numerical models as interactive art
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; van de Pas, B.; Joling, A.
2017-12-01
We capture our understanding of the environment in advanced computer models. We use these numerical models to simulate the growth of deltas, meandering rivers, dune erosion, river floodings, effects of interventions. If presented with care, models can help understand the complexity of our environment and show the beautiful patterns of nature. While the topics are relevant and appealing to the general public the use of numerical models has been limited to technical users. Not many people have appreciations for the pluriform of options, esoteric user interfaces, manual editing of configuration files and extensive jargon. The models are static, you can start them, but then you have to wait, usually hours or more, for the results to become available, not something that you could imagine resulting in an immersive, interactive experience for the general public. How can we go beyond just using results? How can we adapt existing numerical models so they can be used in an interactive environment? How can we touch them and feel them? Here we show how we adapted existing models (Delft3D, Lisflood, XBeach) and reused them in as the basis for interactive exhibitions in museums with an educative goal. We present our structured approach which consists of combining a story, inspiration, a canvas, colors, shapes and interactive elements. We show how the progression from simple presentation forms to interactive art installations.
The propagation of sound in narrow street canyons
NASA Astrophysics Data System (ADS)
Iu, K. K.; Li, K. M.
2002-08-01
This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1998-01-01
This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.
Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello
2008-12-01
This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.
2014-12-01
Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.
Representing ductile damage with the dual domain material point method
Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; ...
2015-12-14
In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less
Phenomenology of wall-bounded Newtonian turbulence.
L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Zilitinkevich, Sergej S
2006-01-01
We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.
Damping in Space Constructions
NASA Astrophysics Data System (ADS)
de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik
2014-06-01
Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Fluidic Vectoring of a Planar Incompressible Jet Flow
NASA Astrophysics Data System (ADS)
Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie
2018-06-01
This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.
Effect of risk perception on epidemic spreading in temporal networks
NASA Astrophysics Data System (ADS)
Moinet, Antoine; Pastor-Satorras, Romualdo; Barrat, Alain
2018-01-01
Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
NASA Astrophysics Data System (ADS)
Stamps, S.; Bangerth, W.; Hager, B. H.
2014-12-01
The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.
WEC3: Wave Energy Converter Code Comparison Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien
This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less
Rainfall thresholds for the initiation of debris flows at La Honda, California
Wilson, R.C.; Wieczorek, G.F.
1995-01-01
A simple numerical model, based on the physical analogy of a leaky barrel, can simulate significant features of the interaction between rainfall and shallow-hillslope pore pressures. The leaky-barrel-model threshold is consistent with, but slightly higher than, an earlier, purely empirical, threshold. The number of debris flows triggered by a storm can be related to the time and amount by which the leaky-barrel-model response exceeded the threshold during the storm. -from Authors
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Gauge-independent decoherence models for solids in external fields
NASA Astrophysics Data System (ADS)
Wismer, Michael S.; Yakovlev, Vladislav S.
2018-04-01
We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
NASA Astrophysics Data System (ADS)
Chen, Long-chao; Fan, Wen-hui
2011-08-01
The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.
Numerical simulations of sessile droplet evaporating on heated substrate
NASA Astrophysics Data System (ADS)
Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng
2017-04-01
Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.
ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Mokhtari, Simin
1990-01-01
For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
Effect of Critical Displacement Parameter on Slip Regime at Subduction Fault
NASA Astrophysics Data System (ADS)
Muldashev, Iskander; Sobolev, Stephan
2016-04-01
It is widely accepted that for the simple fault models value of critical displacement parameter (Dc) in Ruina-Dietrich's rate-and-state friction law is responsible for the transition from stick-slip regime at low Dc to non-seismic creep regime at large Dc. However, neither the value of "transition" Dc parameter nor the character of the transition is known for the realistic subduction zone setting. Here we investigate effect of Dc on regime of slip at subduction faults for two setups, generic model similar to simple shear elastic slider under quasistatic loading and full subduction model with appropriate geometry, stress and temperature distribution similar to the setting at the site of the Great Chile Earthquake of 1960. In our modeling we use finite element numerical technique that employs non-linear elasto-visco-plastic rheology in the entire model domain with rate-and-state plasticity within the fault zone. The model generates spontaneous earthquake sequence. Adaptive time-step integration procedure varies time step from 40 seconds at instability (earthquake), and gradually increases it to 5 years during postseismic relaxation. The technique allows observing the effect of Dc on period, magnitude of earthquakes through the cycles. We demonstrate that our modeling results for the generic model are consistent with the previous theoretical and numeric modeling results. For the full subduction model we obtain transition from non-seismic creep to stick-slip regime at Dc about 20 cm. We will demonstrate and discuss the features of the transition regimes in both generic and realistic subduction models.
Two dimensional model for coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
Model for neural signaling leap statistics
NASA Astrophysics Data System (ADS)
Chevrollier, Martine; Oriá, Marcos
2011-03-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.
Signal transmission competing with noise in model excitable brains
NASA Astrophysics Data System (ADS)
Marro, J.; Mejias, J. F.; Pinamonti, G.; Torres, J. J.
2013-01-01
This is a short review of recent studies in our group on how weak signals may efficiently propagate in a system with noise-induced excitation-inhibition competition which adapts to the activity at short-time scales and thus induces excitable conditions. Our numerical results on simple mathematical models should hold for many complex networks in nature, including some brain cortical areas. In particular, they serve us here to interpret available psycho-technical data.
Electrodiffusion kinetics of ionic transport in a simple membrane channel.
Valent, Ivan; Petrovič, Pavol; Neogrády, Pavel; Schreiber, Igor; Marek, Miloš
2013-11-21
We employ numerical techniques for solving time-dependent full Poisson-Nernst-Planck (PNP) equations in 2D to analyze transient behavior of a simple ion channel subject to a sudden electric potential jump across the membrane (voltage clamp). Calculated spatiotemporal profiles of the ionic concentrations and electric potential show that two principal exponential processes can be distinguished in the electrodiffusion kinetics, in agreement with original Planck's predictions. The initial fast process corresponds to the dielectric relaxation, while the steady state is approached in a second slower exponential process attributed to the nonlinear ionic redistribution. Effects of the model parameters such as the channel length, height of the potential step, boundary concentrations, permittivity of the channel interior, and ionic mobilities on electrodiffusion kinetics are studied. Numerical solutions are used to determine spatiotemporal profiles of the electric field, ionic fluxes, and both the conductive and displacement currents. We demonstrate that the displacement current is a significant transient component of the total electric current through the channel. The presented results provide additional information about the classical voltage-clamp problem and offer further physical insights into the mechanism of electrodiffusion. The used numerical approach can be readily extended to multi-ionic models with a more structured domain geometry in 2D or 3D, and it is directly applicable to other systems, such as synthetic nanopores, nanofluidic channels, and nanopipettes.
A simple model for the evolution of a non-Abelian cosmic string network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyachkov, Sergey, E-mail: serj.dyachkov@gmail.com; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700; Levashov, Pavel, E-mail: pasha@ihed.ras.ru
We determine the region of applicability of the finite–temperature Thomas–Fermi model and its thermal part with respect to quantum and exchange corrections. Very high accuracy of computations has been achieved by using a special approach for the solution of the boundary problem and numerical integration. We show that the thermal part of the model can be applied at lower temperatures than the full model. Also we offer simple approximations of the boundaries of validity for practical applications.
Computer modeling of inversion layer MOS solar cells and arrays
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1991-01-01
A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.
An asymptotic solution to a passive biped walker model
NASA Astrophysics Data System (ADS)
Yudaev, Sergey A.; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2017-02-01
We consider a simple model of a passive dynamic biped robot walker with point feet and legs without knee. The model is a switched system, which includes an inverted double pendulum. Robot’s gait and its stability depend on parameters such as the slope of the ramp, the length of robot’s legs, and the mass distribution along the legs. We present an asymptotic solution of the model. The first correction to the zero order approximation is shown to agree with the numerical solution for a limited parameter range.
Piezoelectric transformer structural modeling--a review.
Yang, Jiashi
2007-06-01
A review on piezoelectric transformer structural modeling is presented. The operating principle and the basic behavior of piezoelectric transformers as governed by the linear theory of piezoelectricity are shown by a simple, theoretical analysis on a Rosen transformer based on extensional modes of a nonhomogeneous ceramic rod. Various transformers are classified according to their structural shapes, operating modes, and voltage transforming capability. Theoretical and numerical modeling results from the theory of piezoelectricity are reviewed. More advances modeling on thermal and nonlinear effects also are discussed. The article contains 167 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Analytis, G.T.
1995-09-01
A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less
A Simplified Model for Detonation Based Pressure-Gain Combustors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2010-01-01
A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.
Singularities in x-ray spectra of metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G.D.
1987-08-01
The x-ray spectroscopies discussed are absorption, emission, and photoemission. The singularities show up in each of them in a different manner. In absorption and emission they show up as power law singularities at the thresholds frequencies. This review will emphasize two themes. First a simple model is proposed to describe this phenomena, which is now called the MND model after MAHAN-NOZIERES-DeDOMINICIS. Exact analytical solutions are now available for this model for the three spectroscopies discussed above. These analytical models can be evaluated numerically in a simple way. The second theme of this review is that great care must be usedmore » when comparing the theory to experiment. A number of factors influence the edge shapes in x-ray spectroscopy. The edge singularities play an important role, and are observed in many matals. Quantitative fits of the theory to experiment require the consideration of other factors. 51 refs.« less
NASA Astrophysics Data System (ADS)
Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun
2017-11-01
The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.
NASA Technical Reports Server (NTRS)
Carsey, Frank D.; Garwood, Ronald W.; Roach, Andrew T.
1993-01-01
In this paper we present an interpretation of coarse resolution passive microwave data for 1989 and 1992 in the context of a simple model of ice-edge retreat to obtain the Nordbukta emayment growth and the formation and migration of an Odden polynya.
Dimensional Analysis in Mathematical Modeling Systems: A Simple Numerical Method
1991-02-01
US Army Ballistic Research Laboratories, Aberden Proving Ground , NID, August 1975. [18] Hi1irlimann, T., and .J. lKohlas "LPL: A Structured Language...such systems can prove that (a’ + ab + b2 + ba) = (a + b) 2 . With some effort, since the laws of physical algebra are a minor variant on those of
ERIC Educational Resources Information Center
Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram
2011-01-01
Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…
Three-Space Interaction in Doubly Sinusoidal Periodic Media
NASA Astrophysics Data System (ADS)
Tian-Lin, Dong; Ping, Chen
2006-06-01
Three-space-harmonic (3SH) interaction in doubly sinusoidal periodic (DSP) medium is investigated. Associated physical effects such as additional gap, defect state, and indirect gaps, are theoretically and numerically revealed. This simple DSP model can facilitate the understanding and utilizing of a series of effects in rather complicated periodic structures with additional defect or modulation.
The Polygonal Model: A Simple Representation of Biomolecules as a Tool for Teaching Metabolism
ERIC Educational Resources Information Center
Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo
2018-01-01
Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student.…
NASA Astrophysics Data System (ADS)
Chea, Limdara O.
Given a nonlinear viscoelastic (NLVE) constitutive model for a polymer, this numerical study aims at simulating local stress concentrations in a boundary value problem with a corner stress singularity. A rectangular sample of Polyvinyl Acetate (PVAc)-like cross-linked polymer clamped by two metallic rigid grips and subjected to a compression and tension load is numerically simulated. A modified version of the finite element code FEAP, that incorporated a NLVE model based on the free volume theory, was used. First, the program was validated by comparing numerical and analytical results. Two simple mechanical tests (a uniaxial and a simple shear test) were performed on a Standard Linear Solid material model, using a linear viscoelastic (LVE) constitutive model. The LVE model was obtained by setting the proportionality coefficient [...] to zero in the free volume theory equations. Second, the LVE model was used on the corner singularity boundary value problem for three material models with different bulk relaxation functions K(t). The time-dependent stress field distribution was investigated using two sets of plots: the stress distribution contour plots and the stress time curves. Third, using the NLVE constitutive model, compression and tension cases were compared using the stress results (normal stress [...] and shear stress [...]). These two cases assessed the effect of the creep retardation-creep acceleration phenomena. The shift between the beginning of the relaxation moduli was shown to play an important role. This parameter affects strongly the fluctuation pattern of the stress curves. For two different shift values, in one case, the stress response presents a 'double peak' and 'stress inversion' characteristic whereas, in the other case, it presents a 'single peak' and no 'inversion'. Another important factor was the material's compressibility. In the case of a nearly-incompressible material, the LVE and NLVE models yielded identical results; thus, the simpler LVE model is preferable. However, in the case of sufficient volume dilatation (or contraction), the NLVE model predicted correct characteristic responses, whereas LVE results were erroneous. This proves the necessity of using the NLVE model over the LVE model.
Estimation of liquefaction-induced lateral spread from numerical modeling and its application
NASA Astrophysics Data System (ADS)
Meng, Xianhong
A noncoupled numerical procedure was developed using a scheme of pore water generation that causes shear modulus degradation and shear strength degradation resulting from earthquake cyclic motion. The designed Fast Lagrangian Analysis of Continua (FLAC) model procedure was tested using the liquefaction-induced lateral spread and ground response for Wildlife and Kobe sites. Sixteen well-documented case histories of lateral spread were reviewed and modeled using the modeling procedure. The dynamic residual strength ratios were back-calculated by matching the predicted displacement with the measured lateral spread, or with the displacement predicted by the Yound et al. model. Statistical analysis on the modeling results and soil properties show that most significant parameters governing the residual strength of the liquefied soil are the SPT blow count, fine content and soil particle size of the lateral spread layer. A regression equation was developed to express the residual strength values with these soil properties. Overall, this research demonstrated that a calibrated numerical model can predict the first order effectiveness of liquefaction-induced lateral spread using relatively simple parameters obtained from routine geotechnical investigation. In addition, the model can be used to plan a soil improvement program for cases where liquefaction remediation is needed. This allows the model to be used for design purposes at bridge approaches structured on liquefiable materials.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
NASA Astrophysics Data System (ADS)
Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.
2018-03-01
The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.
Simulation of blood flow through an artificial heart
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chang, I-Dee; Rogers, Stuart E.; Kwak, Dochan
1991-01-01
A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear.
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Users manual for a one-dimensional Lagrangian transport model
Schoellhamer, D.H.; Jobson, H.E.
1986-01-01
A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)
Numerical modeling of cold room's hinged door opening and closing processes
NASA Astrophysics Data System (ADS)
Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.
2016-06-01
The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.
NASA Astrophysics Data System (ADS)
Jodar, B.; Seisson, G.; Hébert, D.; Bertron, I.; Boustie, M.; Berthe, L.
2016-08-01
Because of their shock wave attenuation properties, porous materials and foams are increasingly used for various applications such as graphite in the aerospace industry and polyurethane (PU) foams in biomedical engineering. For these two materials, the absence of residual compaction after compression and release cycles limits the efficiency of the usual numerical dynamic porous models such as P-α and POREQST. In this paper, we suggest a simple enhancement of the latter in order to take into account the compression-release hysteresis behavior experimentally observed for the considered materials. The new model, named H-POREQST, was implemented into a Lagrangian hydrocode and tested for simulating plate impact experiments at moderate pressure onto a commercial grade of porous graphite (EDM3). It proved to be in far better agreement with experimental data than the original model which encourages us to pursue numerical tests and developments.
Approaches to the structural modelling of insect wings.
Wootton, R J; Herbert, R C; Young, P G; Evans, K E
2003-01-01
Insect wings lack internal muscles, and the orderly, necessary deformations which they undergo in flight and folding are in part remotely controlled, in part encoded in their structure. This factor is crucial in understanding their complex, extremely varied morphology. Models have proved particularly useful in clarifying the facilitation and control of wing deformation. Their development has followed a logical sequence from conceptual models through physical and simple analytical to numerical models. All have value provided their limitations are realized and constant comparisons made with the properties and mechanical behaviour of real wings. Numerical modelling by the finite element method is by far the most time-consuming approach, but has real potential in analysing the adaptive significance of structural details and interpreting evolutionary trends. Published examples are used to review the strengths and weaknesses of each category of model, and a summary is given of new work using finite element modelling to investigate the vibration properties and response to impact of hawkmoth wings. PMID:14561349
NASA Astrophysics Data System (ADS)
Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu
2017-09-01
Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Comparison of results of an obstacle resolving microscale model with wind tunnel data
NASA Astrophysics Data System (ADS)
Grawe, David; Schlünzen, K. Heinke; Pascheke, Frauke
2013-11-01
The microscale transport and stream model MITRAS has been improved and a new technique has been implemented to improve numerical stability for complex obstacle configurations. Results of the updated version have been compared with wind tunnel data using an evaluation method that has been established for simple obstacle configurations. MITRAS is a part of the M-SYS model system for the assessment of ambient air quality. A comparison of model results for the flow field against quality ensured wind tunnel data has been carried out for both idealised and realistic test cases. Results of the comparison show a very good agreement of the wind field for most test cases and identify areas of possible improvement of the model. The evaluated MITRAS results can be used as input data for the M-SYS microscale chemistry model MICTM. This paper describes how such a comparison can be carried out for simple as well as realistic obstacle configurations and what difficulties arise.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.
Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas
2012-08-01
In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.
Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.
1988-01-01
The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.
Horno, J; González-Caballero, F; González-Fernández, C F
1990-01-01
Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.
Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules
NASA Astrophysics Data System (ADS)
Zhang, Yue; Li, Yang; Zhang, Qingling; Li, Aihua
2018-07-01
In this paper, the threshold behavior of a susceptible-infected-recovered (SIR) epidemic model with stochastic perturbation is investigated. Firstly, it is obtained that the system has a unique global positive solution with any positive initial value. Random effect may lead to disease extinction under a simple condition. Subsequently, sufficient condition for persistence has been established in the mean of the disease. Finally, some numerical simulations are carried out to confirm the analytical results.
Sustained currents in coupled diffusive systems
NASA Astrophysics Data System (ADS)
Larralde, Hernán; Sanders, David P.
2014-08-01
Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation.
Multicomponent ensemble models to forecast induced seismicity
NASA Astrophysics Data System (ADS)
Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.
2018-01-01
In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.
Numerical simulation model of hyperacute/acute stage white matter infarction.
Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko
2008-01-01
Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.
A new methodology to determine kinetic parameters for one- and two-step chemical models
NASA Technical Reports Server (NTRS)
Mantel, T.; Egolfopoulos, F. N.; Bowman, C. T.
1996-01-01
In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and temperature and concentration profiles. Second, the flame response to steady and unsteady strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 39 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very sensitive to this number. As an application of this methodology, the interaction between a two-dimensional vortex pair and a premixed laminar flame is performed by Direct Numerical Simulation (DNS) using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interaction when the two-step model is used.
NASA Astrophysics Data System (ADS)
Brooke, Sam; Whittaker, Alexander; Armitage, John; D'Arcy, Mitch; Watkins, Stephen
2017-04-01
A quantitative understanding of landscape sensitivity to climate change remains a key challenge in the Earth Sciences. The stream-flow deposits of coupled catchment-fan systems offer one way to decode past changes in external boundary conditions as they comprise simple, closed systems that can be represented effectively by numerical models. Here we combine the collection and analysis of grain size data on well-dated alluvial fan surfaces in Death Valley, USA, with numerical modelling to address the extent to which sediment routing systems record high-frequency, high-magnitude climate change. We compile a new database of Holocene and Late-Pleistocene grain size trends from 11 alluvial fans in Death Valley, capturing high-resolution grain size data ranging from the Recent to 100 kyr in age. We hypothesise the observed changes in average surface grain size and fining rate over time are a record of landscape response to glacial-interglacial climatic forcing. With this data we are in a unique position to test the predictions of landscape evolution models and evaluate the extent to which climate change has influenced the volume and calibre of sediment deposited on alluvial fans. To gain insight into our field data and study area, we employ an appropriately-scaled catchment-fan model that calculates an eroded volumetric sediment budget to be deposited in a subsiding basin according to mass balance where grain size trends are predicted by a self-similarity fining model. We use the model to compare predicted trends in alluvial fan stratigraphy as a function of boundary condition change for a range of model parameters and input grain size distributions. Subsequently, we perturb our model with a plausible glacial-interglacial magnitude precipitation change to estimate the requisite sediment flux needed to generate observed field grain size trends in Death Valley. Modelled fluxes are then compared with independent measurements of sediment supply over time. Our results constitute one of the first attempts to combine the detailed collection of alluvial fan grain size data in time and space with coupled catchment-fan models, affording us the means to evaluate how well field and model data can be reconciled for simple sediment routing systems.
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence
Kelly, David; Majda, Andrew J.; Tong, Xin T.
2015-01-01
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335
NASA Astrophysics Data System (ADS)
Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin
2015-07-01
The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.
Viscoelastic modeling of deformation and gravity changes induced by pressurized magmatic sources
NASA Astrophysics Data System (ADS)
Currenti, Gilda
2018-05-01
Gravity and height changes, which reflect magma accumulation in subsurface chambers, are evaluated using analytical and numerical models in order to investigate their relationships and temporal evolutions. The analysis focuses mainly on the exploration of the time-dependent response of gravity and height changes to the pressurization of ellipsoidal magmatic chambers in viscoelastic media. Firstly, the validation of the numerical Finite Element results is performed by comparison with analytical solutions, which are devised for a simple spherical source embedded in a homogeneous viscoelastic half-space medium. Then, the effect of several model parameters on time-dependent height and gravity changes is investigated thanks to the flexibility of the numerical method in handling complex configurations. Both homogeneous and viscoelastic shell models reveal significantly different amplitudes in the ratio between gravity and height changes depending on geometry factors and medium rheology. The results show that these factors also influence the relaxation characteristic times of the investigated geophysical changes. Overall, these temporal patterns are compatible with time-dependent height and gravity changes observed on Etna volcano during the 1994-1997 inflation period. By modeling the viscoelastic response of a pressurized prolate magmatic source, a general agreement between computed and observed geophysical variations is achieved.
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
NASA Astrophysics Data System (ADS)
Lashkin, S. V.; Kozelkov, A. S.; Yalozo, A. V.; Gerasimov, V. Yu.; Zelensky, D. K.
2017-12-01
This paper describes the details of the parallel implementation of the SIMPLE algorithm for numerical solution of the Navier-Stokes system of equations on arbitrary unstructured grids. The iteration schemes for the serial and parallel versions of the SIMPLE algorithm are implemented. In the description of the parallel implementation, special attention is paid to computational data exchange among processors under the condition of the grid model decomposition using fictitious cells. We discuss the specific features for the storage of distributed matrices and implementation of vector-matrix operations in parallel mode. It is shown that the proposed way of matrix storage reduces the number of interprocessor exchanges. A series of numerical experiments illustrates the effect of the multigrid SLAE solver tuning on the general efficiency of the algorithm; the tuning involves the types of the cycles used (V, W, and F), the number of iterations of a smoothing operator, and the number of cells for coarsening. Two ways (direct and indirect) of efficiency evaluation for parallelization of the numerical algorithm are demonstrated. The paper presents the results of solving some internal and external flow problems with the evaluation of parallelization efficiency by two algorithms. It is shown that the proposed parallel implementation enables efficient computations for the problems on a thousand processors. Based on the results obtained, some general recommendations are made for the optimal tuning of the multigrid solver, as well as for selecting the optimal number of cells per processor.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, Gabriele, E-mail: milani@stru.polimi.it; Olivito, Renato S.; Tralli, Antonio
2014-10-06
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim ofmore » both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.« less
Acoustic backscatter models of fish: Gradual or punctuated evolution
NASA Astrophysics Data System (ADS)
Horne, John K.
2004-05-01
Sound-scattering characteristics of aquatic organisms are routinely investigated using theoretical and numerical models. Development of the inverse approach by van Holliday and colleagues in the 1970s catalyzed the development and validation of backscatter models for fish and zooplankton. As the understanding of biological scattering properties increased, so did the number and computational sophistication of backscatter models. The complexity of data used to represent modeled organisms has also evolved in parallel to model development. Simple geometric shapes representing body components or the whole organism have been replaced by anatomically accurate representations derived from imaging sensors such as computer-aided tomography (CAT) scans. In contrast, Medwin and Clay (1998) recommend that fish and zooplankton should be described by simple theories and models, without acoustically superfluous extensions. Since van Holliday's early work, how has data and computational complexity influenced accuracy and precision of model predictions? How has the understanding of aquatic organism scattering properties increased? Significant steps in the history of model development will be identified and changes in model results will be characterized and compared. [Work supported by ONR and the Alaska Fisheries Science Center.
GLACE: The Global Land-Atmosphere Coupling Experiment. Part 1; Overview
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Guo, Zhi-Chang; Dirmeyer, Paul A.; Bonan, Gordon; Chan, Edmond; Cox, Peter; Davies, Harvey; Gordon, C. T.; Kanae, Shinjiro; Kowalczyk, Eva
2005-01-01
GLACE is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land-atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The twelve AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, enough similarity to pinpoint multi-model "hot spots" of land-atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model s coupling strength within the broad range of those documented here.
Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica
NASA Astrophysics Data System (ADS)
Turco, Emilio
2018-04-01
Complex problems such as those concerning the mechanics of materials can be confronted only by considering numerical simulations. Analytical methods are useful to build guidelines or reference solutions but, for general cases of technical interest, they have to be solved numerically, especially in the case of large displacements and deformations. Probably continuous models arose for producing inspiring examples and stemmed from homogenization techniques. These techniques allowed for the solution of some paradigmatic examples but, in general, always require a discretization method for solving problems dictated by the applications. Therefore, and also by taking into account that computing powers are nowadays more largely available and cheap, the question arises: why not using directly a discrete model for 3D beams? In other words, it could be interesting to formulate a discrete model without using an intermediate continuum one, as this last, at the end, has to be discretized in any case. These simple considerations immediately evoke some very basic models developed many years ago when the computing powers were practically inexistent but the problem of finding simple solutions to beam deformation problem was already an emerging one. Actually, in recent years, the keynotes of Hencky and Piola attracted a renewed attention [see, one for all, the work (Turco et al. in Zeitschrift für Angewandte Mathematik und Physik 67(4):1-28, 2016)]: generalizing their results, in the present paper, a novel directly discrete three-dimensional beam model is presented and discussed, in the framework of geometrically nonlinear analysis. Using a stepwise algorithm based essentially on Newton's method to compute the extrapolations and on the Riks' arc-length method to perform the corrections, we could obtain some numerical simulations showing the computational effectiveness of presented model: Indeed, it presents a convenient balance between accuracy and computational cost.
The Motion of a Leaking Oscillator: A Study for the Physics Class
ERIC Educational Resources Information Center
Rodrigues, Hilário; Panza, Nelson; Portes, Dirceu; Soares, Alexandre
2014-01-01
This paper is essentially about the general form of Newton's second law for variable mass problems. We develop a model for describing the motion of the one-dimensional oscillator with a variable mass within the framework of classroom physics. We present a simple numerical procedure for the solution of the equation of motion of the system to…
NASA Astrophysics Data System (ADS)
Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang
2010-01-01
In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.
Galileon bounce after ekpyrotic contraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, M.; Rubakov, V., E-mail: osipov@ms2.inr.ac.ru, E-mail: rubakov@ms2.inr.ac.ru
We consider a simple cosmological model that includes a long ekpyrotic contraction stage and smooth bounce after it. Ekpyrotic behavior is due to a scalar field with a negative exponential potential, whereas the Galileon field produces bounce. We give an analytical picture of how the bounce occurs within the weak gravity regime, and then perform numerical analysis to extend our results to a non-perturbative regime.
NASA Astrophysics Data System (ADS)
Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.
2017-12-01
The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.
Extending semi-numeric reionization models to the first stars and galaxies
NASA Astrophysics Data System (ADS)
Koh, Daegene; Wise, John H.
2018-03-01
Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.
NASA Astrophysics Data System (ADS)
Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki
2018-04-01
The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.
NASA Astrophysics Data System (ADS)
Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.
2007-11-01
In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.
Continuum modeling of large lattice structures: Status and projections
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Mikulas, Martin M., Jr.
1988-01-01
The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.
Chaos in plasma simulation and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, C.; Newman, D.E.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less
Can responses to basic non-numerical visual features explain neural numerosity responses?
Harvey, Ben M; Dumoulin, Serge O
2017-04-01
Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.
Calibrating White Dwarf Asteroseismic Fitting Techniques
NASA Astrophysics Data System (ADS)
Castanheira, B. G.; Romero, A. D.; Bischoff-Kim, A.
2017-03-01
The main goal of looking for intrinsic variability in stars is the unique opportunity to study their internal structure. Once we have extracted independent modes from the data, it appears to be a simple matter of comparing the period spectrum with those from theoretical model grids to learn the inner structure of that star. However, asteroseismology is much more complicated than this simple description. We must account not only for observational uncertainties in period determination, but most importantly for the limitations of the model grids, coming from the uncertainties in the constitutive physics, and of the fitting techniques. In this work, we will discuss results of numerical experiments where we used different independently calculated model grids (white dwarf cooling models WDEC and fully evolutionary LPCODE-PUL) and fitting techniques to fit synthetic stars. The advantage of using synthetic stars is that we know the details of their interior structure so we can assess how well our models and fitting techniques are able to the recover the interior structure, as well as the stellar parameters.
Dynamic motion of red blood cells in simple shear flow
NASA Astrophysics Data System (ADS)
Sui, Y.; Chew, Y. T.; Roy, P.; Cheng, Y. P.; Low, H. T.
2008-11-01
A three-dimensional numerical model is proposed to simulate the dynamic motion of red blood cells (RBCs) in simple shear flow. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes which take into account the membrane shear elasticity and the membrane area incompressibility. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to have the same physical properties as the matrix fluid. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the cells are found to carry out a swinging motion, in which periodic inclination oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion. This is the first direct numerical simulation that predicts both the swinging motion of the RBCs and the shear rate induced transition, which have been observed in a recent experiment. It is also found that as the mode changes from swinging to tumbling, the apparent viscosity of the suspension increases monotonically.
Test Driven Development: Lessons from a Simple Scientific Model
NASA Astrophysics Data System (ADS)
Clune, T. L.; Kuo, K.
2010-12-01
In the commercial software industry, unit testing frameworks have emerged as a disruptive technology that has permanently altered the process by which software is developed. Unit testing frameworks significantly reduce traditional barriers, both practical and psychological, to creating and executing tests that verify software implementations. A new development paradigm, known as test driven development (TDD), has emerged from unit testing practices, in which low-level tests (i.e. unit tests) are created by developers prior to implementing new pieces of code. Although somewhat counter-intuitive, this approach actually improves developer productivity. In addition to reducing the average time for detecting software defects (bugs), the requirement to provide procedure interfaces that enable testing frequently leads to superior design decisions. Although TDD is widely accepted in many software domains, its applicability to scientific modeling still warrants reasonable skepticism. While the technique is clearly relevant for infrastructure layers of scientific models such as the Earth System Modeling Framework (ESMF), numerical and scientific components pose a number of challenges to TDD that are not often encountered in commercial software. Nonetheless, our experience leads us to believe that the technique has great potential not only for developer productivity, but also as a tool for understanding and documenting the basic scientific assumptions upon which our models are implemented. We will provide a brief introduction to test driven development and then discuss our experience in using TDD to implement a relatively simple numerical model that simulates the growth of snowflakes. Many of the lessons learned are directly applicable to larger scientific models.
Simple Numerical Simulation of Strain Measurement
NASA Technical Reports Server (NTRS)
Tai, H.
2002-01-01
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.
Kanematsu, Nobuyuki
2009-03-07
Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.
Receptors as a master key for synchronization of rhythms
NASA Astrophysics Data System (ADS)
Nagano, Seido
2004-03-01
A simple, but general scheme to achieve synchronization of rhythms was derived. The scheme has been inductively generalized from the modelling study of cellular slime mold. It was clarified that biological receptors work as apparatuses that can convert external stimulus to the form of nonlinear interaction within individual oscillators. Namely, the mathematical model receptor works as a nonlinear coupling apparatus between nonlinear oscillators. Thus, synchronization is achieved as a result of competition between two kinds of non-linearities, and to achieve synchronization, even a small external stimulation via model receptors can change the characteristics of individual oscillators significantly. The derived scheme is very simple mathematically, but it is a very powerful scheme as numerically demonstrated. The biological receptor scheme should significantly help understanding of synchronization phenomena in biology since groups of limit cycle oscillators and receptors are ubiquitous in biological systems. Reference: S. Nagano, Phys Rev. E67, 056215(2003)
Residual Stress Analysis in Welded Component.
NASA Astrophysics Data System (ADS)
Rouhi, Shahab; Yoshida, Sanichiro; Miura, Fumiya; Sasaki, Tomohiro
Due to local heating, thermal stresses occur during welding; and residual stress and distortion result remain welding. Welding distortion has negative effects on the accuracy of assembly, exterior appearance, and various strengths of the welded structures. Up to date, a lot of experiments and numerical analysis have been developed to assess residual stress. However, quantitative estimation of residual stress based on experiment may involve massive uncertainties and complexity of the measurement process. To comprehensively understand this phenomena, it is necessary to do further researches by means of both experiment and numerical simulation. In this research, we conduct Finite Element Analysis (FEA) for a simple butt-welded metal plate specimen. Thermal input and resultant expansion are modeled with a thermal expansion FEA module and the resultant constitutive response of the material is modeled with a continuous mechanic FEA module. The residual stress is modeled based on permanent deformation occurring during the heating phase of the material. Experiments have also been carried out to compare with the FEA results. Numerical and experimental results show qualitative agreement. The present work was supported by the Louisiana Board of Regents (LEQSF(2016-17)-RD-C-13).
Comparing the GPR responses of real experiment and simulation of cavity
NASA Astrophysics Data System (ADS)
Yu, H.; Nam, M. J.; Kim, C.; Lee, D. K.
2017-12-01
Seoul, capital city of South Korea, has been suffering from ground subsidence mainly caused by cavities beneath the road. Urban subsidence usually brings serious social problems such as damages of human life, properties and so on. To prevent ground subsidence, Korea government embark much money in developing techniques to detect cavities in advance. Ground penetrating radar (GPR) is known as the most effective method among geophysical surveys in exploring underground cavitied but shallow ones only. For the study of GPR responses for underground cavities, real scale physical models have been made and GPR surveys are conducted. In simulating cavities with various sizes at various depths, spheres of polystyrene have been used since the electric permittivity of polystyrene has a similar value to that of the air. However, the real scale experiments only used simple shapes of cavities due to its expensive construction cost and further changing in shapes of cavities is limited once they are built. For not only comparison between field responses for the physical model and numerical responses but also for analyzing GPR responses for more various cavity shapes in numerous environments, we conducted numerical simulation of GPR responses using three-dimensional (3D) finite difference time domain (FDTD) GPR modeling algorithm employing staggered grid. We first construct numerical modeling for models similar to the physical models to confirm considering radiation pattern in numerical modeling of GPR responses which is critical to generate similar responses to field GPR data. Further, GPR responses computed for various shapes of cavities in several different environments determine not only additional construction of the physical cavities but also analyze the characteristics of GPR responses.
Complex discrete dynamics from simple continuous population models.
Gamarra, Javier G P; Solé, Ricard V
2002-05-01
Nonoverlapping generations have been classically modelled as difference equations in order to account for the discrete nature of reproductive events. However, other events such as resource consumption or mortality are continuous and take place in the within-generation time. We have realistically assumed a hybrid ODE bidimensional model of resources and consumers with discrete events for reproduction. Numerical and analytical approaches showed that the resulting dynamics resembles a Ricker map, including the doubling route to chaos. Stochastic simulations with a handling-time parameter for indirect competition of juveniles may affect the qualitative behaviour of the model.
A continuum membrane model for small deformations of a spider orb-web
NASA Astrophysics Data System (ADS)
Morassi, Antonino; Soler, Alejandro; Zaera, Ramón
2017-09-01
In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.
Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy
NASA Astrophysics Data System (ADS)
Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji
An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.
Cranking Calculation in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Wang, Baolin
1998-10-01
A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.
Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.
Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold
2002-02-01
The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).
An efficient transport solver for tokamak plasmas
Park, Jin Myung; Murakami, Masanori; St. John, H. E.; ...
2017-01-03
A simple approach to efficiently solve a coupled set of 1-D diffusion-type transport equations with a stiff transport model for tokamak plasmas is presented based on the 4th order accurate Interpolated Differential Operator scheme along with a nonlinear iteration method derived from a root-finding algorithm. Here, numerical tests using the Trapped Gyro-Landau-Fluid model show that the presented high order method provides an accurate transport solution using a small number of grid points with robust nonlinear convergence.
NASA Astrophysics Data System (ADS)
Tejeda, E.
2018-04-01
We present a simple, analytic model of an incompressible fluid accreting onto a moving gravitating object. This solution allows us to probe the highly subsonic regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a previously known relativistic model of a stiff fluid accreting onto a black hole. Besides filling this blank in the literature, the new solution should be useful as a benchmark test for numerical hydrodynamics codes. Given its simplicity, it can also be used as an illustrative example in a gas dynamics course.
Econometric model for age- and population-dependent radiation exposures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.
1991-01-01
The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.
Hetero-association for pattern translation
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Lu, Thomas T.; Yang, Xiangyang
1991-09-01
A hetero-association neural network using an interpattern association algorithm is presented. By using simple logical rules, hetero-association memory can be constructed based on the association between the input-output reference patterns. For optical implementation, a compact size liquid crystal television neural network is used. Translations between the English letters and the Chinese characters as well as Arabic and Chinese numerics are demonstrated. The authors have shown that the hetero-association model can perform more effectively in comparison to the Hopfield model in retrieving large numbers of similar patterns.
2013-09-30
accuracy of the analysis . Root mean square difference ( RMSD ) is much smaller for RIP than for either Simple Ocean Data Assimilation or Incremental... Analysis Update globally for temperature as well as salinity. Regionally the same results were found, with only one exception in which the salinity RMSD ...short-term forecast using a numerical model with the observations taken within the forecast time window. The resulting state is the so-called “ analysis
Study of ATES thermal behavior using a steady flow model
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.
1981-01-01
The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2016-04-01
Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
NASA Astrophysics Data System (ADS)
Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang
2018-03-01
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.
NASA Astrophysics Data System (ADS)
Katsaounis, T. D.
2005-02-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment
NASA Astrophysics Data System (ADS)
Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.
2017-10-01
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.
Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M
2017-09-21
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
The varieties of symmetric stellar rings and radial caustics in galaxy disks
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Lotan, Pnina
1990-01-01
Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.
Strain and vorticity analysis using small-scale faults and associated drag folds
NASA Astrophysics Data System (ADS)
Gomez-Rivas, Enrique; Bons, Paul D.; Griera, Albert; Carreras, Jordi; Druguet, Elena; Evans, Lynn
2007-12-01
Small-scale faults with associated drag folds in brittle-ductile rocks can retain detailed information on the kinematics and amount of deformation the host rock experienced. Measured fault orientation ( α), drag angle ( β) and the ratio of the thickness of deflected layers at the fault ( L) and further away ( T) can be compared with α, β and L/ T values that are calculated with a simple analytical model. Using graphs or a numerical best-fit routine, one can then determine the kinematic vorticity number and initial fault orientation that best fits the data. The proposed method was successfully tested on both analogue experiments and numerical simulations with BASIL. Using this method, a kinematic vorticity number of one (dextral simple shear) and a minimum finite strain of 2.5-3.8 was obtained for a population of antithetic faults with associated drag folds in a case study area at Mas Rabassers de Dalt on Cap de Creus in the Variscan of the easternmost Pyrenees, Spain.
Testing the uniqueness of mass models using gravitational lensing
NASA Astrophysics Data System (ADS)
Walls, Levi; Williams, Liliya L. R.
2018-06-01
The positions of images produced by the gravitational lensing of background-sources provide insight to lens-galaxy mass distributions. Simple elliptical mass density profiles do not agree well with observations of the population of known quads. It has been shown that the most promising way to reconcile this discrepancy is via perturbations away from purely elliptical mass profiles by assuming two super-imposed, somewhat misaligned mass distributions: one is dark matter (DM), the other is a stellar distribution. In this work, we investigate if mass modelling of individual lenses can reveal if the lenses have this type of complex structure, or simpler elliptical structure. In other words, we test mass model uniqueness, or how well an extended source lensed by a non-trivial mass distribution can be modeled by a simple elliptical mass profile. We used the publicly-available lensing software, Lensmodel, to generate and numerically model gravitational lenses and “observed” image positions. We then compared “observed” and modeled image positions via root mean square (RMS) of their difference. We report that, in most cases, the RMS is ≤0.05‧‧ when averaged over an extended source. Thus, we show it is possible to fit a smooth mass model to a system that contains a stellar-component with varying levels of misalignment with a DM-component, and hence mass modelling cannot differentiate between simple elliptical versus more complex lenses.
Analysis of bacterial migration. 2: Studies with multiple attractant gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, I.; Frymier, P.D.; Hahn, C.M.
1995-02-01
Many motile bacteria exhibit chemotaxis, the ability to bias their random motion toward or away from increasing concentrations of chemical substances which benefit or inhibit their survival, respectively. Since bacteria encounter numerous chemical concentration gradients simultaneously in natural surroundings, it is necessary to know quantitatively how a bacterial population responds in the presence of more than one chemical stimulus to develop predictive mathematical models describing bacterial migration in natural systems. This work evaluates three hypothetical models describing the integration of chemical signals from multiple stimuli: high sensitivity, maximum signal, and simple additivity. An expression for the tumbling probability for individualmore » stimuli is modified according to the proposed models and incorporated into the cell balance equation for a 1-D attractant gradient. Random motility and chemotactic sensitivity coefficients, required input parameters for the model, are measured for single stimulus responses. Theoretical predictions with the three signal integration models are compared to the net chemotactic response of Escherichia coli to co- and antidirectional gradients of D-fucose and [alpha]-methylaspartate in the stopped-flow diffusion chamber assay. Results eliminate the high-sensitivity model and favor the simple additivity over the maximum signal. None of the simple models, however, accurately predict the observed behavior, suggesting a more complex model with more steps in the signal processing mechanism is required to predict responses to multiple stimuli.« less
Chaotic Lagrangian models for turbulent relative dispersion.
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
Chaotic Lagrangian models for turbulent relative dispersion
NASA Astrophysics Data System (ADS)
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Analytic algorithms for determining radiative transfer optical properties of ocean waters.
Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J
2006-10-10
A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.
Improved Multi-Axial, Temperature and Time Dependent (MATT) Failure Model
NASA Technical Reports Server (NTRS)
Richardson, D. E.; Anderson, G. L.; Macon, D. J.
2002-01-01
An extensive effort has recently been completed by the Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program to completely characterize the effects of multi-axial loading, temperature and time on the failure characteristics of three filled epoxy adhesives (TIGA 321, EA913NA, EA946). As part of this effort, a single general failure criterion was developed that accounted for these effects simultaneously. This model was named the Multi- Axial, Temperature, and Time Dependent or MATT failure criterion. Due to the intricate nature of the failure criterion, some parameters were required to be calculated using complex equations or numerical methods. This paper documents some simple but accurate modifications to the failure criterion to allow for calculations of failure conditions without complex equations or numerical techniques.
Sea-level rise and shoreline retreat: time to abandon the Bruun Rule
NASA Astrophysics Data System (ADS)
Cooper, J. Andrew G.; Pilkey, Orrin H.
2004-11-01
In the face of a global rise in sea level, understanding the response of the shoreline to changes in sea level is a critical scientific goal to inform policy makers and managers. A body of scientific information exists that illustrates both the complexity of the linkages between sea-level rise and shoreline response, and the comparative lack of understanding of these linkages. In spite of the lack of understanding, many appraisals have been undertaken that employ a concept known as the "Bruun Rule". This is a simple two-dimensional model of shoreline response to rising sea level. The model has seen near global application since its original formulation in 1954. The concept provided an advance in understanding of the coastal system at the time of its first publication. It has, however, been superseded by numerous subsequent findings and is now invalid. Several assumptions behind the Bruun Rule are known to be false and nowhere has the Bruun Rule been adequately proven; on the contrary several studies disprove it in the field. No universally applicable model of shoreline retreat under sea-level rise has yet been developed. Despite this, the Bruun Rule is in widespread contemporary use at a global scale both as a management tool and as a scientific concept. The persistence of this concept beyond its original assumption base is attributed to the following factors: Appeal of a simple, easy to use analytical model that is in widespread use. Difficulty of determining the relative validity of 'proofs' and 'disproofs'. Ease of application. Positive advocacy by some scientists. Application by other scientists without critical appraisal. The simple numerical expression of the model. Lack of easy alternatives. The Bruun Rule has no power for predicting shoreline behaviour under rising sea level and should be abandoned. It is a concept whose time has passed. The belief by policy makers that it offers a prediction of future shoreline position may well have stifled much-needed research into the coastal response to sea-level rise.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C.
2001-01-01
As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.
A study of numerical methods for hyperbolic conservation laws with stiff source terms
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Yee, H. C.
1988-01-01
The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained.
Analysis of wind-blown sand movement over transverse dunes.
Jiang, Hong; Huang, Ning; Zhu, Yuanjian
2014-12-01
Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.
Analysis of Wind-blown Sand Movement over Transverse Dunes
Jiang, Hong; Huang, Ning; Zhu, Yuanjian
2014-01-01
Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Flow studies in canine artery bifurcations using a numerical simulation method.
Xu, X Y; Collins, M W; Jones, C J
1992-11-01
Three-dimensional flows through canine femoral bifurcation models were predicted under physiological flow conditions by solving numerically the time-dependent three-dimensional Navier-stokes equations. In the calculations, two models were assumed for the blood, those of (a) a Newtonian fluid, and (b) a non-Newtonian fluid obeying the power law. The blood vessel wall was assumed to be rigid this being the only approximation to the prediction model. The numerical procedure utilized a finite volume approach on a finite element mesh to discretize the equations, and the code used (ASTEC) incorporated the SIMPLE velocity-pressure algorithm in performing the calculations. The predicted velocity profiles were in good qualitative agreement with the in vivo measurements recently obtained by Jones et al. The non-Newtonian effects on the bifurcation flow field were also investigated, and no great differences in velocity profiles were observed. This indicated that the non-Newtonian characteristics of the blood might not be an important factor in determining the general flow patterns for these bifurcations, but could have local significance. Current work involves modeling wall distensibility in an empirically valid manner. Predictions accommodating these will permit a true quantitative comparison with experiment.
NASA Astrophysics Data System (ADS)
Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo
2017-10-01
A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.
A simple numerical model for membrane oxygenation of an artificial lung machine
NASA Astrophysics Data System (ADS)
Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.
2015-11-01
Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.
A unified wall function for compressible turbulence modelling
NASA Astrophysics Data System (ADS)
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
Strength and viscosity effects on perturbed shock front stability in metals
Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...
2017-05-09
Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Sato, K; Yuan, X-F; Kawakatsu, T
2010-02-01
Numerous numerical and experimental evidence suggest that shear banding behavior looks like first-order phase transitions. In this paper, we demonstrate that this correspondence is actually established in the so-called non-local diffusive Johnson-Segalman model (the DJS model), a typical mechanical constitutive model that has been widely used for describing shear banding phenomena. In the neighborhood of the critical point, we apply the reduction procedure based on the center manifold theory to the governing equations of the DJS model. As a result, we obtain a time evolution equation of the flow field that is equivalent to the time-dependent Ginzburg-Landau (TDGL) equations for modeling thermodynamic first-order phase transitions. This result, for the first time, provides a mathematical proof that there is an analogy between the mechanical instability and thermodynamic phase transition at least in the vicinity of the critical point of the shear banding of DJS model. Within this framework, we can clearly distinguish the metastable branch in the stress-strain rate curve around the shear banding region from the globally stable branch. A simple extension of this analysis to a class of more general constitutive models is also discussed. Numerical simulations for the original DJS model and the reduced TDGL equation is performed to confirm the range of validity of our reduction theory.
NASA Astrophysics Data System (ADS)
Huba, J. D.; Joyce, G.
2001-05-01
In the past decade, the Open Source Model for software development has gained popularity and has had numerous major achievements: emacs, Linux, the Gimp, and Python, to name a few. The basic idea is to provide the source code of the model or application, a tutorial on its use, and a feedback mechanism with the community so that the model can be tested, improved, and archived. Given the success of the Open Source Model, we believe it may prove valuable in the development of scientific research codes. With this in mind, we are `Open Sourcing' the low to mid-latitude ionospheric model that has recently been developed at the Naval Research Laboratory: SAMI2 (Sami2 is Another Model of the Ionosphere). The model is comprehensive and uses modern numerical techniques. The structure and design of SAMI2 make it relatively easy to understand and modify: the numerical algorithms are simple and direct, and the code is reasonably well-written. Furthermore, SAMI2 is designed to run on personal computers; prohibitive computational resources are not necessary, thereby making the model accessible and usable by virtually all researchers. For these reasons, SAMI2 is an excellent candidate to explore and test the open source modeling paradigm in space physics research. We will discuss various topics associated with this project. Research supported by the Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, David J.; Luscher, Darby J.; Yeager, John D.
Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less
Walters, David J.; Luscher, Darby J.; Yeager, John D.; ...
2018-02-27
Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewett, D.W.; Yu-Jiuan Chen
The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.
NASA Astrophysics Data System (ADS)
Giordano, V.; Chisari, C.; Rizzano, G.; Latour, M.
2017-10-01
The main aim of this work is to understand how the prediction of the seismic performance of moment-resisting (MR) steel frames depends on the modelling of their dissipative zones when the structure geometry (number of stories and bays) and seismic excitation source vary. In particular, a parametric analysis involving 4 frames was carried out, and, for each one, the full-strength beam-to-column connections were modelled according to 4 numerical approaches with different degrees of sophistication (Smooth Hysteretic Model, Bouc-Wen, Hysteretic and simple Elastic-Plastic models). Subsequently, Incremental Dynamic Analyses (IDA) were performed by considering two different earthquakes (Spitak and Kobe). The preliminary results collected so far pointed out that the influence of the joint modelling on the overall frame response is negligible up to interstorey drift ratio values equal to those conservatively assumed by the codes to define conventional collapse (0.03 rad). Conversely, if more realistic ultimate interstorey drift values are considered for the q-factor evaluation, the influence of joint modelling can be significant, and thus may require accurate modelling of its cyclic behavior.
Two Simple Models for Fracking
NASA Astrophysics Data System (ADS)
Norris, Jaren Quinn
Recent developments in fracking have enable the recovery of oil and gas from tight shale reservoirs. These developments have also made fracking one of the most controversial environmental issues in the United States. Despite the growing controversy surrounding fracking, there is relatively little publicly available research. This dissertation introduces two simple models for fracking that were developed using techniques from non-linear and statistical physics. The first model assumes that the volume of induced fractures must be equal to the volume of injected fluid. For simplicity, these fractures are assumed to form a spherically symmetric damage region around the borehole. The predicted volumes of water necessary to create a damage region with a given radius are in good agreement with reported values. The second model is a modification of invasion percolation which was previously introduced to model water flooding. The reservoir rock is represented by a regular lattice of local traps that contain oil and/or gas separated by rock barriers. The barriers are assumed to be highly heterogeneous and are assigned random strengths. Fluid is injected from a central site and the weakest rock barrier breaks allowing fluid to flow into the adjacent site. The process repeats with the weakest barrier breaking and fluid flowing to an adjacent site each time step. Extensive numerical simulations were carried out to obtain statistical properties of the growing fracture network. The network was found to be fractal with fractal dimensions differing slightly from the accepted values for traditional percolation. Additionally, the network follows Horton-Strahler and Tokunaga branching statistics which have been used to characterize river networks. As with other percolation models, the growth of the network occurs in bursts. These bursts follow a power-law size distribution similar to observed microseismic events. Reservoir stress anisotropy is incorporated into the model by assigning horizontal bonds weaker strengths on average than vertical bonds. Numerical simulations show that increasing bond strength anisotropy tends to reduce the fractal dimension of the growing fracture network, and decrease the power-law slope of the burst size distribution. Although simple, these two models are useful for making informed decisions about fracking.
Entropy of mixing calculations for compound forming liquid alloys in the hard sphere system
NASA Astrophysics Data System (ADS)
Singh, P.; Khanna, K. N.
1984-06-01
It is shown that the semi-empirical model proposed in a previous paper for the evaluation of the entropy of mixing of simple liquid metals alloys leads to accurate results for compound forming liquid alloys. The procedure is similar to that described for a regular solution. Numerical applications are made to NaGa, KPb and KT1 alloys.
ERIC Educational Resources Information Center
Kallunki, Veera
2013-01-01
Pupils' qualitative understanding of DC-circuit phenomena is reported to be weak. In numerous research reports lists of problems in understanding the functioning of simple DC-circuits have been presented. So-called mental model surveys have uncovered difficulties in different age groups, and in different phases of instruction. In this study, the…
Effect of curvature on the backscattering from leaves
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Effect of curvature on the backscattering from a leaf
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Entanglement of two blocks of spins in the critical Ising model
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.
2008-11-01
We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.
Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew
1999-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Interleaved numerical renormalization group as an efficient multiband impurity solver
NASA Astrophysics Data System (ADS)
Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.
2016-06-01
Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.
Towards a metadata scheme for the description of materials - the description of microstructures
NASA Astrophysics Data System (ADS)
Schmitz, Georg J.; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Towards a metadata scheme for the description of materials - the description of microstructures.
Schmitz, Georg J; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Convection driven zonal flows and vortices in the major planets.
Busse, F. H.
1994-06-01
The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation.
A simple mathematical model to predict sea surface temperature over the northwest Indian Ocean
NASA Astrophysics Data System (ADS)
Noori, Roohollah; Abbasi, Mahmud Reza; Adamowski, Jan Franklin; Dehghani, Majid
2017-10-01
A novel and simple mathematical model was developed in this study to enhance the capacity of a reduced-order model based on eigenvectors (RMEV) to predict sea surface temperature (SST) in the northwest portion of the Indian Ocean, including the Persian and Oman Gulfs and Arabian Sea. Developed using only the first two of 12,416 possible modes, the enhanced RMEV closely matched observed daily optimum interpolation SST (DOISST) values. Spatial distribution of the first mode indicated the greatest variations in DOISST occurred in the Persian Gulf. Also, the slightly increasing trend in the temporal component of the first mode observed in the study area over the last 34 years properly reflected the impact of climate change and rising DOISST. Given its simplicity and high level of accuracy, the enhanced RMEV can be applied to forecast DOISST in oceans, which the poor forecasting performance and large computational-time of other numerical models may not allow.
Observation and modelling of urban dew
NASA Astrophysics Data System (ADS)
Richards, Katrina
Despite its relevance to many aspects of urban climate and to several practical questions, urban dew has largely been ignored. Here, simple observations an out-of-doors scale model, and numerical simulation are used to investigate patterns of dewfall and surface moisture (dew + guttation) in urban environments. Observations and modelling were undertaken in Vancouver, B.C., primarily during the summers of 1993 and 1996. Surveys at several scales (0.02-25 km) show that the main controls on dew are weather, location and site configuration (geometry and surface materials). Weather effects are discussed using an empirical factor, FW . Maximum dew accumulation (up to ~ 0.2 mm per night) is seen on nights with moist air and high FW , i.e., cloudless conditions with light winds. Favoured sites are those with high Ysky and surfaces which cool rapidly after sunset, e.g., grass and well insulated roofs. A 1/8-scale model is designed, constructed, and run at an out-of-doors site to study dew patterns in an urban residential landscape which consists of house lots, a street and an open grassed park. The Internal Thermal Mass (ITM) approach is used to scale the thermal inertia of buildings. The model is validated using data from full-scale sites in Vancouver. Patterns in the model agree with those seen at the full-scale, i.e., dew distribution is governed by weather, site geometry and substrate conditions. Correlation is shown between Ysky and surface moisture accumulation. The feasibility of using a numerical model to simulate urban dew is investigated using a modified version of a rural dew model. Results for simple isolated surfaces-a deciduous tree leaf and an asphalt shingle roof-show promise, especially for built surfaces.
A probabilistic method for constructing wave time-series at inshore locations using model scenarios
Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.
2014-01-01
Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen; ...
2017-08-12
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
Makarov, Sergey N.; Yanamadala, Janakinadh; Piazza, Matthew W.; Helderman, Alex M.; Thang, Niang S.; Burnham, Edward H.; Pascual-Leone, Alvaro
2016-01-01
Goals Transcranial magnetic stimulation (TMS) is increasingly used as a diagnostic and therapeutic tool for numerous neuropsychiatric disorders. The use of TMS might cause whole-body exposure to undesired induced currents in patients and TMS operators. The aim of the present study is to test and justify a simple analytical model known previously, which may be helpful as an upper estimate of eddy current density at a particular distant observation point for any body composition and any coil setup. Methods We compare the analytical solution with comprehensive adaptive mesh refinement-based FEM simulations of a detailed full-body human model, two coil types, five coil positions, about 100,000 observation points, and two distinct pulse rise times, thus providing a representative number of different data sets for comparison, while also using other numerical data. Results Our simulations reveal that, after a certain modification, the analytical model provides an upper estimate for the eddy current density at any location within the body. In particular, it overestimates the peak eddy currents at distant locations from a TMS coil by a factor of 10 on average. Conclusion The simple analytical model tested in the present study may be valuable as a rapid method to safely estimate levels of TMS currents at different locations within a human body. Significance At present, safe limits of general exposure to TMS electric and magnetic fields are an open subject, including fetal exposure for pregnant women. PMID:26685221
A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues
Gasser, T. Christian; Bellomo, Facundo J.
2016-01-01
Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data. PMID:27009177
A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues.
Comellas, Ester; Gasser, T Christian; Bellomo, Facundo J; Oller, Sergio
2016-03-01
Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Sondak, David; Oberai, Assad
2012-10-01
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.
First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries
NASA Astrophysics Data System (ADS)
London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco
2018-04-01
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2 ,|m |=2 ) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m |)=(2 ,2 ),(3 ,3 ),(4 ,4 ),(2 ,1 ),(3 ,2 ),(4 ,3 ) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco
2018-04-20
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
Newtonian nudging for a Richards equation-based distributed hydrological model
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark
The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
Newtonian Nudging For A Richards Equation-based Distributed Hydrological Model
NASA Astrophysics Data System (ADS)
Paniconi, C.; Marrocu, M.; Putti, M.; Verbunt, M.
In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimila- tion scheme. Nudging is shown to be successful in improving the hydrological sim- ulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitiv- ity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexi- ble, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be read- ily extended to any features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
Deciphering mRNA Sequence Determinants of Protein Production Rate
NASA Astrophysics Data System (ADS)
Szavits-Nossan, Juraj; Ciandrini, Luca; Romano, M. Carmen
2018-03-01
One of the greatest challenges in biophysical models of translation is to identify coding sequence features that affect the rate of translation and therefore the overall protein production in the cell. We propose an analytic method to solve a translation model based on the inhomogeneous totally asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide sequences determining protein production rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate under physiological conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of the codons' choice for regulating translation rates and ribosome densities.
Application of modern radiative transfer tools to model laboratory quartz emissivity
NASA Astrophysics Data System (ADS)
Pitman, Karly M.; Wolff, Michael J.; Clayton, Geoffrey C.
2005-08-01
Planetary remote sensing of regolith surfaces requires use of theoretical models for interpretation of constituent grain physical properties. In this work, we review and critically evaluate past efforts to strengthen numerical radiative transfer (RT) models with comparison to a trusted set of nadir incidence laboratory quartz emissivity spectra. By first establishing a baseline statistical metric to rate successful model-laboratory emissivity spectral fits, we assess the efficacy of hybrid computational solutions (Mie theory + numerically exact RT algorithm) to calculate theoretical emissivity values for micron-sized α-quartz particles in the thermal infrared (2000-200 cm-1) wave number range. We show that Mie theory, a widely used but poor approximation to irregular grain shape, fails to produce the single scattering albedo and asymmetry parameter needed to arrive at the desired laboratory emissivity values. Through simple numerical experiments, we show that corrections to single scattering albedo and asymmetry parameter values generated via Mie theory become more necessary with increasing grain size. We directly compare the performance of diffraction subtraction and static structure factor corrections to the single scattering albedo, asymmetry parameter, and emissivity for dense packing of grains. Through these sensitivity studies, we provide evidence that, assuming RT methods work well given sufficiently well-quantified inputs, assumptions about the scatterer itself constitute the most crucial aspect of modeling emissivity values.
Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.
Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601
Modeling the periodic stratification and gravitational circulation in San Francisco Bay, California
Cheng, Ralph T.; Casulli, Vincenzo
1996-01-01
A high resolution, three-dimensional (3-D) hydrodynamic numerical model is applied to San Francisco Bay, California to simulate the periodic tidal stratification caused by tidal straining and stirring and their long-term effects on gravitational circulation. The numerical model is formulated using fixed levels in the vertical and uniform computational mesh on horizontal planes. The governing conservation equations, the 3-D shallow water equations, are solved by a semi-implicit finite-difference scheme. Numerical simulations for estuarine flows in San Francisco Bay have been performed to reproduce the hydrodynamic properties of tides, tidal and residual currents, and salt transport. All simulations were carried out to cover at least 30 days, so that the spring-neap variance in the model results could be analyzed. High grid resolution used in the model permits the use of a simple turbulence closure scheme which has been shown to be sufficient to reproduce the tidal cyclic stratification and well-mixed conditions in the water column. Low-pass filtered 3-D time-series reveals the classic estuarine gravitational circulation with a surface layer flowing down-estuary and an up-estuary flow near the bottom. The intensity of the gravitational circulation depends upon the amount of freshwater inflow, the degree of stratification, and spring-neap tidal variations.
Revisiting the Rossby Haurwitz wave test case with contour advection
NASA Astrophysics Data System (ADS)
Smith, Robert K.; Dritschel, David G.
2006-09-01
This paper re-examines a basic test case used for spherical shallow-water numerical models, and underscores the need for accurate, high resolution models of atmospheric and ocean dynamics. The Rossby-Haurwitz test case, first proposed by Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow-water equations on the sphere, J. Comput. Phys. (1992) 221-224], has been examined using a wide variety of shallow-water models in previous papers. Here, two contour-advective semi-Lagrangian (CASL) models are considered, and results are compared with previous test results. We go further by modifying this test case in a simple way to initiate a rapid breakdown of the basic wave state. This breakdown is accompanied by the formation of sharp potential vorticity gradients (fronts), placing far greater demands on the numerics than the original test case does. We also go further by examining other dynamical fields besides the height and potential vorticity, to assess how well the models deal with gravity waves. Such waves are sensitive to the presence or not of sharp potential vorticity gradients, as well as to numerical parameter settings. In particular, large time steps (convenient for semi-Lagrangian schemes) can seriously affect gravity waves but can also have an adverse impact on the primary fields of height and velocity. These problems are exacerbated by a poor resolution of potential vorticity gradients.
Simple Model of Macroscopic Instability in XeCl Discharge Pumped Lasers
NASA Astrophysics Data System (ADS)
Ahmed, Belasri; Zoheir, Harrache
2003-10-01
The aim of this work is to study the development of the macroscopic non uniformity of the electron density of high pressure discharge for excimer lasers and eventually its propagation because of the medium kinetics phenomena. This study is executed using a transverse mono-dimensional model, in which the plasma is represented by a set of resistance's in parallel. This model was employed using a numerical code including three strongly coupled parts: electric circuit equations, electron Boltzmann equation, and kinetics equations (chemical kinetics model). The time variations of the electron density in each plasma element are obtained by solving a set of ordinary differential equations describing the plasma kinetics and external circuit. The use of the present model allows a good comprehension of the halogen depletion phenomena, which is the principal cause of laser ending and allows a simple study of a large-scale non uniformity in preionization density and its effects on electrical and chemical plasma properties. The obtained results indicate clearly that about 50consumed at the end of the pulse. KEY WORDS Excimer laser, XeCl, Modeling, Cold plasma, Kinetic, Halogen depletion, Macroscopic instability.
NASA Astrophysics Data System (ADS)
Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.
2017-12-01
Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re < 30) relevant in this and similar thermal remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant destruction rates, and the extremes that lead to extinction. Overall, this research provides unique insights into the complex interplay of thermochemical processes that govern the success of smouldering as well as other thermal remediation approaches.
Usefulness of Wave Data Assimilation to the WAVE WATCH III Modeling System
NASA Astrophysics Data System (ADS)
Choi, J. K.; Dykes, J. D.; Yaremchuk, M.; Wittmann, P.
2017-12-01
In-situ and remote-sensed wave data are more abundant currently than in years past, with excellent accuracy at global scales. Forecast skill of the WAVE WATCH III model is improved by assimilation of these measurements and they are also useful for model validation and calibration. It has been known that the impact of assimilation in wind-sea conditions is not large, but spectra that result in large swell with long term propagation are identified and assimilated, the improved accuracy of the initial conditions improve the long-term forecasts. The Navy's assimilation method started with the simple Optimal Interpolation (OI) method. Operationally, Fleet Numerical Meteorology and Oceanography Center uses the sequential 2DVar scheme, but a new approach has been tested based on an adjoint-free method to variational assimilation in WAVE WATCH III. We will present the status of wave data assimilation into the WAVE WATCH III numerical model and upcoming development of this new adjoint-free variational approach.
Self-organized dynamics in local load-sharing fiber bundle models.
Biswas, Soumyajyoti; Chakrabarti, Bikas K
2013-10-01
We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.
NASA Astrophysics Data System (ADS)
Dallon, Kathryn L.; Yao, Jing; Wheeler, Dean R.; Mazzeo, Brian A.
2018-04-01
Measurements of the mechanical properties of lithium-ion battery electrode films can be used to quantify and improve manufacturing processes and to predict the mechanical and electrochemical performance of the battery. This paper demonstrates the use of acoustic resonances to distinguish among commercial-grade battery films with different active electrode materials, thicknesses, and densities. Resonances are excited in a clamped circular area of the film using a pulsed infrared laser, and responses are measured using an electret condenser microphone. A numerical model is used to quantify the sensitivity of resonances to changes in mechanical properties. When the numerical model is compared to simple analytical models for thin plates and membranes, the battery films measured here trend more similarly to the membrane model. Resonance measurements are also used to monitor the drying process. Results from a scanning laser Doppler vibrometer verify the modes excited in the films, and a combination of experimental and simulated results is used to estimate the Young's modulus of the battery electrode coating layer.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro
2017-04-01
We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani
2003-04-01
Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.
Optical depth in particle-laden turbulent flows
NASA Astrophysics Data System (ADS)
Frankel, A.; Iaccarino, G.; Mani, A.
2017-11-01
Turbulent clustering of particles causes an increase in the radiation transmission through gas-particle mixtures. Attempts to capture the ensemble-averaged transmission lead to a closure problem called the turbulence-radiation interaction. A simple closure model based on the particle radial distribution function is proposed to capture the effect of turbulent fluctuations in the concentration on radiation intensity. The model is validated against a set of particle-resolved ray tracing experiments through particle fields from direct numerical simulations of particle-laden turbulence. The form of the closure model is generalizable to arbitrary stochastic media with known two-point correlation functions.
Measurements of pressures on the wing of an aircraft model during steady rotation
NASA Technical Reports Server (NTRS)
Martin, Colin A.; Gage, Peter J.; Hultberg, Randy S.; Bowman, James S., Jr.
1990-01-01
An investigation has been conducted in the Spin Tunnel Facility at the NASA Langley Research Center to measure the pressures on the wing surfaces of a model of a Basic Training Aircraft during steady rotation. The tests were made to determine the nature of the wing pressure distribution during rotations typical of spin entry and steady spin. Comparisons are made between the forces and moments obtained from integrating the pressure field with those measured directly during rotary balance force tests. The results are also compared with estimates determined from a simple numerical model of the wing aerodynamic forces.
Modeling the surface evapotranspiration over the southern Great Plains
NASA Technical Reports Server (NTRS)
Liljegren, J. C.; Doran, J. C.; Hubbe, J. M.; Shaw, W. J.; Zhong, S.; Collatz, G. J.; Cook, D. R.; Hart, R. L.
1996-01-01
We have developed a method to apply the Simple Biosphere Model of Sellers et al to calculate the surface fluxes of sensible heat and water vapor at high spatial resolution over the domain of the US DOE's Cloud and Radiation Testbed (CART) in Kansas and Oklahoma. The CART, which is within the GCIP area of interest for the Mississippi River Basin, is an extensively instrumented facility operated as part of the DOE's Atmospheric Radiation Measurement (ARM) program. Flux values calculated with our method will be used to provide lower boundary conditions for numerical models to study the atmosphere over the CART domain.
On Global Optimal Sailplane Flight Strategy
NASA Technical Reports Server (NTRS)
Sander, G. J.; Litt, F. X.
1979-01-01
The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.
State relations for a two-phase mixture of reacting explosives and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Shiro; Saburi, Tei; Ogata, Yuji
2007-10-15
To assess the assumptions behind the two phase mixture rule for reacting explosives, the shock-to-detonation transition process was calculated for high explosives using a finite difference method. An ignition and growth model and the Jones-Wilkins-Lee (JWL) equations of state were employed. The simple mixture rule assumes that the reacting explosive is a simple mixture of the reactant and product components. Four different assumptions, such as that of thermal equilibrium and isotropy, were adopted to calculate the pressure. The main purpose of this paper is to present the answer to the question of why the numerical results of shock-initiation are insensitivemore » to the assumptions adopted. The equations of state for reactants and products were assessed by considering plots of the specific internal energy E and specific volume V. If the slopes of the constant-pressure lines for both components in the E-V plane are almost the same, it is demonstrated that the numerical results are insensitive to the assumptions adopted. We have found that the relation for the specific volumes of the two components can be approximately expressed by a single curve of the specific volume of the reactant vs that of the products. We discuss this relationship in terms of the results of the numerical simulation. (author)« less
Thinning factor distributions viewed through numerical models of continental extension
NASA Astrophysics Data System (ADS)
Svartman Dias, Anna Eliza; Hayman, Nicholas W.; Lavier, Luc L.
2016-12-01
A long-standing question surrounding rifted margins concerns how the observed fault-restored extension in the upper crust is usually less than that calculated from subsidence models or from crustal thickness estimates, the so-called "extension discrepancy." Here we revisit this issue drawing on recently completed numerical results. We extract thinning profiles from four end-member geodynamic model rifts with varying width and asymmetry and propose tectonic models that best explain those results. We then relate the spatial and temporal evolution of upper to lower crustal thinning, or crustal depth-dependent thinning (DDT), and crustal thinning to mantle thinning, or lithospheric DDT, which are difficult to achieve in natural systems due to the lack of observations that constrain thinning at different stages between prerift extension and lithospheric breakup. Our results support the hypothesis that crustal DDT cannot be the main cause of the extension discrepancy, which may be overestimated because of the difficulty in recognizing distributed deformation, and polyphase and detachment faulting in seismic data. More importantly, the results support that lithospheric DDT is likely to dominate at specific stages of rift evolution because crustal and mantle thinning distributions are not always spatially coincident and at times are not even balanced by an equal magnitude of thinning in two dimensions. Moreover, either pure or simple shear models can apply at various points of time and space depending on the type of rift. Both DDT and pure/simple shear variations across space and time can result in observed complex fault geometries, uplift/subsidence, and thermal histories.
Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature
NASA Technical Reports Server (NTRS)
Yoo, Paul
2013-01-01
Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.
Optimized theory for simple and molecular fluids.
Marucho, M; Montgomery Pettitt, B
2007-03-28
An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.
NASA Astrophysics Data System (ADS)
Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.
2010-11-01
AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.
Steady-states for shear flows of a liquid-crystal model: Multiplicity, stability, and hysteresis
NASA Astrophysics Data System (ADS)
Dorn, Tim; Liu, Weishi
In this work, we study shear flows of a fluid layer between two solid blocks via a liquid-crystal type model proposed in [C.H.A. Cheng, L.H. Kellogg, S. Shkoller, D.L. Turcotte, A liquid-crystal model for friction, Proc. Natl. Acad. Sci. USA 21 (2007) 1-5] for an understanding of frictions. A characterization on the existence and multiplicity of steady-states is provided. Stability issue of the steady-states is examined mainly focusing on bifurcations of zero eigenvalues. The stability result suggests that this simple model exhibits hysteresis, and it is supported by a numerical simulation.
Numerical study of the current sheet and PSBL in a magnetotail model
NASA Technical Reports Server (NTRS)
Doxas, I.; Horton, W.; Sandusky, K.; Tajima, T.; Steinolfson, R.
1989-01-01
The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis.
Gas network model allows full reservoir coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Methnani, M.M.
The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less
A Dynamic Approach to Monitoring Particle Fallout in a Cleanroom Environment
NASA Technical Reports Server (NTRS)
Perry, Radford L., III
2010-01-01
This slide presentation discusses a mathematical model to monitor particle fallout in a cleanroom. "Cleanliness levels" do not lead to increases with regards to cleanroom type or time because the levels are not linear. Activity level, impacts the cleanroom class. The numerical method presented leads to a simple Class-hour formulation, that allows for dynamic monitoring of the particle using a standard air particle counter.
Numerical study of rotating detonation engine with an array of injection holes
NASA Astrophysics Data System (ADS)
Yao, S.; Han, X.; Liu, Y.; Wang, J.
2017-05-01
This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.
NASA Astrophysics Data System (ADS)
Gadag, Shiva P.; Patra, Susant
2000-12-01
Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.
Algorithms for computing the geopotential using a simple density layer
NASA Technical Reports Server (NTRS)
Morrison, F.
1976-01-01
Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.
Leading temperature dependence of the conductance in Kondo-correlated quantum dots.
Aligia, A A
2018-04-18
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
Analysis of intrapulse chirp in CO2 oscillators
NASA Technical Reports Server (NTRS)
Moody, Stephen E.; Berger, Russell G.; Thayer, William J., III
1987-01-01
Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed.
NASA Astrophysics Data System (ADS)
Frenkel, Daan
2007-03-01
During the past decade there has been a unique synergy between theory, experiment and simulation in Soft Matter Physics. In colloid science, computer simulations that started out as studies of highly simplified model systems, have acquired direct experimental relevance because experimental realizations of these simple models can now be synthesized. Whilst many numerical predictions concerning the phase behavior of colloidal systems have been vindicated by experiments, the jury is still out on others. In my talk I will discuss some of the recent technical developments, new findings and open questions in computational soft-matter science.
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
NASA Astrophysics Data System (ADS)
Jankovic, I.
2002-05-01
Flow and transport in porous formations are analyzed using numerical simulations. Hydraulic conductivity is treated as a spatial random function characterized by a probability density function and a two-point covariance function. Simulations are performed for a multi-indicator conductivity structure developed by Gedeon Dagan (personal communication). This conductivity structure contains inhomogeneities (inclusions) of elliptical and ellipsoidal geometry that are embedded in a homogeneous background. By varying the distribution of sizes and conductivities of inclusions, any probability density function and two-point covariance may be reproduced. The multi-indicator structure is selected since it yields simple approximate transport solutions (Aldo Fiori, personal communication) and accurate numerical solutions (based on the Analytic Element Method). The dispersion is examined for two conceptual models. Both models are based on the multi-indicator conductivity structure. The first model is designed to examine dispersion in aquifers with continuously varying conductivity. The inclusions in this model cover as much area/volume of the porous formation as possible. The second model is designed for aquifers that contain clay/sand/gravel lenses embedded in otherwise homogeneous background. The dispersion in both aquifer types is simulated numerically. Simulation results are compared to those obtained using simple approximate solutions. In order to infer transport statistics that are representative of an infinite domain using the numerical experiments, the inclusions are placed in a domain that was shaped as a large ellipse (2D) and a large spheroid (3D) that were submerged in an unbounded homogeneous medium. On a large scale, the large body of inclusions behaves like a single large inhomogeneity. The analytic solution for a uniform flow past the single inhomogeneity of such geometry yields uniform velocity inside the domain. The velocity differs from that at infinity and can be used to infer the effective conductivity of the medium. As many as 100,000 inhomogeneities are placed inside the domain for 2D simulations. Simulations in 3D were limited to 50,000 inclusions. A large number of simulations was conducted on a massively parallel supercomputer cluster at the Center for Computational Research, University at Buffalo. Simulations range from mildly heterogeneous formations to highly heterogeneous formations (variance of the logarithm of conductivity equal to 10) and from sparsely populated systems to systems where inhomogeneities cover 95% of the volume. Particles are released and tracked inside the core of constant mean velocity. Following the particle tracking, various medium, flow, and transport statistics are computed. These include: spatial moments of particle positions, probability density function of hydraulic conductivity and each component of velocity, their two-point covariance function in the direction of flow and normal to it, covariance of Lagrangean velocities, and probability density function of travel times to various break-through locations. Following the analytic nature of the flow solution, all the results are presented in dimensionless forms. For example, the dispersion coefficients are made dimensionless with respect to the mean velocity and size of inhomogeneities. Detailed results will be presented and compared to well known first-order results and the results that are based on simple approximate transport solutions of Aldo Fiori.
Predictive Analytics In Healthcare: Medications as a Predictor of Medical Complexity.
Higdon, Roger; Stewart, Elizabeth; Roach, Jared C; Dombrowski, Caroline; Stanberry, Larissa; Clifton, Holly; Kolker, Natali; van Belle, Gerald; Del Beccaro, Mark A; Kolker, Eugene
2013-12-01
Children with special healthcare needs (CSHCN) require health and related services that exceed those required by most hospitalized children. A small but growing and important subset of the CSHCN group includes medically complex children (MCCs). MCCs typically have comorbidities and disproportionately consume healthcare resources. To enable strategic planning for the needs of MCCs, simple screens to identify potential MCCs rapidly in a hospital setting are needed. We assessed whether the number of medications used and the class of those medications correlated with MCC status. Retrospective analysis of medication data from the inpatients at Seattle Children's Hospital found that the numbers of inpatient and outpatient medications significantly correlated with MCC status. Numerous variables based on counts of medications, use of individual medications, and use of combinations of medications were considered, resulting in a simple model based on three different counts of medications: outpatient and inpatient drug classes and individual inpatient drug names. The combined model was used to rank the patient population for medical complexity. As a result, simple, objective admission screens for predicting the complexity of patients based on the number and type of medications were implemented.
Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing
NASA Astrophysics Data System (ADS)
Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
2018-05-01
Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches
for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
Backward bifurcations, turning points and rich dynamics in simple disease models.
Zhang, Wenjing; Wahl, Lindi M; Yu, Pei
2016-10-01
In this paper, dynamical systems theory and bifurcation theory are applied to investigate the rich dynamical behaviours observed in three simple disease models. The 2- and 3-dimensional models we investigate have arisen in previous investigations of epidemiology, in-host disease, and autoimmunity. These closely related models display interesting dynamical behaviors including bistability, recurrence, and regular oscillations, each of which has possible clinical or public health implications. In this contribution we elucidate the key role of backward bifurcations in the parameter regimes leading to the behaviors of interest. We demonstrate that backward bifurcations with varied positions of turning points facilitate the appearance of Hopf bifurcations, and the varied dynamical behaviors are then determined by the properties of the Hopf bifurcation(s), including their location and direction. A Maple program developed earlier is implemented to determine the stability of limit cycles bifurcating from the Hopf bifurcation. Numerical simulations are presented to illustrate phenomena of interest such as bistability, recurrence and oscillation. We also discuss the physical motivations for the models and the clinical implications of the resulting dynamics.
Noisy coupled logistic maps in the vicinity of chaos threshold.
Tirnakli, Ugur; Tsallis, Constantino
2016-04-01
We focus on a linear chain of N first-neighbor-coupled logistic maps in the vicinity of their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength ϵ and the noise width σmax, was recently introduced by Pluchino et al. [Phys. Rev. E 87, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time τ, possible connections with q-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy, Sq, basis of nonextensive statistics mechanics. Here, we take a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple q-Gaussians. Nevertheless, along many decades, the fitting with q-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index q evolves with (N,τ,ϵ,σmax). It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by this model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.
Noisy coupled logistic maps in the vicinity of chaos threshold
NASA Astrophysics Data System (ADS)
Tirnakli, Ugur; Tsallis, Constantino
2016-04-01
We focus on a linear chain of N first-neighbor-coupled logistic maps in the vicinity of their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength ɛ and the noise width σmax, was recently introduced by Pluchino et al. [Phys. Rev. E 87, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time τ, possible connections with q-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy, Sq, basis of nonextensive statistics mechanics. Here, we take a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple q-Gaussians. Nevertheless, along many decades, the fitting with q-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index q evolves with ( N , τ , ɛ , σ m a x ) . It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by this model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.
NASA Astrophysics Data System (ADS)
Pendota, Premchand
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
NASA Astrophysics Data System (ADS)
Liu, Fengshan; Guo, Hongsheng; Smallwood, Gregory J.; Gülder, Ömer L.
2003-06-01
A numerical study of soot formation and oxidation in axisymmetric laminar coflow non-smoking and smoking ethylene diffusion flames was conducted using detailed gas-phase chemistry and complex thermal and transport properties. A modified two-equation soot model was employed to describe soot nucleation, growth and oxidation. Interaction between the gas-phase chemistry and soot chemistry was taken into account. Radiation heat transfer by both soot and radiating gases was calculated using the discrete-ordinates method coupled with a statistical narrow-band correlated-k based band model, and was used to evaluate the simple optically thin approximation. The governing equations in fully elliptic form were solved. The current models in the literature describing soot oxidation by O2 and OH have to be modified in order to predict the smoking flame. The modified soot oxidation model has only moderate effects on the calculation of the non-smoking flame, but dramatically affects the soot oxidation near the flame tip in the smoking flame. Numerical results of temperature, soot volume fraction and primary soot particle size and number density were compared with experimental data in the literature. Relatively good agreement was found between the prediction and the experimental data. The optically thin approximation radiation model significantly underpredicts temperatures in the upper portion of both flames, seriously affecting the soot prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dartevelle, Sebastian
2007-10-01
Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less
Development of analysis technique to predict the material behavior of blowing agent
NASA Astrophysics Data System (ADS)
Hwang, Ji Hoon; Lee, Seonggi; Hwang, So Young; Kim, Naksoo
2014-11-01
In order to numerically simulate the foaming behavior of mastic sealer containing the blowing agent, a foaming and driving force model are needed which incorporate the foaming characteristics. Also, the elastic stress model is required to represent the material behavior of co-existing phase of liquid state and the cured polymer. It is important to determine the thermal properties such as thermal conductivity and specific heat because foaming behavior is heavily influenced by temperature change. In this study, three models are proposed to explain the foaming process and material behavior during and after the process. To obtain the material parameters in each model, following experiments and the numerical simulations are performed: thermal test, simple shear test and foaming test. The error functions are defined as differences between the experimental measurements and the numerical simulation results, and then the parameters are determined by minimizing the error functions. To ensure the validity of the obtained parameters, the confirmation simulation for each model is conducted by applying the determined parameters. The cross-verification is performed by measuring the foaming/shrinkage force. The results of cross-verification tended to follow the experimental results. Interestingly, it was possible to estimate the micro-deformation occurring in automobile roof surface by applying the proposed model to oven process analysis. The application of developed analysis technique will contribute to the design with minimized micro-deformation.
Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations
NASA Astrophysics Data System (ADS)
Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William
2016-05-01
A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.
The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model
NASA Astrophysics Data System (ADS)
Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi
2015-04-01
Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.
Advances in Optical Fiber-Based Faraday Rotation Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A D; McHale, G B; Goerz, D A
2009-07-27
In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreementmore » with our FRDs and other current sensors.« less
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Numerical Simulation of the Detonation of Condensed Explosives
NASA Astrophysics Data System (ADS)
Wang, Cheng; Ye, Ting; Ning, Jianguo
Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.
NASA Astrophysics Data System (ADS)
Akita, T.; Takaki, R.; Shima, E.
2012-04-01
An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.
Dynamics of Social Group Competition: Modeling the Decline of Religious Affiliation
NASA Astrophysics Data System (ADS)
Abrams, Daniel M.; Yaple, Haley A.; Wiener, Richard J.
2011-08-01
When social groups compete for members, the resulting dynamics may be understandable with mathematical models. We demonstrate that a simple ordinary differential equation (ODE) model is a good fit for religious shift by comparing it to a new international data set tracking religious nonaffiliation. We then generalize the model to include the possibility of nontrivial social interaction networks and examine the limiting case of a continuous system. Analytical and numerical predictions of this generalized system, which is robust to polarizing perturbations, match those of the original ODE model and justify its agreement with real-world data. The resulting predictions highlight possible causes of social shift and suggest future lines of research in both physics and sociology.
OBSIFRAC: database-supported software for 3D modeling of rock mass fragmentation
NASA Astrophysics Data System (ADS)
Empereur-Mot, Luc; Villemin, Thierry
2003-03-01
Under stress, fractures in rock masses tend to form fully connected networks. The mass can thus be thought of as a 3D series of blocks produced by fragmentation processes. A numerical model has been developed that uses a relational database to describe such a mass. The model, which assumes the fractures to be plane, allows data from natural networks to test theories concerning fragmentation processes. In the model, blocks are bordered by faces that are composed of edges and vertices. A fracture can originate from a seed point, its orientation being controlled by the stress field specified by an orientation matrix. Alternatively, it can be generated from a discrete set of given orientations and positions. Both kinds of fracture can occur together in a model. From an original simple block, a given fracture produces two simple polyhedral blocks, and the original block becomes compound. Compound and simple blocks created throughout fragmentation are stored in the database. Several fragmentation processes have been studied. In one scenario, a constant proportion of blocks is fragmented at each step of the process. The resulting distribution appears to be fractal, although seed points are random in each fragmented block. In a second scenario, division affects only one random block at each stage of the process, and gives a Weibull volume distribution law. This software can be used for a large number of other applications.
A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa
2017-04-01
Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous medium: Measurement and empirical representation. Soil Science Society of America Journal, 40(2), 203-207.
NASA Astrophysics Data System (ADS)
Ward, M. J.; Walløe, S. J.
2004-06-01
Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.
Numerical modeling of the traction process in the treatment for Pierre-Robin Sequence.
Słowiński, Jakub J; Czarnecka, Aleksandra
2016-10-01
The goal of this numerical study was to identify the results of modulated growth simulation of the mandibular bone during traction in Pierre-Robin Sequence (PRS) treatment. Numerical simulation was conducted in the Ansys 16.2 environment. Two FEM (finite elements method) models of a newborn's mandible (a spatial and a flat model) were developed. The procedure simulated a 20-week traction period. The adopted growth measure was mandibular length increase, defined as the distance between the Co-Pog anatomic points used in cephalometric analysis. The simulation calculations conducted on the developed models showed that modulation had a significant influence on the pace of bone growth. In each of the analyzed cases, growth modulation resulted in an increase in pace. The largest value of increase was 6.91 mm. The modulated growth with the most beneficial load variant increased the basic value of the growth by as much as 24.6%, and growth with the least beneficial variant increased by 7.4%. Traction is a simple, minimally invasive and inexpensive procedure. The proposed algorithm may enable the development of a helpful forecasting tool, which could be of real use to doctors working on Pierre-Robin Sequence and other mandibular deformations in children. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Numerical simulation of steady three-dimensional flows in axial turbomachinery bladerows
NASA Astrophysics Data System (ADS)
Basson, Anton Herman
The formulation for and application of a numerical model for low Mach number steady three-dimensional flows in axial turbomachinery blade rows is presented. The formulation considered here includes an efficient grid generation scheme (particularly suited to computational grids for the analysis of turbulent turbomachinery flows) and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, applicable to viscous and inviscid flows. The grid generation technique uses a combination of algebraic and elliptic methods, in conjunction with the Minimal Residual Method, to economically generate smooth structured grids. For typical H-grids in turbomachinery bladerows, when compared to a purely elliptic grid generation scheme, the presented grid generation scheme produces grids with much improved smoothness near the leading and trailing edges, allows the use of small near wall grid spacing required by low Reynolds number turbulence models, and maintains orthogonality of the grid near the solid boundaries even for high flow angle cascades. A specialized embedded H-grid for application particularly to tip clearance flows is presented. This topology smoothly discretizes the domain without modifying the tip shape, while requiring only minor modifications to H-grid flow solvers. Better quantitative modeling of the tip clearance vortex structure than that obtained with a pinched tip approximation is demonstrated. The formulation of artificial dissipation terms for a semi-implicit, pressure-based (SIMPLE type) flow solver, is presented. It is applied to both the Euler and the Navier-Stokes equations, expressed in generalized coordinates using a non-staggered grid. This formulation is compared to some SIMPLE and time marching formulations, revealing the artificial dissipation inherent in some commonly used semi-implicit formulations. The effect of the amount of dissipation on the accuracy of the solution and the convergence rate is quantitatively demonstrated for a number of flow cases. The ability of the formulation to model complex steady turbomachinery flows is demonstrated, e.g. for pressure driven secondary flows, turbine nozzle wakes, turbulent boundary layers. The formulation's modeling of blade surface heat transfer is assessed. The numerical model is used to investigate the structure of phenomena associated with tip clearance flows in a turbine nozzle.
Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo
2016-05-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.
Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo
2015-01-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866
Numerical and Experimental Study of a Cooling for Vanes in a Small Turbine Engine
NASA Astrophysics Data System (ADS)
Šimák, Jan; Michálek, Jan
2016-03-01
This paper is concerned with a cooling system for inlet guide vanes of a small turbine engine which are exposed to a high temperature gas leaving a combustion chamber. Because of small dimensions of the vanes, only a simple internal cavity and cooling holes can be realized. The idea was to utilize a film cooling technique. The proposed solution was simulated by means of a numerical method based on a coupling of CFD and heat transfer solvers. The numerical results of various scenarios (different coolant temperature, heat transfer to surroundings) showed a desired decrease of the temperature, especially on the most critical part - the trailing edge. The numerical data are compared to results obtained by experimental measurements performed in a test facility in our institute. A quarter segment model of the inlet guide vanes wheel was equipped with thermocouples in order to verify an effect of cooling. Despite some uncertainty in the results, a verifiable decrease of the vane temperature was observed.
Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition
NASA Astrophysics Data System (ADS)
Schrenk, K. J.; Felder, A.; Deflorin, S.; Araújo, N. A. M.; D'Souza, R. M.; Herrmann, H. J.
2012-03-01
The BFW model introduced by Bohman, Frieze, and Wormald [Random Struct. Algorithms1042-983210.1002/rsa.20038, 25, 432 (2004)], and recently investigated in the framework of discontinuous percolation by Chen and D'Souza [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.115701 106, 115701 (2011)], is studied on the square and simple-cubic lattices. In two and three dimensions, we find numerical evidence for a strongly discontinuous transition. In two dimensions, the clusters at the threshold are compact with a fractal surface of fractal dimension df=1.49±0.02. On the simple-cubic lattice, distinct jumps in the size of the largest cluster are observed. We proceed to analyze the tree-like version of the model, where only merging bonds are sampled, for dimension two to seven. The transition is again discontinuous in any considered dimension. Finally, the dependence of the cluster-size distribution at the threshold on the spatial dimension is also investigated.
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1982-01-01
The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanizza, G.; Nugier, F., E-mail: giuseppe.fanizza@ba.infn.it, E-mail: fabienjean.nugier@unibo.it
We present in this paper a new application of the geodesic light-cone (GLC) gauge for weak lensing calculations. Using interesting properties of this gauge, we derive an exact expression of the amplification matrix—involving convergence, magnification and shear—and of the deformation matrix—involving the optical scalars. These expressions are simple and non-perturbative as long as no caustics are created on the past light-cone and are, by construction, free from the thin lens approximation. We apply these general expressions on the example of an Lemaȋtre-Tolman-Bondi (LTB) model with an off-center observer and obtain explicit forms for the lensing quantities as a direct consequencemore » of the non-perturbative transformation between GLC and LTB coordinates. We show their evolution in redshift after a numerical integration, for underdense and overdense LTB models, and interpret their respective variations in the simple non-curvature case.« less
Correcting the initialization of models with fractional derivatives via history-dependent conditions
NASA Astrophysics Data System (ADS)
Du, Maolin; Wang, Zaihua
2016-04-01
Fractional differential equations are more and more used in modeling memory (history-dependent, non-local, or hereditary) phenomena. Conventional initial values of fractional differential equations are defined at a point, while recent works define initial conditions over histories. We prove that the conventional initialization of fractional differential equations with a Riemann-Liouville derivative is wrong with a simple counter-example. The initial values were assumed to be arbitrarily given for a typical fractional differential equation, but we find one of these values can only be zero. We show that fractional differential equations are of infinite dimensions, and the initial conditions, initial histories, are defined as functions over intervals. We obtain the equivalent integral equation for Caputo case. With a simple fractional model of materials, we illustrate that the recovery behavior is correct with the initial creep history, but is wrong with initial values at the starting point of the recovery. We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically.
The effects of numerical-model complexity and observation type on estimated porosity values
Starn, Jeffrey; Bagtzoglou, Amvrossios C.; Green, Christopher T.
2015-01-01
The relative merits of model complexity and types of observations employed in model calibration are compared. An existing groundwater flow model coupled with an advective transport simulation of the Salt Lake Valley, Utah (USA), is adapted for advective transport, and effective porosity is adjusted until simulated tritium concentrations match concentrations in samples from wells. Two calibration approaches are used: a “complex” highly parameterized porosity field and a “simple” parsimonious model of porosity distribution. The use of an atmospheric tracer (tritium in this case) and apparent ages (from tritium/helium) in model calibration also are discussed. Of the models tested, the complex model (with tritium concentrations and tritium/helium apparent ages) performs best. Although tritium breakthrough curves simulated by complex and simple models are very generally similar, and there is value in the simple model, the complex model is supported by a more realistic porosity distribution and a greater number of estimable parameters. Culling the best quality data did not lead to better calibration, possibly because of processes and aquifer characteristics that are not simulated. Despite many factors that contribute to shortcomings of both the models and the data, useful information is obtained from all the models evaluated. Although any particular prediction of tritium breakthrough may have large errors, overall, the models mimic observed trends.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
NASA Astrophysics Data System (ADS)
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al.,
Large deflections and vibrations of a tip pulled beam with variable transversal section
NASA Astrophysics Data System (ADS)
Kurka, P.; Izuka, J.; Gonzalez, P.; Teixeira, L. H.
2016-10-01
The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.
Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov
We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten
2017-01-01
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience. PMID:28186182
Reflection of a polarized light cone
NASA Astrophysics Data System (ADS)
Brody, Jed; Weiss, Daniel; Berland, Keith
2013-01-01
We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.
Simple spatial scaling rules behind complex cities.
Li, Ruiqi; Dong, Lei; Zhang, Jiang; Wang, Xinran; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene
2017-11-28
Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C; Hütt, Marc-Thorsten
2017-02-10
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
Sensory Perception and Aging in Model Systems: From the Outside In
Linford, Nancy J.; Kuo, Tsung-Han; Chan, Tammy P.; Pletcher, Scott D.
2014-01-01
Sensory systems provide organisms from bacteria to human with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organism lifespan, have opened the door for powerful new research into aging. While direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging. PMID:21756108
Sensory perception and aging in model systems: from the outside in.
Linford, Nancy J; Kuo, Tsung-Han; Chan, Tammy P; Pletcher, Scott D
2011-01-01
Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging. Although direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging.
NASA Astrophysics Data System (ADS)
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten
2017-02-01
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
NASA Technical Reports Server (NTRS)
Yung, Chain Nan
1988-01-01
A method for predicting turbulent flow in combustors and diffusers is developed. The Navier-Stokes equations, incorporating a turbulence kappa-epsilon model equation, were solved in a nonorthogonal curvilinear coordinate system. The solution applied the finite volume method to discretize the differential equations and utilized the SIMPLE algorithm iteratively to solve the differenced equations. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass, momentum and energy fluxes. The numerical accuracy was assessed using different finite differencing methods, i.e., hybrid, quadratic upwind and skew upwind, to represent the convection terms. Flows in different geometries of combustors and diffusers were simulated and results compared with experimental data and good agreement was obtained.
Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Tong, Zhonghua; He, Zhuoshi; Su, Jing; Wu, Fengchang
2014-01-01
The importance of developing numeric nutrient criteria has been recognized to protect the designated uses of water bodies from nutrient enrichment that is associated with broadly occurring levels of nitrogen/phosphorus pollution. The identification and estimation of stressor-response models in aquatic ecosystems has been shown to be useful in the determination of nutrient criteria. In this study, three methods based on stressor-response relationships were applied to determine nutrient criteria for Yungui ecoregion lakes with respect to total phosphorus (TP), total nitrogen (TN), and planktonic chlorophyll a (Chl a). Simple linear regression (SLR) models were established to provide an estimate of the relationship between a response variable and a stressor. Multiple linear regressions were used to simultaneously estimate the effect of TP and TN on Chl a. A morphoedaphic index (MEI) was applied to derive nutrient criteria using data from Yungui ecoregion lakes, which were considered as areas with less anthropogenic influences. Nutrient criteria, as determined by these three methods, showed broad agreement for all parameters. The ranges of numeric nutrient criteria for Yungui ecoregion lakes were determined as follows: TP 0.008-0.010 mg/L and TN 0.140-0.178 mg/L. The stressor-response analysis described will be of benefit to support countries in their numeric criteria development programs and to further the goal of reducing nitrogen/phosphorus pollution in China.
A survey of commercial object-oriented database management systems
NASA Technical Reports Server (NTRS)
Atkins, John
1992-01-01
The object-oriented data model is the culmination of over thirty years of database research. Initially, database research focused on the need to provide information in a consistent and efficient manner to the business community. Early data models such as the hierarchical model and the network model met the goal of consistent and efficient access to data and were substantial improvements over simple file mechanisms for storing and accessing data. However, these models required highly skilled programmers to provide access to the data. Consequently, in the early 70's E.F. Codd, an IBM research computer scientists, proposed a new data model based on the simple mathematical notion of the relation. This model is known as the Relational Model. In the relational model, data is represented in flat tables (or relations) which have no physical or internal links between them. The simplicity of this model fostered the development of powerful but relatively simple query languages that now made data directly accessible to the general database user. Except for large, multi-user database systems, a database professional was in general no longer necessary. Database professionals found that traditional data in the form of character data, dates, and numeric data were easily represented and managed via the relational model. Commercial relational database management systems proliferated and performance of relational databases improved dramatically. However, there was a growing community of potential database users whose needs were not met by the relational model. These users needed to store data with data types not available in the relational model and who required a far richer modelling environment than that provided by the relational model. Indeed, the complexity of the objects to be represented in the model mandated a new approach to database technology. The Object-Oriented Model was the result.
Slab stagnation and detachment under northeast China
NASA Astrophysics Data System (ADS)
Honda, Satoru
2016-03-01
Results of tomography models around the Japanese Islands show the existence of a gap between the horizontally lying (stagnant) slab extending under northeastern China and the fast seismic velocity anomaly in the lower mantle. A simple conversion from the fast velocity anomaly to the low-temperature anomaly shows a similar feature. This feature appears to be inconsistent with the results of numerical simulations on the interaction between the slab and phase transitions with temperature-dependent viscosity. Such numerical models predict a continuous slab throughout the mantle. I extend previous analyses of the tomography model and model calculations to infer the origins of the gap beneath northeastern China. Results of numerical simulations that take the geologic history of the subduction zone into account suggest two possible origins for the gap: (1) the opening of the Japan Sea led to a breaking off of the otherwise continuous subducting slab, or (2) the western edge of the stagnant slab is the previous subducted ridge, which was the plate boundary between the extinct Izanagi and the Pacific plates. Origin (2) suggesting the present horizontally lying slab has accumulated since the ridge subduction, is preferable for explaining the present length of the horizontally lying slab in the upper mantle. Numerical models of origin (1) predict a stagnant slab in the upper mantle that is too short, and a narrow or non-existent gap. Preferred models require rather stronger flow resistance of the 660-km phase change than expected from current estimates of the phase transition property. Future detailed estimates of the amount of the subducted Izanagi plate and the present stagnant slab would be useful to constrain models. A systematic along-arc variation of the slab morphology from the northeast Japan to Kurile arcs is also recognized, and its understanding may constrain the 3D mantle flow there.
Numerical Modeling of Geomorphic Change on Sandy Coasts as a Function of Changing Wave Climate
NASA Astrophysics Data System (ADS)
Adams, P. N.; McNamara, D.; Murray, A. B.; Lovering, J.
2009-12-01
Climate change is expected to affect sandy coast geomorphology through two principal mechanisms: (1) sea level rise, which affects cross-shore sediment transport tending to drive shoreline retreat, and (2) alteration of statistical distributions in ocean storm wave climate (deep water wave height, period, and direction), which affects longshore sediment transport gradients that result in shoreline erosion and accretion. To address potential climate change-driven effects on longshore sediment transport gradients, we are developing techniques to link various numerical models of wave transformation with several different longshore sediment transport formulae in accordance with the Community Surface Dynamics Modeling System (CSDMS) project. Results of the various wave transformation models are compared to field observations of cross-shelf wave transformation along the North Florida Atlantic coast for purposes of model verification and calibration. Initial comparisons between wave-transformation methods (assumption of shore-parallel contours, simple wave ray tracing, and the SWAN spectral wave model) on artificially constructed continental shelves reveal an increasing discrepancy of results for increasing complexity of shelf bathymetry. When the more advanced SWAN spectral wave model is coupled with a simple CERC-type formulation of longshore sediment transport and applied to a real coast with complex offshore shoals (Cape Canaveral region of the North Florida Atlantic Coast), the patterns of erosion and accretion agree with results of the simplest wave-propagation models for some wave conditions, but disagree in others. Model simulations in which wave height and period are held constant show that locations of divergence and convergence of sediment flux shift with deep water wave-approach angle in ways that would not always be predicted using less sophisticated wave propagation models. Thus, predicting long-term local shoreline change on actual coastlines featuring complex bathymetry requires the extra computational effort to run the more advanced model over a wide range of wave conditions.
Graph cuts for curvature based image denoising.
Bae, Egil; Shi, Juan; Tai, Xue-Cheng
2011-05-01
Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.
Improved Cook-off Modeling of Multi-component Cast Explosives
NASA Astrophysics Data System (ADS)
Nichols, Albert
2017-06-01
In order to understand the hazards associated with energetic materials, it is important to understand their behavior in adverse thermal environments. These processes have been relatively well understood for solid explosives, however, the same cannot be said for multi-component melt-cast explosives. Here we describe the continued development of ALE3D, a coupled thermal/chemical/mechanical code, to improve its description of fluid explosives. The improved physics models include: 1) Chemical potential driven species segregation. This model allows us to model the complex flow fields associated with the melting and decomposing Comp-B, where the denser RDX tends to settle and the decomposing gasses rise, 2) Automatically scaled stream-wise diffusion model for thermal, species, and momentum diffusion. These models add sufficient numerical diffusion in the direction of flow to maintain numerical stability when the system is under resolved, as occurs for large systems. And 3) a slurry viscosity model, required to properly define the flow characteristics of the multi-component fluidized system. These models will be demonstrated on a simple Comp-B system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model
NASA Astrophysics Data System (ADS)
Capecchi, V.; Gozzini, B.
2012-04-01
The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently implementing and testing an EKF for combining conventional observations and remote sensed soil moisture data in order to produce a more accurate analysis. In the present work verification skills (RMSE, BIAS, correlation) of both control and test run are presented using observed data collected by International Soil Moisture Network. Moreover improvements in temperature predictions are evaluated.
Coarse-graining errors and numerical optimization using a relative entropy framework
NASA Astrophysics Data System (ADS)
Chaimovich, Aviel; Shell, M. Scott
2011-03-01
The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, Srel, that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework.
Numerical and Experimental Studies on Impact Loaded Concrete Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo
2006-07-01
An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior ofmore » the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)« less
A simplified lumped model for the optimization of post-buckled beam architecture wideband generator
NASA Astrophysics Data System (ADS)
Liu, Weiqun; Formosa, Fabien; Badel, Adrien; Hu, Guangdi
2017-11-01
Buckled beams structures are a classical kind of bistable energy harvesters which attract more and more interests because of their capability to scavenge energy over a large frequency band in comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization method with relatively high complexity, while the simplification with a single-mode solution lacks accuracy. It stems on the optimization of the energy potential features to finally define the physical and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit relationship between the potential shape and parameters to allow efficient design of bistable beams based generator. The accuracy of the approximation model is studied with the effectiveness of application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the potential shape with low buckling level and the sectional area determined, is found. This feature extends the applicable range of the model by utilizing the design of high moment of inertia. Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. An optimization example of using the proposed model is demonstrated with satisfactory performance.
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
SIGNUM: A Matlab, TIN-based landscape evolution model
NASA Astrophysics Data System (ADS)
Refice, A.; Giachetta, E.; Capolongo, D.
2012-08-01
Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.
Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2003-01-01
Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.
A diffusion model of protected population on bilocal habitat with generalized resource
NASA Astrophysics Data System (ADS)
Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.
2017-11-01
A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.
Moving line model and avalanche statistics of Bingham fluid flow in porous media.
Chevalier, Thibaud; Talon, Laurent
2015-07-01
In this article, we propose a simple model to understand the critical behavior of path opening during flow of a yield stress fluid in porous media as numerically observed by Chevalier and Talon (2015). This model can be mapped to the problem of a contact line moving in an heterogeneous field. Close to the critical point, this line presents an avalanche dynamic where the front advances by a succession of waiting time and large burst events. These burst events are then related to the non-flowing (i.e. unyielded) areas. Remarkably, the statistics of these areas reproduce the same properties as in the direct numerical simulations. Furthermore, even if our exponents seem to be close to the mean field universal exponents, we report an unusual bump in the distribution which depends on the disorder. Finally, we identify a scaling invariance of the cluster spatial shape that is well fit, to first order, by a self-affine parabola.
Direct Numerical Simulation of Turbulent Condensation in Clouds
NASA Technical Reports Server (NTRS)
Shariff, K.; Paoli, R.
2004-01-01
In this brief, we investigate the turbulent condensation of a population of droplets by means of a direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian solver is used where each particle is tracked and its growth by water vapor condensation is monitored exactly. The main goals of the study are to find out whether turbulence broadens the droplet size distribution, as observed in in situ measurements. The second issue is to understand if and for how long a correlation between the droplet radius and the local supersaturation exists for the purpose of modeling sub-grid scale microphysics in cloud-resolving codes. This brief is organized as follows. In Section 2 the governing equations are presented, including the droplet condensation model. The implementation of the forcing procedure is described in Section 3. The simulation results are presented in Section 4 together with a sketch of a simple stochastic model for turbulent condensation. Conclusions and the main outcomes of the study are given in Section 5.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms
NASA Technical Reports Server (NTRS)
Driscoll, Kevin T.; Blakeslee, Richard J.; Baginski, Michael E.
1992-01-01
A thorough examination of the results of a time-dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time-averaged electrical properties and the steady-state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm can be determined with a formulation similar to what was first described by Holzer and Saxon (1952). From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud-to-ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time-varying generator current, a varying flash rate, and a changing lightning mix.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions
Friedly, John C.; Rubin, Jacob
1992-01-01
A new approach is applied to the problem of modeling solute transport accompanied by many chemical reactions. The approach, based on concepts of the concentration space and its stoichiometric subspaces, uses elements of the subspaces as primary dependent variables. It is shown that the resulting model equations are compact in form, isolate the chemical reaction expressions from flow expressions, and can be used for either equilibrium or kinetically controlled reactions. The implications of the results on numerical algorithms for solving the equations are discussed. The application of the theory is illustrated throughout with examples involving a simple but broadly representative set of reactions previously considered in the literature. Numerical results are presented for four interconnected reactions: a homogeneous complexation reaction, two sorption reactions, and a dissolution/precipitation reaction. Three cases are considered: (1) four kinetically controlled reactions, (2) four equilibrium-controlled reactions, and (3) a system with two kinetically controlled reactions and two equilibrium-controlled reactions.
Finite element solution of optimal control problems with inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1990-01-01
A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.
Features of the accretion in the EX Hydrae system: Results of numerical simulation
NASA Astrophysics Data System (ADS)
Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.
2017-07-01
A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.
On the CCN (de)activation nonlinearities
NASA Astrophysics Data System (ADS)
Arabas, Sylwester; Shima, Shin-ichiro
2017-09-01
We take into consideration the evolution of particle size in a monodisperse aerosol population during activation and deactivation of cloud condensation nuclei (CCN). Our analysis reveals that the system undergoes a saddle-node bifurcation and a cusp catastrophe. The control parameters chosen for the analysis are the relative humidity and the particle concentration. An analytical estimate of the activation timescale is derived through estimation of the time spent in the saddle-node bifurcation bottleneck. Numerical integration of the system coupled with a simple air-parcel cloud model portrays two types of activation/deactivation hystereses: one associated with the kinetic limitations on droplet growth when the system is far from equilibrium, and one occurring close to equilibrium and associated with the cusp catastrophe. We discuss the presented analyses in context of the development of particle-based models of aerosol-cloud interactions in which activation and deactivation impose stringent time-resolution constraints on numerical integration.
Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops
NASA Astrophysics Data System (ADS)
Struck, Curtis
2018-05-01
Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.
A mean spherical model for soft potentials: The hard core revealed as a perturbation
NASA Technical Reports Server (NTRS)
Rosenfeld, Y.; Ashcroft, N. W.
1978-01-01
The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I 2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I 2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
NASA Technical Reports Server (NTRS)
Ghil, M.
1980-01-01
A unified theoretical approach to both the four-dimensional assimilation of asynoptic data and the initialization problem is attempted. This approach relies on the derivation of certain relationships between geopotential tendencies and tendencies of the horizontal velocity field in primitive-equation models of atmospheric flow. The approach is worked out and analyzed in detail for some simple barotropic models. Certain independent results of numerical experiments for the time-continuous assimilation of real asynoptic meteorological data into a complex, baroclinic weather prediction model are discussed in the context of the present approach. Tentative inferences are drawn for practical assimilation procedures.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
On the joint inversion of geophysical data for models of the coupled core-mantle system
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1991-01-01
Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.
Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere
NASA Technical Reports Server (NTRS)
Mac Low, Mordecai-Mark; Zahnle, Kevin
1994-01-01
We use the astrophysical hydrocode ZEUS to compute high-resolution models of the disruption and deceleration of cometary fragments striking Jupiter. We find that simple analytic and semianalytic models work well for kilometer-size impactors. We show that previous numerical models that placed the explosion much deeper in the atmosphere failed to fully resolve important gasdynamical instabilities. These instabilities tear the comet apart, greatly increase its effective cross section, and bring it to an abrupt halt. A 1 km diameter fragment loses over 90% of its kinetic energy within a single scale height at an atmospheric pressure of order 10 bars. For all practical purposes, it explodes.
Applications of Perron-Frobenius theory to population dynamics.
Li, Chi-Kwong; Schneider, Hans
2002-05-01
By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. When the fertility matrix is scaled by the net reproductive rate, the growth rate of the model is $1$. More generally, we show how to achieve a given growth rate for the model by scaling the fertility matrix. Demographic interpretations of the results are given.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.
Chemical control of rate and onset temperature of nadimide polymerization
NASA Technical Reports Server (NTRS)
Lauver, R. W.
1985-01-01
The chemistry of norbornenyl capped imide compounds (nadimides) is briefly reviewed with emphasis on the contribution of Diels-Alder reversion in controlling the rate and onset of the thermal polymerization reaction. Control of onset temperature of the cure exotherm by adjusting the concentration of maleimide is demonstrated using selected model compounds. The effects of nitrophenyl compounds as free radical retarders on nadimide reactivity are discussed. A simple copolymerization model is proposed for the overall nadimide cure reaction. An approximate numerical analysis is carried out to demonstrate the ability of the model to simulate the trends observed for both maleimide and nitrophenyl additions.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
A simple mathematical model of society collapse applied to Easter Island
NASA Astrophysics Data System (ADS)
Bologna, M.; Flores, J. C.
2008-02-01
In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society. Based on historical reports, the available primary resources consisted almost exclusively in the trees, then we describe the inhabitants and the resources as an isolated dynamical system. A mathematical, and numerical, analysis about the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters and a demographic curve is presented. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of another extinguished civilization (Copán Maya) confirming the consistency of the adopted model.
MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.
Wade, Matthew J; Oakley, Jordan; Harbisher, Sophie; Parker, Nicholas G; Dolfing, Jan
2017-01-01
Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.
Morphodynamic modeling of the river pattern continuum (Invited)
NASA Astrophysics Data System (ADS)
Nicholas, A. P.
2013-12-01
Numerical models provide valuable tools for integrating understanding of fluvial processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles and the spatial and temporal transitions between styles that are driven by changes in environmental forcing. However, while numerical modeling of rivers has advanced considerable over the past few decades, this has been accomplished largely by developing separate approaches to modeling single and multi-thread channels. Results are presented here from numerical simulations undertaken using a new model of river and floodplain co-evolution, applied to investigate the morphodynamics of large sand-bed rivers. This model solves the two-dimensional depth-averaged shallow water equations using a Godunov-type finite volume scheme, with a two-fraction representation of sediment transport, and includes the effects of secondary circulation, bank erosion and floodplain development due to the colonization of bar surfaces by vegetation. Simulation results demonstrate the feasibility of representing a wide range of fluvial styles (including braiding, meandering and anabranching channels) using relatively simple physics-based models, and provide insight into the controls on channel pattern diversity in large sand-bed rivers. Analysis of model sensitivity illustrates the important role of upstream boundary conditions as a control on channel dynamics. Moreover, this analysis highlights key uncertainties in model process representation and their implications for modelling river evolution in response to natural and anthropogenic-induced river disturbance.
A numerical algorithm of tooth profile of non-circular cylindrical gear
NASA Astrophysics Data System (ADS)
Wang, Xuan
2017-08-01
Non-circular cylindrical gear (NCCG) is a common form of non-circular gear. Different from the circular gear, the tooth profile equation of NCCG cannot be obtained. So it is necessary to use a numerical algorithm to calculate the tooth profile of NCCG. For this reason, this paper presents a simple and highly efficient numerical algorithm to obtain the tooth profile of NCCG. Firstly, the mathematical model of tooth profile envelope of NCCG is established based on the principle of gear shaping, and the tooth profile envelope of NCCG is obtained. Secondly, the polar radius and polar angle of shaper cutter tooth profile are chosen as the criterions, by which the points of NCCG tooth cogging can be screened out. Finally, the boundary of tooth cogging points is extracted by a distance criterion and correspondingly the tooth profile of NCCG is obtained.
Danel, J-F; Kazandjian, L; Zérah, G
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.
NASA Astrophysics Data System (ADS)
Danel, J.-F.; Kazandjian, L.; Zérah, G.
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.
The evolution of stable magnetic fields in stars: an analytical approach
NASA Astrophysics Data System (ADS)
Mestel, Leon; Moss, David
2010-07-01
The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
NASA Astrophysics Data System (ADS)
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.