Engineering rules for evaluating the efficiency of multiplexing traffic streams
NASA Astrophysics Data System (ADS)
Klincewicz, John G.
2004-09-01
It is common, either for a telecommunications service provider or for a corporate enterprise, to have multiple data networks. For example, both an IP network and an ATM or Frame Relay network could be in operation to serve different applications. This can result in parallel transport links between the same two locations, each carrying data traffic under a different protocol. In this paper, we consider some practical engineering rules, for particular situations, to evaluate whether or not it is advantageous to combine these parallel traffic streams onto a single transport link. Combining the streams requires additional overhead (a so-called "cell tax" ) but, in at least some situations, can result in more efficient use of modular transport capacity. Simple graphs can be used to summarize the analysis. Some interesting, and perhaps unexpected, observations can be made.
Digital intermediate frequency QAM modulator using parallel processing
Pao, Hsueh-Yuan [Livermore, CA; Tran, Binh-Nien [San Ramon, CA
2008-05-27
The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.
JPARSS: A Java Parallel Network Package for Grid Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jie; Akers, Walter; Chen, Ying
2002-03-01
The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size.more » This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services« less
Simple and flexible SAS and SPSS programs for analyzing lag-sequential categorical data.
O'Connor, B P
1999-11-01
This paper describes simple and flexible programs for analyzing lag-sequential categorical data, using SAS and SPSS. The programs read a stream of codes and produce a variety of lag-sequential statistics, including transitional frequencies, expected transitional frequencies, transitional probabilities, adjusted residuals, z values, Yule's Q values, likelihood ratio tests of stationarity across time and homogeneity across groups or segments, transformed kappas for unidirectional dependence, bidirectional dependence, parallel and nonparallel dominance, and significance levels based on both parametric and randomization tests.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
The dynamics of climate-induced deglacial ice stream acceleration
NASA Astrophysics Data System (ADS)
Robel, A.; Tziperman, E.
2015-12-01
Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, A.; Davis, A.; University of Wisconsin-Madison, Madison, WI 53706
CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise tomore » extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)« less
A parallel computing engine for a class of time critical processes.
Nabhan, T M; Zomaya, A Y
1997-01-01
This paper focuses on the efficient parallel implementation of systems of numerically intensive nature over loosely coupled multiprocessor architectures. These analytical models are of significant importance to many real-time systems that have to meet severe time constants. A parallel computing engine (PCE) has been developed in this work for the efficient simplification and the near optimal scheduling of numerical models over the different cooperating processors of the parallel computer. First, the analytical system is efficiently coded in its general form. The model is then simplified by using any available information (e.g., constant parameters). A task graph representing the interconnections among the different components (or equations) is generated. The graph can then be compressed to control the computation/communication requirements. The task scheduler employs a graph-based iterative scheme, based on the simulated annealing algorithm, to map the vertices of the task graph onto a Multiple-Instruction-stream Multiple-Data-stream (MIMD) type of architecture. The algorithm uses a nonanalytical cost function that properly considers the computation capability of the processors, the network topology, the communication time, and congestion possibilities. Moreover, the proposed technique is simple, flexible, and computationally viable. The efficiency of the algorithm is demonstrated by two case studies with good results.
Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W
2017-09-19
Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Drake, J. F.; Swisdak, M.
2017-12-01
How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.
Anatomically constrained neural network models for the categorization of facial expression
NASA Astrophysics Data System (ADS)
McMenamin, Brenton W.; Assadi, Amir H.
2004-12-01
The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.
Anatomically constrained neural network models for the categorization of facial expression
NASA Astrophysics Data System (ADS)
McMenamin, Brenton W.; Assadi, Amir H.
2005-01-01
The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.
Warburton, William K.; Zhou, Zhiquing
1999-01-01
A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.
NASA Astrophysics Data System (ADS)
Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia
2018-03-01
Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.
Cosmic-ray streaming and anisotropies
NASA Technical Reports Server (NTRS)
Forman, M. A.; Gleeson, L. J.
1975-01-01
The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.
Boyle, Peter A.; Christ, Norman H.; Gara, Alan; Mawhinney, Robert D.; Ohmacht, Martin; Sugavanam, Krishnan
2012-12-11
A prefetch system improves a performance of a parallel computing system. The parallel computing system includes a plurality of computing nodes. A computing node includes at least one processor and at least one memory device. The prefetch system includes at least one stream prefetch engine and at least one list prefetch engine. The prefetch system operates those engines simultaneously. After the at least one processor issues a command, the prefetch system passes the command to a stream prefetch engine and a list prefetch engine. The prefetch system operates the stream prefetch engine and the list prefetch engine to prefetch data to be needed in subsequent clock cycles in the processor in response to the passed command.
Neuronal basis of speech comprehension.
Specht, Karsten
2014-01-01
Verbal communication does not rely only on the simple perception of auditory signals. It is rather a parallel and integrative processing of linguistic and non-linguistic information, involving temporal and frontal areas in particular. This review describes the inherent complexity of auditory speech comprehension from a functional-neuroanatomical perspective. The review is divided into two parts. In the first part, structural and functional asymmetry of language relevant structures will be discus. The second part of the review will discuss recent neuroimaging studies, which coherently demonstrate that speech comprehension processes rely on a hierarchical network involving the temporal, parietal, and frontal lobes. Further, the results support the dual-stream model for speech comprehension, with a dorsal stream for auditory-motor integration, and a ventral stream for extracting meaning but also the processing of sentences and narratives. Specific patterns of functional asymmetry between the left and right hemisphere can also be demonstrated. The review article concludes with a discussion on interactions between the dorsal and ventral streams, particularly the involvement of motor related areas in speech perception processes, and outlines some remaining unresolved issues. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feldmann, Johannes; Levermann, Anders
2017-08-01
Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.
Warburton, W.K.
1999-02-16
A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.
Hamming and Accumulator Codes Concatenated with MPSK or QAM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel
2009-01-01
In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.
Massively parallel processor computer
NASA Technical Reports Server (NTRS)
Fung, L. W. (Inventor)
1983-01-01
An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.
Linearized potential solution for an airfoil in nonuniform parallel streams
NASA Technical Reports Server (NTRS)
Prabhu, R. K.; Tiwari, S. N.
1983-01-01
A small perturbation potential flow theory is applied to the problem of determining the chordwise pressure distribution, lift and pitching moment of a thin airfoil in the middle of five parallel streams. This theory is then extended to the case of an undisturbed stream having a given smooth velocity profile. Two typical examples are considered and the results obtained are compared with available solutions of Euler's equations. The agreement between these two results is not quite satisfactory. Possible reasons for the differences are indicated.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, G,; Houston, M.; Ng, Y.-R.
2002-01-11
We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications thatmore » use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.« less
Genetic Parallel Programming: design and implementation.
Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong
2006-01-01
This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.
Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...
Parallel flow diffusion battery
Yeh, H.C.; Cheng, Y.S.
1984-01-01
A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.
Parallel flow diffusion battery
Yeh, Hsu-Chi; Cheng, Yung-Sung
1984-08-07
A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Turbulent shear layers in confining channels
NASA Astrophysics Data System (ADS)
Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.
2018-06-01
We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.
Evidence for specularly reflected ions upstream from the quasi-parallel bow shock
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Thomsen, M. F.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.
1982-01-01
Ion velocity distributions in the form of bunches of gyrating particles traveling along helical paths have been observed moving sunward immediately upstream from quasi-parallel parts of the earth's bow shock using Los Alamos/Garching instruments on ISEE-1 and -2. These distributions have characteristics which indicate that they are produced by the nearly specular reflection at the shock of a portion of the incident solar wind ions. In particular, the guiding center motion and the gyrospeeds of the gyrating ions are quantitatively consistent with simple geometrical considerations for specular reflection. These considerations reveal that specularly reflected ions can escape upstream when the angle between the upstream magnetic field and the local shock normal is less than 45 deg but not when the angle is greater than 45 deg. These upstream gyrating ions are an important signature of one of the processes by which solar wind streaming energy is dissipated into other forms of energy at the shock.
Buckman, Clayton; George, Thaddeus C; Friend, Sherree; Sutovsky, Miriam; Miranda-Vizuete, Antonio; Ozanon, Christophe; Morrissey, Phil; Sutovsky, Peter
2009-12-01
Spermatid specific thioredoxin-3 protein (SPTRX-3) accumulates in the superfluous cytoplasm of defective human spermatozoa. Novel ImageStream technology combining flow cytometry with cell imaging was used for parallel quantification and visualization of SPTRX-3 protein in defective spermatozoa of five men from infertile couples. The majority of the SPTRX-3 containing cells were overwhelmingly spermatozoa with a variety of morphological defects, detectable in the ImageStream recorded images. Quantitative parameters of relative SPTRX-3 induced fluorescence measured by ImageStream correlated closely with conventional flow cytometric measurements of the same sample set and reflected the results of clinical semen evaluation. Image Stream quantification of SPTRX-3 combines and surpasses the informative value of both conventional flow cytometry and light microscopic semen evaluation. The observed patterns of the retention of SPTRX-3 in the sperm samples from infertility patients support the view that SPTRX3 is a biomarker of male infertility.
NASA Astrophysics Data System (ADS)
Liu, Jiping; Kang, Xiaochen; Dong, Chun; Xu, Shenghua
2017-12-01
Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O) can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.
Use of RORA for Complex Ground-Water Flow Conditions
Rutledge, A.T.
2004-01-01
The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.
Streaming data analytics via message passing with application to graph algorithms
Plimpton, Steven J.; Shead, Tim
2014-05-06
The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less
Stream-profile analysis and stream-gradient index
Hack, John T.
1973-01-01
The generally regular three-dimensional geometry of drainage networks is the basis for a simple method of terrain analysis providing clues to bedrock conditions and other factors that determine topographic forms. On a reach of any stream, a gradient-index value can be obtained which allows meaningful comparisons of channel slope on streams of different sizes. The index is believed to reflect stream power or competence and is simply the product of the channel slope at a point and channel length measured along the longest stream above the pointwhere the calculation is made. In an adjusted topography, changes in gradient-index values along a stream generally correspond to differences in bedrock or introduced load. In any landscape the gradient index of a stream is related to total relief and stream regimen. Thus, climate, tectonic events, and geomorphic history must be considered in using the gradient index. Gradient-index values can be obtained quickly by simple measurements on topographic maps, or they can be obtained by more sophisticated photogrammetric measurements that involve simple computer calculations from x, y, z coordinates.
MHD Turbulence, div B = 0 and Lattice Boltzmann Simulations
NASA Astrophysics Data System (ADS)
Phillips, Nate; Keating, Brian; Vahala, George; Vahala, Linda
2006-10-01
The question of div B = 0 in MHD simulations is a crucial issue. Here we consider lattice Boltzmann simulations for MHD (LB-MHD). One introduces a scalar distribution function for the velocity field and a vector distribution function for the magnetic field. This asymmetry is due to the different symmetries in the tensors arising in the time evolution of these fields. The simple algorithm of streaming and local collisional relaxation is ideally parallelized and vectorized -- leading to the best sustained performance/PE of any code run on the Earth Simulator. By reformulating the BGK collision term, a simple implicit algorithm can be immediately transformed into an explicit algorithm that permits simulations at quite low viscosity and resistivity. However the div B is not an imposed constraint. Currently we are examining a new formulations of LB-MHD that impose the div B constraint -- either through an entropic like formulation or by introducing forcing terms into the momentum equations and permitting simpler forms of relaxation distributions.
Droplet Traffic Control at a simple T junction
NASA Astrophysics Data System (ADS)
Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand
2006-03-01
A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.
Serial and Parallel Processing in the Primate Auditory Cortex Revisited
Recanzone, Gregg H.; Cohen, Yale E.
2009-01-01
Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779
Parallel processor-based raster graphics system architecture
Littlefield, Richard J.
1990-01-01
An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.
Electron heating within interaction zones of simple high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1978-01-01
In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.
NASA Technical Reports Server (NTRS)
Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Zwickl, R. D.
1981-01-01
In near time coincidence with the arrival of helium enriched plasma driving the shock wave disturbance of November 12-13, 1978, strong bi-directional streaming of solar wind electrons greater than about 80 eV was observed with Los Alamos instrumentation on ISEE 3. The streaming persisted for many hours simultaneously parallel and anti-parallel to the interplanetary magnetic field which was directed roughly perpendicular to the sun-satellite line. This example of bidirectional streaming cannot be explained by field line connection to the earth's bow shock or the outward propagating interplanetary shock which passed ISEE 3 approximately 16 hours earlier. The event is explained if the local interplanetary field was a part of a magnetic bottle rooted at the sun or a disconnected loop propagating outward.
streamgap-pepper: Effects of peppering streams with many small impacts
NASA Astrophysics Data System (ADS)
Bovy, Jo; Erkal, Denis; Sanders, Jason
2017-02-01
streamgap-pepper computes the effect of subhalo fly-bys on cold tidal streams based on the action-angle representation of streams. A line-of-parallel-angle approach is used to calculate the perturbed distribution function of a given stream segment by undoing the effect of all impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 10^5 Msun, accounting for the stream's internal dispersion and overlapping impacts. This code uses galpy (ascl:1411.008) and the streampepperdf.py galpy extension, which implements the fast calculation of the perturbed stream structure.
A New Numerical Scheme for Cosmic-Ray Transport
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei; Oh, S. Peng
2018-02-01
Numerical solutions of the cosmic-ray (CR) magnetohydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding artificial diffusion. Besides introducing ad hoc smoothing, this has a significant negative impact on either computational cost or complexity and parallel scalings. We describe a new numerical algorithm for CR transport, with close parallels to two-moment methods for radiative transfer under the reduced speed of light approximation. It stably and robustly handles CR streaming without any artificial diffusion. It allows for both isotropic and field-aligned CR streaming and diffusion, with arbitrary streaming and diffusion coefficients. CR transport is handled explicitly, while source terms are handled implicitly. The overall time step scales linearly with resolution (even when computing CR diffusion) and has a perfect parallel scaling. It is given by the standard Courant condition with respect to a constant maximum velocity over the entire simulation domain. The computational cost is comparable to that of solving the ideal MHD equation. We demonstrate the accuracy and stability of this new scheme with a wide variety of tests, including anisotropic streaming and diffusion tests, CR-modified shocks, CR-driven blast waves, and CR transport in multiphase media. The new algorithm opens doors to much more ambitious and hitherto intractable calculations of CR physics in galaxies and galaxy clusters. It can also be applied to other physical processes with similar mathematical structure, such as saturated, anisotropic heat conduction.
Evidence of Multiple Reconnection Lines at the Magnetopause from Cusp Observations
NASA Technical Reports Server (NTRS)
Trattner, K. J.; Petrinec, S. M.; Fuselier, S. A.; Omidi, N.; Sibeck, David Gary
2012-01-01
Recent global hybrid simulations investigated the formation of flux transfer events (FTEs) and their convection and interaction with the cusp. Based on these simulations, we have analyzed several Polar cusp crossings in the Northern Hemisphere to search for the signature of such FTEs in the energy distribution of downward precipitating ions: precipitating ion beams at different energies parallel to the ambient magnetic field and overlapping in time. Overlapping ion distributions in the cusp are usually attributed to a combination of variable ion acceleration during the magnetopause crossing together with the time-of-flight effect from the entry point to the observing satellite. Most "step up" ion cusp structures (steps in the ion energy dispersions) only overlap for the populations with large pitch angles and not for the parallel streaming populations. Such cusp structures are the signatures predicted by the pulsed reconnection model, where the reconnection rate at the magnetopause decreased to zero, physically separating convecting flux tubes and their parallel streaming ions. However, several Polar cusp events discussed in this study also show an energy overlap for parallel-streaming precipitating ions. This condition might be caused by reopening an already reconnected field line, forming a magnetic island (flux rope) at the magnetopause similar to that reported in global MHD and Hybrid simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.
2014-05-15
The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less
NASA Astrophysics Data System (ADS)
Geneva, Nicholas; Wang, Lian-Ping
2015-11-01
In the past 25 years, the mesoscopic lattice Boltzmann method (LBM) has become an increasingly popular approach to simulate incompressible flows including turbulent flows. While LBM solves more solution variables compared to the conventional CFD approach based on the macroscopic Navier-Stokes equation, it also offers opportunities for more efficient parallelization. In this talk we will describe several different algorithms that have been developed over the past 10 plus years, which can be used to represent the two core steps of LBM, collision and streaming, more effectively than standard approaches. The application of these algorithms spans LBM simulations ranging from basic channel to particle laden flows. We will cover the essential detail on the implementation of each algorithm for simple 2D flows, to the challenges one faces when using a given algorithm for more complex simulations. The key is to explore the best use of data structure and cache memory. Two basic data structures will be discussed and the importance of effective data storage to maximize a CPU's cache will be addressed. The performance of a 3D turbulent channel flow simulation using these different algorithms and data structures will be compared along with important hardware related issues.
STREAMFINDER II: A possible fanning structure parallel to the GD-1 stream in Pan-STARRS1
NASA Astrophysics Data System (ADS)
Malhan, Khyati; Ibata, Rodrigo A.; Goldman, Bertrand; Martin, Nicolas F.; Magnier, Eugene; Chambers, Kenneth
2018-05-01
STREAMFINDER is a new algorithm that we have built to detect stellar streams in an automated and systematic way in astrophysical datasets that possess any combination of positional and kinematic information. In Paper I, we introduced the methodology and the workings of our algorithm and showed that it is capable of detecting ultra-faint and distant halo stream structures containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia dataset. Here, we test the method with real proper motion data from the Pan-STARRS1 survey, and by selecting targets down to r0 = 18.5 mag we show that it is able to detect the GD-1 stellar stream, whereas the structure remains below a useful detection limit when using a Matched Filter technique. The radial velocity solutions provided by STREAMFINDER for GD-1 candidate members are found to be in good agreement with observations. Furthermore, our algorithm detects a ˜ {40}° long structure approximately parallel to GD-1, and which fans out from it, possibly a sign of stream-fanning due to the triaxiality of the Galactic potential. This analysis shows the promise of this method for detecting and analysing stellar streams in the upcoming Gaia DR2 catalogue.
Breakdown of Spatial Parallel Coding in Children's Drawing
ERIC Educational Resources Information Center
De Bruyn, Bart; Davis, Alyson
2005-01-01
When drawing real scenes or copying simple geometric figures young children are highly sensitive to parallel cues and use them effectively. However, this sensitivity can break down in surprisingly simple tasks such as copying a single line where robust directional errors occur despite the presence of parallel cues. Before we can conclude that this…
Evaluating local indirect addressing in SIMD proc essors
NASA Technical Reports Server (NTRS)
Middleton, David; Tomboulian, Sherryl
1989-01-01
In the design of parallel computers, there exists a tradeoff between the number and power of individual processors. The single instruction stream, multiple data stream (SIMD) model of parallel computers lies at one extreme of the resulting spectrum. The available hardware resources are devoted to creating the largest possible number of processors, and consequently each individual processor must use the fewest possible resources. Disagreement exists as to whether SIMD processors should be able to generate addresses individually into their local data memory, or all processors should access the same address. The tradeoff is examined between the increased capability and the reduced number of processors that occurs in this single instruction stream, multiple, locally addressed, data (SIMLAD) model. Factors are assembled that affect this design choice, and the SIMLAD model is compared with the bare SIMD and the MIMD models.
Excess TDS/Major Ionic Stress/Elevated Conductivities appeared increasing in streams in Central and Eastern Appalachia. Direct discharges from permitted point sources and regional interest in setting eco-based effluent guidelines/aquatic life criteria, as well as potential differ...
Technological and Vocational Education in Taiwan.
ERIC Educational Resources Information Center
Lee, Lung-Sheng
Beyond the nine years of compulsory education, Taiwan has the following two additional streams in the educational system: general academic education (GAE) and technological and vocational education (TVE). TVE has the two key features of a complete system to ensure students' horizontal and vertical mobility and a main schooling stream, parallel to…
Simple Scaling of Mulit-Stream Jet Plumes for Aeroacoustic Modeling
NASA Technical Reports Server (NTRS)
Bridges, James
2016-01-01
When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more coannular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a best approximation determined and the shortcomings of the model highlighted.
Simple Scaling of Multi-Stream Jet Plumes for Aeroacoustic Modeling
NASA Technical Reports Server (NTRS)
Bridges, James
2015-01-01
When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more co-annular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV (Particle Image Velocimetry) data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a 'best' approximation determined and the shortcomings of the model highlighted.
NASA Astrophysics Data System (ADS)
Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.
2018-05-01
For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.
Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs
Brahana, J.V.; Hollyday, E.F.
1988-01-01
In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.
Daniel J. Isaak; Dona L. Horan; Sherry P. Wollrab
2013-01-01
Thermal regimes in rivers and streams are fundamental determinants of biological processes and are often monitored for regulatory compliance. Here, we describe a simple technique for establishing annual monitoring sites that uses underwater epoxy to attach miniature sensors to large rocks and cement bridge supports, which then serve as protective anchors. More than 500...
Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.
Grossberg, S; Mingolla, E
1993-03-01
A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.
Simple measures of channel habitat complexity predict transient hydraulic storage in streams
Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...
Evidence of Fanning in the Ophiuchus Stream
NASA Astrophysics Data System (ADS)
Sesar, Branimir; Price-Whelan, Adrian M.; Cohen, Judith G.; Rix, Hans-Walter; Pearson, Sarah; Johnston, Kathryn V.; Bernard, Edouard J.; Ferguson, Annette M. N.; Martin, Nicolas F.; Slater, Colin T.; Chambers, Kenneth C.; Flewelling, Heather; Wainscoat, Richard J.; Waters, Christopher
2016-01-01
The Ophiuchus stellar stream presents a dynamical puzzle: its old stellar populations (˜12 Gyr) cannot be reconciled with (1) its orbit in a simple model for the Milky Way potential and (2) its short angular extent, both of which imply that the observed stream formed within the last \\lt 1 {{Gyr}}. Recent theoretical work has shown that streams on chaotic orbits may abruptly fan out near their apparent ends; stars in these fans are dispersed in both position and velocity and may be difficult to associate with the stream. Here we present the first evidence of such stream-fanning in the Ophiuchus stream, traced by four blue horizontal branch stars beyond the apparent end of the stream. These stars stand out from the background by their high velocities ({v}{{los}}\\gt 230 km s-1) against ˜40 other stars: their velocities are comparable to those of the stream, but would be exceptional if they were unrelated halo stars. Their positions and velocities are, however, inconsistent with simple extrapolation of the observed cold, high-density portion of the stream. These observations suggest that stream-fanning may be a real, observable effect and, therefore, that Ophiuchus may be on a chaotic orbit. They also show that the Ophiuchus stream is more extended and hence dynamically older than previously thought, easing the stellar population versus dynamical age tension.
ERIC Educational Resources Information Center
Farmer, Thomas A.; Cargill, Sarah A.; Hindy, Nicholas C.; Dale, Rick; Spivey, Michael J.
2007-01-01
Although several theories of online syntactic processing assume the parallel activation of multiple syntactic representations, evidence supporting simultaneous activation has been inconclusive. Here, the continuous and non-ballistic properties of computer mouse movements are exploited, by recording their streaming x, y coordinates to procure…
Introduction to Parallel Computing
1992-05-01
Instruction Stream, Multiple Data Stream Machines .................... 19 2.4 Networks of M achines...independent memory units and connecting them to the processors by an interconnection network . Many different interconnection schemes have been considered, and...connected to the same processor at the same time. Crossbar switching networks are still too expensive to be practical for connecting large numbers of
A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams
Steele, Timothy Doak
1978-01-01
Due to economic or operational constraints, stream-temperature records cannot always be collected at all sites where information is desired or at frequencies dictated by continuous or near-continuous surveillance requirements. For streams where only periodic measurements are made during the year, and that are not appreciably affected by regulation or by thermal loading , a simple harmonic function may adequately depict the annual seasonal cycle of stream temperature at any given site. Resultant harmonic coefficients obtained from available stream-temperature records may be used in the following ways: (1) To interpolate between discrete measurements by solving the harmonic function at specified times, thereby filling in estimates of stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature conditions; and (3) to detect and to assess any significant at a site brought about by streamflow regulation or basin development. Moreover, less-than-daily or sampling frequencies at a given site may give estimates of annual variation of stream temperatures that are statistically comparable to estimates obtained from a daily or continuous sampling scheme. The latter procedure may result in potential savings of resources in network operations, with negligible loss in information on annual stream-temperature variations. (Woodard -USGS)
A Simple Parallel Photochemical Reactor for Photodecomposition Studies
ERIC Educational Resources Information Center
Xiaobo Chen; Halasz, Sarah M.; Giles, Eric C.; Mankus, Jessica V.; Johnson, Joseph C.; Burda, Clemens
2006-01-01
A simple and useful parallel photochemical reactor intended to study the photodecomposition of dyes using semiconductor photocatalysis is presented. The photochemical reactions are followed through time-dependent changes in the ground-state absorption spectra of the dyes.
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Sullam, Karen E; Rubin, Benjamin E R; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A
2015-07-01
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.
Sullam, Karen E; Rubin, Benjamin ER; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A
2015-01-01
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation. PMID:25575311
NASA Astrophysics Data System (ADS)
Óskarsson, Birgir V.; Riishuus, Morten S.
2014-12-01
Simple flows (tabular) in the Neogene flood basalt sections of Iceland are described and their mode of emplacement assessed. The flows belong to three aphyric basalt groups: the Kumlafell group, the Hólmatindur group and the Hjálmadalur group. The groups can be traced over 50 km and originate in the Breiðdalur-Thingmuli volcanic zone. The groups have flow fields that display mixed volcanic facies architecture and can be classified after dominating type morphology. The Kumlafell and the Hólmatindur groups have predominantly simple flows of pāhoehoe and rubbly pāhoehoe morphologies with minor compound or lobate pāhoehoe flows. The Hjálmadalur group has simple flows of rubbly pāhoehoe, but also includes minor compound or lobate flows of rubble and 'a'ā. Simple flows are most common in the distal and medial areas from the vents, while more lobate flows in proximal areas. The simple flows are formed by extensive sheet lobes that are several kilometers long with plane-parallel contacts, some reaching thicknesses of ~ 40 m (aspect ratios < 0.01). They have overlapping contacts and are free of tubes and inflation structures. Their internal structure consists generally of a simple upper vesicular crust, a dense core and a thin basal vesicular zone. The brecciated flow-top is formed by clinker and crustal rubble, the clinker often welded or agglutinated. The simple flows erupted from seemingly short-lived fissures and have the characteristics of cooling-limited flows. We estimate the effusion rates to be ~ 105 m3/s for the simple flows of the Kumlafell and Hólmatindur groups and ~ 104 m3/s for the Hjálmadalur group. The longest flows advanced 15-20 km from the fissures, with lava streams of fast propagating flows inducing tearing and brecciation of the chilled crust. Compound or lobate areas appear to reflect areas of low effusion rates or the interaction of the lava with topographic barriers or wetlands, resulting in chaotic flowage. Slowing lobes with brecciated flow-tops developed into 'a'ā flows. The groups interdigitated with lava groups from the Reyðarfjörður volcanic zone to the east, and the exhumed Breiðdalur-Thingmuli volcanic zone which appear to have formed as a flank lineament parallel the main rift zone. Flood basalt volcanism in flank areas may support a mantle anomaly more pronounced and/or perhaps more widespread in the Neogene of Iceland than today. Eruptions of simple flows have not been observed in modern times and are significant for models of crustal accretion in Iceland and other Large Igneous Provinces.
Studies on the interference of wings and propeller slipstreams
NASA Technical Reports Server (NTRS)
Prabhu, R. K.; Tiwari, S. N.
1985-01-01
The small disturbance potential flow theory is applied to determine the lift of an airfoil in a nonuniform parallel stream. The given stream is replaced by an equivalent stream with a certain number of velocity discontinuities, and the influence of these discontinuities is obtained by the method of images. Next, this method is extended to the problem of an airfoil in a nonuniform stream of smooth velocity profile. This model allows perturbation velocity potential in a rotational undisturbed stream. A comparison of these results with numerical solutions of Euler equations indicates that, although approximate, the present method provides useful information about the interaction problem while avoiding the need to solve the Euler equations.
NASA Technical Reports Server (NTRS)
West, Jeff; Yang, H. Q.
2014-01-01
There are many instances involving liquid/gas interfaces and their dynamics in the design of liquid engine powered rockets such as the Space Launch System (SLS). Some examples of these applications are: Propellant tank draining and slosh, subcritical condition injector analysis for gas generators, preburners and thrust chambers, water deluge mitigation for launch induced environments and even solid rocket motor liquid slag dynamics. Commercially available CFD programs simulating gas/liquid interfaces using the Volume of Fluid approach are currently limited in their parallel scalability. In 2010 for instance, an internal NASA/MSFC review of three commercial tools revealed that parallel scalability was seriously compromised at 8 cpus and no additional speedup was possible after 32 cpus. Other non-interface CFD applications at the time were demonstrating useful parallel scalability up to 4,096 processors or more. Based on this review, NASA/MSFC initiated an effort to implement a Volume of Fluid implementation within the unstructured mesh, pressure-based algorithm CFD program, Loci-STREAM. After verification was achieved by comparing results to the commercial CFD program CFD-Ace+, and validation by direct comparison with data, Loci-STREAM-VoF is now the production CFD tool for propellant slosh force and slosh damping rate simulations at NASA/MSFC. On these applications, good parallel scalability has been demonstrated for problems sizes of tens of millions of cells and thousands of cpu cores. Ongoing efforts are focused on the application of Loci-STREAM-VoF to predict the transient flow patterns of water on the SLS Mobile Launch Platform in order to support the phasing of water for launch environment mitigation so that vehicle determinantal effects are not realized.
Accelerated Adaptive MGS Phase Retrieval
NASA Technical Reports Server (NTRS)
Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang
2011-01-01
The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.
New Parallel Algorithms for Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Experimental Analysis of Cell Function Using Cytoplasmic Streaming
ERIC Educational Resources Information Center
Janssens, Peter; Waldhuber, Megan
2012-01-01
This laboratory exercise investigates the phenomenon of cytoplasmic streaming in the fresh water alga "Nitella". Students use the fungal toxin cytochalasin D, an inhibitor of actin polymerization, to investigate the mechanism of streaming. Students use simple statistical methods to analyze their data. Typical student data are provided. (Contains 3…
Method of synchronizing independent functional unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Changhoan
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less
Method of synchronizing independent functional unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Changhoan
2017-05-16
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less
Method of synchronizing independent functional unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Changhoan
2017-02-14
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less
Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex
2017-01-01
Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749
Grouper: A Compact, Streamable Triangle Mesh Data Structure.
Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek
2013-05-08
We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle, Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access.
NASA Technical Reports Server (NTRS)
Coles, W. A.; Harmon, J. K.; Lazarus, A. J.; Sullivan, J. D.
1978-01-01
Solar wind velocities measured by earth-orbiting spacecraft are compared with velocities determined from interplanetary scintillation (IPS) observations for 1973, a period when high-velocity streams were prevalent. The spacecraft and IPS velocities agree well in the mean and are highly correlated. No simple model for the distribution of enhanced turbulence within streams is sufficient to explain the velocity comparison results for the entire year. Although a simple proportionality between density fluctuation level and bulk density is consistent with IPS velocities for some periods, some streams appear to have enhanced turbulence in the high-velocity region, where the density is low.
How to Build an AppleSeed: A Parallel Macintosh Cluster for Numerically Intensive Computing
NASA Astrophysics Data System (ADS)
Decyk, V. K.; Dauger, D. E.
We have constructed a parallel cluster consisting of a mixture of Apple Macintosh G3 and G4 computers running the Mac OS, and have achieved very good performance on numerically intensive, parallel plasma particle-incell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the main stream of computing.
NASA Technical Reports Server (NTRS)
Kahler, S.; Lin, R. P.
1994-01-01
The determination of the polarities of interplanetary magnetic fields (whether the field direction is outward from or inward toward the sun) has been based on a comparison of observed field directions with the nominal Parker spiral angle. These polarities can be mapped back to the solar source field polarities. This technique fails when field directions deviate substantially from the Parker angle or when fields are substantially kinked. We introduce a simple new technique to determine the polarities of interplanetary fields using E greater than 2 keV interplanetary electrons which stream along field lines away from the sun. Those electrons usually show distinct unidirectional pitch-angle anisotropies either parallel or anti-parallel to the field. Since the electron flow direction is known to be outward from the sun, the anisotropies parallel to the field indicate outward-pointing, positive-polarity fields, and those anti-parallel indicate inward-pointing, negative-polarity fields. We use data from the UC Berkeley electron experiment on the International Sun Earth Explorer 3 (ISSE-3) spacecraft to compare the field polarities deduced from the electron data, Pe (outward or inward), with the polarities inferred from field directions, Pd, around two sector boundaries in 1979. We show examples of large (greater than 100 deg) changes in azimuthal field direction Phi over short (less than 1 hr) time scales, some with and some without reversals in Pe. The latter cases indicate that such large directional changes can occur in unipolar structures. On the other hand, we found an example of a change in Pe during which the rotation in Phi was less than 30 deg, indicating polarity changes in nearly unidirectional structures. The field directions are poor guides to the polarities in these cases.
Interactions of waves on electron streams or plasmas are studied for several geometric configurations of finite cross section in a finite magnetic...velocity parallel to the magnetic field. It is further assumed that either macroscopic neutrality exists or static spacecharge forces are negligible. For...the most part the quasi-static analysis is used. For the case of two drifting streams cyclotron waves act to giveinstabilities which are either
NASA Astrophysics Data System (ADS)
Liu, Leibo; Chen, Yingjie; Yin, Shouyi; Lei, Hao; He, Guanghui; Wei, Shaojun
2014-07-01
A VLSI architecture for entropy decoder, inverse quantiser and predictor is proposed in this article. This architecture is used for decoding video streams of three standards on a single chip, i.e. H.264/AVC, AVS (China National Audio Video coding Standard) and MPEG2. The proposed scheme is called MPMP (Macro-block-Parallel based Multilevel Pipeline), which is intended to improve the decoding performance to satisfy the real-time requirements while maintaining a reasonable area and power consumption. Several techniques, such as slice level pipeline, MB (Macro-Block) level pipeline, MB level parallel, etc., are adopted. Input and output buffers for the inverse quantiser and predictor are shared by the decoding engines for H.264, AVS and MPEG2, therefore effectively reducing the implementation overhead. Simulation shows that decoding process consumes 512, 435 and 438 clock cycles per MB in H.264, AVS and MPEG2, respectively. Owing to the proposed techniques, the video decoder can support H.264 HP (High Profile) 1920 × 1088@30fps (frame per second) streams, AVS JP (Jizhun Profile) 1920 × 1088@41fps streams and MPEG2 MP (Main Profile) 1920 × 1088@39fps streams when exploiting a 200 MHz working frequency.
Klingner, Carsten M; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W
2016-01-01
The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.
Klingner, Carsten M.; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W.
2016-01-01
The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI. PMID:28066197
Rotary adsorbers for continuous bulk separations
Baker, Frederick S [Oak Ridge, TN
2011-11-08
A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.
The Phoenix stream: A cold stream in the southern hemisphere
Balbinot, E.
2016-03-17
In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less
Hoang, Thu-Huong; Aliane, Verena; Manahan-Vaughan, Denise
2018-05-01
The specific roles of hippocampal subfields in spatial information processing and encoding are, as yet, unclear. The parallel map theory postulates that whereas the CA1 processes discrete environmental features (positional cues used to generate a "sketch map"), the dentate gyrus (DG) processes large navigation-relevant landmarks (directional cues used to generate a "bearing map"). Additionally, the two-streams hypothesis suggests that hippocampal subfields engage in differentiated processing of information from the "where" and the "what" streams. We investigated these hypotheses by analyzing the effect of exploration of discrete "positional" features and large "directional" spatial landmarks on hippocampal neuronal activity in rats. As an indicator of neuronal activity we measured the mRNA induction of the immediate early genes (IEGs), Arc and Homer1a. We observed an increase of this IEG mRNA in CA1 neurons of the distal neuronal compartment and in proximal CA3, after novel spatial exploration of discrete positional cues, whereas novel exploration of directional cues led to increases in IEG mRNA in the lower blade of the DG and in proximal CA3. Strikingly, the CA1 did not respond to directional cues and the DG did not respond to positional cues. Our data provide evidence for both the parallel map theory and the two-streams hypothesis and suggest a precise compartmentalization of the encoding and processing of "what" and "where" information occurs within the hippocampal subfields. © 2018 The Authors. Hippocampus Published by Wiley Periodicals, Inc.
Stanislawski, Larry V.; Survila, Kornelijus; Wendel, Jeffrey; Liu, Yan; Buttenfield, Barbara P.
2018-01-01
This paper describes a workflow for automating the extraction of elevation-derived stream lines using open source tools with parallel computing support and testing the effectiveness of procedures in various terrain conditions within the conterminous United States. Drainage networks are extracted from the US Geological Survey 1/3 arc-second 3D Elevation Program elevation data having a nominal cell size of 10 m. This research demonstrates the utility of open source tools with parallel computing support for extracting connected drainage network patterns and handling depressions in 30 subbasins distributed across humid, dry, and transitional climate regions and in terrain conditions exhibiting a range of slopes. Special attention is given to low-slope terrain, where network connectivity is preserved by generating synthetic stream channels through lake and waterbody polygons. Conflation analysis compares the extracted streams with a 1:24,000-scale National Hydrography Dataset flowline network and shows that similarities are greatest for second- and higher-order tributaries.
Ongoing data reduction, theoretical studies and supporting research in magnetospheric physics
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Greenstadt, E. W.
1984-01-01
Data from ISEE-3, Pioneer Venus Orbiter, and Voyager 1 and 2 were analyzed. The predictability of local shock macrostructure at ISEE-1, at the Earth's bow shock, from solar wind measurements made up-stream by ISEE-3, was conducted using computer graphic format. Morphology of quasi-parallel shock was reviewed. The review attempted to interrelate various measurements and computations involving the q-parallel structure and foreshock elements connected to it. A new classification for q-parallel morphology was suggested.
Goedbloed, D J; Czypionka, T; Altmüller, J; Rodriguez, A; Küpfer, E; Segev, O; Blaustein, L; Templeton, A R; Nolte, A W; Steinfartz, S
2017-12-01
The utilization of similar habitats by different species provides an ideal opportunity to identify genes underlying adaptation and acclimatization. Here, we analysed the gene expression of two closely related salamander species: Salamandra salamandra in Central Europe and Salamandra infraimmaculata in the Near East. These species inhabit similar habitat types: 'temporary ponds' and 'permanent streams' during larval development. We developed two species-specific gene expression microarrays, each targeting over 12 000 transcripts, including an overlapping subset of 8331 orthologues. Gene expression was examined for systematic differences between temporary ponds and permanent streams in larvae from both salamander species to establish gene sets and functions associated with these two habitat types. Only 20 orthologues were associated with a habitat in both species, but these orthologues did not show parallel expression patterns across species more than expected by chance. Functional annotation of a set of 106 genes with the highest effect size for a habitat suggested four putative gene function categories associated with a habitat in both species: cell proliferation, neural development, oxygen responses and muscle capacity. Among these high effect size genes was a single orthologue (14-3-3 protein zeta/YWHAZ) that was downregulated in temporary ponds in both species. The emergence of four gene function categories combined with a lack of parallel expression of orthologues (except 14-3-3 protein zeta) suggests that parallel habitat adaptation or acclimatization by larvae from S. salamandra and S. infraimmaculata to temporary ponds and permanent streams is mainly realized by different genes with a converging functionality.
Mixing enhancement of reacting parallel fuel jets in a supersonic combustor
NASA Technical Reports Server (NTRS)
Drummond, J. P.
1991-01-01
Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.
NASA Technical Reports Server (NTRS)
Manousiouthakis, Vasilios
1995-01-01
We developed simple mathematical models for many of the technologies constituting the water reclamation system in a space station. These models were employed for subsystem optimization and for the evaluation of the performance of individual water reclamation technologies, by quantifying their operational 'cost' as a linear function of weight, volume, and power consumption. Then we performed preliminary investigations on the performance improvements attainable by simple hybrid systems involving parallel combinations of technologies. We are developing a software tool for synthesizing a hybrid water recovery system (WRS) for long term space missions. As conceptual framework, we are employing the state space approach. Given a number of available technologies and the mission specifications, the state space approach would help design flowsheets featuring optimal process configurations, including those that feature stream connections in parallel, series, or recycles. We visualize this software tool to function as follows: given the mission duration, the crew size, water quality specifications, and the cost coefficients, the software will synthesize a water recovery system for the space station. It should require minimal user intervention. The following tasks need to be solved for achieving this goal: (1) formulate a problem statement that will be used to evaluate the advantages of a hybrid WRS over a single technology WBS; (2) model several WRS technologies that can be employed in the space station; (3) propose a recycling network design methodology (since the WRS synthesis task is a recycling network design problem, it is essential to employ a systematic method in synthesizing this network); (4) develop a software implementation for this design methodology, design a hybrid system using this software, and compare the resulting WRS with a base-case WRS; and (5) create a user-friendly interface for this software tool.
An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
Backhaus, S; Swift, G W
2003-03-01
Thermoacoustic-Stirling hybrid engines and feedback pulse tube refrigerators can utilize jet pumps to suppress streaming that would otherwise cause large heat leaks and reduced efficiency. It is desirable to use jet pumps to suppress streaming because they do not introduce moving parts such as bellows or membranes. In most cases, this form of streaming suppression works reliably. However, in some cases, the streaming suppression has been found to be unstable. Using a simple model of the acoustics in the regenerators and jet pumps of these devices, a stability criterion is derived that predicts when jet pumps can reliably suppress streaming.
Heuristic for Critical Machine Based a Lot Streaming for Two-Stage Hybrid Production Environment
NASA Astrophysics Data System (ADS)
Vivek, P.; Saravanan, R.; Chandrasekaran, M.; Pugazhenthi, R.
2017-03-01
Lot streaming in Hybrid flowshop [HFS] is encountered in many real world problems. This paper deals with a heuristic approach for Lot streaming based on critical machine consideration for a two stage Hybrid Flowshop. The first stage has two identical parallel machines and the second stage has only one machine. In the second stage machine is considered as a critical by valid reasons these kind of problems is known as NP hard. A mathematical model developed for the selected problem. The simulation modelling and analysis were carried out in Extend V6 software. The heuristic developed for obtaining optimal lot streaming schedule. The eleven cases of lot streaming were considered. The proposed heuristic was verified and validated by real time simulation experiments. All possible lot streaming strategies and possible sequence under each lot streaming strategy were simulated and examined. The heuristic consistently yielded optimal schedule consistently in all eleven cases. The identification procedure for select best lot streaming strategy was suggested.
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbinot, E.
In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less
Mixing Hot and Cold Water Streams at a T-Junction
ERIC Educational Resources Information Center
Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin
2008-01-01
A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…
Low frequency vibration induced streaming in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.
When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less
NASA Astrophysics Data System (ADS)
Erez, Mattan; Dally, William J.
Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.
WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS
NASA Astrophysics Data System (ADS)
Kanellos, G. T.; Pleros, N.
2017-02-01
Multi-socket server boards have emerged to increase the processing power density on the board level and further flatten the data center networks beyond leaf-spine architectures. Scaling however the number of processors per board puts current electronic technologies into challenge, as it requires high bandwidth interconnects and high throughput switches with increased number of ports that are currently unavailable. On-board optical interconnection has proved the potential to efficiently satisfy the bandwidth needs, but their use has been limited to parallel links without performing any smart routing functionality. With CWDM optical interconnects already a commodity, cyclical wavelength routing proposed to fit the datacom for rack-to-rack and board-to-board communication now becomes a promising on-board routing platform. ICT-STREAMS is a European research project that aims to combine WDM parallel on-board transceivers with a cyclical AWGR, in order to create a new board-level, chip-to-chip interconnection paradigm that will leverage WDM parallel transmission to a powerful wavelength routing platform capable to interconnect multiple processors with unprecedented bandwidth and throughput capacity. Direct, any-to-any, on-board interconnection of multiple processors will significantly contribute to further flatten the data centers and facilitate east-west communication. In the present communication, we present ICT-STREAMS on-board wavelength routing architecture for multiple chip-to-chip interconnections and evaluate the overall system performance in terms of throughput and latency for several schemes and traffic profiles. We also review recent advances of the ICT-STREAMS platform key-enabling technologies that span from Si in-plane lasers and polymer based electro-optical circuit boards to silicon photonics transceivers and photonic-crystal amplifiers.
Computational Challenges of 3D Radiative Transfer in Atmospheric Models
NASA Astrophysics Data System (ADS)
Jakub, Fabian; Bernhard, Mayer
2017-04-01
The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90% on various supercomputers.
Cloud-Based Perception and Control of Sensor Nets and Robot Swarms
2016-04-01
distributed stream processing framework provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation...streaming DDDAS applications based on challenges they present to the backend Cloud control system. Figure 2 Parallel SLAM Application 3 1) Set of...the art deep learning- based object detectors can recognize among hundreds of object classes and this capability would be very useful for mobile
Random Number Generation for High Performance Computing
2015-01-01
number streams, a quality metric for the parallel random number streams. * * * * * Atty. Dkt . No.: 5660-14400 Customer No. 35690 Eric B. Meyertons...responsibility to ensure timely payment of maintenance fees when due. Pagel of3 PTOL-85 (Rev. 02/11) Atty. Dkt . No.: 5660-14400 Page 1 Meyertons...with each subtask executed by a separate thread or process (henceforth, process). Each process has Atty. Dkt . No.: 5660-14400 Page 2 Meyertons
NASA Astrophysics Data System (ADS)
Hayakawa, Hitoshi; Ogawa, Makoto; Shibata, Tadashi
2005-04-01
A very large scale integrated circuit (VLSI) architecture for a multiple-instruction-stream multiple-data-stream (MIMD) associative processor has been proposed. The processor employs an architecture that enables seamless switching from associative operations to arithmetic operations. The MIMD element is convertible to a regular central processing unit (CPU) while maintaining its high performance as an associative processor. Therefore, the MIMD associative processor can perform not only on-chip perception, i.e., searching for the vector most similar to an input vector throughout the on-chip cache memory, but also arithmetic and logic operations similar to those in ordinary CPUs, both simultaneously in parallel processing. Three key technologies have been developed to generate the MIMD element: associative-operation-and-arithmetic-operation switchable calculation units, a versatile register control scheme within the MIMD element for flexible operations, and a short instruction set for minimizing the memory size for program storage. Key circuit blocks were designed and fabricated using 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. As a result, the full-featured MIMD element is estimated to be 3 mm2, showing the feasibility of an 8-parallel-MIMD-element associative processor in a single chip of 5 mm× 5 mm.
Resonant Drag Instability of Grains Streaming in Fluids
NASA Astrophysics Data System (ADS)
Squire, J.; Hopkins, P. F.
2018-03-01
We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.
Parallelization Issues and Particle-In Codes.
NASA Astrophysics Data System (ADS)
Elster, Anne Cathrine
1994-01-01
"Everything should be made as simple as possible, but not simpler." Albert Einstein. The field of parallel scientific computing has concentrated on parallelization of individual modules such as matrix solvers and factorizers. However, many applications involve several interacting modules. Our analyses of a particle-in-cell code modeling charged particles in an electric field, show that these accompanying dependencies affect data partitioning and lead to new parallelization strategies concerning processor, memory and cache utilization. Our test-bed, a KSR1, is a distributed memory machine with a globally shared addressing space. However, most of the new methods presented hold generally for hierarchical and/or distributed memory systems. We introduce a novel approach that uses dual pointers on the local particle arrays to keep the particle locations automatically partially sorted. Complexity and performance analyses with accompanying KSR benchmarks, have been included for both this scheme and for the traditional replicated grids approach. The latter approach maintains load-balance with respect to particles. However, our results demonstrate it fails to scale properly for problems with large grids (say, greater than 128-by-128) running on as few as 15 KSR nodes, since the extra storage and computation time associated with adding the grid copies, becomes significant. Our grid partitioning scheme, although harder to implement, does not need to replicate the whole grid. Consequently, it scales well for large problems on highly parallel systems. It may, however, require load balancing schemes for non-uniform particle distributions. Our dual pointer approach may facilitate this through dynamically partitioned grids. We also introduce hierarchical data structures that store neighboring grid-points within the same cache -line by reordering the grid indexing. This alignment produces a 25% savings in cache-hits for a 4-by-4 cache. A consideration of the input data's effect on the simulation may lead to further improvements. For example, in the case of mean particle drift, it is often advantageous to partition the grid primarily along the direction of the drift. The particle-in-cell codes for this study were tested using physical parameters, which lead to predictable phenomena including plasma oscillations and two-stream instabilities. An overview of the most central references related to parallel particle codes is also given.
Statistical properties of Charney-Hasegawa-Mima zonal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Johan, E-mail: anderson.johan@gmail.com; Botha, G. J. J.
2015-05-15
A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxesmore » to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.« less
Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.
1983-01-01
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.
Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.
1983-02-08
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.
Research on the effects of urbanization on small stream flow quantity
DOT National Transportation Integrated Search
1978-12-01
This study is a preliminary investigation into the feasibility of using simple techniques to evaluate the effects of urbanization on flood flows in small streams. A number of regression techniques and computer simulation techniques were evaluated, an...
Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies
NASA Technical Reports Server (NTRS)
Sekanina, Z.; Southworth, R. B.
1975-01-01
Population parameters of 275 streams including 20 additional streams in the synoptic-year sample were found by a computer technique. Some 16 percent of the sample is in these streams. Four meteor streams that have close orbital resemblance to Adonis cannot be positively identified as meteors ejected by Adonis within the last 12000 years. Ceplecha's discrete levels of meteor height are not evident in radar meteors. The spread of meteoroid fragments along their common trajectory was computed for most of the observed radar meteors. There is an unexpected relationship between spread and velocity that perhaps conceals relationships between fragmentation and orbits; a theoretical treatment will be necessary to resolve these relationships. Revised unbiased statistics of synoptic-year orbits are presented, together with parallel statistics for the 1961 to 1965 radar meteor orbits.
Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty
2013-01-01
1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year.2. To more...
NASA Technical Reports Server (NTRS)
Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew
1954-01-01
An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1995-01-01
A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.
NASA Astrophysics Data System (ADS)
Frei, S.; Gilfedder, B. S.
2015-08-01
A quantitative understanding of groundwater-surface water interactions is vital for sustainable management of water quantity and quality. The noble gas radon-222 (Rn) is becoming increasingly used as a sensitive tracer to quantify groundwater discharge to wetlands, lakes, and rivers: a development driven by technical and methodological advances in Rn measurement. However, quantitative interpretation of these data is not trivial, and the methods used to date are based on the simplest solutions to the mass balance equation (e.g., first-order finite difference and inversion). Here we present a new implicit numerical model (FINIFLUX) based on finite elements for quantifying groundwater discharge to streams and rivers using Rn surveys at the reach scale (1-50 km). The model is coupled to a state-of-the-art parameter optimization code Parallel-PEST to iteratively solve the mass balance equation for groundwater discharge and hyporheic exchange. The major benefit of this model is that it is programed to be very simple to use, reduces nonuniqueness, and provides numerically stable estimates of groundwater fluxes and hyporheic residence times from field data. FINIFLUX was tested against an analytical solution and then implemented on two German rivers of differing magnitude, the Salzach (˜112 m3 s-1) and the Rote Main (˜4 m3 s-1). We show that using previous inversion techniques numerical instability can lead to physically impossible negative values, whereas the new model provides stable positive values for all scenarios. We hope that by making FINIFLUX freely available to the community that Rn might find wider application in quantifying groundwater discharge to streams and rivers and thus assist in a combined management of surface and groundwater systems.
NASA Astrophysics Data System (ADS)
Lashkin, S. V.; Kozelkov, A. S.; Yalozo, A. V.; Gerasimov, V. Yu.; Zelensky, D. K.
2017-12-01
This paper describes the details of the parallel implementation of the SIMPLE algorithm for numerical solution of the Navier-Stokes system of equations on arbitrary unstructured grids. The iteration schemes for the serial and parallel versions of the SIMPLE algorithm are implemented. In the description of the parallel implementation, special attention is paid to computational data exchange among processors under the condition of the grid model decomposition using fictitious cells. We discuss the specific features for the storage of distributed matrices and implementation of vector-matrix operations in parallel mode. It is shown that the proposed way of matrix storage reduces the number of interprocessor exchanges. A series of numerical experiments illustrates the effect of the multigrid SLAE solver tuning on the general efficiency of the algorithm; the tuning involves the types of the cycles used (V, W, and F), the number of iterations of a smoothing operator, and the number of cells for coarsening. Two ways (direct and indirect) of efficiency evaluation for parallelization of the numerical algorithm are demonstrated. The paper presents the results of solving some internal and external flow problems with the evaluation of parallelization efficiency by two algorithms. It is shown that the proposed parallel implementation enables efficient computations for the problems on a thousand processors. Based on the results obtained, some general recommendations are made for the optimal tuning of the multigrid solver, as well as for selecting the optimal number of cells per processor.
To use bioassessments to diagnose specific environmental stressor gradients in streams, a better understanding is needed of the relationships between community metrics and ambient criteria. However, this relationship is not necessarily simple, because metrics generally assess me...
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
NASA Astrophysics Data System (ADS)
Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu
Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.
A simple metric to predict stream water quality from storm runoff in an urban watershed.
Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S
2010-01-01
The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.
Branson: A Mini-App for Studying Parallel IMC, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Alex
This code solves the gray thermal radiative transfer (TRT) equations in parallel using simple opacities and Cartesian meshes. Although Branson solves the TRT equations it is not designed to model radiation transport: Branson contains simple physics and does not have a multigroup treatment, nor can it use physical material data. The opacities have are simple polynomials in temperature there is a limited ability to specify complex geometries and sources. Branson was designed only to capture the computational demands of production IMC codes, especially in large parallel runs. It was also intended to foster collaboration with vendors, universities and other DOEmore » partners. Branson is similar in character to the neutron transport proxy-app Quicksilver from LLNL, which was recently open-sourced.« less
Analysis of nitrogen cycling in a forest stream during autumn using a 15N-tracer addition
Jennifer L. Tank; Judy L. Meyer; Diane M. Sanzone; Patrick J. Mulholland; Jackson R. Webster; Bruce J. Peterson; Wilfred M. Wollheim; Norman E. Leonard
2000-01-01
We added l5NH4Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of ...
Parallel Processing Strategies of the Primate Visual System
Nassi, Jonathan J.; Callaway, Edward M.
2009-01-01
Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator); Davis, R. E.; Dubayah, R. O.; Frew, J. E.; Li, S.; Marks, D.; Milliff, R. F.; Rousseau, D. D.; Wan, Z. M.
1985-01-01
Work undertaken during the contract and its results are described. Many of the results from this investigation are available in journal or conference proceedings literature - published, accepted for publication, or submitted for publication. For these the reference and the abstract are given. Those results that have not yet been submitted separately for publication are described in detail. Accomplishments during the contract period are summarized as follows: (1) analysis of the snow reflectance characteristics of the LANDSAT Thematic Mapper, including spectral suitability, dynamic range, and spectral resolution; (2) development of a variety of atmospheric models for use with LANDSAT Thematic Mapper data. These include a simple but fast two-stream approximation for inhomogeneous atmospheres over irregular surfaces, and a doubling model for calculation of the angular distribution of spectral radiance at any level in an plane-parallel atmosphere; (3) incorporation of digital elevation data into the atmospheric models and into the analysis of the satellite data; and (4) textural analysis of the spatial distribution of snow cover.
NASA Technical Reports Server (NTRS)
Simpkin, W. E.
1982-01-01
An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.
Multistability in auditory stream segregation: a predictive coding view
Winkler, István; Denham, Susan; Mill, Robert; Bőhm, Tamás M.; Bendixen, Alexandra
2012-01-01
Auditory stream segregation involves linking temporally separate acoustic events into one or more coherent sequences. For any non-trivial sequence of sounds, many alternative descriptions can be formed, only one or very few of which emerge in awareness at any time. Evidence from studies showing bi-/multistability in auditory streaming suggest that some, perhaps many of the alternative descriptions are represented in the brain in parallel and that they continuously vie for conscious perception. Here, based on a predictive coding view, we consider the nature of these sound representations and how they compete with each other. Predictive processing helps to maintain perceptual stability by signalling the continuation of previously established patterns as well as the emergence of new sound sources. It also provides a measure of how well each of the competing representations describes the current acoustic scene. This account of auditory stream segregation has been tested on perceptual data obtained in the auditory streaming paradigm. PMID:22371621
The transference of heat from a hot plate to an air stream
NASA Technical Reports Server (NTRS)
Elias, Franz
1931-01-01
The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.
Rosa, Sarah N.; Oki, Delwyn S.
2010-01-01
Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.
A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1979-01-01
Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.
Dynamic modeling of parallel robots for computed-torque control implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codourey, A.
1998-12-01
In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less
Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds
NASA Technical Reports Server (NTRS)
Frankl, F.
1942-01-01
The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Techniques for estimating selected streamflow characteristics of rural unregulated streams in Ohio
Koltun, G.F.; Whitehead, Matthew T.
2002-01-01
This report provides equations for estimating mean annual streamflow, mean monthly streamflows, harmonic mean streamflow, and streamflow quartiles (the 25th-, 50th-, and 75th-percentile streamflows) as a function of selected basin characteristics for rural, unregulated streams in Ohio. The equations were developed from streamflow statistics and basin-characteristics data for as many as 219 active or discontinued streamflow-gaging stations on rural, unregulated streams in Ohio with 10 or more years of homogenous daily streamflow record. Streamflow statistics and basin-characteristics data for the 219 stations are presented in this report. Simple equations (based on drainage area only) and best-fit equations (based on drainage area and at least two other basin characteristics) were developed by means of ordinary least-squares regression techniques. Application of the best-fit equations generally involves quantification of basin characteristics that require or are facilitated by use of a geographic information system. In contrast, the simple equations can be used with information that can be obtained without use of a geographic information system; however, the simple equations have larger prediction errors than the best-fit equations and exhibit geographic biases for most streamflow statistics. The best-fit equations should be used instead of the simple equations whenever possible.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
NASA Astrophysics Data System (ADS)
Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto
2012-11-01
In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.
Density of septic systems in watersheds has been identified as a contributor to pathogen loading in streams. At present, little work has been done to provide simple models to assist in evaluating groundwater loading for pathogen TMDLs. A compartmental model is being developed for...
Spencer, J.E.
2000-01-01
The corrugated form of the Harcuvar, South Mountains, and Catalina metamorphic core complexes in Arizona reflects the shape of the middle Tertiary extensional detachment fault that projects over each complex. Corrugation axes are approximately parallel to the fault-displacement direction and to the footwall mylonitic lineation. The core complexes are locally incised by enigmatic, linear drainages that parallel corrugation axes and the inferred extension direction and are especially conspicuous on the crests of antiformal corrugations. These drainages have been attributed to erosional incision on a freshly denuded, planar, inclined fault ramp followed by folding that elevated and preserved some drainages on the crests of rising antiforms. According to this hypothesis, corrugations were produced by folding after subacrial exposure of detachment-fault foot-walls. An alternative hypothesis, proposed here, is as follows. In a setting where preexisting drainages cross an active normal fault, each fault-slip event will cut each drainage into two segments separated by a freshly denuded fault ramp. The upper and lower drainage segments will remain hydraulically linked after each fault-slip event if the drainage in the hanging-wall block is incised, even if the stream is on the flank of an antiformal corrugation and there is a large component of strike-slip fault movement. Maintenance of hydraulic linkage during sequential fault-slip events will guide the lengthening stream down the fault ramp as the ramp is uncovered, and stream incision will form a progressively lengthening, extension-parallel, linear drainage segment. This mechanism for linear drainage genesis is compatible with corrugations as original irregularities of the detachment fault, and does not require folding after early to middle Miocene footwall exhumations. This is desirable because many drainages are incised into nonmylonitic crystalline footwall rocks that were probably not folded under low-temperature, surface conditions. An alternative hypothesis, that drainages were localized by small fault grooves as footwalls were uncovered, is not supported by analysis of a down-plunge fault projection for the southern Rincon Mountains that shows a linear drainage aligned with the crest of a small antiformal groove on the detachment fault, but this process could have been effective elsewhere. Lineation-parallel drainages now plunge gently southwestward on the southwest ends of antiformal corrugations in the South and Buckskin Mountains, but these drainages must have originally plunged northeastward if they formed by either of the two alternative processes proposed here. Footwall exhumation and incision by northeast-flowing streams was apparently followed by core-complex arching and drainage reversal.
Segmentation of remotely sensed data using parallel region growing
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Cox, S. C.
1983-01-01
The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.
Experimental implementation of parallel riverbed erosion to study vegetation uprooting by flow
NASA Astrophysics Data System (ADS)
Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît
2014-05-01
In nature, flow erosion leading to the uprooting of vegetation is often a delayed process that gradually reduces anchoring by root exposure and correspondingly increases drag on the exposed biomass. The process determining scouring or deposition of the riverbed, and consequently plant root exposure is complex and scale dependent. At the local scale, it is hydrodynamically driven and depends on obstacle porosity, as well as sediment vs obstacle size ratio. At a larger scale it results from morphodynamic conditions, which mostly depend on riverbed topography and stream bedload transport capacity. In the latter case, ablation of sediment gradually reduces local bed elevation around the obstacle at a scale larger than the obstacle size, and uprooting eventually occurs when flow drag exceeds the residual anchoring. Ideally, one would study the timescales of vegetation uprooting by flow by inducing parallel bed erosion. This condition is not trivial to obtain experimentally because bed elevation adjustments occur in relation to longitudinal changes in sediment apportion as described by Exner's equation. In this work, we study the physical conditions leading to parallel bed erosion by reducing Exner equation closed for bedload transport to a nonlinear partial differential equation, and showing that this is a particular "boundary value" problem. Eventually, we use the data of Edmaier (2014) from a small scale mobile-bed flume setup to verify the proposed theoretical framework, and to show how such a simple experiment can provide useful insights into the timescales of the uprooting process (Edmaier et al., 2011). REFERENCES - Edmaier, K., P. Burlando, and P. Perona (2011). Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment. Hydrology and Earth System Sciences, vol. 15, p. 1615-1627. - Edmaier, K. Uprooting mechanisms of juvenile vegetation by flow. PhD thesis, EPFL, in preparation.
Parallel computing for automated model calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.
2002-07-29
Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...
2016-05-06
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Dispersoid separation method and apparatus
Winsche, Warren E.
1980-01-01
Improved separation of heavier material from a dispersoid of gas and heavier material entrained therein is taught by the method of this invention which advantageously uses apparatus embodied in an inertial separator having rotary partition means comprising wall members dividing a housing into a plurality of axially-extending through passages arranged in parallel. Simultaneously with the helical transit of a moving stream of the dispersoid through the parallel arrangement of axially-extending through passages at a constant angular velocity, the heavier material is driven radially to the collecting surfaces of the rotational wall members where it is collected while the wall members are rotating at the same angular velocity as the moving stream. The plurality of wall members not only provides an increased area of collecting surfaces but the positioning of each of the wall members according to the teaching of this invention also results in a shortened time-of-flight to the collecting surfaces.
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Van Rosendale, John
1989-01-01
A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.
Analysis of Nitrogen Cycling in a Forest Stream During Autumn Using a 15N Tracer Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tank, J.L.
2000-01-01
We added {sup 15}NH{sub 4}Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of d{sup 15}N were determined for stream water ammonium, nitrate, dissolved organic nitrogen, and various compartments of the food web over time and distance and then compared to model predictions.
Many-to-one form-to-function mapping weakens parallel morphological evolution.
Thompson, Cole J; Ahmed, Newaz I; Veen, Thor; Peichel, Catherine L; Hendry, Andrew P; Bolnick, Daniel I; Stuart, Yoel E
2017-11-01
Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: "many-to-one mapping." Many-to-one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many-to-one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake- and stream-adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form-to-function relationship from one-to-one (lower jaw lever ratio) to increasingly many-to-one (buccal suction index, opercular 4-bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake-stream pairs, in the many-to-one systems relative to the one-to-one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many-to-one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Implicit schemes and parallel computing in unstructured grid CFD
NASA Technical Reports Server (NTRS)
Venkatakrishnam, V.
1995-01-01
The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.
Re-forming supercritical quasi-parallel shocks. I - One- and two-dimensional simulations
NASA Technical Reports Server (NTRS)
Thomas, V. A.; Winske, D.; Omidi, N.
1990-01-01
The process of reforming supercritical quasi-parallel shocks is investigated using one-dimensional and two-dimensional hybrid (particle ion, massless fluid electron) simulations both of shocks and of simpler two-stream interactions. It is found that the supercritical quasi-parallel shock is not steady. Instread of a well-defined shock ramp between upstream and downstream states that remains at a fixed position in the flow, the ramp periodically steepens, broadens, and then reforms upstream of its former position. It is concluded that the wave generation process is localized at the shock ramp and that the reformation process proceeds in the absence of upstream perturbations intersecting the shock.
On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics
Calcagno, Cristina; Coppo, Mario
2014-01-01
The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327
On designing multicore-aware simulators for systems biology endowed with OnLine statistics.
Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo
2014-01-01
The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.
NASA Astrophysics Data System (ADS)
Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe
2017-04-01
The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.
Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy
2016-01-01
We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.
A simple technique for continuous measurement of time-variable gas transfer in surface waters
Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades
2009-01-01
Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.
Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan
2018-02-01
Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.
2006-01-01
The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.
Products identified at an alternative disinfection pilot plant.
Lykins, B W; Koffskey, W
1986-01-01
Many drinking water utilities have recently changed or are seriously considering changing their disinfection practice from chlorine to some alternative treatment process. However, most of these utilities are changing their disinfectants without evaluating chemical impacts. Therefore, a research cooperative agreement was developed with Jefferson Parish, LA, to evaluate four parallel streams treated with four different disinfectants (chlorine, monochloramine, chlorine dioxide, and ozone.) These streams, along with a fifth parallel stream, which was not treated with a disinfectant (control), were passed through both sand and granular activated carbon (GAC). Ozonation reduced the total organic carbon (TOC) and total organic halide (TOX) concentration by 0.3 mg/L and 10 micrograms/L, respectively. The average concentration of TOC for the other disinfectants was comparable to that associated with the nondisinfected stream (3.3 mg/L). The average instantaneous TOX concentration for chlorine dioxide, chloramine, and chlorine disinfection after 30 min contact time increased by 60, 92, and 238 micrograms/L, respectively, from a nondisinfected concentration of 25 micrograms/L. The volatile organics most affected by disinfection (chlorination) were the trihalomethanes. No significant change in concentration was noted after disinfection for the other volatile organics evaluated, such as 1,2-dichlorethane, dichloromethane, trichloroethylene, 1,1,2-trichloroethane, and carbon tetrachloride. Ozonation produced an average concentration reduction of 11 to 84% for most of the nonvolatiles evaluated. Conversely, a concentration increase of 43 to 100% was noted, after chlorination, for some of the nonvolatile organics. PMID:3816717
Products identified at an alternative disinfection pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykins, B.W. Jr.; Koffskey, W.
1986-11-01
Many drinking water utilities have recently changed or are seriously considering changing their disinfection practice from chlorine to some alternative treatment process. However, most of these utilities are changing their disinfectants without evaluating chemical impacts. Therefore, a research cooperative agreement was developed with Jefferson Parish, LA, to evaluate four parallel streams treated with four different disinfectants (chlorine, monochloramine, chlorine dioxide, and ozone.) These streams, along with a fifth parallel stream, which was not treated with a disinfectant (control), were passed through both sand and granular activated carbon (GAC). Ozonation reduced the total organic carbon (TOC) and total organic halide (TOX)more » concentration by 0.3 mg/L and 10 micrograms/L, respectively. The average concentration of TOC for the other disinfectants was comparable to that associated with the nondisinfected stream (3.3 mg/L). The average instantaneous TOX concentration for chlorine dioxide, chloramine, and chlorine disinfection after 30 min contact time increased by 60, 92, and 238 micrograms/L, respectively, from a nondisinfected concentration of 25 micrograms/L. The volatile organics most affected by disinfection (chlorination) were the trihalomethanes. No significant change in concentration was noted after disinfection for the other volatile organics evaluated, such as 1,2-dichlorethane, dichloromethane, trichloroethylene, 1,1,2-trichloroethane, and carbon tetrachloride. Ozonation produced an average concentration reduction of 11 to 84% for most of the nonvolatiles evaluated. Conversely, a concentration increase of 43 to 100% was noted, after chlorination, for some of the nonvolatile organics.« less
Distribution of model uncertainty across multiple data streams
NASA Astrophysics Data System (ADS)
Wutzler, Thomas
2014-05-01
When confronting biogeochemical models with a diversity of observational data streams, we are faced with the problem of weighing the data streams. Without weighing or multiple blocked cost functions, model uncertainty is allocated to the sparse data streams and possible bias in processes that are strongly constraint is exported to processes that are constrained by sparse data streams only. In this study we propose an approach that aims at making model uncertainty a factor of observations uncertainty, that is constant over all data streams. Further we propose an implementation based on Monte-Carlo Markov chain sampling combined with simulated annealing that is able to determine this variance factor. The method is exemplified both with very simple models, artificial data and with an inversion of the DALEC ecosystem carbon model against multiple observations of Howland forest. We argue that the presented approach is able to help and maybe resolve the problem of bias export to sparse data streams.
Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.
1998-01-01
An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.
Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.
2005-09-20
An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.
Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.
2000-01-01
An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.
Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.
1998-12-29
An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.
Analysis of supersonic plug nozzle flowfield and heat transfer
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Sheu, W. H.
1988-01-01
A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.
Sensing Impacts of the Fate of Trace Explosives Signatures Under Environmental Conditions
2010-01-01
vial with a pair of clean metal tweezers. A 10 mL aliquot of CHROMASOLV® Plus HPLC -grade acetone was dispensed on the wide surfaces of the sample...Evaporator Workstation under a nitrogen purge stream in a 50 ºC water bath and reconstituted with CHROMASOLV® HPLC -grade acetonitrile to 500 L... simultaneously on the two parallel GC columns, using a refrigerated (ɠ °C) 100-vial autosampler and two parallel auto-injectors. Column 1 (Restek 562719
Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.
2006-04-01
We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.
C.R. Jackson; D.S. Leigh; S.L. Scarbrough; J.F. Chamblee
2014-01-01
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development,...
Basal melt beneath whillans ice stream and ice streams A and C
NASA Technical Reports Server (NTRS)
Joughin, I.; Teluezyk, S.; Engelhardt, H.
2002-01-01
We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.
Programmable stream prefetch with resource optimization
Boyle, Peter; Christ, Norman; Gara, Alan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan
2013-01-08
A stream prefetch engine performs data retrieval in a parallel computing system. The engine receives a load request from at least one processor. The engine evaluates whether a first memory address requested in the load request is present and valid in a table. The engine checks whether there exists valid data corresponding to the first memory address in an array if the first memory address is present and valid in the table. The engine increments a prefetching depth of a first stream that the first memory address belongs to and fetching a cache line associated with the first memory address from the at least one cache memory device if there is not yet valid data corresponding to the first memory address in the array. The engine determines whether prefetching of additional data is needed for the first stream within its prefetching depth. The engine prefetches the additional data if the prefetching is needed.
Particle in cell simulation of instabilities in space and astrophysical plasmas
NASA Astrophysics Data System (ADS)
Tonge, John William
Several plasma instabilities relevant to space physics are investigated using the parallel PIC plasma simulation code P3arsec. This thesis addresses electrostatic micro-instabilities relevant to ion ring distributions, proceeds to electromagnetic micro-instabilities pertinent to streaming plasmas, and then to the stability of a plasma held in the field of a current rod. The physical relevance of each of these instabilities is discussed, a phenomenological description is given, and analytic and simulation results are presented and compared. Instability of a magnetized plasma with a portion of the ions in a velocity ring distribution around the magnetic field is investigated using simulation and analytic theory. The physics of this distribution is relevant to solar flares, x-ray emission by comets, and pulsars. Physical parameters, including the mass ratio, are near those of a solar flare in the simulation. The simulation and analytic results show agreement in the linear regime. In the nonlinear stage the simulation shows highly accelerated electrons in agreement with the observed spectrum of x-rays emitted by solar flares. A mildly relativistic streaming electron positron plasma with no ambient magnetic field is known to be unstable to electrostatic (two-stream/beam instability) and purely electromagnetic (Weibel) modes. This instability is relevant to highly energetic interstellar phenomena, including pulsars, supernova remnants, and the early universe. It is also important for experiments in which relativistic beams penetrate a background plasma, as in fast ignitor scenarios. Cold analytic theory is presented and compared to simulations. There is good agreement in the regime where cold theory applies. The simulation and theory shows that to properly characterize the instability, directions parallel and perpendicular to propagation of the beams must be considered. A residual magnetic field is observed which may be of astro-physical significance. The stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while the current rod is much easier to analyze theoretically and realize in simulations. The stability properties of a plasma confined in a dipole field are important for understanding a variety of space phenomena and the Levitated Dipole eXperiment (LDX). Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles ∝ r-10/3. The simulations also show that the density profile will be stationary as long as density ∝ r -2 even though the temperature profile may not be stable.
Marginal instability threshold condition of the aperiodic ordinary mode in equal-mass plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
The purely growing ordinary (O) mode instability for counter-streaming bi-Maxwellian plasma particle distribution functions has recently received renewed attention due to its importance for the solar wind plasma. Here, the analytical marginal instability condition is derived for magnetized plasmas consisting of equal-mass charged particles, distributed in counter-streams with equal temperatures. The equal-mass composition assumption enormously facilitates the theoretical analysis due to the equality of the values of the electron and positron (positive and negative ion) plasma and gyrofrequencies. The existence of a new instability domain of the O-mode at small plasma beta values is confirmed, when the parallel counter-stream freemore » energy exceeds the perpendicular bi-Maxwellian free energy.« less
Effect of electron thermal anisotropy on the kinetic cross-field streaming instability
NASA Technical Reports Server (NTRS)
Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.
1984-01-01
The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.
Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; ...
2016-02-02
Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully exploredmore » or developed.« less
Bonsai: an event-based framework for processing and controlling data streams
Lopes, Gonçalo; Bonacchi, Niccolò; Frazão, João; Neto, Joana P.; Atallah, Bassam V.; Soares, Sofia; Moreira, Luís; Matias, Sara; Itskov, Pavel M.; Correia, Patrícia A.; Medina, Roberto E.; Calcaterra, Lorenza; Dreosti, Elena; Paton, Joseph J.; Kampff, Adam R.
2015-01-01
The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation. PMID:25904861
Ohlsson, Pelle; Petersson, Klara; Augustsson, Per; Laurell, Thomas
2018-06-14
Sepsis is a common and often deadly systemic response to an infection, usually caused by bacteria. The gold standard for finding the causing pathogen in a blood sample is blood culture, which may take hours to days. Shortening the time to diagnosis would significantly reduce mortality. To replace the time-consuming blood culture we are developing a method to directly separate bacteria from red and white blood cells to enable faster bacteria identification. The blood cells are moved from the sample flow into a parallel stream using acoustophoresis. Due to their smaller size, the bacteria are not affected by the acoustic field and therefore remain in the blood plasma flow and can be directed to a separate outlet. When optimizing for sample throughput, 1 ml of undiluted whole blood equivalent can be processed within 12.5 min, while maintaining the bacteria recovery at 90% and the blood cell removal above 99%. That makes this the fastest label-free microfluidic continuous flow method per channel to separate bacteria from blood with high bacteria recovery (>80%). The high throughput was achieved by matching the acoustic impedance of the parallel stream to that of the blood sample, to avoid that acoustic forces relocate the fluid streams.
Improving Data Transfer Throughput with Direct Search Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaprakash, Prasanna; Morozov, Vitali; Kettimuthu, Rajkumar
2016-01-01
Improving data transfer throughput over high-speed long-distance networks has become increasingly difficult. Numerous factors such as nondeterministic congestion, dynamics of the transfer protocol, and multiuser and multitask source and destination endpoints, as well as interactions among these factors, contribute to this difficulty. A promising approach to improving throughput consists in using parallel streams at the application layer.We formulate and solve the problem of choosing the number of such streams from a mathematical optimization perspective. We propose the use of direct search methods, a class of easy-to-implement and light-weight mathematical optimization algorithms, to improve the performance of data transfers by dynamicallymore » adapting the number of parallel streams in a manner that does not require domain expertise, instrumentation, analytical models, or historic data. We apply our method to transfers performed with the GridFTP protocol, and illustrate the effectiveness of the proposed algorithm when used within Globus, a state-of-the-art data transfer tool, on productionWAN links and servers. We show that when compared to user default settings our direct search methods can achieve up to 10x performance improvement under certain conditions. We also show that our method can overcome performance degradation due to external compute and network load on source end points, a common scenario at high performance computing facilities.« less
Research on Multi - Person Parallel Modeling Method Based on Integrated Model Persistent Storage
NASA Astrophysics Data System (ADS)
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying
2018-03-01
This paper mainly studies the multi-person parallel modeling method based on the integrated model persistence storage. The integrated model refers to a set of MDDT modeling graphics system, which can carry out multi-angle, multi-level and multi-stage description of aerospace general embedded software. Persistent storage refers to converting the data model in memory into a storage model and converting the storage model into a data model in memory, where the data model refers to the object model and the storage model is a binary stream. And multi-person parallel modeling refers to the need for multi-person collaboration, the role of separation, and even real-time remote synchronization modeling.
Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F
2002-02-01
This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion.
Leimkuhler, Thomas; Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter
2018-06-01
We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity.
X-DRAIN and XDS: a simplified road erosion prediction method
William J. Elliot; David E. Hall; S. R. Graves
1998-01-01
To develop a simple road sediment delivery tool, the WEPP program modeled sedimentation from forest roads for more than 50,000 combinations of distance between cross drains, road gradient, soil texture, distance from stream, steepness of the buffer between the road and the stream, and climate. The sediment yield prediction from each of these runs was stored in a data...
NASA Astrophysics Data System (ADS)
Osman, Yassin Z.; Bruen, Michael P.
2002-07-01
Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.
Auditory stream segregation in children with Asperger syndrome
Lepistö, T.; Kuitunen, A.; Sussman, E.; Saalasti, S.; Jansson-Verkasalo, E.; Nieminen-von Wendt, T.; Kujala, T.
2009-01-01
Individuals with Asperger syndrome (AS) often have difficulties in perceiving speech in noisy environments. The present study investigated whether this might be explained by deficient auditory stream segregation ability, that is, by a more basic difficulty in separating simultaneous sound sources from each other. To this end, auditory event-related brain potentials were recorded from a group of school-aged children with AS and a group of age-matched controls using a paradigm specifically developed for studying stream segregation. Differences in the amplitudes of ERP components were found between groups only in the stream segregation conditions and not for simple feature discrimination. The results indicated that children with AS have difficulties in segregating concurrent sound streams, which ultimately may contribute to the difficulties in speech-in-noise perception. PMID:19751798
Simulating Streamflow and Dissolved Organic Matter Export from small Forested Watersheds
NASA Astrophysics Data System (ADS)
Xu, N.; Wilson, H.; Saiers, J. E.
2010-12-01
Coupling the rainfall-runoff process and solute transport in catchment models is important for understanding the dynamics of water-quality-relevant constituents in a watershed. To simulate the hydrologic and biogeochemical processes in a parametrically parsimonious way remains challenging. The purpose of this study is to quantify the export of water and dissolved organic matter (DOM) from a forested catchment by developing and testing a coupled model for rainfall-runoff and soil-water flushing of DOM. Natural DOM plays an important role in terrestrial and aquatic systems by affecting nutrient cycling, contaminant mobility and toxicity, and drinking water quality. Stream-water discharge and DOM concentrations were measured in a first-order stream in Harvard Forest, Massachusetts. These measurements show that stream water DOM concentrations are greatest during hydrologic events induced by rainfall or snowmelt and decline to low, steady levels during periods of baseflow. Comparison of the stream-discharge data to calculations of a simple rainfall-runoff model reveals a hysteretic relationship between stream-flow rates and the storage of water within the catchment. A modified version of the rainfall-runoff model that accounts for hysteresis in the storage-discharge relationship in a parametrically simple way is capable of describing much, but not all, of the variation in the time-series data on stream discharge. Our ongoing research is aimed at linking the new rainfall-runoff formulation with coupled equations that predict soil-flushing and stream-water concentrations of DOM as functions of the temporal change in catchment water storage. This model will provide a predictive tool for examining how changes in climatic variables would affect the runoff generation and DOM fluxes from terrestrial landscape.
1060-nm VCSEL-based parallel-optical modules for optical interconnects
NASA Astrophysics Data System (ADS)
Nishimura, N.; Nagashima, K.; Kise, T.; Rizky, A. F.; Uemura, T.; Nekado, Y.; Ishikawa, Y.; Nasu, H.
2015-03-01
The capability of mounting a parallel-optical module onto a PCB through solder-reflow process contributes to reduce the number of piece parts, simplify its assembly process, and minimize a foot print for both AOC and on-board applications. We introduce solder-reflow-capable parallel-optical modules employing 1060-nm InGaAs/GaAs VCSEL which leads to the advantages of realizing wider modulation bandwidth, longer transmission distance, and higher reliability. We demonstrate 4-channel parallel optical link performance operated at a bit stream of 28 Gb/s 231-1 PRBS for each channel and transmitted through a 50-μm-core MMF beyond 500 m. We also introduce a new mounting technology of paralleloptical module to realize maintaining good coupling and robust electrical connection during solder-reflow process between an optical module and a polymer-waveguide-embedded PCB.
Johnson
1999-01-01
The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.
Ouyang, Ying; Grace, Johnny M; Zipperer, Wayne C; Hatten, Jeff; Dewey, Janet
2018-05-22
Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) in streams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities through absorption of light and complex metals with production of carcinogenic compounds. Although computer models have become increasingly popular in understanding and management of TOC, ROC, and LOC loads in streams, the usefulness of these models hinges on the availability of daily data for model calibration and validation. Unfortunately, these daily data are usually insufficient and/or unavailable for most watersheds due to a variety of reasons, such as budget and time constraints. A simple approach was developed here to calculate daily loads of TOC, ROC, and LOC in streams based on their seasonal loads. We concluded that the predictions from our approach adequately match field measurements based on statistical comparisons between model calculations and field measurements. Our approach demonstrates that an increase in stream discharge results in increased stream TOC, ROC, and LOC concentrations and loads, although high peak discharge did not necessarily result in high peaks of TOC, ROC, and LOC concentrations and loads. The approach developed herein is a useful tool to convert seasonal loads of TOC, ROC, and LOC into daily loads in the absence of measured daily load data.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors
2009-09-01
TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4 3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7 4 . RESULTS
Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark
2013-10-01
Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.
A picoliter-volume mixer for microfluidic analytical systems.
He, B; Burke, B J; Zhang, X; Zhang, R; Regnier, F E
2001-05-01
Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 microm in width whereas larger 27-microm-width channels ran back and forth through the parallel channel network at a 45 degrees angle. The channel network composing the mixer was approximately 10 microm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the approximately 200-microm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt to describe the extent of mixing in microfabricated systems.
Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing
NASA Technical Reports Server (NTRS)
Battiste, Vernol (Technical Monitor); Pritchett, Amy
2003-01-01
Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.
Malleable architecture generator for FPGA computing
NASA Astrophysics Data System (ADS)
Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang
1996-10-01
The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.
GASPRNG: GPU accelerated scalable parallel random number generator library
NASA Astrophysics Data System (ADS)
Gao, Shuang; Peterson, Gregory D.
2013-04-01
Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070). Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives. RAM: 512 MB˜ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory) Classification: 4.13, 6.5. Nature of problem: Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs). Solution method: Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs. Running time: The tests provided take a few minutes to run.
Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.
The Importance of Insects in Energy Transfers Across Riparian Ecotones Along Hong Kong Streams
NASA Astrophysics Data System (ADS)
Chan, E. K.; Dudgeon, D.
2005-05-01
Energy and materials in the form of insects transfer reciprocally between land and water through stream riparian ecotones, and may provide important energy subsidies to aquatic and terrestrial consumers. Variation in the magnitude and extent of this transfer was investigated in 2004-05 in six Hong Kong streams: four shaded and two unshaded. A combination of pan traps and light traps were used to investigate seasonal activity of aquatic and terrestrial insects. Both were more abundant during the wet season (April to September). Over 80% of emerging aquatic insects stayed within 20 m of the stream bank at all sites, suggesting that the water to land subsidy was spatially restricted. Inputs of terrestrial insects into shaded streams were 30% greater than at open sites, and drift-feeding Parazacco spilurus (Cyprinidae) ate more terrestrial insects in shaded (>40% of prey) than unshaded streams (25% of prey). Stable isotope analysis (SIA; C & N) of potential prey and fish tissues confirmed the dietary importance of terrestrial insects. The spider Leucauge celebesiana (Tetragnathidae) builds orb web parallel to the water surface during the main period of aquatic insect emergence, and SIA indicated that aquatic insects were the primary prey of this terrestrial consumer.
NASA Astrophysics Data System (ADS)
Fishman, Yonatan I.; Arezzo, Joseph C.; Steinschneider, Mitchell
2004-09-01
Auditory stream segregation refers to the organization of sequential sounds into ``perceptual streams'' reflecting individual environmental sound sources. In the present study, sequences of alternating high and low tones, ``...ABAB...,'' similar to those used in psychoacoustic experiments on stream segregation, were presented to awake monkeys while neural activity was recorded in primary auditory cortex (A1). Tone frequency separation (ΔF), tone presentation rate (PR), and tone duration (TD) were systematically varied to examine whether neural responses correlate with effects of these variables on perceptual stream segregation. ``A'' tones were fixed at the best frequency of the recording site, while ``B'' tones were displaced in frequency from ``A'' tones by an amount=ΔF. As PR increased, ``B'' tone responses decreased in amplitude to a greater extent than ``A'' tone responses, yielding neural response patterns dominated by ``A'' tone responses occurring at half the alternation rate. Increasing TD facilitated the differential attenuation of ``B'' tone responses. These findings parallel psychoacoustic data and suggest a physiological model of stream segregation whereby increasing ΔF, PR, or TD enhances spatial differentiation of ``A'' tone and ``B'' tone responses along the tonotopic map in A1.
Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica
Hodge, S.M.; Doppelhammer, S.K.
1996-01-01
Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Grondona, M
2002-12-19
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling and stream copy modules. This paper presents an overview of the SLURM architecture and functionality.
Keep It Simple: A Lesson in Linking Teens to Health Care
ERIC Educational Resources Information Center
Eisler, Alexandra; Avellino, Lia; Chilcoat, Deborah; Schlanger, Karen
2016-01-01
The "Keep It Simple" package, which includes a short animated film (available online for streaming or download), a lesson plan, and supporting materials, was designed to be used with adolescents ages 15-19 to empower them to seek sexual and reproductive health care, and emphasize the availability of long-acting reversible contraception…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; Qu, Ming
This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less
Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams
Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488
Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen
2009-06-01
A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.
Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.
Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.
Grouper: a compact, streamable triangle mesh data structure.
Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek
2014-01-01
We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.
Three lessons for genetic toxicology from baseball analytics.
Dertinger, Stephen D
2017-07-01
In many respects the evolution of baseball statistics mirrors advances made in the field of genetic toxicology. From its inception, baseball and statistics have been inextricably linked. Generations of players and fans have used a number of relatively simple measurements to describe team and individual player's current performance, as well as for historical record-keeping purposes. Over the years, baseball analytics has progressed in several important ways. Early advances were based on deriving more meaningful metrics from simpler forerunners. Now, technological innovations are delivering much deeper insights. Videography, radar, and other advances that include automatic player recognition capabilities provide the means to measure more complex and useful factors. Fielders' reaction times, efficiency of the route taken to reach a batted ball, and pitch-framing effectiveness come to mind. With the current availability of complex measurements from multiple data streams, multifactorial analyses occurring via machine learning algorithms have become necessary to make sense of the terabytes of data that are now being captured in every Major League Baseball game. Collectively, these advances have transformed baseball statistics from being largely descriptive in nature to serving data-driven, predictive roles. Whereas genetic toxicology has charted a somewhat parallel course, a case can be made that greater utilization of baseball's mindset and strategies would serve our scientific field well. This paper describes three useful lessons for genetic toxicology, courtesy of the field of baseball analytics: seek objective knowledge; incorporate multiple data streams; and embrace machine learning. Environ. Mol. Mutagen. 58:390-397, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Grouper: A Compact, Streamable Triangle Mesh Data Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luffel, Mark; Gurung, Topraj; Lindstrom, Peter
2014-01-01
Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshesmore » using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.« less
The Wang Landau parallel algorithm for the simple grids. Optimizing OpenMPI parallel implementation
NASA Astrophysics Data System (ADS)
Kussainov, A. S.
2017-12-01
The Wang Landau Monte Carlo algorithm to calculate density of states for the different simple spin lattices was implemented. The energy space was split between the individual threads and balanced according to the expected runtime for the individual processes. Custom spin clustering mechanism, necessary for overcoming of the critical slowdown in the certain energy subspaces, was devised. Stable reconstruction of the density of states was of primary importance. Some data post-processing techniques were involved to produce the expected smooth density of states.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E(sub parallel)) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E(sub parallel). These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (less than 10eV) plasma in the magnetosphere with warm (approximately 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
NASA Technical Reports Server (NTRS)
Weeks, Cindy Lou
1986-01-01
Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.
Integrated Task and Data Parallel Programming
NASA Technical Reports Server (NTRS)
Grimshaw, A. S.
1998-01-01
This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Integrated Task And Data Parallel Programming: Language Design
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; West, Emily A.
1998-01-01
his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Method For Enhanced Gas Monitoring In High Density Flow Streams
Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu
2005-09-13
A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.
A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Somogyi, Andy; Tagg, Randall
2007-11-01
We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.
2003-01-01
Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.
Memory-based frame synchronizer. [for digital communication systems
NASA Technical Reports Server (NTRS)
Stattel, R. J.; Niswander, J. K. (Inventor)
1981-01-01
A frame synchronizer for use in digital communications systems wherein data formats can be easily and dynamically changed is described. The use of memory array elements provide increased flexibility in format selection and sync word selection in addition to real time reconfiguration ability. The frame synchronizer comprises a serial-to-parallel converter which converts a serial input data stream to a constantly changing parallel data output. This parallel data output is supplied to programmable sync word recognizers each consisting of a multiplexer and a random access memory (RAM). The multiplexer is connected to both the parallel data output and an address bus which may be connected to a microprocessor or computer for purposes of programming the sync word recognizer. The RAM is used as an associative memory or decorder and is programmed to identify a specific sync word. Additional programmable RAMs are used as counter decoders to define word bit length, frame word length, and paragraph frame length.
A millisecond micromixer via single-bubble-based acoustic streaming.
Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun
2009-09-21
We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.
Josephides, Dimitris N; Sajjadi, Shahriar
2015-01-27
Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.
Propulsion of a flapping and oscillating airfoil
NASA Technical Reports Server (NTRS)
Garrick, I E
1937-01-01
Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.
Career Counseling in a Volatile Job Market: Tiedeman's Perspective Revisited
ERIC Educational Resources Information Center
Duys, David K.; Ward, Janice E.; Maxwell, Jane A.; Eaton-Comerford, Leslie
2008-01-01
This article explores implications of Tiedeman's original theory for career counselors. Some components of the theory seem to be compatible with existing volatile job market conditions. Notions of career path recycling, development in reverse, nonlinear progress, and parallel streams in career development are explored. Suggestions are made for…
On the marginal instability threshold condition of the aperiodic ordinary mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.; Yoon, P. H.; School of Space Research, Kyung Hee University, Yongin
2014-07-15
The purely growing ordinary (O) mode instability has recently received renewed attention owing to its potential applicability to the solar wind plasma. Here, an analytical marginal instability condition is derived for counter-streaming bi-Maxwellian plasma particle distribution functions. The derived marginal instability condition as a function of the temperature anisotropy and plasma beta agrees remarkably well with the numerically determined instability condition. The existence of a new instability domain of the O-mode at small plasma beta values is confirmed with the leading A∝β{sub ∥}{sup −1}-dependence, if the counter-stream parameter P{sub e} exceeds a critical value. At small plasma beta values atmore » large enough counter-stream parameter, the O-mode also operates for temperature anisotropies A = T{sub ⊥}/T{sub ∥} > 1 even larger than unity, as the parallel counter-stream free energy exceeds the perpendicular bi-Maxwellian free energy.« less
DOT National Transportation Integrated Search
2010-10-01
In this report, we study information propagation via inter-vehicle communication along two parallel : roads. By identifying an inherent Bernoulli process, we are able to derive the mean and variance of : propagation distance. A road separation distan...
Apparatus and methods for cooling and sealing rotary helical screw compressors
Fresco, A.N.
1997-08-05
In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.
Apparatus and methods for cooling and sealing rotary helical screw compressors
Fresco, Anthony N.
1997-01-01
In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors. PMID:24404050
Implementing Rapid Bioassessment Protocols (RBP’s) for Watershed Monitoring
2010-08-01
rare taxa (Cao et al . 1998, 2001; Marchant 2002 ; and Cao and Williams 1999) may have on subsequent results and conclusions. However, the most recent...investigating abiotic and biotic properties of streams (Plafkin et al . 1989). Subsequent refinement of RBP has resulted in a simple and flexible set of...standard methods for evaluating environmental, biological, and physical habitat characteristics of streams (Barbour et al . 1999). This report discusses
A feedback model of figure-ground assignment.
Domijan, Drazen; Setić, Mia
2008-05-30
A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.
Optoelectronic associative recall using motionless-head parallel readout optical disk
NASA Astrophysics Data System (ADS)
Marchand, P. J.; Krishnamoorthy, A. V.; Ambs, P.; Esener, S. C.
1990-12-01
High data rates, low retrieval times, and simple implementation are presently shown to be obtainable by means of a motionless-head 2D parallel-readout system for optical disks. Since the optical disk obviates mechanical head motions for access, focusing, and tracking, addressing is performed exclusively through the disk's rotation. Attention is given to a high-performance associative memory system configuration which employs a parallel readout disk.
Analyzing indicators of stream health for Minnesota streams
Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.
2005-01-01
Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.
STREAMFINDER - I. A new algorithm for detecting stellar streams
NASA Astrophysics Data System (ADS)
Malhan, Khyati; Ibata, Rodrigo A.
2018-07-01
We have designed a powerful new algorithm to detect stellar streams in an automated and systematic way. The algorithm, which we call the STREAMFINDER, is well suited for finding dynamically cold and thin stream structures that may lie along any simple or complex orbits in Galactic stellar surveys containing any combination of positional and kinematic information. In the present contribution, we introduce the algorithm, lay out the ideas behind it, explain the methodology adopted to detect streams, and detail its workings by running it on a suite of simulations of mock Galactic survey data of similar quality to that expected from the European Space Agency/Gaia mission. We show that our algorithm is able to detect even ultra-faint stream features lying well below previous detection limits. Tests show that our algorithm will be able to detect distant halo stream structures >10° long containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia data set.
Stamey, Timothy C.
2001-01-01
In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.
Synthesis of Efficient Structures for Concurrent Computation.
1983-10-01
formal presentation of these techniques, called virtualisation and aggregation, can be found n [King-83$. 113.2 Census Functions Trees perform broadcast... Functions .. .. .. .. ... .... ... ... .... ... ... ....... 6 4 User-Assisted Aggregation .. .. .. .. ... ... ... .... ... .. .......... 6 5 Parallel...6. Simple Parallel Structure for Broadcasting .. .. .. .. .. . ... .. . .. . .... 4 Figure 7. Internal Structure of a Prefix Computation Network
Vinyl chloride removal from an air stream by biotrickling filter.
Faraj, S H Esmaeili; Esfahany, M Nasr; Kadivar, M; Zilouei, H
2012-01-01
A biofiltration process was used for degradation of vinyl chloride as a hazardous material in the air stream. Three biotrickling filters in series-parallel allowing uniform feed and moisture distribution all over the bed were used. Granular activated carbon mixed with compost was employed as carrier bed. The biological culture consisted of mixture of activated sludge from PVC wastewater treatment plant. Concurrent flow of gas and liquid was used in the bed. Results indicated that during the operation period of 110 days, the biotrickling bed was able to remove over 35% of inlet vinyl chloride. Maximum elimination capacity was calculated to be 0.56 g.m(-3).hr(-1). The amount of chlorine accumulated in the circulating liquid due to the degradation of vinyl chloride was measured to be equal to the vinyl chloride removed from the air stream.
Interaction between dorsal and ventral processing streams: where, when and how?
Cloutman, Lauren L
2013-11-01
The execution of complex visual, auditory, and linguistic behaviors requires a dynamic interplay between spatial ('where/how') and non-spatial ('what') information processed along the dorsal and ventral processing streams. However, while it is acknowledged that there must be some degree of interaction between the two processing networks, how they interact, both anatomically and functionally, is a question which remains little explored. The current review examines the anatomical, temporal, and behavioral evidence regarding three potential models of dual stream interaction: (1) computations along the two pathways proceed independently and in parallel, reintegrating within shared target brain regions; (2) processing along the separate pathways is modulated by the existence of recurrent feedback loops; and (3) information is transferred directly between the two pathways at multiple stages and locations along their trajectories. Copyright © 2012 Elsevier Inc. All rights reserved.
Dodd, C.K.
1990-01-01
The flattened musk turtle Sternotherus depressus has disappeared from more than half of its former range because of habitat modifications to stream and river channels in the Warrior River Basin, Alabama. Only 6·9% of its probable historic range contains relatively healthy populations, and most populations are fragmented by extensive areas of unsuitable habitat. Turtles in the best remaining habitats continue to be vulnerable to disease and human-related disturbance, collecting and habitat modification. These factors lead to population declines and abnormal population structure. Habitat fragmentation, especially in small populations, increases vulnerability to human-caused catastrophes and demographic accidents, and could lead to eventual extinction. The threats facing fragmented populations of this turtle probably parallel those affecting many other stream-dwelling species throughout the southeastern United States.
Ecological Realism of US EPA Experimental Stream Facility ...
The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run section (0.152 m W x 4.268 m L x 0.105 m D) that widens to a gravel riffle section (0.305 m W x 4.268 m L x 0.19 m D). They are intermediate size among studies reporting stream mesocosm results. Their set-up is unique for their size, with a high degree of engineering controls for continuous flow-through dose-response designs, yet fixed, chronic exposures to contaminants under conditions that quantifiably mimic real stream riffle/run habitat with consistent upstream renewal. With fifty standard operating procedures serving ESF studies, the background and boundary condition information is collected to determine the realism critical to the field relevance of the results. Parallel ex situ and in situ single species exposure formats including fish survival and fecundity metrics are also included. With this framework studies at ESF provide scientifically defensible evaluation of proposed aquatic life criteria. This presentation discusses the relevance and realism of USEPA's mesocosms studies conducted using the Experimental Stream Facility in Milford, OH within the context of understanding the role meso-scale results can play in validating aquatic life criteria for streams and, more generally, man
Spatio-temporal variation of stream-aquifer interaction: Effect of a weir construction in Korea
NASA Astrophysics Data System (ADS)
Lee, Hyeonju; Koo, Min-Ho; Kim, Kisu; Kim, Yongcheol
2015-04-01
The Four Major Rivers Restoration Project was conducted to secure sufficient water resources, introduce comprehensive flood control measures, and improve water quality while restore the river ecosystem in Korea. The dredging of river bed and the installation of 16 weirs were done in Han, Geum, Yeongsan, and Nakdong rivers from late 2010 to early 2012 as a part of the project. Groundwater data obtained from 213 groundwater monitoring wells near the four major rivers were used to analyze the impacts of weir construction on the nearby groundwater flow system. The groundwater level and chemical characteristics were analyzed to investigate how the groundwater flow system and water quality changed after the weir construction. The results showed that groundwater level rose immediately following the rise of stream stage after the weir construction. Also, the hydrologic condition of the stream in some upland of the weirs was changed from a gaining to a losing stream. Consequently, the direction of groundwater flow was changed from perpendicular to parallel to the stream, and it swapped the groundwater in the downstream of the weir for the water recharged from the stream. Considering the results, some groundwater quality is expected to be changed and become similar to that of the stream, although the change has been not observed yet. Therefore, both further monitoring of the groundwater quality and hydrogeochemical analysis are required for quantitatively evaluating the effect of the weir.
Observation of the Kelvin–Helmholtz Instability in a Solar Prominence
NASA Astrophysics Data System (ADS)
Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan
2018-04-01
Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.
Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.
2015-01-01
Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537
NASA Astrophysics Data System (ADS)
Delhi Babu, R.; Ganesh, S.
2018-04-01
The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.
Redundant binary number representation for an inherently parallel arithmetic on optical computers.
De Biase, G A; Massini, A
1993-02-10
A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.
Tennis Rackets and the Parallel Axis Theorem
ERIC Educational Resources Information Center
Christie, Derek
2014-01-01
This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, R.P.; West, C.T.; Peters, N.E.
1990-08-01
The authors constructed a simple, process-oriented model, called the Alpine Lake Forecaster (ALF), using data collected during the Integrated Watershed Study at Emerald Lake, Sequoia National Park, CA. The model was designed to answer questions concerning the impact of acid deposition on high-elevation watersheds in the Sierra Nevada, CA. ALF is able to capture the basic solute patterns in stream water during snowmelt in this alpine catchment where ground water is a minor contributor to stream flow. It includes an empirical representation of primary mineral weathering as the only alkalinity-generating mechanism. Hydrologic and chemical data from a heavy snow yearmore » were used to calibrate the model. Watershed processes during a light snow year appeared to be different from the calibration year. The model forecast concludes that stream and lake water are most likely to experience a loss of ANC and depression in pH during spring rain storms that occur during the snowmelt dilution phase.« less
Tapered pulse tube for pulse tube refrigerators
Swift, Gregory W.; Olson, Jeffrey R.
1999-01-01
Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.
Radiative transfer in falling snow: A two-stream approximation
NASA Astrophysics Data System (ADS)
Koh, Gary
1989-04-01
Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream approximation to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The approximate solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.
NASA Technical Reports Server (NTRS)
Reif, John H.
1987-01-01
A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-07-08
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, scheduling and stream copy modules. The design also includes a scalable, general-purpose communication infrastructure. This paper presents a overview of the SLURM architecture and functionality.
Earth Observations taken by the Expedition 17 Crew
2008-08-19
ISS017-E-013789 (19 Aug. 2008) --- Desert erosion in Libya is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This detailed view (covering 13 kilometers) shows the classic patterns of an erosional desert landscape located 300 kilometers south of Libya's Mediterranean coast. Widespread indented patterns are low escarpments and stream terraces generated by stream erosion -- on those few occasions in any decade when enough rain falls for streams to flow. The only areas with active sediment deposition are the stream beds which appear in this image as sinuous zones with a distinct component of black minerals, resulting in a darker coloration than adjacent low escarpments. Sediment is transported into the area from a volcanic landscape immediately upstream to the west. Other stream-generated features are several relict stream banks, one of which even shows both of the original parallel banks. According to scientists, the ancient stream banks are preserved from erosion by various hardening cements (mainly calcium carbonate and gypsum) introduced by the streams when they were active, probably during wetter climates in the past two million years. Relict stream courses show prior positions of streams, and also provide Earth analogs for similar features on Mars. The lack of vegetation is the first indication of the great aridity of the region, but sand dunes also appear as sinuous lines oriented perpendicular to the dominant northeasterly wind direction (transverse dunes). Assuming the dominant wind direction remains the same, these transverse dunes are expected to move further to the southwest over time. Some of the dunes cross the river courses, showing how seldom the river flows.
Determining the Pollution Parameters of Degirmendere Stream (Trabzon, NE TURKEY)
NASA Astrophysics Data System (ADS)
Sunnetci, M. O.; Hatipoglu, E.; Firat Ersoy, A.; Gultekin, F.
2013-12-01
The pollution parameters of Degirmendere Stream (Trabzon, TURKEY) are determined in this study. The study area is located between Maçka, 26 km to the south of Trabzon city, and the Black Sea. The area consists of Late Cretaceous volcano-sedimentary rocks, dacite, and basalt, overlain by Eocene volcanic rocks. Quaternary alluvium overlay all geological units following Degirmendere Stream bed. In-situ physical parameter measurements, anion-cation analysis, and heavy and pollutant element analysis on water samples were carried out for four months at four different locations on the stream. The stream's water temperature values were between 4.7 and 9.7oC, pH values were between 6.01 and 7.98, dissolved oxygen (DO) values were between 7.03 and 12.38 mg/l, electrical conductivity (EC) values were between 86 and 254 μS/cm. According to the Piper diagram, the stream water is classified as Ca-HCO3 type water. In the Schoeller diagram, the lines combining mek/l values of the ions in stream water are parallel. Al concentration in the stream water varied from 0.06 to 0.22 mg/l, Mn concentration varied from 0.1 to 0.36 mg/l, and Fe concentration varied from 0.01 to 0.12 mg/l. The stream water is classified as first class in point of temperature, pH, DO, total dissolved solids (TDS), NO3-, P, Pb, Fe, and Al; first and second class in point of NH4+; second class in point of Cu; and third class in point of NO2-, according to the Water Pollution Control Regulation of the Turkish Republic's Criteria for Inland Surface Water Classification. Results indicate waters of the Degirmendere Stream is very good-good for irrigation use according to the Wilcox diagram.
Parvocellular Pathway Impairment in Autism Spectrum Disorder: Evidence from Visual Evoked Potentials
ERIC Educational Resources Information Center
Fujita, Takako; Yamasaki, Takao; Kamio, Yoko; Hirose, Shinichi; Tobimatsu, Shozo
2011-01-01
In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in…
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1992-03-01
Sistemas e Computadores Portugal The three parallel research streams aim to University of Edinburgh U.K. 1. Develop a detailed but efficient functional...relies on the fact that carbon has % irtually no solid solubilIty permitted to grow. In a companion poster paper entitled in copper, and that copper has
Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1994-01-01
We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.
Mean-flow measurements of the flow field diffusing bend
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.
1982-01-01
Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.
The Organization of Movement in Slime Mold Plasmodia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Peter A.
1963-04-22
At first sight, the noncellular slime mold plasmodia appear to be ideal organisms in which to study protoplasmic movement. They are large, easily manipulated, and display high speed protoplasmic streaming. After some experience with them, however, one is likely to become discouraged by the complexity and lability of their movement patterns. While the streaming movements necessarily follow the laws of hydrodynamics, it has not so far been possible to explain them satisfactorily in terms of any simple mechanism. The characteristics of plasmodial streaming which lead to confusion and frustration are outlined below as a substitute for direct observations and cine-photographicmore » records.« less
Influence of free-stream disturbances on boundary-layer transition
NASA Technical Reports Server (NTRS)
Harvey, W. D.
1978-01-01
Considerable experimental evidence exists which shows that free stream disturbances (the ratio of root-mean-square pressure fluctuations to mean values) in conventional wind tunnels increase with increasing Mach number at low supersonic to moderate hypersonic speeds. In addition to local conditions, the free stream disturbance level influences transition behavior on simple test models. Based on this observation, existing noise transition data obtained in the same test facility were correlated for a large number of reference sharp cones and flat plates and are shown to collapse along a single curve. This result is a significant improvement over previous attempts to correlate noise transition data.
Fault-Tolerant and Elastic Streaming MapReduce with Decentralized Coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Frincu, Marc; Simmhan, Yogesh
2015-06-29
The MapReduce programming model, due to its simplicity and scalability, has become an essential tool for processing large data volumes in distributed environments. Recent Stream Processing Systems (SPS) extend this model to provide low-latency analysis of high-velocity continuous data streams. However, integrating MapReduce with streaming poses challenges: first, the runtime variations in data characteristics such as data-rates and key-distribution cause resource overload, that inturn leads to fluctuations in the Quality of the Service (QoS); and second, the stateful reducers, whose state depends on the complete tuple history, necessitates efficient fault-recovery mechanisms to maintain the desired QoS in the presence ofmore » resource failures. We propose an integrated streaming MapReduce architecture leveraging the concept of consistent hashing to support runtime elasticity along with locality-aware data and state replication to provide efficient load-balancing with low-overhead fault-tolerance and parallel fault-recovery from multiple simultaneous failures. Our evaluation on a private cloud shows up to 2:8 improvement in peak throughput compared to Apache Storm SPS, and a low recovery latency of 700 -1500 ms from multiple failures.« less
NASA Astrophysics Data System (ADS)
Hecht, Erin
2016-03-01
As Arbib [1] notes, the two-streams hypothesis [5] has provided a powerful explanatory framework for understanding visual processing. The inferotemporal ventral stream recognizes objects and agents - ;what; one is seeing. The dorsal ;how; or ;where; stream through parietal cortex processes motion, spatial location, and visuo-proprioceptive relationships - ;vision for action.; Hickock and Poeppel's [3] extension of this model to the auditory system raises the question of deeper, multi- or supra-sensory themes in dorsal vs. ventral processing. Petrides and Pandya [10] postulate that the evolution of language may have been influenced by the fact that the dorsal stream terminates in posterior Broca's area (BA44) while the ventral stream terminates in anterior Broca's area (BA45). In an intriguing potential parallel, a recent ALE metanalysis of 54 fMRI studies found that semantic processing is located more anteriorly and superiorly than syntactic processing in Broca's area [13]. But clearly, macaques do not have language, nor other likely pre- or co-adaptations to language, such as complex imitation and tool use. What changed in the brain that enabled these functions to evolve?
Forces on particles in microstreaming flows
NASA Astrophysics Data System (ADS)
Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb
2015-11-01
In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.
NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K
NASA Technical Reports Server (NTRS)
Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.
1994-01-01
We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.; Stevens, K.
1984-01-01
Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.
Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End
NASA Technical Reports Server (NTRS)
Prokop, Norman; Krasowski, Michael
2013-01-01
This innovation is capable of correlating two analog signals by using an analog-based signal conditioning front end to hard-limit the analog signals through adaptive thresholding into a binary bit stream, then performing the correlation using a Hamming "similarity" calculator function embedded in a one-bit digital correlator (OBDC). By converting the analog signal into a bit stream, the calculation of the correlation function is simplified, and less hardware resources are needed. This binary representation allows the hardware to move from a DSP where instructions are performed serially, into digital logic where calculations can be performed in parallel, greatly speeding up calculations.
Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.
2013-01-01
Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.
Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.
2005-12-01
A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Rui; Praggastis, Brenda L.; Smith, William P.
While streaming data have become increasingly more popular in business and research communities, semantic models and processing software for streaming data have not kept pace. Traditional semantic solutions have not addressed transient data streams. Semantic web languages (e.g., RDF, OWL) have typically addressed static data settings and linked data approaches have predominantly addressed static or growing data repositories. Streaming data settings have some fundamental differences; in particular, data are consumed on the fly and data may expire. Stream reasoning, a combination of stream processing and semantic reasoning, has emerged with the vision of providing "smart" processing of streaming data. C-SPARQLmore » is a prominent stream reasoning system that handles semantic (RDF) data streams. Many stream reasoning systems including C-SPARQL use a sliding window and use data arrival time to evict data. For data streams that include expiration times, a simple arrival time scheme is inadequate if the window size does not match the expiration period. In this paper, we propose a cache-enabled, order-aware, ontology-based stream reasoning framework. This framework consumes RDF streams with expiration timestamps assigned by the streaming source. Our framework utilizes both arrival and expiration timestamps in its cache eviction policies. In addition, we introduce the notion of "semantic importance" which aims to address the relevance of data to the expected reasoning, thus enabling the eviction algorithms to be more context- and reasoning-aware when choosing what data to maintain for question answering. We evaluate this framework by implementing three different prototypes and utilizing five metrics. The trade-offs of deploying the proposed framework are also discussed.« less
Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
Slażyński, Leszek; Bohte, Sander
2012-01-01
The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.
Parallel tempering for the traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percus, Allon; Wang, Richard; Hyman, Jeffrey
We explore the potential of parallel tempering as a combinatorial optimization method, applying it to the traveling salesman problem. We compare simulation results of parallel tempering with a benchmark implementation of simulated annealing, and study how different choices of parameters affect the relative performance of the two methods. We find that a straightforward implementation of parallel tempering can outperform simulated annealing in several crucial respects. When parameters are chosen appropriately, both methods yield close approximation to the actual minimum distance for an instance with 200 nodes. However, parallel tempering yields more consistently accurate results when a series of independent simulationsmore » are performed. Our results suggest that parallel tempering might offer a simple but powerful alternative to simulated annealing for combinatorial optimization problems.« less
Compact forced simple-shear sample for studying shear localization in materials
Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica
2015-11-06
In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less
Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.
2009-01-01
In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.
CrowdWater - Can people observe what models need?
NASA Astrophysics Data System (ADS)
van Meerveld, I. H. J.; Seibert, J.; Vis, M.; Etter, S.; Strobl, B.
2017-12-01
CrowdWater (www.crowdwater.ch) is a citizen science project that explores the usefulness of crowd-sourced data for hydrological model calibration and prediction. Hydrological models are usually calibrated based on observed streamflow data but it is likely easier for people to estimate relative stream water levels, such as the water level above or below a rock, than streamflow. Relative stream water levels may, therefore, be a more suitable variable for citizen science projects than streamflow. In order to test this assumption, we held surveys near seven different sized rivers in Switzerland and asked more than 450 volunteers to estimate the water level class based on a picture with a virtual staff gauge. The results show that people can generally estimate the relative water level well, although there were also a few outliers. We also asked the volunteers to estimate streamflow based on the stick method. The median estimated streamflow was close to the observed streamflow but the spread in the streamflow estimates was large and there were very large outliers, suggesting that crowd-based streamflow data is highly uncertain. In order to determine the potential value of water level class data for model calibration, we converted streamflow time series for 100 catchments in the US to stream level class time series and used these to calibrate the HBV model. The model was then validated using the streamflow data. The results of this modeling exercise show that stream level class data are useful for constraining a simple runoff model. Time series of only two stream level classes, e.g. above or below a rock in the stream, were already informative, especially when the class boundary was chosen towards the highest stream levels. There was hardly any improvement in model performance when more than five water level classes were used. This suggests that if crowd-sourced stream level observations are available for otherwise ungauged catchments, these data can be used to constrain a simple runoff model and to generate simulated streamflow time series from the level observations.
Estimation of river pollution index in a tidal stream using kriging analysis.
Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang
2012-08-29
Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.
Opposed-flow virtual cyclone for particle concentration
Rader, Daniel J.; Torczynski, John R.
2000-12-05
An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.
Simple Models of the Spatial Distribution of Cloud Radiative Properties for Remote Sensing Studies
NASA Technical Reports Server (NTRS)
2004-01-01
This project aimed to assess the degree to which estimates of three-dimensional cloud structure can be inferred from a time series of profiles obtained at a point. The work was motivated by the desire to understand the extent to which high-frequency profiles of the atmosphere (e.g. ARM data streams) can be used to assess the magnitude of non-plane parallel transfer of radiation in thc atmosphere. We accomplished this by performing an observing system simulation using a large-eddy simulation and a Monte Carlo radiative transfer model. We define the 3D effect as the part of the radiative transfer that isn't captured by one-dimensional radiative transfer calculations. We assess the magnitude of the 3D effect in small cumulus clouds by using a fine-scale cloud model to simulate many hours of cloudiness over a continental site. We then use a Monte Carlo radiative transfer model to compute the broadband shortwave fluxes at the surface twice, once using the complete three-dimensional radiative transfer F(sup 3D), and once using the ICA F (sup ICA); the difference between them is the 3D effect given.
NASA Astrophysics Data System (ADS)
Ritter, J. B.; Evelsizor, A.; Minter, K.; Rigsby, C.; Shaw, K.; Shearer, K.
2010-12-01
Restoration potential of urban streams is inherently constrained by urban infrastructure. Roads and built structures may necessitate a static stream planform while water, sewage, and electrical utilities buried in the stream channel require a stable grade. A privately-led initiative to improve the recreational potential of a 9-km reach of Buck Creek and its tributary Beaver Creek in Springfield, Ohio, includes the modification of four lowhead dams with hydraulic heights up to 3 m. Modifications to the dams include replacing their hydraulic height with a series of drop structures engineered to create hydraulics conducive to kayak play. Two of the lowhead dams have been modified to date. The purpose of this study is to assess the potential benefits of modifications designed for their recreational value for stream restoration. The drop structure is a constructed channel constriction comprised of a hard step in the long stream profile immediately upstream of a scour pool, forming a morphologic sequence of constriction, step, and pool. Up to 4 drop structures are used along a given stream reach, constructed in the area of the former dam, its scour pool and a portion of the impounded area. Though not designed for stream restoration purposes, these structures potentially act as series a riffle-pool sequences. Changes in the stream habitat, water chemistry, and macroinvertebrates in response to dam modification highlight the potential for incorporating stream restoration into the engineering design. Following modification of two of the dams, the in-stream habitat quality, as measured by physical and biological indices, increased at one site and decreased at the other site, depending on whether the uppermost drop structure at the site reduced or expanded the impounded area. In the best case, channel sands and gravels, free of fine sand, silt, and organics, have deposited in a crescentic-shaped bar paralleling and grading to the constriction and step. Greater abundance and diversity of pollution-intolerant macroinvertebrates, supported by higher dissolved oxygen in the substrate, characterizes riffles at these sites.
Interactive collision detection for deformable models using streaming AABBs.
Zhang, Xinyu; Kim, Young J
2007-01-01
We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.
Parallel fabrication of macroporous scaffolds.
Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal
2018-07-01
Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.
Scheduling optimization of design stream line for production research and development projects
NASA Astrophysics Data System (ADS)
Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming
2017-05-01
In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.
Simulations of Magnetic Fields in Tidally Disrupted Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillochon, James; McCourt, Michael, E-mail: jguillochon@cfa.harvard.edu
2017-01-10
We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream onlymore » decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.« less
Creation of high-energy electron tails by means of the modified two-stream instability
NASA Technical Reports Server (NTRS)
Tanaka, M.; Papadopoulos, K.
1983-01-01
Particle simulations of the modified two-stream instability demonstrate strong electron acceleration rather than bulk heating when the relative drift speed is below a critical speed Vc. A very interesting nonlinear mode transition and autoresonance acceleration process is observed which accelerates the electrons much above the phase speed of the linearly unstable modes. Simple criteria are presented that predict the value of Vc and the number density of the accelerated electrons.
Swain, Eric D.; Wexler, Eliezer J.
1996-01-01
Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.
Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A
2008-10-01
Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.
A system for routing arbitrary directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1987-01-01
There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal.
NASA Astrophysics Data System (ADS)
Brouwer, Harm; Crocker, Matthew W.
2016-03-01
The Mirror System Hypothesis (MSH) on the evolution of the language-ready brain draws upon the parallel dorsal-ventral stream architecture for vision [1]. The dorsal ;how; stream provides a mapping of parietally-mediated affordances onto the motor system (supporting preshape), whereas the ventral ;what; stream engages in object recognition and visual scene analysis (supporting pantomime and verbal description). Arbib attempts to integrate this MSH perspective with a recent conceptual dorsal-ventral stream model of auditory language comprehension [5] (henceforth, the B&S model). In the B&S model, the dorsal stream engages in time-dependent combinatorial processing, which subserves syntactic structuring and linkage to action, whereas the ventral stream performs time-independent unification of conceptual schemata. These streams are integrated in the left Inferior Frontal Gyrus (lIFG), which is assumed to subserve cognitive control, and no linguistic processing functions. Arbib criticizes the B&S model on two grounds: (i) the time-independence of the semantic processing in the ventral stream (by arguing that semantic processing is just as time-dependent as syntactic processing), and (ii) the absence of linguistic processing in the lIFG (reconciling syntactic and semantic representations is very much linguistic processing proper). Here, we provide further support for these two points of criticism on the basis of insights from the electrophysiology of language. In the course of our argument, we also sketch the contours of an alternative model that may prove better suited for integration with the MSH.
Overview and extensions of a system for routing directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Many problems can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from adjacent vertices. A method is given for parallelizing such problems on an SIMD machine model that uses only nearest neighbor connections for communication, and has no facility for local indirect addressing. Each vertex of the graph will be assigned to a processor in the machine. Rules for a labeling are introduced that support the use of a simple algorithm for movement of data along the edges of the graph. Additional algorithms are defined for addition and deletion of edges. Modifying or adding a new edge takes the same time as parallel traversal. This combination of architecture and algorithms defines a system that is relatively simple to build and can do fast graph processing. All edges can be traversed in parallel in time O(T), where T is empirically proportional to the average path length in the embedding times the average degree of the graph. Additionally, researchers present an extension to the above method which allows for enhanced performance by allowing some broadcasting capabilities.
A real time sorting algorithm to time sort any deterministic time disordered data stream
NASA Astrophysics Data System (ADS)
Saini, J.; Mandal, S.; Chakrabarti, A.; Chattopadhyay, S.
2017-12-01
In new generation high intensity high energy physics experiments, millions of free streaming high rate data sources are to be readout. Free streaming data with associated time-stamp can only be controlled by thresholds as there is no trigger information available for the readout. Therefore, these readouts are prone to collect large amount of noise and unwanted data. For this reason, these experiments can have output data rate of several orders of magnitude higher than the useful signal data rate. It is therefore necessary to perform online processing of the data to extract useful information from the full data set. Without trigger information, pre-processing on the free streaming data can only be done with time based correlation among the data set. Multiple data sources have different path delays and bandwidth utilizations and therefore the unsorted merged data requires significant computational efforts for real time manifestation of sorting before analysis. Present work reports a new high speed scalable data stream sorting algorithm with its architectural design, verified through Field programmable Gate Array (FPGA) based hardware simulation. Realistic time based simulated data likely to be collected in an high energy physics experiment have been used to study the performance of the algorithm. The proposed algorithm uses parallel read-write blocks with added memory management and zero suppression features to make it efficient for high rate data-streams. This algorithm is best suited for online data streams with deterministic time disorder/unsorting on FPGA like hardware.
Microfluidic integration of parallel solid-phase liquid chromatography.
Huft, Jens; Haynes, Charles A; Hansen, Carl L
2013-03-05
We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.
Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees
NASA Technical Reports Server (NTRS)
Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.
2011-01-01
The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Vanrosendale, John
1989-01-01
Distributed memory architectures offer high levels of performance and flexibility, but have proven awkard to program. Current languages for nonshared memory architectures provide a relatively low level programming environment, and are poorly suited to modular programming, and to the construction of libraries. A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. Tensor product array computations are focused on along with a simple but important class of numerical algorithms. The problem of programming 1-D kernal routines is focused on first, such as parallel tridiagonal solvers, and then how such parallel kernels can be combined to form parallel tensor product algorithms is examined.
Mass flow sensor utilizing a resistance bridge
NASA Technical Reports Server (NTRS)
Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)
2004-01-01
A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Jeffrey S., E-mail: jeffm@cems.uvm.edu; Wu, Junru
A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer tomore » as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.« less
NASA Astrophysics Data System (ADS)
Marshall, Jeffrey S.; Wu, Junru
2015-10-01
A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer to as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.
Reverse Current in Solar Flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1976-01-01
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Cosmic Ray Streaming in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Wiener, Joshua; Gould Zweibel, Ellen; Oh, Siang P.
2017-08-01
The origin of diffuse radio emission in galaxy clusters remains an open question in astrophysics. This emission indicates the presence of cluster-wide magnetic fields and high energy cosmic ray (CR) electrons. I will discuss how the properties of the observed radio emission in clusters are shaped by different CR transport processes, namely CR streaming. Recent work has shown that fast streaming may turn off radio emission on relatively short time scales - a full treatment of magnetohydrodynamic (MHD) wave damping shows that streaming may be even faster than previously thought in high β environments. I will briefly introduce the physics behind CR transport, and present simple numerical simulations of the Coma cluster that predict radio emission, as well as other observable signatures such as gamma radiation that can differentiate between models for the source of the CR electrons.
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
ERIC Educational Resources Information Center
Klemen, Jane; Buchel, Christian; Buhler, Mira; Menz, Mareike M.; Rose, Michael
2010-01-01
Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences…
Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.
2011-01-01
1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at appropriate scales (multiple streams within catchments), with simple protocols amenable to use by management agencies, differences in local abundance and species richness may serve as indicators of the extent to which road crossings are barriers to fish movement and help determine whether road-crossing improvements have restored connectivity to stream fish populations and communities. Published 2011. This article is a US Government work and is in the public domain in the USA.
CRIT II electric, magnetic, and density measurements within an ionizing neutral stream
NASA Technical Reports Server (NTRS)
Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.
1990-01-01
Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.
A simple filter dam for small streams
K. G. Reinhart
1960-01-01
Research foresters on the Fernow Experimental Forest were recently faced with the problem of conducting a logging job with "poor" skidroad standards on a 38-acre watershed above a municipal water-supply reservoir.
Characteristic electron variations across simple high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1978-01-01
The paper deals with electron variations across simple high-speed streams. Comprehensive scans of the shapes of electron distributions measured at the highest bulk speeds confirm the results of Rosenbauer et al. (1976, 1977) and show that the electron velocity distributions can be broken down into a low-energy or core component and a high-energy strongly beamed component. The low-energy component displays many characteristics expected from a fluid: the internal particle coupling necessary to maintain this state must result from both binary Coulomb collisions and wave-particle interactions. The high-energy or halo component displays many characteristics expected to develop in the absence of collisions beyond a certain base radius. These electrons appear to evolve under the primary influence of static interplanetary magnetic and electric fields and, therefore, develop very anisotropic velocity distributions.
Adaptive parallel logic networks
NASA Technical Reports Server (NTRS)
Martinez, Tony R.; Vidal, Jacques J.
1988-01-01
Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Camerlynck, Christian; Robain, Henri; Tallec, Gaëlle; Ribolzi, Olivier; Gaillardet, Jérôme
2017-04-01
During the last decades, geophysical methods have been attracting an increasing interest in hydrology and environmental sciences given their sensitivity to parameters of interests and their non-intrusive nature. The Spectral Induced Polarization (SIP) is a low frequency electro-magnetic method that allows the characterization of the subsurface through its complex electrical conductivity. It reports the modulus of the conductivity and the phase between an injected current and a measured voltage over a rather large frequency range (from few millihertz to few tens of kilohertz). The real part of the conductivity is sensitive to lithological (porosity, specific surface area) and hydrological (water saturation, water salinity) parameters, while the imaginary part is linked to electrochemical polarizations, that have been shown to be largely influenced by the chemistry of the pore water. In the present contribution, we aim at better characterizing the exchanges between a stream and the surrounding groundwater using the SIP method and its sensitivity to pore water changes over time. Two sites from the OZCAR Research Infrastructure (French Critical Zone observatories) have been chosen for this study: the Houay Pano catchment (Laos) and the Orgeval catchment (France). These two sites have a good existing infrastructure and have been already studied extensively in terms of hydrology, geophysics, and hydrochemistry. They constitute perfect experimental sites to develop novel methodologies for the assessment of stream-groundwater exchanges. We propose to obtain a vertical description of the changes in complex electrical conductivity with depth based on SIP soundings undertaken with the multi-channel system SIP Fuchs III. We conducted a high-frequency monitoring close to a river stream (one vertical profiles every 30 min). In parallel, a high frequency monitoring of the physico-chemical parameters (temperature, conductivity, ionic concentrations) in the river stream has been performed. Relating the daily fluctuations of the groundwater complex conductivity and the river physico-chemical parameters could therefore establish a new proxy to characterize stream-groundwater interactions. In parallel to the field measurements, laboratory experiments have been conducted on soil samples from the two sites. These measurements provide a better understanding of the complex conductivity signature of the samples submitted to saturation and pore water physico-chemical changes. This work is in progress but the first results already show that the method has a real interest for the monitoring of daily variations of the physico-chemistry properties of the groundwater and their relations to those of the stream.
Computing Strongly Connected Components in the Streaming Model
NASA Astrophysics Data System (ADS)
Laura, Luigi; Santaroni, Federico
In this paper we present the first algorithm to compute the Strongly Connected Components of a graph in the datastream model (W-Stream), where the graph is represented by a stream of edges and we are allowed to produce intermediate output streams. The algorithm is simple, effective, and can be implemented with few lines of code: it looks at each edge in the stream, and selects the appropriate action with respect to a tree T, representing the graph connectivity seen so far. We analyze the theoretical properties of the algorithm: correctness, memory occupation (O(n logn)), per item processing time (bounded by the current height of T), and number of passes (bounded by the maximal height of T). We conclude by presenting a brief experimental evaluation of the algorithm against massive synthetic and real graphs that confirms its effectiveness: with graphs with up to 100M nodes and 4G edges, only few passes are needed, and millions of edges per second are processed.
Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.
1984-01-01
A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.
What puts the how in where? Tool use and the divided visual streams hypothesis.
Frey, Scott H
2007-04-01
An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.
Parallel imports and the pricing of pharmaceutical products: evidence from the European Union.
Ganslandt, Mattias; Maskus, Keith E
2004-09-01
We consider policy issues regarding parallel imports (PIs) of brand-name pharmaceuticals in the European Union, where such trade is permitted. We develop a simple model in which an original manufacturer competes in its home market with PI firms. The model suggests that for small trade costs the original manufacturer will accommodate the import decisions of parallel traders and that the price in the home market falls as the volume of parallel imports rises. Using data from Sweden we find that the prices of drugs subject to competition from parallel imports fell relative to other drugs over the period 1994-1999. Econometric analysis finds that parallel imports significantly reduced manufacturing prices, by 12-19%. There is evidence that this effect increases with multiple PI entrants.
Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals
ERIC Educational Resources Information Center
Juretschke, H. J.
1977-01-01
Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)
Junsomboon, Jaroon; Jakmunee, Jaroon
2008-07-15
A simple flow injection system using three 3-way solenoid valves as an electric control injection valve and with a simple home-made chloride ion selective electrode based on Ag/AgCl wire as a sensor for determination of water soluble chloride in admixtures and aggregates for cement has been developed. A liquid sample or an extract was injected into a water carrier stream which was then merged with 0.1M KNO(3) stream and flowed through a flow cell where the solution will be in contact with the sensor, producing a potential change recorded as a peak. A calibration graph in range of 10-100 mg L(-1) was obtained with a detection limit of 2 mg L(-1). Relative standard deviations for 7 replicates injecting of 20, 60 and 90 mg L(-1) chloride solutions were 1.0, 1.2 and 0.6%, respectively. Sample throughput of 60 h(-1) was achieved with the consumption of 1 mL each of electrolyte solution and water carrier. The developed method was validated by the British Standard methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch
We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetrymore » factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.« less
Wang, Quanxin; Burkhalter, Andreas
2013-01-23
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
Automating the selection of standard parallels for conic map projections
NASA Astrophysics Data System (ADS)
Šavriǒ, Bojan; Jenny, Bernhard
2016-05-01
Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.
Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David
2017-01-01
Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.
Ambient groundwater flow diminishes nitrogen cycling in streams
NASA Astrophysics Data System (ADS)
Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.
2017-12-01
Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.
Viscous streaming for locomotion and transport
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Parthasarathy, Tejaswin
2017-11-01
Rectified and oscillatory flows associated with vibrating boundaries have been employed in a variety of tasks, especially in microfluidics. The associated fluid mechanics is well known in the case of simple geometries, cylinders in particular, yet little is known in the case of active, complex systems. Motivated by potential applications in swimming mini-bots, we established an accurate and robust computational framework to investigate the flow behavior associated with oscillations of multiple and deforming shapes with an emphasis on streaming assisted locomotion and transport systems.
June and August median streamflows estimated for ungaged streams in southern Maine
Lombard, Pamela J.
2010-01-01
Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.
NASA Astrophysics Data System (ADS)
Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.
2009-04-01
We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.
Variable Swing Optimal Parallel Links - Minimal Power, Maximal Density for Parallel Links
2009-01-01
implemented; it allows controlling the transmitter current by a simple design of a differential pair with a 100 ohms termination resistor. Figure 3.4...optimization. Zuber, P., et al. 2005. 0-7695-2288-2. 21. A 36Gb/s ACCI Multi-Channel Bus using a Fully Differential Pulse Receiver. Wilson, Lei Luo
High data volume and transfer rate techniques used at NASA's image processing facility
NASA Technical Reports Server (NTRS)
Heffner, P.; Connell, E.; Mccaleb, F.
1978-01-01
Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.
NASA Technical Reports Server (NTRS)
Marek, C. J.; Juhasz, A. J.
1973-01-01
Data were obtained on a parallel-flow film- and convection-cooled test section placed in the exhaust stream of a rectangular-sector combustor. The combustor was operated at atmospheric pressure and at exhaust temperatures of 589 and 1033 K (600 and 1400 F). The cooling air was at ambient pressure and temperature. Test results indicate that it is better to use combined film and convection cooling rather than either film or convection cooling alone for a fixed total coolant flow. An optimum ratio of film to convection cooling flow rates was determined for the particular geometry tested. The experimental results compared well with calculated results.
Real-Time Cognitive Computing Architecture for Data Fusion in a Dynamic Environment
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.
2012-01-01
A novel cognitive computing architecture is conceptualized for processing multiple channels of multi-modal sensory data streams simultaneously, and fusing the information in real time to generate intelligent reaction sequences. This unique architecture is capable of assimilating parallel data streams that could be analog, digital, synchronous/asynchronous, and could be programmed to act as a knowledge synthesizer and/or an "intelligent perception" processor. In this architecture, the bio-inspired models of visual pathway and olfactory receptor processing are combined as processing components, to achieve the composite function of "searching for a source of food while avoiding the predator." The architecture is particularly suited for scene analysis from visual data and odorant.
A simple method to predict regional fish abundance: an example in the McKenzie River Basin, Oregon
D.J. McGarvey; J.M. Johnston
2011-01-01
Regional assessments of fisheries resources are increasingly called for, but tools with which to perform them are limited. We present a simple method that can be used to estimate regional carrying capacity and apply it to the McKenzie River Basin, Oregon. First, we use a macroecological model to predict trout densities within small, medium, and large streams in the...
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
NASA Astrophysics Data System (ADS)
Beh, Kian Lim
2000-10-01
This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.
COTS technologies for telemedicine applications.
Triunfo, Riccardo; Tumbarello, Roberto; Sulis, Alessandro; Zanetti, Gianluigi; Lianas, Luca; Meloni, Vittorio; Frexia, Francesca
2010-01-01
To demonstrate a simple low-cost system for tele-echocardiology, focused on paediatric cardiology applications. The system was realized using open-source software and COTS technologies. It is based on the transmission of two simultaneous video streams, obtained by direct digitization of the output of an ultrasound machine and by a netcam showing the examination that is taking place. These streams are then embedded into a web page so they are accessible, together with basic video controls, via a standard web browser. The system can also record video streams on a server for further use. The system was tested on a small group of neonatal cases with suspected cardiopathies for a preliminary assessment of its features and diagnostic capabilities. Both the clinical and technological results were encouraging and are leading the way for further experimentation. The presented system can transfer clinical images and videos in an efficient way and in real time. It can be used in the same hospital to support internal consultancy requests, in remote areas using Internet connections and for didactic purposes using low cost COTS appliances and simple interfaces for end users. The solution proposed can be extended to control different medical appliances in those remote hospitals.
Wilding, Thomas K; Brown, Edmund; Collier, Kevin J
2012-10-01
Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.
Dussex, Nicolas; Chuah, Aaron; Waters, Jonathan M
2016-01-01
Insect flight loss is a repeated phenomenon in alpine habitats, where wing reduction is thought to enhance local recruitment and increase fecundity. One predicted consequence of flight loss is reduced dispersal ability, which should lead to population genetic differentiation and perhaps ultimately to speciation. Using a dataset of 15,123 SNP loci, we present comparative analyses of fine-scale population structure in codistributed Zelandoperla stonefly species, across three parallel altitudinal transects in New Zealand's Rock and Pillar mountain range. We find that winged populations (altitude 200-500 m; Zelandoperla decorata) show no genetic structuring within or among streams, suggesting substantial dispersal mediated by flight. By contrast, wingless populations (Zelandoperla fenestrata; altitude 200-1100 m) exhibit distinct genetic clusters associated with each stream, and additional evidence of isolation by distance within streams. Our data support the hypothesis that wing-loss can initiate diversification in alpine insect populations over small spatial scales. The often deep phylogenetic placement of lowland Z. fenestrata within their stream-specific clades suggests the possibility of independent alpine colonization events for each stream. Additionally, the detection of winged, interspecific hybrid individuals raises the intriguing possibility that a previously flightless lineage could reacquire flight via introgression. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
A prepositioned areal electrofishing apparatus for sampling stream habitats
Fisher, William L.; Brown, Marshall E.
1993-01-01
We describe the design, use, and sampling characteristics ofan electrofishing apparatus used to sample fish in stream habitats. The apparatus uses two prepositioned areal electrofishing devices (PAED) of different designs, a bottom parallel electrode PAED and a suspended dropper electrode PAED. To determine the effective immobilization ranges of the PAEDs, we evaluated intensities and shapes of the PAEDs' electrical fields, and the electroshock responses of fish in cages in concrete tanks and in four streams in Alabama with different water conductivities. Electroshock responses indicated that complete immobilization occurred at voltage gradients of 1.0 V/cm or higher (voltage drop, 400 V AC), as far as 35 cm from the PAED electrodes, although some fish were immobilized up to 65 cm away at 0.3 V/cm. We estimated the immobilization (stun) power density threshold to be about 10 μW/cm3. Stream evaluations of the PAEDs revealed that higher voltages were needed to immobilize fish at lower (35 μS/cm) and higher (120 and 125 μS/cm) water conductivities, whereas lower voltages were required at an intermediate conductivity (60 μS/cm). These results conformed with the predictions of power transfer theory and underscored the need to calibrate PAEDs to stream conductivities to standardize the effective sampling range.
Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia
Hobba, William A.
1993-01-01
The effects of underground mining and mine collapse on areal hydrology were determined at one site where the mined bed of coal lies above major streams and at two sites where the bed of coal lies below major streams. Subsidence cracks observed at land surface generally run parallel to predominant joint sets in the rocks. The mining and subsidence cracks increase hydraulic conductivity and interconnection of water-bearing rock units, which in turn cause increased infiltration of precipitation and surface water, decreased evapotranspiration, and higher base flows in some small streams. Water levels in observation wells in mined areas fluctuate as much as 100 ft annually. Both gaining and losing streams are found in mined areas. Mine pumpage and drainage can cause diversion of water underground from one basin to another. Areal and single-well aquifer tests indicated that near-surface rocks have higher transmissivity in a mine-subsided basin than in unmined basins. Increased infiltration and circulation through shallow subsurface rocks increase dissolved mineral loads in streams, as do treated and untreated contributions from mine pumpage and drainage. Abandoned and flooded underground mines make good reservoirs because of their increased transmissivity and storage. Subsidence cracks were not detectable by thermal imagery, but springs and seeps were detectable.
Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.
Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee
2018-04-01
We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.
Zydlewski, Joseph D.; Coghlan, Stephen M.; Gardner, C.; Saunders, R.
2011-01-01
Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the focus of a restoration effort that includes the removal of two low-head dams. In this study, we quantified fish assemblage metrics along a longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre-removal baseline conditions and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system associated with dam removal. Over 2 years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the reference stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream-to-downstream pattern along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site. No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long-term assessment of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects.
Parallel processing streams for motor output and sensory prediction during action preparation
Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. PMID:25540223
Framework for analysis of guaranteed QOS systems
NASA Astrophysics Data System (ADS)
Chaudhry, Shailender; Choudhary, Alok
1997-01-01
Multimedia data is isochronous in nature and entails managing and delivering high volumes of data. Multiprocessors with their large processing power, vast memory, and fast interconnects, are an ideal candidate for the implementation of multimedia applications. Initially, multiprocessors were designed to execute scientific programs and thus their architecture was optimized to provide low message latency and efficiently support regular communication patterns. Hence, they have a regular network topology and most use wormhole routing. The design offers the benefits of a simple router, small buffer size, and network latency that is almost independent of path length. Among the various multimedia applications, video on demand (VOD) server is well-suited for implementation using parallel multiprocessors. Logical models for VOD servers are presently mapped onto multiprocessors. Our paper provides a framework for calculating bounds on utilization of system resources with which QoS parameters for each isochronous stream can be guaranteed. Effects of the architecture of multiprocessors, and efficiency of various local models and mapping on particular architectures can be investigated within our framework. Our framework is based on rigorous proofs and provides tight bounds. The results obtained may be used as the basis for admission control tests. To illustrate the versatility of our framework, we provide bounds on utilization for various logical models applied to mesh connected architectures for a video on demand server. Our results show that worm hole routing can lead to packets waiting for transmission of other packets that apparently share no common resources. This situation is analogous to head-of-the-line blocking. We find that the provision of multiple VCs per link and multiple flit buffers improves utilization (even under guaranteed QoS parameters). This analogous to parallel iterative matching.
Parallel processing streams for motor output and sensory prediction during action preparation.
Stenner, Max-Philipp; Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2015-03-15
Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. Copyright © 2015 the American Physiological Society.
Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs
NASA Astrophysics Data System (ADS)
Mawson, Mark J.; Revell, Alistair J.
2014-10-01
The Lattice Boltzmann method (LBM) for solving fluid flow is naturally well suited to an efficient implementation for massively parallel computing, due to the prevalence of local operations in the algorithm. This paper presents and analyses the performance of a 3D lattice Boltzmann solver, optimized for third generation nVidia GPU hardware, also known as 'Kepler'. We provide a review of previous optimization strategies and analyse data read/write times for different memory types. In LBM, the time propagation step (known as streaming), involves shifting data to adjacent locations and is central to parallel performance; here we examine three approaches which make use of different hardware options. Two of which make use of 'performance enhancing' features of the GPU; shared memory and the new shuffle instruction found in Kepler based GPUs. These are compared to a standard transfer of data which relies instead on optimized storage to increase coalesced access. It is shown that the more simple approach is most efficient; since the need for large numbers of registers per thread in LBM limits the block size and thus the efficiency of these special features is reduced. Detailed results are obtained for a D3Q19 LBM solver, which is benchmarked on nVidia K5000M and K20C GPUs. In the latter case the use of a read-only data cache is explored, and peak performance of over 1036 Million Lattice Updates Per Second (MLUPS) is achieved. The appearance of a periodic bottleneck in the solver performance is also reported, believed to be hardware related; spikes in iteration-time occur with a frequency of around 11 Hz for both GPUs, independent of the size of the problem.
Acoustic Microfluidics for Bioanalytical Application
NASA Astrophysics Data System (ADS)
Lopez, Gabriel
2013-03-01
This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.
Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta
2016-12-05
An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Doisneau, François; Arienti, Marco; Oefelein, Joseph C.
2017-01-01
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barelymore » influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.« less
A PC parallel port button box provides millisecond response time accuracy under Linux.
Stewart, Neil
2006-02-01
For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus.
On the interrelation of multiplication and division in secondary school children.
Huber, Stefan; Fischer, Ursula; Moeller, Korbinian; Nuerk, Hans-Christoph
2013-01-01
Each division problem can be transformed into as a multiplication problem and vice versa. Recent research has indicated strong developmental parallels between multiplication and division in primary school children. In this study, we were interested in (i) whether these developmental parallels persist into secondary school, (ii) whether similar developmental parallels can be observed for simple and complex problems, (iii) whether skill level modulates this relationship, and (iv) whether the correlations are specific and not driven by general cognitive or arithmetic abilities. Therefore, we assessed performance of 5th and 6th graders attending two secondary school types of the German educational system in simple and complex multiplication as well as division while controlling for non-verbal intelligence, short-term memory, and other arithmetic abilities. Accordingly, we collected data from students differing in skills levels due to either age (5th < 6th grade) or school type (general < intermediate secondary school). We observed moderate to strong bivariate and partial correlations between multiplication and division with correlations being higher for simple tasks but nevertheless reliable for complex tasks. Moreover, the association between simple multiplication and division depended on students' skill levels as reflected by school types, but not by age. Partial correlations were higher for intermediate than for general secondary school children. In sum, these findings emphasize the importance of the inverse relationship between multiplication and division which persists into later developmental stages. However, evidence for skill-related differences in the relationship between multiplication and division was restricted to the differences for school types.
Reverse current in solar flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1977-01-01
We examine the proposal that impulsive X-ray bursts are produced by high-energy electrons streaming from the corona to the chromosphere. It is known that the currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model in which the reverse current is stable indicates that the primary electron stream leads to the development of an electric field in the ambient corona which (a) decelerates the primary beam and (b) produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
NASA Astrophysics Data System (ADS)
Laban, Shaban; El-Desouky, Aly
2014-05-01
To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Also, it is possible to extend the use of the framework in monitoring the IDC pipeline. The detailed design, implementation,conclusion and future work of the proposed framework will be presented.
Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones
2009-01-01
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...
The Theory of a Free Jet of a Compressible Gas
NASA Technical Reports Server (NTRS)
Abramovich, G. N.
1944-01-01
In the present report the theory of free turbulence propagation and the boundary layer theory are developed for a plane-parallel free stream of a compressible fluid. In constructing the theory use was made of the turbulence hypothesis by Taylor (transport of vorticity) which gives best agreement with test results for problems involving heat transfer in free jets.
NASA Astrophysics Data System (ADS)
RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.
2013-12-01
The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the catchments. We used the Global Likelihood Uncertainty Estimations (GLUE) approach [Beven and Binley, 1992] to assess the parameter uncertainties and the subsequent error in model outputs and residence times. Reasonably low parameter uncertainties were obtained by calibrating simultaneously the two paired catchments with two outlets time series of stream flow and nitrate concentrations. Finally, only one parameter controlled the contrast in nitrogen residence times between the catchments. Therefore, this approach provided a promising metric for classifying the variability of catchment response to agricultural nitrogen inputs. Beven, K., and A. Binley (1992), THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION, Hydrological Processes, 6(3), 279-298. Kirchner, J. W., X. Feng, and C. Neal (2001), Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations, Journal of Hydrology, 254(1-4), 82-101. Ruiz, L., S. Abiven, C. Martin, P. Durand, V. Beaujouan, and J. Molenat (2002), Effect on nitrate concentration in stream water of agricultural practices in small catchments in Brittany : II. Temporal variations and mixing processes, Hydrology and Earth System Sciences, 6(3), 507-513.
Bankfull characteristics of Ohio streams and their relation to peak streamflows
Sherwood, James M.; Huitger, Carrie A.
2005-01-01
Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.
Parallel-In-Time For Moving Meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falgout, R. D.; Manteuffel, T. A.; Southworth, B.
2016-02-04
With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is appliedmore » to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.« less
Experimental and numerical investigation of Acoustic streaming (Eckart streaming)
NASA Astrophysics Data System (ADS)
Dridi, Walid; Botton, Valery; Henry, Daniel; Ben Hadid, Hamda
The application of sound waves in the bulk of a fluid can generate steady or quasi-steady flows reffered to as Acoustic streaming flows. We can distinguish two kind of acoustic streaming: The Rayleigh Streaming is generated when a standing acoustic waves interfere with solid walls to give birth to an acoustic boundary layer. Steady recirculations are then driven out of the boundary layer and can be used in micro-gravity, where the free convection is too weak or absent, to enhance the convective heat or mass transfer and cooling the electronic devises [1]. The second kind is the Eckart streaming, which is a flow generated far from the solid boundaries, it can be used to mix a chemical solutions [2], and to drive a viscous liquids in channels [3-4], in micro-gravity area. Our study focuses on the Eckart streaming configuration, which is investigated both numerical and experimental means. The experimental configuration is restricted to the case of a cylindrical non-heated cavity full of water or of a water+glycerol mixture. At the middle of one side of the cavity, a plane ultrasonic transducer generates a 2MHz wave; an absorber is set at the opposite side of the cavity to avoid any reflections. The velocity field is measured with a standard PIV system. [1] P. Vainshtein, M. Fichman and C. Gutfinger, "Acoustic enhancement of heat transfer between two parallel plates", International Journal of Heat and Mass Transfert, 1995, 38(10), 1893. [2] C. Suri, K. Tekenaka, H. Yanagida, Y. Kojima and K. Koyama, "Chaotic mixing generated by acoustic streaming", Ultrasonics, 2002, 40, 393 [3] O.V. Rudenko and A.A. Sukhorukov, "Nonstationnary Eckart streaming and pumping of liquid in ultrasonic field", Acoustical Physics, 1998, 44, 653. [4] Kenneth D. Frampton, Shawn E. Martin and Keith Minor, "The scaling of acoustic streaming for application in micro-fluidic devices", Applied Acoustics, 2003, 64,681
Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.
2007-01-01
The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
NASA Astrophysics Data System (ADS)
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.
2016-06-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex
Lafer-Sousa, Rosa; Conway, Bevil R.
2014-01-01
Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314
Elements of a nitrogen budget for a stream collector. Appendix IX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
A simple diagram of a preliminary nitrogen budget for a generalized collector-gatherer is presented. The internal anatomy of chironomus sp. indicates its potential for fairly complex physiological processes. 26 refs., 2 figs.
Stream Dissolved Organic Matter Quantity and Quality Along a Wetland-Cropland Catchment Gradient
NASA Astrophysics Data System (ADS)
McDonough, O.; Hosen, J. D.; Lang, M. W.; Oesterling, R.; Palmer, M.
2012-12-01
Wetlands may be critical sources of dissolved organic matter (DOM) to stream networks. Yet, more than half of wetlands in the continental United States have been lost since European settlement, with the majority of loss attributed to agriculture. The degree to which agricultural loss of wetlands impacts stream DOM is largely unknown and may have important ecological implications. Using twenty headwater catchments on the Delmarva Peninsula (Maryland, USA), we investigated the seasonal influence of wetland and cropland coverage on downstream DOM quantity and quality. In addition to quantifying bulk downstream dissolved organic carbon (DOC) concentration, we used a suite of DOM UV-absorbance metrics and parallel factor analysis (PARAFAC) modeling of excitation-emission fluorescence spectra (EEMs) to characterize DOM composition. Percent bioavailable DOC (%BDOC) was measured during the Spring sampling using a 28-day incubation. Percent wetland coverage and % cropland within the watersheds were significantly negatively correlated (r = -0.93, p < 0.001). Results show that % wetland coverage was positively correlated with stream DOM concentration, molecular weight, aromaticity, humic-like fluorescence, and allochthonous origin. Conversely, increased wetland coverage was negatively correlated with stream DOM protein-like fluorescence. Percent BDOC decreased with DOM humic-like fluorescence and increased with protein-like fluorescence. We observed minimal seasonal interaction between % wetland coverage and DOM concentration and composition across Spring, Fall, and Winter sampling seasons. However, principal component analysis suggested more pronounced seasonal differences exist in stream DOM. This study highlights the influence of wetlands on downstream DOM in agriculturally impacted landscapes where loss of wetlands to cultivation may significantly alter stream DOM quantity and quality.
Lipid and PCB compositions in water-striders from contaminated streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napolitano, G.E.; Richmond, J.E.; Klasson, K.T.
1995-12-31
In a study of hydrophobic substances in stream surface-waters, the authors investigated lipids and polychlorinated biphenyls (PCBs) of water-striders (Gerris remiges). Lipid class, fatty acid, and PCB congener compositions were analyzed in insects from four streams located downstream of the Department of Energy`s facilities near the city of Oak Ridge, Tennessee. Total lipid contents of water-striders varied seasonally, showing maximum concentrations in summer and fall ({approximately} 9.0% of wet weight), and minimum concentrations in winter and spring. Total PCB concentrations of water-striders varied between streams and appeared to parallel PCB concentrations reported for the aquatic fauna of each site. Fattymore » acids were used as chemical markers to detect differences in the food resources of water-striders. The triacylglycerol fatty acid composition was remarkably similar in all the streams and reflected to a large extent, that of a terrestrial insect. The PCB congener composition of water-striders varied significantly between streams, showing a relative enrichment of the less chlorinated congeners in the less contaminated samples. There was also a positive correlation between PCB burden and average molecular weights. Differences between the chlorine content of the dominant congeners suggest distinct sources of PCBs for the different streams. The apparent similarities in the food resources of the water-striders, as inferred from fatty acid markers, and their distinct PCB congener composition, suggest absorption or ingestion from the surface micro-layer, rather than diet, as a more likely route of uptake of lipophilic contaminants by water-striders.« less
Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.
2014-01-01
Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.
Neural Parallel Engine: A toolbox for massively parallel neural signal processing.
Tam, Wing-Kin; Yang, Zhi
2018-05-01
Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Water Stage Forecasting in Tidal streams during High Water Using EEMD
NASA Astrophysics Data System (ADS)
Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi
2017-04-01
There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.
Comparisons of fish species traits from small streams to large rivers
Goldstein, R.M.; Meador, M.R.
2004-01-01
To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors in lotic habitats ranging from small streams to large rivers.
Prediction of the blowout of jet diffusion flames in a coflowing stream of air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbasi, M.; Wierzba, I.
1995-12-31
The blowout limits of a lifted diffusion flame in a coflowing stream of air are estimated using a simple model for extinction, for a range of fuels, jet diameters and co-flowing stream velocities. The proposed model uses a parameter which relates to the ratio of a time associated with the mixing processes in a turbulent jet to a characteristic chemical time. The Kolmogorov microscale of time is used as time scale in this model. It is shown that turbulent diffusion flames are quenched by excessive turbulence for a critical value of this parameter. The predicted blowout velocity of diffusion flamesmore » obtained using this model is in good agreement with the available experimental data.« less
A streaming birefringence study of the flow at the junction of the aorta and the renal arteries
NASA Astrophysics Data System (ADS)
Rankin, G. W.; Sabbah, H. N.; Stein, P. D.
1989-11-01
Streaming birefringence with an organic dye (Milling Yellow) was used to investigate the flow near the junction of the renal arteries and the descending aorta in a model of human vessels. The dye concentration was adjusted to give fluid rheological properties, typical of blood. Steady and pulsatile flow were investigated at branch-to-trunk flow ratios of 0.050 0.350. The flow ratio range over which flow separation and simple secondary flows were identified during systole near the renal ostia are reported. Streaming birefringence has the advantage of allowing visualization of the entire flow field. Also, the fluid rather than suspended particles are observed. An important disadvantage, however, is that three-dimensional flows make interpretation difficult.
Benthic macroinvertebrate community structure in 20 streams of varying pH and humic content.
Kullberg, A
1992-01-01
The structure of stream benthic macroinvertebrate communities in relation to pH and humic content was studied in 20 second and third-order forest streams in southern Sweden. Streams varied in pH from 4.2 to 8.0, and in humic content from a colour of 5 to 1200 mg Pt litre(-1). There was a positive relationship between pH and species richness, with a discontinuity occurring at pH approximately 5.7. At pH > 5.7, species richness decreased with increasing colour. At pH < 5.7 there was a positive correlation between species richness and humic concentration up to a colour of about 200-300 mg Pt litre(-1). this may be explained by high concentrations, 0.4-0.9 mg litre(-1), of labile monomeric Al occurring in the low coloured acid streams. In streams with a colour > 200 mg Pt litre(-1) labile monomeric Al was less than 0.2 mg litre(-1). There was no significant change in species richness above this threshold, but a shift in species composition towards a dominance of Plecoptera and Chironomidae. This threshold model seems to explain the observed differences in stream benthic community structure better than a simple linear relationship with pH or humic content.
Hypercluster parallel processing library user's manual
NASA Technical Reports Server (NTRS)
Quealy, Angela
1990-01-01
This User's Manual describes the Hypercluster Parallel Processing Library, composed of FORTRAN-callable subroutines which enable a FORTRAN programmer to manipulate and transfer information throughout the Hypercluster at NASA Lewis Research Center. Each subroutine and its parameters are described in detail. A simple heat flow application using Laplace's equation is included to demonstrate the use of some of the library's subroutines. The manual can be used initially as an introduction to the parallel features provided by the library. Thereafter it can be used as a reference when programming an application.
Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane
NASA Technical Reports Server (NTRS)
Johnson, H. J.; Montoya, E. J.
1973-01-01
The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.
Coaxial microreactor for particle synthesis
Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl
2013-10-22
A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.
Kinetic Simulations of Particle Acceleration at Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprioli, Damiano; Guo, Fan
2015-07-16
Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shockmore » drift acceleration; and electron DSA is efficient at oblique shocks.« less
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams
NASA Astrophysics Data System (ADS)
Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.
2017-05-01
Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.
Li, Zhong-Yi; Li, Jiu-Yu; Liu, Yuan; Xu, Ren-Kou
2014-09-01
The streaming potential has been wildly used in charged parallel plates, capillaries, and porous media. However, there have been few studies involving the ζ potential of clay soils based on streaming potential measurements. A laboratory apparatus was developed in this study to measure the streaming potential (ΔE) of bulk clay soils' coupling coefficient (C) and cell resistance (R) of saturated granular soil samples. Excellent linearity of ΔE versus liquid pressure (ΔP) ensured the validity of measurements. The obtained parameters of C and R can be used to calculate the ζ potential of bulk soils. The results indicated that the ζ potentials measured by streaming potential method were significantly correlated with the ζ potentials of soil colloids determined by electrophoresis (r (2) = 0.960**). Therefore, the streaming potential method can be used to study the ζ potentials of bulk clay soils. The absolute values of the ζ potentials of four soils followed the order: Ultisol from Jiangxi > Ultisol from Anhui > Oxisol from Guangdong > Oxisol from Hainan, and this was consistent with the cation exchange capacities of these soils. The type and concentration of electrolytes affected soil ζ potentials. The ζ potential became less negative with increased electrolyte concentration. The ζ potentials were more negative in monovalent than in divalent cationic electrolyte solutions because more divalent cations were distributed in the shear plane of the diffuse layer as counter-cations on the soil surfaces than monovalent cations at the same electrolyte concentration.
NASA Astrophysics Data System (ADS)
Iida, Michihira; Maeno, Tsuyoshi; Fujiwara, Osamu
It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns containing slits. To suppress the noise currents outflow from PCBs of these kinds, we previously measured noise currents outflow from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits to reveal that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with FDTD simulation, we investigated reduction effects of ground patterns size on the FM-band cross-talk noise levels between two parallel signal traces, by using four types of simple PCB models having different ground patterns formed in different numbers but containing the same planar dimension slits parallel to the traces, in addition to two types of PCB models with different ground patterns divided into two parts parallel to the traces. As a result, we found that the cross-talk noise currents for the above six types of PCBs decrease by 6.9-8.5dB compared to the PCB which has a plain ground with no slits. From this study, we got the finding that the contributing factor for the above mentioned cross-talk reduction relies on the reduction of mutual inductance between the two parallel traces. In addition, in case of this study, it is interesting to note that the noise currents outflow from PCBs can rather be suppressed when the size of the return ground of each signal trace is small.
Introduction to the temperature module, when to list temperature as a candidate cause, ways to measure temperature, simple and detailed conceptual diagrams for temperature, temperature module references and literature reviews.
EnviroLand: A Simple Computer Program for Quantitative Stream Assessment.
ERIC Educational Resources Information Center
Dunnivant, Frank; Danowski, Dan; Timmens-Haroldson, Alice; Newman, Meredith
2002-01-01
Introduces the Enviroland computer program which features lab simulations of theoretical calculations for quantitative analysis and environmental chemistry, and fate and transport models. Uses the program to demonstrate the nature of linear and nonlinear equations. (Author/YDS)
Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.
NASA Astrophysics Data System (ADS)
Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.
2017-12-01
Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.
Biotech Outsourcing Strategies cmc—Biologics stream
2010-01-01
Now in its third year, the Biotech Outsourcing Strategies (BOS) meeting organized by Bio2Business took place at the Søhuset Conference Centre in Hørsholm, Copenhagen. The focus of this year's event was the demanding and challenging area of chemistry, manufacturing and controls (CMC), and the meeting provided ample opportunity for lively discussion of the key issues surrounding this area. New for the 2010 conference, a biologics-focused lecture stream ran in parallel to the established small molecule stream. Both streams boasted a distinguished panel of keynote speakers who discussed all aspects of CMC from early stage scale-up through late stage clinical development. In addition to the keynote speakers, selected contract research organizations (CROs) gave short presentations on the solutions that they could provide to some of the challenges facing CMC. The meeting attracted more than 150 delegates from leading drug development companies and CRO service providers, and greatly facilitated the forging of new working relationships through pre-arranged one-to-one meetings. Moreover, exhibitions from event sponsors and considerable scheduled networking time over lunch and evening receptions further enhanced the highly productive and interactive nature of the meeting. PMID:20716956
Biotech outsourcing strategies cmc--biologics stream. June 17, 2010, Copenhagen, Denmark.
Hamer, Kate
2010-01-01
Now in its third year, the Biotech Outsourcing Strategies (BOS) meeting organized by Bio2Business took place at the Søhuset Conference Centre in Hørsholm, Copenhagen. The focus of this year's event was the demanding and challenging area of chemistry, manufacturing and controls (CMC), and the meeting provided ample opportunity for lively discussion of the key issues surrounding this area. New for the 2010 conference, a biologics-focused lecture stream ran in parallel to the established small molecule stream. Both streams boasted a distinguished panel of keynote speakers who discussed all aspects of CMC from early stage scale-up through late stage clinical development. In addition to the keynote speakers, selected contract research organizations (CROs) gave short presentations on the solutions that they could provide to some of the challenges facing CMC. The meeting attracted more than 150 delegates from leading drug development companies and CRO service providers, and greatly facilitated the forging of new working relationships through pre-arranged one-to-one meetings. Moreover, exhibitions from event sponsors and considerable scheduled networking time over lunch and evening reception further enhanced the highly productive and interactive nature of the meeting.
Nonlinear analysis of generalized cross-field current instability
NASA Technical Reports Server (NTRS)
Yoon, Peter H.; Lui, Anthony T. Y.
1993-01-01
Analysis of the generalized cross-field current instability is carried out in which cross-field drift of both the ions and electrons and their temperatures are permitted to vary in time. The unstable mode under consideration is the electromagnetic generalization of the classical modified-two-stream instability. The generalized instability is made of the modified-two-stream and ion-Weibel modes. The relative importance of the features associated with the ion-Weibel mode and those of the modified-two-stream mode is assessed. Specific applications are made to the Earth's neutral sheet prior to substorm onset and to the Earth's bow shock. The numerical solution indicates that the ion-Weibel mode dominates in the Earth's neutral sheet environment. In contrast, the situation for the bow shock is dominated by the modified-two-stream mode. Notable differences are found between the present calculation and previous results on ion-Weibel mode which restrict the analysis to only parallel propagating waves. However, in the case of Earth's bow shock for which the ion-Weibel mode plays no important role, the inclusion of the electromagnetic ion response is found to differ little from the previous results which treats ions responding only to the electrostatic component of the excited waves.
Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus)
Vrieze, L.A.; Bergstedt, R.A.; Sorensen, P.W.
2011-01-01
Stream-finding behavior of adult sea lamprey (Petromyzon marinus), an anadromous fish that relies on pheromones to locate spawning streams, was documented in the vicinity of an important spawning river in the Great Lakes. Untreated and anosmic migrating sea lampreys were implanted with acoustic transmitters and then released outside the Ocqueoc River. Lampreys swam only at night and then actively. When outside of the river plume, lampreys pursued relatively straight bearings parallel to the shoreline while making frequent vertical excursions. In contrast, when within the plume, lampreys made large turns and exhibited a weak bias towards the river mouth, which one-third of them entered. The behavior of anosmic lampreys resembled that of untreated lampreys outside of the plume, except they pursued a more northerly compass bearing. To locate streams, sea lampreys appear to employ a three-phase odor-mediated strategy that involves an initial search along shorelines while casting vertically, followed by river-water-induced turning that brings them close to the river's mouth, which they then enter using rheotaxis. This novel strategy differs from that of salmonids and appears to offer this poor swimmer adaptive flexibility and suggests ways that pheromonal odors might be used to manage this invasive species.
Using OpenMP vs. Threading Building Blocks for Medical Imaging on Multi-cores
NASA Astrophysics Data System (ADS)
Kegel, Philipp; Schellmann, Maraike; Gorlatch, Sergei
We compare two parallel programming approaches for multi-core systems: the well-known OpenMP and the recently introduced Threading Building Blocks (TBB) library by Intel®. The comparison is made using the parallelization of a real-world numerical algorithm for medical imaging. We develop several parallel implementations, and compare them w.r.t. programming effort, programming style and abstraction, and runtime performance. We show that TBB requires a considerable program re-design, whereas with OpenMP simple compiler directives are sufficient. While TBB appears to be less appropriate for parallelizing existing implementations, it fosters a good programming style and higher abstraction level for newly developed parallel programs. Our experimental measurements on a dual quad-core system demonstrate that OpenMP slightly outperforms TBB in our implementation.
Sharp, G C; Kandasamy, N; Singh, H; Folkert, M
2007-10-07
This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.
NASA Technical Reports Server (NTRS)
Rudy, D. H.; Morris, D. J.
1976-01-01
An uncoupled time asymptotic alternating direction implicit method for solving the Navier-Stokes equations was tested on two laminar parallel mixing flows. A constant total temperature was assumed in order to eliminate the need to solve the full energy equation; consequently, static temperature was evaluated by using algebraic relationship. For the mixing of two supersonic streams at a Reynolds number of 1,000, convergent solutions were obtained for a time step 5 times the maximum allowable size for an explicit method. The solution diverged for a time step 10 times the explicit limit. Improved convergence was obtained when upwind differencing was used for convective terms. Larger time steps were not possible with either upwind differencing or the diagonally dominant scheme. Artificial viscosity was added to the continuity equation in order to eliminate divergence for the mixing of a subsonic stream with a supersonic stream at a Reynolds number of 1,000.
Spectrum of dermoscopic patterns in lichen planus: a case series from China.
Tan, Cheng; Min, Zhong-Sheng; Xue, Yanning; Zhu, Wen-Yuan
2014-01-01
Dermoscopy has been shown to be a promising method to facilitate the diagnosis of lichen planus (LP) outside of China. To investigate the spectrum of dermoscopic patterns in Chinese LP patients. The clinical data and dermoscopic patterns of nine LP cases with a total of 43 lesions were evaluated. To the naked eye, 20.97% of the lesions exhibited graying Wickham striae (WS); however, 37.5% presented with white streaks of annular, reticular, or leaf venation patterns under dermoscopy. Blue-white veils were occasionally observed in the center. Pigment patterns varied from dots, globules, and peppered pigment to pigmented lines, which were unrelated to the pigment network of the skin. At the periphery of the WS, red fine lines ran parallel to the delicate white streaming lines. WS exhibits five morphological patterns (leaf venation, reticular, white dots, circular and radial streaming) and three color patterns (homogeneous crystalline white, blue-white veil and yellowish-white). The pigment patterns consisted of dots/globules, peppered pigments and pigment. streaming lines.
Scalable Static and Dynamic Community Detection Using Grappolo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman
Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
NASA Technical Reports Server (NTRS)
Hirsh, R. S.
1976-01-01
A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.
Sze, Morgan C.; Schindler, Harvey D.
1982-01-01
Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.
Accretion shocks in the laboratory: Design of an experiment to study star formation
Young, Rachel P.; Kuranz, C. C.; Drake, R. P.; ...
2017-02-13
Here, we present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled "accretion shock" at a major (several kJ) laser facility. The experiment drives a plasma jet (the "accretion stream") into a solid block (the "stellar surface"), in the presence of a parallel magnetic fieldmore » analogous to the star's local field.« less
Prevention of catheter-related blood stream infection.
Byrnes, Matthew C; Coopersmith, Craig M
2007-08-01
Catheter-related blood stream infections are a morbid complication of central venous catheters. This review will highlight a comprehensive approach demonstrated to prevent catheter-related blood stream infections. Elements of prevention important to inserting a central venous catheter include proper hand hygiene, use of full barrier precautions, appropriate skin preparation with 2% chlorhexidine, and using the subclavian vein as the preferred anatomic site. Rigorous attention needs to be given to dressing care, and there should be daily assessment of the need for central venous catheters, with prompt removal as soon as is practicable. Healthcare workers should be educated routinely on methods to prevent catheter-related blood stream infections. If rates remain higher than benchmark levels despite proper bedside practice, antiseptic or antibiotic-impregnated catheters can also prevent infections effectively. A recent program utilizing these practices in 103 ICUs in Michigan resulted in a 66% decrease in infection rates. There is increasing recognition that a comprehensive strategy to prevent catheter-related blood stream infections can prevent most infections, if not all. This suggests that thousands of infections can potentially be averted if the simple practices outlined herein are followed.
Data Partitioning and Load Balancing in Parallel Disk Systems
NASA Technical Reports Server (NTRS)
Scheuermann, Peter; Weikum, Gerhard; Zabback, Peter
1997-01-01
Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible waves, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent, self-reliant file system that aims to optimize striping by taking into account the requirements of the applications and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces.
A Simple Electromagnetic Model for the Light Clock of Special Relativity
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
Thought experiments involving a light clock are common in introductory treatments of special relativity, because they provide a simple way of demonstrating the non-intuitive phenomenon of time dilation. The properties of the ray or pulse of light that is continuously reflected between the parallel mirrors of the clock are often stated vaguely and…
A high-speed linear algebra library with automatic parallelism
NASA Technical Reports Server (NTRS)
Boucher, Michael L.
1994-01-01
Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry
1998-01-01
This paper presents a model to evaluate the performance and overhead of parallelizing sequential code using compiler directives for multiprocessing on distributed shared memory (DSM) systems. With increasing popularity of shared address space architectures, it is essential to understand their performance impact on programs that benefit from shared memory multiprocessing. We present a simple model to characterize the performance of programs that are parallelized using compiler directives for shared memory multiprocessing. We parallelized the sequential implementation of NAS benchmarks using native Fortran77 compiler directives for an Origin2000, which is a DSM system based on a cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report measurement based performance of these parallelized benchmarks from four perspectives: efficacy of parallelization process; scalability; parallelization overhead; and comparison with hand-parallelized and -optimized version of the same benchmarks. Our results indicate that sequential programs can conveniently be parallelized for DSM systems using compiler directives but realizing performance gains as predicted by the performance model depends primarily on minimizing architecture-specific data locality overhead.
Attentional influences on functional mapping of speech sounds in human auditory cortex.
Obleser, Jonas; Elbert, Thomas; Eulitz, Carsten
2004-07-21
The speech signal contains both information about phonological features such as place of articulation and non-phonological features such as speaker identity. These are different aspects of the 'what'-processing stream (speaker vs. speech content), and here we show that they can be further segregated as they may occur in parallel but within different neural substrates. Subjects listened to two different vowels, each spoken by two different speakers. During one block, they were asked to identify a given vowel irrespectively of the speaker (phonological categorization), while during the other block the speaker had to be identified irrespectively of the vowel (speaker categorization). Auditory evoked fields were recorded using 148-channel magnetoencephalography (MEG), and magnetic source imaging was obtained for 17 subjects. During phonological categorization, a vowel-dependent difference of N100m source location perpendicular to the main tonotopic gradient replicated previous findings. In speaker categorization, the relative mapping of vowels remained unchanged but sources were shifted towards more posterior and more superior locations. These results imply that the N100m reflects the extraction of abstract invariants from the speech signal. This part of the processing is accomplished in auditory areas anterior to AI, which are part of the auditory 'what' system. This network seems to include spatially separable modules for identifying the phonological information and for associating it with a particular speaker that are activated in synchrony but within different regions, suggesting that the 'what' processing can be more adequately modeled by a stream of parallel stages. The relative activation of the parallel processing stages can be modulated by attentional or task demands.
High order parallel numerical schemes for solving incompressible flows
NASA Technical Reports Server (NTRS)
Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.
1992-01-01
The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.
Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1989-01-01
A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.
On the interrelation of multiplication and division in secondary school children
Huber, Stefan; Fischer, Ursula; Moeller, Korbinian; Nuerk, Hans-Christoph
2013-01-01
Multiplication and division are conceptually inversely related: Each division problem can be transformed into as a multiplication problem and vice versa. Recent research has indicated strong developmental parallels between multiplication and division in primary school children. In this study, we were interested in (i) whether these developmental parallels persist into secondary school, (ii) whether similar developmental parallels can be observed for simple and complex problems, (iii) whether skill level modulates this relationship, and (iv) whether the correlations are specific and not driven by general cognitive or arithmetic abilities. Therefore, we assessed performance of 5th and 6th graders attending two secondary school types of the German educational system in simple and complex multiplication as well as division while controlling for non-verbal intelligence, short-term memory, and other arithmetic abilities. Accordingly, we collected data from students differing in skills levels due to either age (5th < 6th grade) or school type (general < intermediate secondary school). We observed moderate to strong bivariate and partial correlations between multiplication and division with correlations being higher for simple tasks but nevertheless reliable for complex tasks. Moreover, the association between simple multiplication and division depended on students' skill levels as reflected by school types, but not by age. Partial correlations were higher for intermediate than for general secondary school children. In sum, these findings emphasize the importance of the inverse relationship between multiplication and division which persists into later developmental stages. However, evidence for skill-related differences in the relationship between multiplication and division was restricted to the differences for school types. PMID:24133476
Bedrock morphology reveals drainage network in northeast Baffin Bay
NASA Astrophysics Data System (ADS)
Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Freire, Francis
2018-02-01
A subglacial drainage network underneath the paleo-ice sheet off West Greenland is revealed by a new compilation of high-resolution bathymetry data from Melville Bay, northeast Baffin Bay. This drainage network is an indicator for ice streaming and subglacial meltwater flow toward the outer shelf. Repeated ice sheet advances and retreats across the crystalline basement together with subglacial meltwater drainage had their impact in eroding overdeepened troughs along ice stream pathways. These overdeepenings indicate the location of a former ice sheet margin. The troughs inherit characteristics of glacial and subglacial meltwater erosion. Most of the troughs follow tectonic weakness zones such as faults and fractures in the crystalline bedrock. Many of these tectonic features correspond with the orientations of major fault axes in the Baffin Bay region. The troughs extend from the present (sub) glacial fjord systems at the Greenland coast and parallel modern outlet-glacier pathways. The fast flowing paleo-ice streams were likely accelerated from the meltwater flow as indicated by glacial landforms within and along the troughs. The ice streams flowed along narrow tributary troughs and merged to form large paleo-ice streams bedded in the major cross-shelf troughs of Melville Bay. Apart from the troughs, a rough seabed topography characterises the bedrock, and we see a sharp geomorphic transition where ice flowed onto sedimentary rock and deposits.
Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection
Denison, Rachel N.; Silver, Michael A.
2014-01-01
During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685
Smisc - A collection of miscellaneous functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon Sego, PNNL
2015-08-31
A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less
MPI, HPF or OpenMP: A Study with the NAS Benchmarks
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Frumkin, Michael; Hribar, Michelle; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1999-01-01
Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but the task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study,potentials of applying some of the techniques to realistic aerospace applications will be presented
MPI, HPF or OpenMP: A Study with the NAS Benchmarks
NASA Technical Reports Server (NTRS)
Jin, H.; Frumkin, M.; Hribar, M.; Waheed, A.; Yan, J.; Saini, Subhash (Technical Monitor)
1999-01-01
Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but this task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study, we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study, potentials of applying some of the techniques to realistic aerospace applications will be presented.
Implementing Multidisciplinary and Multi-Zonal Applications Using MPI
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.
1995-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.
An object-oriented approach to nested data parallelism
NASA Technical Reports Server (NTRS)
Sheffler, Thomas J.; Chatterjee, Siddhartha
1994-01-01
This paper describes an implementation technique for integrating nested data parallelism into an object-oriented language. Data-parallel programming employs sets of data called 'collections' and expresses parallelism as operations performed over the elements of a collection. When the elements of a collection are also collections, then there is the possibility for 'nested data parallelism.' Few current programming languages support nested data parallelism however. In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that may be applied to it. Our goal is to design and build an object-oriented data-parallel programming environment supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add new parallel base types by implementing them as classes, and add a new parallel collection type called a 'vector' that is implemented as a template. Only one new language feature is introduced: the 'foreach' construct, which is the basis for exploiting elementwise parallelism over collections. The strength of the method lies in the compilation strategy, which translates nested data-parallel C++ into ordinary C++. Extracting the potential parallelism in nested 'foreach' constructs is called 'flattening' nested parallelism. We show how to flatten 'foreach' constructs using a simple program transformation. Our prototype system produces vector code which has been successfully run on workstations, a CM-2, and a CM-5.
NASA Astrophysics Data System (ADS)
Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric
2017-02-01
We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF + DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.
Investigating a method of producing "red and dead" galaxies
NASA Astrophysics Data System (ADS)
Skory, Stephen
2010-08-01
In optical wavelengths, galaxies are observed to be either red or blue. The overall color of a galaxy is due to the distribution of the ages of its stellar population. Galaxies with currently active star formation appear blue, while those with no recent star formation at all (greater than about a Gyr) have only old, red stars. This strong bimodality has lead to the idea of star formation quenching, and various proposed physical mechanisms. In this dissertation, I attempt to reproduce with Enzo the results of Naab et al. (2007), in which red and dead galaxies are formed using gravitational quenching, rather than with one of the more typical methods of quenching. My initial attempts are unsuccessful, and I explore the reasons why I think they failed. Then using simpler methods better suited to Enzo + AMR, I am successful in producing a galaxy that appears to be similar in color and formation history to those in Naab et al. However, quenching is achieved using unphysically high star formation efficiencies, which is a different mechanism than Naab et al. suggests. Preliminary results of a much higher resolution, follow-on simulation of the above show some possible contradiction with the results of Naab et al. Cold gas is streaming into the galaxy to fuel starbursts, while at a similar epoch the galaxies in Naab et al. have largely already ceased forming stars in the galaxy. On the other hand, the results of the high resolution simulation are qualitatively similar to other works in the literature that show a somewhat different gravitational quenching mechanism than Naab et al. I also discuss my work using halo finders to analyze simulated cosmological data, and my work improving the Enzo/AMR analysis tool "yt". This includes two parallelizations of the halo finder HOP (Eisenstein and Hut, 1998) which allows analysis of very large cosmological datasets on parallel machines. The first version is "yt-HOP," which works well for datasets between about 2563 and 5123 particles, but has memory bottlenecks as the datasets get larger. These bottlenecks inspired the second version, "Parallel HOP," which is a fully parallelized method and implementation of HOP that has worked on datasets with more than 20483 particles on hundreds of processing cores. Both methods are described in detail, as are the various effects of performance-related runtime options. Additionally, both halo finders are subjected to a full suite of performance benchmarks varying both dataset sizes and computational resources used. I conclude with descriptions of four new tools I added to yt. A Parallel Structure Function Generator allows analysis of two-point functions, such as correlation functions, using memory- and workload-parallelism. A Parallel Merger Tree Generator leverages the parallel halo finders in yt, such as Parallel HOP, to build the merger tree of halos in a cosmological simulation, and outputs the result to a SQLite database for simple and powerful data extraction. A Star Particle Analysis toolkit takes a group of star particles and can output the rate of formation as a function of time, and/or a synthetic Spectral Energy Distribution (S.E.D.) using the Bruzual and Charlot (2003) data tables. Finally, a Halo Mass Function toolkit takes as input a list of halo masses and can output the halo mass function for the halos, as well as an analytical fit for those halos using several previously published fits.
drPACS: A Simple UNIX Execution Pipeline
NASA Astrophysics Data System (ADS)
Teuben, P.
2011-07-01
We describe a very simple yet flexible and effective pipeliner for UNIX commands. It creates a Makefile to define a set of serially dependent commands. The commands in the pipeline share a common set of parameters by which they can communicate. Commands must follow a simple convention to retrieve and store parameters. Pipeline parameters can optionally be made persistent across multiple runs of the pipeline. Tools were added to simplify running a large series of pipelines, which can then also be run in parallel.
Single Pass Streaming BLAST on FPGAs*†
Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom
2008-01-01
Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828
Swimming using surface acoustic waves.
Bourquin, Yannyk; Cooper, Jonathan M
2013-01-01
Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott
2011-01-01
Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004
Chemical characteristics and temporal trends in eight streams of the Catskill Mountains, New York
Murdoch, Peter S.; Stoddard, J.L.
1993-01-01
Discharge to concentration relationships for eight streams studied by the U.S. Geological Survey (USGS) as part of the U.S. Environmental Protection Agency's (U.S. EPA) Long-Term Monitoring Project (1983-89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitation were similar to those reported at other sites in the northeastern United States. Average concentrations of SO42- and NO3- were similar among streams, but base cation concentrations differed widely, and these differences paralleled the differences in acid neutralizing capacity (ANC). Baseflow ANC is not a reliable predictor of stream acidity at high flow; some streams with high baseflow ANC (> 150 ??eq L-1) declined to near zero ANC at high flow, and one stream with low baseflow ANC (< 50 ??eq L-1) did not approach zero ANC as flow increased. Episodic decreases in ANC and pH during peak flows were associated with increased concentrations of NO3- and dissolved organic carbon (DOC). Aluminum concentrations exceeding 300 ??g L-1 were observed during peak flows in headwater streams of the Neversink River and Rondout Creek. Seasonal Kendall Tau tests for temporal trends indicate that SO42- concentrations in streamwater generally decreased and NO3- concentrations increased during the period 1983-1989. Combined acid anion concentrations (SO42- + NO3-) were generally unchanged throughout the period of record, indicating both that the status of these streams with respect to acidic deposition is unchanged, and that NO3- is gradually replacing SO42- as the dominant acid anion in the Catskill streams.Discharge to concentration relationships for eight streams studied by the US Geological Survey (USGS) as part of the Environmental Protection Agency's (US EPA) Long-term monitoring project (19831-89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitations were similar to those reported at other sites in the northeastern United States. Average concentrations of SO42- and No3- were similar among streams, but base cation concentrations differed widely, and these differences parallelel the differences in acid neutralizing capacity (ANC).
Degefu, Mekonnen Adnew; Bewket, Woldeamlak
2017-04-01
This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.
Patterns and age distribution of ground-water flow to streams
Modica, E.; Reilly, T.E.; Pollock, D.W.
1997-01-01
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.
ERIC Educational Resources Information Center
Taber, Keith S.
2013-01-01
Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…
LLMapReduce: Multi-Lingual Map-Reduce for Supercomputing Environments
2015-11-20
1990s. Popularized by Google [36] and Apache Hadoop [37], map-reduce has become a staple technology of the ever- growing big data community...Lexington, MA, U.S.A Abstract— The map-reduce parallel programming model has become extremely popular in the big data community. Many big data ...to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing simple parallel programming
A simple, dynamic, hydrological model of a mesotidal salt marsh
Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...
DESIGN STREAM FLOWS BASED ON HARMONIC MEANS.
Design streamflows are frequently used in water quality studies to provide adequate protection against pollutant exposure periods of a given duration. By analyzing the effect that simple streamflow dilution has on x-day average exposure levels of a pollutant, it appears that the ...
Multi-Laboratory Validation of Estrone (E1) ELISA Methods
This project is a round-robin evaluation of commercially available Enzyme-Linked Immunosorbent Assay (ELISA) technology to quantitatively or qualitatively measure the hormone estrone (E1) in combined animal feeding operation (CAFO) receiving streams. ELISA is meant to be a simpl...
A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1978-01-01
The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.
Harmonic analyses of stream temperatures in the Upper Colorado River Basin
Steele, T.D.
1985-01-01
Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)
Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.
Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C
2014-05-01
Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.
Mineral lineation produced by 3-D rotation of rigid inclusions in confined viscous simple shear
NASA Astrophysics Data System (ADS)
Marques, Fernando O.
2016-08-01
The solid-state flow of rocks commonly produces a parallel arrangement of elongate minerals with their longest axes coincident with the direction of flow-a mineral lineation. However, this does not conform to Jeffery's theory of the rotation of rigid ellipsoidal inclusions (REIs) in viscous simple shear, because rigid inclusions rotate continuously with applied shear. In 2-dimensional (2-D) flow, the REI's greatest axis (e1) is already in the shear direction; therefore, the problem is to find mechanisms that can prevent the rotation of the REI about one axis, the vorticity axis. In 3-D flow, the problem is to find a mechanism that can make e1 rotate towards the shear direction, and so generate a mineral lineation by rigid rotation about two axes. 3-D analogue and numerical modelling was used to test the effects of confinement on REI rotation and, for narrow channels (shear zone thickness over inclusion's least axis, Wr < 2), the results show that: (1) the rotational behaviour deviates greatly from Jeffery's model; (2) inclusions with aspect ratio Ar (greatest over least principle axis, e1/e3) > 1 can rotate backwards from an initial orientation w e1 parallel to the shear plane, in great contrast to Jeffery's model; (3) back rotation is limited because inclusions reach a stable equilibrium orientation; (4) most importantly and, in contrast to Jeffery's model and to the 2-D simulations, in 3-D, the confined REI gradually rotated about an axis orthogonal to the shear plane towards an orientation with e1 parallel to the shear direction, thus producing a lineation parallel to the shear direction. The modelling results lead to the conclusion that confined simple shear can be responsible for the mineral alignment (lineation) observed in ductile shear zones.
A simple hyperbolic model for communication in parallel processing environments
NASA Technical Reports Server (NTRS)
Stoica, Ion; Sultan, Florin; Keyes, David
1994-01-01
We introduce a model for communication costs in parallel processing environments called the 'hyperbolic model,' which generalizes two-parameter dedicated-link models in an analytically simple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are independent of load are assumed by many existing communication models; such models are unrealistic for workstation networks. The communication system is modeled as a directed communication graph in which terminal nodes represent the application processes that initiate the sending and receiving of the information and in which internal nodes, called communication blocks (CBs), reflect the layered structure of the underlying communication architecture. The direction of graph edges specifies the flow of the information carried through messages. Each CB is characterized by a two-parameter hyperbolic function of the message size that represents the service time needed for processing the message. The parameters are evaluated in the limits of very large and very small messages. Rules are given for reducing a communication graph consisting of many to an equivalent two-parameter form, while maintaining an approximation for the service time that is exact in both large and small limits. The model is validated on a dedicated Ethernet network of workstations by experiments with communication subprograms arising in scientific applications, for which a tight fit of the model predictions with actual measurements of the communication and synchronization time between end processes is demonstrated. The model is then used to evaluate the performance of two simple parallel scientific applications from partial differential equations: domain decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility of the hyperbolic model with the recently proposed LogP model.
Cooling tower plume - model and experiment
NASA Astrophysics Data System (ADS)
Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri
The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus
Soltesz, Ivan; Losonczy, Attila
2018-01-01
Hippocampal network operations supporting spatial navigation and declarative memory are traditionally interpreted in a framework where each hippocampal area, such as the dentate gyrus, CA3, and CA1, consists of homogeneous populations of functionally equivalent principal neurons. However, heterogeneity within hippocampal principal cell populations, in particular within pyramidal cells at the main CA1 output node, is increasingly recognized and includes developmental, molecular, anatomical, and functional differences. Here we review recent progress in the delineation of hippocampal principal cell subpopulations by focusing on radially defined subpopulations of CA1 pyramidal cells, and we consider how functional segregation of information streams, in parallel channels with nonuniform properties, could represent a general organizational principle of the hippocampus supporting diverse behaviors. PMID:29593317
A parallel algorithm for multi-level logic synthesis using the transduction method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Lim, Chieng-Fai
1991-01-01
The Transduction Method has been shown to be a powerful tool in the optimization of multilevel networks. Many tools such as the SYLON synthesis system (X90), (CM89), (LM90) have been developed based on this method. A parallel implementation is presented of SYLON-XTRANS (XM89) on an eight processor Encore Multimax shared memory multiprocessor. It minimizes multilevel networks consisting of simple gates through parallel pruning, gate substitution, gate merging, generalized gate substitution, and gate input reduction. This implementation, called Parallel TRANSduction (PTRANS), also uses partitioning to break large circuits up and performs inter- and intra-partition dynamic load balancing. With this, good speedups and high processor efficiencies are achievable without sacrificing the resulting circuit quality.
PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin
2017-01-01
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser-atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials. We use a split-operator method combined with fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser-atom systems are straightforward with minimal modifications of the source code.
The general dispersion relation of induced streaming instabilities in quantum outflow systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A.
2015-11-15
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts,more » the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.« less
The general dispersion relation of induced streaming instabilities in quantum outflow systems
NASA Astrophysics Data System (ADS)
Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.
2015-11-01
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Lee, B. S.
2015-12-01
Dissolved organic matter (DOM) is a critical component of the carbon cycle linking terrestrial and aquatic ecosystems, yet DOM composition representative of DOM sources at headwater catchments in the western U.S is poorly understood. This study examined the effect of forest management history and hydrologic patterns on DOM chemistry at nine experimental watersheds located in the H.J. Andrews Long Term Ecological Research Experimental Forest of the Oregon Cascades. Stream water samples representing a three-week composite of each watershed were collected between May 2013 and February 2015 (32 events). DOM chemistry was characterized by examining UV and fluorescent properties of stream samples. Specific UV absorbance at 254 nm (SUVA254; Weishaar et al. 2003), generally indicative of aromaticity, showed the lowest value at the high elevation clear-cut site (watershed 6, 1,030 m) and the highest value at the low elevation clear-cut site (watershed 10, 680 m) throughout the study period. DOM fluorescent components, identified by this study using a multivariate statistical model, Parallel Factor Analysis (PARAFAC), did not differ significantly among experimental watersheds with varying forest management history. However, a protein-like DOM component exhibited temporal variations. Correlation analysis between the protein-like DOM and hydrologic patterns indicate that stream water during dry seasons come from protein-rich groundwater sources. This study shows UV and fluorescent spectroscopy DOM characterization is a viable finger printing method to detect DOM sources in pristine headwater streams at the western Cascades of Oregon where characterization of the stream water source with low DOC and DON concentrations is difficult.
Remembered but Unused: The Accessory Items in Working Memory that Do Not Guide Attention
ERIC Educational Resources Information Center
Peters, Judith C.; Goebel, Rainer; Roelfsema, Pieter R.
2009-01-01
If we search for an item, a representation of this item in our working memory guides attention to matching items in the visual scene. We can hold multiple items in working memory. Do all these items guide attention in parallel? We asked participants to detect a target object in a stream of objects while they maintained a second item in memory for…
Neotectonic Activity from Karewa Sediments, Kashmir Himalaya, India
NASA Astrophysics Data System (ADS)
Agarwal, K. K.; Shah, R. A.; Achyuthan, H.; Singh, D. S.; Srivastava, S.; Khan, I.
2018-01-01
Intermontane basin sedimentation occurred during Pliocene-Pleistocene in the Karewa Basin which formed after the continent-continent collision resulting in the formation of Himalayan orogenic belt around Eocene. These are elongated, narrow, thrust bounded basins which have formed during the late stages of orogeny. Situated at a height of 1700-1800 m above sea level, the Karewa basin received sediments because of ponding of a pre-existing river system and the tectonic movements along the Great Himalayan Ranges in the north and the Pir-Panjal ranges in the south along active faults. About 1300 m thick sediments of largely fluvio-lacustrine, glacio-fluvio-lacustrine and eolian origin are exposed having evidences of neotectonically formed structural features such as folds and faults. Folds are more prominent in the Lower Karewa formation (Hirpur Formation) while faults (mostly normal faults) are abundant in the Upper Karewas (Nagum Formation). Drainage in the area varies from dendritic to anastomosing to parallel. Anastomosing drainage suggests sudden decrease in gradient while presence of linear features such as faults and ridges is evident by parallel drainage. Study of morphometric parameters such as stream length (Lsm) and stream length ratios (RL), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) also indicate intense tectonic activity in the recent past.
Center for Parallel Optimization.
1996-03-19
A NEW OPTIMIZATION BASED APPROACH TO IMPROVING GENERALIZATION IN MACHINE LEARNING HAS BEEN PROPOSED AND COMPUTATIONALLY VALIDATED ON SIMPLE LINEAR MODELS AS WELL AS ON HIGHLY NONLINEAR SYSTEMS SUCH AS NEURAL NETWORKS.
SPOT satellite mapping of Ice Stream B
NASA Technical Reports Server (NTRS)
Merry, Carolyn J.
1993-01-01
Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.
Overview of implementation of DARPA GPU program in SAIC
NASA Astrophysics Data System (ADS)
Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis
2008-04-01
This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.
A thermal oscillating two-stream instability
NASA Technical Reports Server (NTRS)
Dysthe, K. B.; Mjolhus, E.; Rypdal, K.; Pecseli, H. L.
1983-01-01
A theory for the oscillating two-stream instability, in which the Ohmic heating of the electrons constitutes the nonlinearity, is developed for an inhomogeneous and magnetized plasma. Its possible role in explaining short-scale, field-aligned irregularities observed in ionospheric heating experiments is emphasized. The theory predicts that the initial growth of such irregularities is centered around the level of upper hybrid resonance. Furthermore, plane disturbances nearly parallel to the magnetic meridian plane have the largest growth rates. Expressions for threshold, growth rate, and transverse scale of maximum growth are obtained. Special attention is paid to the transport theory, since the physical picture depends heavily on the kind of electron collisions which dominate. This is due to the velocity dependence of collision frequencies, which gives rise to the thermal forces
Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate
Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; ...
2015-11-14
Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility ofmore » microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.« less
Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gibson, Garth Alan
1990-01-01
During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.
Biofiltration: an effective and simple method to reduce dialysis time.
Mingardi, G; Massazza, M; Viganò, G; Mecca, G
1986-12-01
Biofiltration: an effective and simple method to reduce dialysis time. Six stable anuric patients, on maintenance hemodialysis, were treated for 10 weeks with a parallel flow 1 m2 cuprophan filter, for 20 weeks with a parallel flow 1.2 m2 polyacrylonitrile filter using the biofiltration (BF) technique and again 10 weeks with the cuprophan filter. Usual monitors were used, without automatic control of ultrafiltration. Biochemical and hematological profile, urea kinetic parameters, incidence of hypotensive episodes, body weight and blood pressure did not change throughout the study. We conclude that three hours of BF, at least for 20 weeks, are as effective and well tolerated as four hours standard hemodialysis and could be of value in reducing dialysis time, to permit better utilization of dialysis beds.
Live streaming video for medical education: a laboratory model.
Gandsas, Alejandro; McIntire, Katherine; Palli, Guillermo; Park, Adrian
2002-10-01
At the University of Kentucky (UK), we applied streaming video technology to develop a webcast model that will allow institutions to broadcast live and prerecorded surgeries, conferences, and courses in real time over networks (the Internet or an intranet). We successfully broadcast a prerecorded laparoscopic paraesophageal hernia repair to domestic and international clients by using desktop computers equipped with off-the-shelf, streaming-enabled software and standard hardware and operating systems. A web-based user interface made accessing the educational material as simple as a mouse click and allowed clients to participate in the broadcast event via an embedded e-mail/chat module. Three client computers (two connected to the Internet and a third connected to the UK intranet) requested and displayed the surgical film by means of seven common network connection configurations. Significantly, no difference in image resolution was detected with the use of a connection speed faster than 128 kilobytes per second (kbps). At this connection speed, an average bandwidth of 32.7 kbps was used, and although a 15-second delay was experienced from the time of data request to data display, the surgical film streamed continuously from beginning to end at a mean rate of 14.4 frames per second (fps). The clients easily identified all anatomic structures in full color motion, clearly followed all steps of the surgical procedure, and successfully asked questions and made comments by using the e-mail/chat module while viewing the surgery. With minimal financial investment, we have created an interactive virtual classroom with the potential to attract a global audience. Our webcast model represents a simple and practical method for institutions to supplement undergraduate and graduate surgical education and offer continuing medical education credits in a way that is convenient for clients (surgeons, students, residents, others). In the future, physicians may access streaming webcast material wirelessly with hand-held computers, so that they will be freed from computer stations.
Treatment of evaporator condensates by pervaporation
Blume, Ingo; Baker, Richard W.
1990-01-01
A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.
Size-sensitive sorting of microparticles through control of flow geometry
NASA Astrophysics Data System (ADS)
Wang, Cheng; Jalikop, Shreyas V.; Hilgenfeldt, Sascha
2011-07-01
We demonstrate a general concept of flow manipulation in microfluidic environments, based on controlling the shape and position of flow domains in order to force switching and sorting of microparticles without moving parts or changes in design geometry. Using microbubble acoustic streaming, we show that regulation of the relative strength of streaming and a superimposed Poiseuille flow allows for size-selective trapping and releasing of particles, with particle size sensitivity much greater than what is imposed by the length scales of microfabrication. A simple criterion allows for quantitative tuning of microfluidic devices for switching and sorting of particles of desired size.
Passive acoustic monitoring of bed load for fluvial applications
USDA-ARS?s Scientific Manuscript database
The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...
Prediction of channel degradation rates in urbanizing watersheds
USDA-ARS?s Scientific Manuscript database
In urbanizing watersheds, as land use changes, and storm sewers and impervious surfaces are increased, both the frequency and magnitude of discharge increase, resulting in stream channel down-cutting and widening and related loss of structures and engineering works. A simple model for assessing the ...
Methods for assessment of stream-related hazards to highways and bridges.
DOT National Transportation Integrated Search
1981-03-01
particular river reach, but also on the behavior of the entire fluvial system of which it is a part. Rivers are complex landforms. A simple and straight forward approach to the identification of river hazards is not always possible. A complete evalua...
This work describes a method for using spreadsheet analyses of process designs and retrofits to provide simple and quick economic and environmental evaluations simultaneously. The method focuses attention onto those streams and components that have the largest monetary values and...
Overview of a simple model describing variation of dissolved organic carbon in an upland catchment
Boyer, Elizabeth W.; Hornberger, George M.; Bencala, Kenneth E.; McKnight, Diane M.
1996-01-01
Hydrological mechanisms controlling the variation of dissolved organic carbon (DOC) were investigated in the Deer Creek catchment located near Montezuma, CO. Patterns of DOC in streamflow suggested that increased flows through the upper soil horizon during snowmelt are responsible for flushing this DOC-enriched interstitial water to the streams. We examined possible hydrological mechanisms to explain the observed variability of DOC in Deer Creek by first simulating the hydrological response of the catchment using TOPMODEL and then routing the predicted flows through a simple model that accounted for temporal changes in DOC. Conceptually the DOC model can be taken to represent a terrestrial (soil) reservoir in which DOC builds up during low flow periods and is flushed out when infiltrating meltwaters cause the water table to rise into this “reservoir”. Concentrations of DOC measured in the upper soil and in streamflow were compared to model simulations. The simulated DOC response provides a reasonable reproduction of the observed dynamics of DOC in the stream at Deer Creek.
Parallel collisionless shocks forming in simulations of the LAPD experiment
NASA Astrophysics Data System (ADS)
Weidl, Martin S.; Jenko, Frank; Niemann, Chris; Winske, Dan
2016-10-01
Research on parallel collisionless shocks, most prominently occurring in the Earth's bow shock region, has so far been limited to satellite measurements and simulations. However, the formation of collisionless shocks depends on a wide range of parameters and scales, which can be accessed more easily in a laboratory experiment. Using a kJ-class laser, an ongoing experimental campaign at the Large Plasma Device (LAPD) at UCLA is expected to produce the first laboratory measurements of the formation of a parallel collisionless shock. We present hybrid kinetic/MHD simulations that show how beam instabilities in the background plasma can be driven by ablating carbon ions from a target, causing non-linear density oscillations which develop into a propagating shock front. The free-streaming carbon ions can excite both the resonant right-hand instability and the non-resonant firehose mode. We analyze their respective roles and discuss optimizing their growth rates to speed up the process of shock formation.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
Multinode acoustic focusing for parallel flow cytometry
Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.
2012-01-01
Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072
Johnson, E.A.; Pierce, F.W.
1990-01-01
The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.
Improving Current Balance In Parallel MOSFET's
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
1992-01-01
Simple circuit makes currents more nearly equal. Addition of diodes and adjustable-tap resistor increases operating range over which drain currents in two unmatched power MOSFET's brought more nearly into balance.
Effect of video server topology on contingency capacity requirements
NASA Astrophysics Data System (ADS)
Kienzle, Martin G.; Dan, Asit; Sitaram, Dinkar; Tetzlaff, William H.
1996-03-01
Video servers need to assign a fixed set of resources to each video stream in order to guarantee on-time delivery of the video data. If a server has insufficient resources to guarantee the delivery, it must reject the stream request rather than slowing down all existing streams. Large scale video servers are being built as clusters of smaller components, so as to be economical, scalable, and highly available. This paper uses a blocking model developed for telephone systems to evaluate video server cluster topologies. The goal is to achieve high utilization of the components and low per-stream cost combined with low blocking probability and high user satisfaction. The analysis shows substantial economies of scale achieved by larger server images. Simple distributed server architectures can result in partitioning of resources with low achievable resource utilization. By comparing achievable resource utilization of partitioned and monolithic servers, we quantify the cost of partitioning. Next, we present an architecture for a distributed server system that avoids resource partitioning and results in highly efficient server clusters. Finally, we show how, in these server clusters, further optimizations can be achieved through caching and batching of video streams.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; Schmadel, N.
2015-12-01
The exchange of water and solutes across the stream-hyporheic-riparian-hillslope continuum is controlled by the interaction of dynamic hydrological processes with the underlying geological setting. Our current understanding of exchange processes is primarily based on field observations collected during baseflow conditions, with few studies considering time-variable stream-aquifer interactions during storm events. We completed ten sets of four in-stream tracer slug injections during and after a large storm event in a headwater catchment at the H.J. Andrews Experimental Forest, Oregon. The injections were performed in three adjacent 50-meter study reaches, enabling comparison of spatial heterogeneity in transport processes. Reach-scale data demonstrate apparent trends with discharge in both transient storage and long-term storage (commonly "channel water balance"). Comparison of flowpath-scale observations from a network of monitoring wells to reach-scale observations showed that the advective timescale changed with discharge making it difficult to infer process from simple, reach-scale tracer studies. Overall, our results highlight the opportunities and challenges for interpretation of multi-scale solute tracer data along the stream-hyporheic-riparian-hillslope continuum.
3D Numerical simulation of bed morphological responses to complex in-streamstructures
NASA Astrophysics Data System (ADS)
Xu, Y.; Liu, X.
2017-12-01
In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1994-05-01
PARALLEL DISTRIBUTED MEMORY ARCHITECTURE LTJh T. M. Eidson 0 - 8 l 9 5 " G. Erlebacher _ _ _. _ DTIe QUALITY INSPECTED a Contract NAS I - 19480 May 1994...DISTRIBUTED MEMORY ARCHITECTURE T.M. Eidson * High Technology Corporation Hampton, VA 23665 G. Erlebachert Institute for Computer Applications in Science and...developed and evaluated. Simple model calculations as well as timing results are pres.nted to evaluate the various strategies. The particular
Attentional influences on functional mapping of speech sounds in human auditory cortex
Obleser, Jonas; Elbert, Thomas; Eulitz, Carsten
2004-01-01
Background The speech signal contains both information about phonological features such as place of articulation and non-phonological features such as speaker identity. These are different aspects of the 'what'-processing stream (speaker vs. speech content), and here we show that they can be further segregated as they may occur in parallel but within different neural substrates. Subjects listened to two different vowels, each spoken by two different speakers. During one block, they were asked to identify a given vowel irrespectively of the speaker (phonological categorization), while during the other block the speaker had to be identified irrespectively of the vowel (speaker categorization). Auditory evoked fields were recorded using 148-channel magnetoencephalography (MEG), and magnetic source imaging was obtained for 17 subjects. Results During phonological categorization, a vowel-dependent difference of N100m source location perpendicular to the main tonotopic gradient replicated previous findings. In speaker categorization, the relative mapping of vowels remained unchanged but sources were shifted towards more posterior and more superior locations. Conclusions These results imply that the N100m reflects the extraction of abstract invariants from the speech signal. This part of the processing is accomplished in auditory areas anterior to AI, which are part of the auditory 'what' system. This network seems to include spatially separable modules for identifying the phonological information and for associating it with a particular speaker that are activated in synchrony but within different regions, suggesting that the 'what' processing can be more adequately modeled by a stream of parallel stages. The relative activation of the parallel processing stages can be modulated by attentional or task demands. PMID:15268765
A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Holder, Larry; Chin, George
2015-02-02
Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving net- works spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with promi- nent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphsmore » in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a “Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named “Relative Selectivity" that is used to se- lect between different query processing strategies. Our experiments performed on real online news, network traffic stream and a syn- thetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.« less
A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Holder, Larry; Chin, George
2015-05-27
Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in amore » continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.« less
DETECTION OF A STELLAR STREAM BEHIND OPEN CLUSTER NGC 188: ANOTHER PART OF THE MONOCEROS STREAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.
2010-05-15
We present results from a WIYN/Orthogonal Parallel Transfer Imaging Camera photometric and astrometric survey of the field of the open cluster NGC 188 ((l, b) = (122.{sup 0}8, 22.{sup 0}5)). We combine these results with the proper-motion and photometry catalog of Platais et al. and demonstrate the existence of a stellar overdensity in the background of NGC 188. The theoretical isochrone fits to the color-magnitude diagram of the overdensity are consistent with an age between 6 and 10 Gyr and an intermediately metal poor population ([Fe/H] = -0.5 to -1.0). The distance to the overdensity is estimated to be betweenmore » 10.0 and 12.6 kpc. The proper motions indicate that the stellar population of the overdensity is kinematically cold. The distance estimate and the absolute proper motion of the overdensity agree reasonably well with the predictions of the Penarrubia et al. model of the formation of the Monoceros stream. Orbits for this material constructed with plausible radial-velocity values, indicate that dynamically, this material is unlikely to belong to the thick disk. Taken together, this evidence suggests that the newly found overdensity is part of the Monoceros stream.« less
Schroeder, C E; Mehta, A D; Givre, S J
1998-01-01
We investigated the spatiotemporal activation pattern, produced by one visual stimulus, across cerebral cortical regions in awake monkeys. Laminar profiles of postsynaptic potentials and action potentials were indexed with current source density (CSD) and multiunit activity profiles respectively. Locally, we found contrasting activation profiles in dorsal and ventral stream areas. The former, like V1 and V2, exhibit a 'feedforward' profile, with excitation beginning at the depth of Lamina 4, followed by activation of the extragranular laminae. The latter often displayed a multilaminar/columnar profile, with initial responses distributed across the laminae and reflecting modulation rather than excitation; CSD components were accompanied by either no changes or by suppression of action potentials. System-wide, response latencies indicated a large dorsal/ventral stream latency advantage, which generalizes across a wide range of methods. This predicts a specific temporal ordering of dorsal and ventral stream components of visual analysis, as well as specific patterns of dorsal-ventral stream interaction. Our findings support a hierarchical model of cortical organization that combines serial and parallel elements. Critical in such a model is the recognition that processing within a location typically entails multiple temporal components or 'waves' of activity, driven by input conveyed over heterogeneous pathways from the retina.
Swimming Using Surface Acoustic Waves
Bourquin, Yannyk; Cooper, Jonathan M.
2013-01-01
Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358
ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.
Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping
2018-04-27
A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.
Displacement and deformation measurement for large structures by camera network
NASA Astrophysics Data System (ADS)
Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu
2014-03-01
A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Modelling parallel programs and multiprocessor architectures with AXE
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Fineman, Charles E.
1991-01-01
AXE, An Experimental Environment for Parallel Systems, was designed to model and simulate for parallel systems at the process level. It provides an integrated environment for specifying computation models, multiprocessor architectures, data collection, and performance visualization. AXE is being used at NASA-Ames for developing resource management strategies, parallel problem formulation, multiprocessor architectures, and operating system issues related to the High Performance Computing and Communications Program. AXE's simple, structured user-interface enables the user to model parallel programs and machines precisely and efficiently. Its quick turn-around time keeps the user interested and productive. AXE models multicomputers. The user may easily modify various architectural parameters including the number of sites, connection topologies, and overhead for operating system activities. Parallel computations in AXE are represented as collections of autonomous computing objects known as players. Their use and behavior is described. Performance data of the multiprocessor model can be observed on a color screen. These include CPU and message routing bottlenecks, and the dynamic status of the software.
Combinatorial structures to modeling simple games and applications
NASA Astrophysics Data System (ADS)
Molinero, Xavier
2017-09-01
We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.
Haptic adaptation to slant: No transfer between exploration modes
van Dam, Loes C. J.; Plaisier, Myrthe A.; Glowania, Catharina; Ernst, Marc O.
2016-01-01
Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective. PMID:27698392
NASA Astrophysics Data System (ADS)
Park, Y.-J.; Sudicky, E. A.; Brookfield, A. E.; Jones, J. P.
2011-12-01
Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study.
Genetic diversity and species diversity of stream fishes covary across a land-use gradient.
Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S
2012-01-01
Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.
Park, Y.-J.; Sudicky, E.A.; Brookfield, A.E.; Jones, J.P.
2011-01-01
Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study. Copyright 2011 by the American Geophysical Union.
Genetic diversity and species diversity of stream fishes covary across a land-use gradient
Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.
2012-01-01
Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.
Findlay, S; Sinsabaugh, R L
2006-10-01
We examined bacterial metabolic activity and community similarity in shallow subsurface stream sediments distributed across three regions of the eastern United States to assess whether there were parallel changes in functional and structural attributes at this large scale. Bacterial growth, oxygen consumption, and a suite of extracellular enzyme activities were assayed to describe functional variability. Community similarity was assessed using randomly amplified polymorphic DNA (RAPD) patterns. There were significant differences in streamwater chemistry, metabolic activity, and bacterial growth among regions with, for instance, twofold higher bacterial production in streams near Baltimore, MD, compared to Hubbard Brook, NH. Five of eight extracellular enzymes showed significant differences among regions. Cluster analyses of individual streams by metabolic variables showed clear groups with significant differences in representation of sites from different regions among groups. Clustering of sites based on randomly amplified polymorphic DNA banding resulted in groups with generally less internal similarity although there were still differences in distribution of regional sites. There was a marginally significant (p = 0.09) association between patterns based on functional and structural variables. There were statistically significant but weak (r2 approximately 30%) associations between landcover and measures of both structure and function. These patterns imply a large-scale organization of biofilm communities and this structure may be imposed by factor(s) such as landcover and covariates such as nutrient concentrations, which are known to also cause differences in macrobiota of stream ecosystems.
Lusardi, B.A.; Jennings, C.E.; Harris, K.L.
2011-01-01
Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till-sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20m thick show mixing in their lower 2 to 3m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice-stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice-catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice-stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited. ?? 2011 The Authors. Boreas ?? 2011 The Boreas Collegium.
An economical method for the continuous production of iodine-123
NASA Technical Reports Server (NTRS)
Blue, J. W.; Smith, W. R.; Sodd, V. J.
1968-01-01
Simple and inexpensive method produces iodine 123, in a conventional cyclotron. Tellurium 122, a stable isotope available in enrichments exceeding 95 percent, is held on a porous metal plate by a flowing stream of helium and bombarded with either alpha particles or helium 3.
Compensating for Electro-Osmosis in Electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1987-01-01
Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.
Parallel processing via a dual olfactory pathway in the honeybee.
Brill, Martin F; Rosenbaum, Tobias; Reus, Isabelle; Kleineidam, Christoph J; Nawrot, Martin P; Rössler, Wolfgang
2013-02-06
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.
Low profile, highly configurable, current sharing paralleled wide band gap power device power module
McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M
2016-08-23
A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.
Geologic map of the Chisos Mountains, Big Bend National Park, Texas
Bohannon, Robert G.
2011-01-01
The Chisos Mountains form some of the highest ground in Texas, second only to Guadalupe Peak near the New Mexico border. The northern half of the range is mostly above 5,500 feet with Emory Peak the high point at 7,825 feet. The mountains are centrally located in Big Bend National Park between Panther Junction and Punta de la Sierra. Big Bend National Park lies near the diffuse border between the Great Plains Province to the northeast and the Sonoran section of the Basin-and-Range structural province to the west and southwest. These geologically unique regions are distinguished from one another by large differences in their landscape and by the amount and style of internal structural deformation. The Great Plains Province is characterized by flat-lying or gently dipping sedimentary strata, low topographic relief, shallow stream valleys, and by a general lack of faulting. Very little active deposition is occurring on the plains, except in the bottoms of active stream valleys. In southwestern Texas the plains stand at average elevations of 2,000 to 3,300 feet and slope gently east toward the Mississippi River and the Gulf of Mexico. The Great Plains have remained relatively unchanged for the last 65 million years, except that they have been uplifted to their present height from lower elevations probably in the last 5 million years. The Basin-and-Range province is characterized by linear parallel mountain ranges, deep sediment-filled valleys, and high structural and topographic relief. The eastern part of the province is at a slightly higher average elevation than the plains. The province is known for its complex patterns of Cenozoic faulting. Today it bears little resemblance to the way it was during the Paleocene when the entire Trans-Pecos region was a simple lowland that was near or slightly below sea level.
A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics
Axenie, Cristian; Richter, Christoph; Conradt, Jörg
2016-01-01
Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor. PMID:27775621
Deep SOMs for automated feature extraction and classification from big data streaming
NASA Astrophysics Data System (ADS)
Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad
2017-03-01
In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.
NASA Astrophysics Data System (ADS)
Jamali, Farshad; Hessami, Khaled; Ghorashi, Manoochehr
2011-03-01
This paper uses high-resolution images and field investigations, in conjunction with seismic reflection data, to constrain active structural deformation in the Kashan region of Central Iran. Offset stream beds and Qanats indicate right-lateral strike slip motion at a rate of about 2 mm/yr along the NW-SE trending Qom-Zefreh fault zone which has long been recognized as one of the major faults in Central Iran. However, the pattern of drainage systems across the active growing folds including deep incision of stream beds and deflected streams indicate uplift at depth on thrust faults dipping SW beneath the anticlines. Therefore, our studies in the Kashan region indicate that deformation occurs within Central Iran which is often considered to behave as a non-deforming block within the Arabia-Eurasia collision zone. The fact that the active Qom-Zefreh strike-slip fault runs parallel to the active folds, which overlie blind thrust faults, suggests that oblique motion of Arabia with respect to Eurasia is partitioned in this part of Central Iran.
Development of a high resolution interstellar dust engineering model - overview of the project
NASA Astrophysics Data System (ADS)
Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.
2013-09-01
Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.
Calculated and Observed Speeds of Cavitation About Two- and Three- Dimensional Bodies in Water
1942-11-01
yE1l0.044po ellipse of - 36 (1 - Y) 6 0 .l.Olxx 0(y) L . 6.54 Porabolo Elipe em - Cicl Y ,11p f. 2 1 - fal: Figure 1 ScinofCylinders and Bodies of...Propellers,* by E.Z. Stowell and A.F. Deming , BACA Report 526, 1935. (2) "Flow about a Pair of Adjacent, Parallel Cylinders Normal to a Stream, Theoretical
Custodians of the Coast: History of the United States Army Engineers at Galveston
1977-01-01
along with western roads and other projects such as beacon lights, monuments, bridges , and aqueducts. Surveying for river and harbor improvements 11...involved in tunnel- ing, bridging , and spanning gullies. Lt. Amiel W. Whipple, exploring the thirty-fifth parallel, retraced the junior Abert’s route...preoccupation with transportation. In Texas, roads were poor; streams were not bridged and, in many cases, not navigable. Onerous freight expenses cut
New cellular automaton model for magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Matthaeus, William H.
1987-01-01
A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.
Fusion of Asynchronous, Parallel, Unreliable Data Streams
2010-09-01
channels that might be used. The two channels chosen for this study, galvanic skin response (GSR) and pulse rate, are convenient and reasonably well...vector as NA. The MDS software tool, PERMAP, uses this same abbreviation. The impact of the lack of information may vary depending on the situation...of how PERMAP (and MDS in general) functions when the input parameters are varied. That is outlined in this section; the impact of those choices is
Travel of the center of pressure of airfoils transversely to the air stream
NASA Technical Reports Server (NTRS)
Katzmayr, Richard
1929-01-01
The experiments here described were performed for the purpose of obtaining the essential facts concerning the distribution of the air force along the span. We did not follow, however, the time-consuming method of point-to-point measurements of the pressure distribution on the wing surfaces, but determined directly the moment of mean force about an axis passing through the middle of the span parallel to the direction of flight.
Development of a cross-section based stream package for MODFLOW
NASA Astrophysics Data System (ADS)
Ou, G.; Chen, X.; Irmak, A.
2012-12-01
Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each model grid cell.
NASA Astrophysics Data System (ADS)
Winterdahl, M.; Laudon, H.; Köhler, S.; Seibert, J.; Bishop, K.
2009-04-01
Dissolved organic material (DOM) plays a key role in many natural surface waters. Despite the importance of DOC for the hydrochemistry in boreal headwaters there are few models that conceptualize the controls on short-term variability in stream DOC. A relatively simple model has been proposed where the vertical profile of DOC in the riparian soil solution, serves as an instantaneous "chemostat" setting the DOC of laterally flowing groundwater just before it enters the stream. This paper considers whether the addition of seasonality (in the form of soil temperature) and antecedent flows can improve the predictions of daily DOC concentrations. The model was developed and tested using field data from the Krycklan catchment on the Svartberget Research Station in northern Sweden where a transect of soil solution sampling sites equipped with suction lysimeters and wells for monitoring groundwater level have been installed and monitored for over a decade. The field data showed an exponential correlation between depth and DOC concentration in the soil solution. There was also an exponential correlation between stream discharge and groundwater table position. The expressions for these two correlations (exponential functions) have been combined into a simple riparian DOC model. To simulate effects of seasonality and/or antecedent flow, modules for soil temperature evolution and/or groundwater flow were added and tested. The model was calibrated and tested against 8 years of data from the Västrabäcken headwater catchment in the Krycklan area. To estimate the uncertainty in the model and the observed data a Hornberger-Spear-Young sensitivity analysis together with a GLUE uncertainty analysis was performed.
NASA Technical Reports Server (NTRS)
Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.
1981-01-01
Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.
Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.
2011-01-01
Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data
NASA Astrophysics Data System (ADS)
Vandegriff, Jon; Weigel, Robert; Faden, Jeremy; King, Todd; Candey, Robert
2016-10-01
We describe a low level interface for accessing digital Planetary and Heliophysics data, focusing primarily on time-series data from in-situ instruments. As the volume and variety of planetary data has increased, it has become harder to merge diverse datasets into a common analysis environment. Thus we are building low-level computer-to-computer infrastructure to enable data from different missions or archives to be able to interoperate. The key to enabling interoperability is a simple access interface that standardizes the common capabilities available from any data server: 1. identify the data resources that can be accessed; 2. describe each resource; and 3. get the data from a resource. We have created a standardized way for data servers to perform each of these three activities. We are also developing a standard streaming data format for the actual data content to be returned (i.e., the result of item 3). Our proposed standard access interface is simple enough that it could be implemented on top of or beside existing data services, or it could even be fully implemented by a small data provider as a way to ensure that the provider's holdings can participate in larger data systems or joint analysis with other datasets. We present details of the interface and of the streaming format, including a sample server designed to illustrate the data request and streaming capabilities.
Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E
2008-10-21
Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.
GPU-based parallel algorithm for blind image restoration using midfrequency-based methods
NASA Astrophysics Data System (ADS)
Xie, Lang; Luo, Yi-han; Bao, Qi-liang
2013-08-01
GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.
Burns, Douglas A.; Riva-Murray, K.; Bode, R.W.; Passy, S.
2008-01-01
Atmospheric acid deposition has decreased in the northeastern United States since the 1970s, resulting in modest increases in pH, acid-neutralizing capacity (ANC), and decreases in inorganic monomeric aluminum (AlIM) concentrations since stream chemistry monitoring began in the 1980s in the acid-sensitive upper Neversink River basin in the Catskill Mountains of New York. Stream pH has increased by 0.01 units/year during 1987-2003 at three sites in the Neversink basin as determined by Seasonal Kendall trend analysis. In light of this observed decrease in stream acidity, we sampled 12 stream sites within the Neversink River watershed for water chemistry, macroinvertebrates, fish, and periphytic diatoms in 2003 to compare with a similar data set collected in 1987. Metrics and indices that reflect sensitivity to stream acidity were developed with these biological data to determine whether changes in stream biota over the intervening 16 years parallel those of stream chemistry. Statistical comparisons of data on stream chemistry and an acid biological assessment profile (Acid BAP) derived from invertebrate data showed no significant differences between the two years. For pH and ANC, however, values in 2003 were generally lower than those in 1987; this difference likely resulted from higher streamflow in summer 2003. Despite these likely flow-induced changes in summer 2003, an ordination and cluster analysis of macroinvertebrate taxa based on the Acid BAP indicated that the most acidic sites in the upstream half of the East Branch Neversink River form a statistically significant separate cluster consistent with less acidic stream conditions. This analysis is consistent with limited recovery of invertebrate species in the most acidic reaches of the river, but will require additional improvement in stream chemistry before a stronger conclusion can be drawn. Data on the fish and periphytic diatom communities in 2003 indicate that slimy sculpin had not extended their habitat to upstream reaches that previously were devoid of this acid-intolerant species in 1987; a diatom acid-tolerance index indicates continued high-acid impact throughout most of the East Branch and headwaters of the West Branch Neversink River. ?? 2007 Elsevier Ltd. All rights reserved.