Consequences of viscous anisotropy for melt localization in a deforming, two-phase aggregate
NASA Astrophysics Data System (ADS)
Takei, Y.; Katz, R. F.
2012-12-01
Melt localization in the deforming, partially molten mantle has been of interest because it affects the melt extraction rate, mantle deformability, and chemical interaction between the melt and host rock. Experimental studies have reported the spontaneous segregation of melt into melt-rich bands in samples deformed under simple shear and torsion (Holtzman et al, 2003, King et al, 2010). Efforts to clarify the instability mechanism have so far revealed that rheological properties of partially molten rocks control the occurrence of instability. Porosity-weakening viscosity, empirically written as exp(- λ × f) with porosity f and constant λ(= 25-45), plays an essential role in the destabilization of porosity perturbation in the shear flow of a two-phase aggregate (eg., pure shear flow, simple shear flow): the perturbation growth rate is proportional to the product of shear strain rate and the factor λ (Stevenson, 1989). The stress exponent n of the viscosity affects the angle of the perturbation plane with maximum growthrate, where n=3-6 (power-law creep) explains the experimentally observed low angle to the shear plane (Katz et al, 2006). However, in-situ experimental measurements of n indicate that it takes values as low as unity without affecting the observed orientation of melt bands. Viscous anisotropy provides an alternative explanation for the observed band angles. It is produced by the stress-induced microstructural anisotropy (Daines and Kohlstedt, 1997; Zimmermann et al., 1999; Takei, 2010), and it enhances the coupling between melt migration and matrix shear deformation (Takei and Holtzman, 2009). Even without any porosity perturbation, viscous anisotropy destabilizes simple patterns of two-phase flow with a stress/strain gradient (eg., Poiseuille flow, torsional flow) and gives rise to shear-induced melt localization: the growth rate of this mechanism depends on the shear strain rate and the compaction length relative to the spatial scale of the gradient. When a porosity perturbation is added to the anisotropic system, both localization mechanisms work simultaneously, where the dominant angle of perturbation is decreased by the viscous anisotropy, similarly to the effect of n. Although viscous anisotropy plays an important role in melt localization, previous studies were limited to some simple or linearized cases (Takei and Holtzman, 2009, Butler 2012). Using linearised stability analysis and numerical simulation, we perform a systematic study of viscous anisotropy for behavior of partially molten rocks under forced deformation. Fully nonlinear solutions are obtained for melt localization under simple shear flow, 2D Poiseuille flow, and torsional flow. We show that Poiseuille flow causes melt-lubrication instability, but torsional flow does not. Results for simple shear and torsional flow are compared to the experimental results. Through the comparison between model predictions and experiments, we can test the validity of current theory, ascertain its deficiencies, and refine it to better describe the natural system.
The effects of buoyancy on shear-induced melt bands in a compacting porous medium
NASA Astrophysics Data System (ADS)
Butler, S. L.
2009-03-01
It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The results of the numerical model indicate that bands form when buoyancy forces are large and that these can significantly alter the direction of the flow of liquid away from vertical. The bands form at angles similar to the angle of maximum instantaneous growth rate. Consequently, for strongly strain-rate dependent rheology, there may be two sets of bands formed that are symmetric about the direction of maximum compressive stress in the background mantle flow. This second set of bands would reduce the efficiency with which melt bands would focus melts towards the ridge axis.
Microscale models of partially molten rocks and their macroscale physical properties
NASA Astrophysics Data System (ADS)
Rudge, J. F.
2017-12-01
Any geodynamical model of melt transport in the Earth's mantle requires constitutive laws for the rheology of partially molten rock. These constitutive laws are poorly known, and one way to make progress in our understanding is through the upscaling of microscale models which describe physics at the scale of individual mineral grains. Crucially, many upscaled physical properties (such as permeability) depend not only on how much melt is present, but on how that melt is arranged at the microscale; i.e. on the geometry of the melt network. Here I will present some new calculations of equilibrium melt network geometries around idealised tetrakaidecahedral grains. In contrast to several previous calculations of textural equilibrium, these calculations allow for a both a liquid-phase and a solid-phase topology that can tile 3D space. The calculations are based on a simple minimisation of surface energy using the finite element method. In these simple models just two parameters control the topology of the melt network: the porosity (volume fraction of melt), and the dihedral angle. The consquences of these melt geometries for upscaled properties such as permeability; electrical conductivity; and importantly, effective viscosity will be explored. Recent theoretical work [1,2] has suggested that in diffusion creep a small amount of melt may dramatically reduce the effective shear viscosity of a partially molten rock, with profound consequences for the nature of the asthenosphere. This contribution will show that this reduction in viscosity may have been significantly overestimated, so that the drop in the effective viscosity at onset of melting is more modest. [1] Takei, Y., and B. K. Holtzman (2009), Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model, J. Geophys. Res., 114, B06205.[2] Holtzmann B. K. (2016) Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere, Geophys. Geochem. Geosyst. 17, 470-484.
Partial melting of ordinary chondrites: Lost City (H) and St. Severin (LL)
NASA Technical Reports Server (NTRS)
Jurewicz, Amy J. G.; Jones, John H.; Weber, Egon T.; Mittlefehldt, David W.
1993-01-01
Eucrites and diogenites are examples of asteroidal basalts and orthopyroxenites, respectively. As they are found intermingled in howardites, which are inferred to be regolith breccias, eucrites and diogenites are thought to be genetically related. But the details of this relationship and of their individual origins remain controversial. Work by Jurewicz et al. showed that 1170-1180 C partial melts of the (anhydrous) Murchison (CM) chondrite have major element compositions extremely similar to primitive eucrites, such as Sioux County. However, the MnO contents of these melts were about half that of Sioux County, a problem for the simple partial melting model. In addition, partial melting of Murchison could not produce diogenites, because residual pyroxenes in the Murchison experiments were too Fe- and Ca-rich and were minor phases at all but the lowest temperatures. A parent magma for diogenites needs an expanded low-calcium pyroxene field. In their partial melting study of an L6 chondrite, Kushiro and Mysen found that ordinary chondrites did have an expanded low-Ca pyroxene field over that of CV chondrites (i.e., Allende), probably because ordinary chondrites have lower Mg/Si ratios. This study expands that of both Kushiro and Mysen and Jurewicz et al. to the Lost City (H) and St. Severin (LL) chondrites at temperatures ranging from 1170 to 1325 C, at an fO2 of one log unit below the iron-wuestite buffer (IW-1).
Permeability and 3-Dimensional Melt Distribution in Partially Molten Rocks
NASA Astrophysics Data System (ADS)
Zhu, Wen-Lu; Gaetani, Glenn; Fusseis, Florian
2010-05-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle, as well as interpretations of the geochemical and geophysical observations at ocean ridges. For a system containing a single solid phase of isotropic interfacial energy, chemical and mechanical equilibrium requires a constant mean curvature of solid-melt interfaces and a single dihedral angle. Under these conditions, a simple power-law relationship between permeability, grain size and melt fraction, has been derived [e.g., von Bargen and Waff, 1986]. However, microstructural observations on texturally equilibrated, partially molten rocks reveal that the melt distribution is more complex than predicted by the isotropic model. Several factors, such as non-hydrostatic stress, anisotropic interfacial energy, or the presence of a second solid phase, will alter the power-law relationship. Better estimates for the permeability of partially molten rock require an accurate assessment of 3-dimensional melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2-D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along 3-grain junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have carried out the first high quality non-destructive imaging of 3-dimensional melt distribution in experimentally equilibrated olivine-basalt aggregates [Zhu et al., 2009]. Microtomographic images of melt distribution were obtained on 1 mm cylindrical cores with melt fractions of 0.2, 0.1, and 0.02, at a spatial resolution of 0.7 microns. Textual information such as melt channel size and channel connectivity was determined using AVIZO and MATLAB. Our data indicate that as melt fraction decreases from 0.2 to 0.02, grain size increases slightly whereas melt interconnectivity decreases. Network modeling and the Lattice Boltzmann method provide a quantitative link between the macroscale transport properties and microscale melt distribtution. Incorporating our quantitative 3-D melt distribution data into these models allow us to simulate melt transport and, thereby, calculate the permeability and electrical conductivity of partially molten peridotite, especially at low melt fractions.
Seismological Signature of Chemical Differentiation of Earth's Upper Mantle
NASA Astrophysics Data System (ADS)
Matsukage, K. N.; Nishihara, Y.; Karato, S.
2004-12-01
Chemical differentiation from a primitive rock (such as pyrolite) to harzburgite due to partial melting and melt extraction is one of the most important mechanisms that causes the chemical heterogeneity in Earth's upper mantle. In this study, we investigate the seismic signature of chemical differentiation that helps mapping chemical heterogeneity in the upper mantle. The relation between chemical differentiation and its seismological signature is not straightforward because a large number of unknown parameters are involved although the seismological observations provide only a few parameters (e.g., VP, VS, QP). Therefore it is critical to identify a small number of parameters by which the gross trend of chemical evolution can be described. The variation in major element composition in natural samples reflect complicated processes that include not only partial melting but also other complex processes (e.g., metasomatism, influx melting). We investigate the seismic velocities of hypothetical but well-defined simple chemical differentiation processes (e.g., partial melting of various pressure conditions, addition of Si-rich melt or fluid), which cover the chemical variation of the natural mantle peridotites with various tectonic settings (mid ocean ridge, island arc and continent). The seismic velocities of the peridotites were calculated to 13 GPa and 1730 K. We obtained two major conclusions. First is that the variations of seismic velocities of upper mantle peridotites can be interpreted in terms of a few distinct parameters. For one class of peridotites which is formed by simple partial melting (e.g. mid-ocean ridges peridotites), seismic velocities can be described in terms of one parameter, namely Mg# (=Mg/(Mg+Fe) atomic ratio). In contrast, some of the peridotites in the continental (cratonic) environment with high silica content and high Mg# need at least two parameters (such as Mg# and Opx# (the volume fraction of orthopyroxene)) are needed to characterize their seismic velocities. Second is the jump of seismic velocity at 300 km in harzburgite that is caused by orthorhombic (opx) to high-pressure monoclinic phase transition in MgSiO3 pyroxene. If opx-rich harzburgite (the maximum content of opx in continental harzburgite is ˜45 vol%) exists at around 300km, the maximum contrast of jump would be 2.5 % for VS and 0.9 % for VP. This phase transition will correspond to the seismological discontinuity around 300km (X-discontinuity).
Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis
NASA Astrophysics Data System (ADS)
Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.
2011-10-01
Analyses of enriched mantle (EM)-basalts, using lithophile element-based isotope systems, have long provided evidence for discrete mantle reservoirs with variable composition. Upon partial melting, the mantle reservoir imparts its isotopic fingerprint upon the partial melt produced. However, it has increasingly been recognised that it may not be simple to delimit these previously well-defined mantle reservoirs; the "mantle zoo" may contain more reservoirs than previously envisaged. Here we demonstrate that a simple model with varying contributions from two populations of compositionally distinct mantle sulphides can readily account for the observed heterogeneities in Os isotope systematics of such basalts without additional mantle reservoirs. Osmium elemental and isotopic analyses of individual sulphide grains separated from spinel lherzolites from Kilbourne Hole, New Mexico, USA demonstrate that two discrete populations of mantle sulphide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os] and low [Re] with unradiogenic, typically sub-chondritic 187Os/ 188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulphides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic 187Os/ 188Os ([Os] typically ⩽ 1-2 ppm, 187Os/ 188Os ⩽ 0.3729; this study). This population is thought to represent metasomatic sulphide. Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulphide ([Os] ⩽ 37 ppm; this study). During the early stages of partial melting, supra-chondritic interstitial sulphides are mobilised and incorporated into the melt, adding their radiogenic 187Os/ 188Os signature. Only when sulphides armoured within silicates are exposed to the melt through continued partial melting will enclosed sulphides add their high [Os] and unradiogenic 187Os/ 188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all of the metasomatic sulphide, followed by (ii) the incorporation of small amounts of armoured sulphide can thus account for the range of both [Os] and 187Os/ 188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs.
Numerical Mantle Convection Models of Crustal Formation in an Oceanic Environment in the Early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2001-12-01
The generation of basaltic crust in the early Earth by partial melting of mantle rocks, subject to investigation in this study, is thought to be a first step in the creation of proto-continents (consisting largely of felsic material), since partial melting of basaltic material was probably an important source for these more evolved rocks. In the early Archean the earth's upper mantle may have been hotter than today by as much as several hundred degrees centigrade. As a consequence, partial melting in shallow convective upwellings would have produced a layering of basaltic crust and underlying depleted (lherzolitic-harzburgitic) mantle peridotite which is much thicker than found under modern day oceanic ridges. When a basaltic crustal layer becomes sufficiently thick, a phase transition to eclogite may occur in the lower parts, which would cause delamination of this dense crustal layer and recycling of dense eclogite into the upper mantle. This recycling mechanism may have contributed significantly to the early cooling of the earth during the Archean (Vlaar et al., 1994). The delamination mechanism which limits the build-up of a thick basaltic crustal layer is switched off after sufficient cooling of the upper mantle has taken place. We present results of numerical modelling experiments of mantle convection including pressure release partial melting. The model includes a simple approximate melt segregation mechanism and basalt to eclogite phase transition, to account for the dynamic accumulation and recycling of the crust in an upper mantle subject to secular cooling. Finite element methods are used to solve for the viscous flow field and the temperature field, and lagrangian particle tracers are used to represent the evolving composition due to partial melting and accumulation of the basaltic crust. We find that this mechanism creates a basaltic crust of several tens of kilometers thickness in several hundreds of million years. This is accompanied by a cooling of some hundred degrees centigrade. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
Textural evolution of partially-molten planetary materials in microgravity
NASA Technical Reports Server (NTRS)
Watson, E. B.
1987-01-01
Recent Earth-based experiments examining the textural evolution of partially-molten rocks have revealed two important ways in which surface energy considerations affect magma. An initial experimental program addressing surface-energy effects on partially-molten materials in microgravity would involve simple, isothermal treatment of natural samples (meteorites, perioditic komatiite) at preselected temperatures in the melting range. Textural evolution would be assessed by time studies in which the only experiment variable would be run duration. Textural characterization of each sample would be done by quenching, recover, and sectioning for generally later, computer-aided interpretation of features.
NASA Astrophysics Data System (ADS)
Levine, J. S. F.; Mosher, S.
2017-12-01
Older orogenic belts that now expose the middle and lower crust record interaction between partial melting, magmatism, and deformation. A field- and microstructural-based case study from the Wet Mountains of central Colorado, an exhumed section of Proterozoic rock, shows structures associated with anatexis and magmatism, from the grain- to the kilometer-scale, that indicate the interconnection between deformation, partial melting, and magmatism, and allow reconstructions of the processes occurring in hot active orogens. Metamorphic grade, along with the degree of deformation, partial melting, and magmatism increase from northwest to southeast. Deformation synchronous with this high-grade metamorphic event is localized into areas with greater quantities of former melt, and preferential melting occurs within high-strain locations. In the less deformed northwest, partial melting occurs dominantly via muscovite-dehydration melting, with a low abundance of partial melting, and an absence of granitic magmatism. The central Wet Mountains are characterized by biotite dehydration melting, abundant former melt and foliation-parallel inferred melt channels along grain boundaries, and the presence of a nearby granitic pluton. Rocks in the southern portion of the Wet Mountains are characterized by partial melting via both biotite dehydration and granitic wet melting, with widespread partial melting as evidenced by well-preserved former melt microstructures and evidence for back reaction between melt and the host rocks. The southern Wet Mountains has more intense deformation and widespread plutonism than other locations and two generations of dikes and sills. Recognition of textures and fabrics associated with partial melting in older orogens is paramount for interpreting the complex interplay of processes occurring in the cores of orogenic systems.
NASA Astrophysics Data System (ADS)
Tait, Alastair W.; Tomkins, Andrew G.; Godel, Bélinda M.; Wilson, Siobhan A.; Hasalova, Pavlina
2014-06-01
Despite the fact that the number of officially classified meteorites is now over 45,000, we lack a clearly defined sequence of samples from a single parent body that records the entire range in metamorphic temperatures from pristine primitive meteorites up to the temperatures required for extensive silicate partial melting. Here, we conduct a detailed analysis of Watson 012, an H7 ordinary chondrite, to generate some clarity on the textural and chemical changes associated with equilibrium-based silicate partial melting in chondritic meteorites. To do this we compare the textures in the meteorite with those preserved in metamorphic contact aureoles on Earth. The most distinctive texture generated by the partial melting that affected Watson 012 is an extensively interconnected plagioclase network, which is clearly observable with a petrographic microscope. Enlarged metal-troilite grains are encapsulated at widenings in this plagioclase network, and this is clearly visible in reflected light. Together with these features, we define a series of other characteristics that can be used to more clearly classify chondritic meteorites as being of petrologic Type 7. To provide comprehensive evidence of silicate partial melting and strengthen the case for using simple petrographic observations to classify similar meteorites, we use high-resolution X-ray computed tomography to demonstrate that the plagioclase network has a high degree of interconnectedness and crystallised as large (cm-scale) skeletal crystals within an olivine-orthopyroxene-clinopyroxene framework, essentially pseudomorphing a melt network. Back-scattered electron imaging and element mapping are used to show that some of the clino- and orthopyroxene in Watson 012 also crystallised from silicate melt, and the order of crystallisation was orthopyroxene → clinopyroxene → plagioclase. X-ray diffraction data, supported by bulk geochemistry, are used to show that plagioclase and ortho- and clinopyroxene were added to the Watson 012 sample by through-flowing basaltic melt. Along with the absence of glass and granophyre, this interconnected network of coarse-grained skeletal plagioclase indicates that the sample cooled slowly at depth within the parent body. The evidence of melt flux indicates that Watson 012 formed in the presence of a gravitational gradient, and thus at significant distance from the centre of the H chondrite parent body (the gravitational gradient at the centre would be zero). Our interpretation is that incipient silicate partial melting in Watson 012 occurred when a region of radiogenically heated H6 material located at considerable depth (possibly at ∼15-20 km from surface) was heated by an additional ca. 200-300 °C in association with a large shock event. Due to insulation at depth within an already hot parent body, the post-shock temperature equilibrated and remained above the solidus long enough for widespread equilibrium-based silicate partial melting, and for melt to migrate. Although the observed melting may have been facilitated by additional heating from an impact event, this is not an example of instantaneous shock melting, which produces thermal disequilibrium at short length scales and distinctly different textures. A small number of H, L and LL chondrites have been previously classified as being of petrologic Type 7; with our new criteria to support that classification, these represent our best opportunity to explore the transition from high temperature sub-solidus metamorphism through the onset of silicate partial melting in three different parent bodies.
NASA Astrophysics Data System (ADS)
Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas
2013-03-01
The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.
Production and recycling of oceanic crust in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2004-08-01
Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.
CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY
NASA Astrophysics Data System (ADS)
Barnes, C. G.; Prestvik, T.; Li, Y.
2009-12-01
The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of ‘normal’ silicate rocks results in peritectic assemblages, or whether they could be identified as such if they exist.
NASA Astrophysics Data System (ADS)
Gualda, Guilherme A. R.; Ghiorso, Mark S.
2015-01-01
thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.
Tonalites in crustal evolution
Barker, F.; Arth, Joseph G.; Hudson, T.
1981-01-01
Tonalites, including trondhjemite as a variety, played three roles through geological time in the generation of Earth's crust. Before about 2.9 Ga ago they were produced largely by simple partial melting of metabasalt to give the dominant part of Archaean grey gneiss terranes. These terranes are notably bimodal; andesitic rocks are rare. Tonalites played a crucial role in the generation of this protocontinental and oldest crust 3.7-2.9 Ga ago in that they were the only low-density, high-SiO2 rocks produced directly from basaltic crust. In the enormous event giving the greenstone-granite terranes, mostly 2.8-2.6 Ga ago, tonalites formed in lesser but still important proportions by partial melting of metabasalt in the lower regions of down-buckled greenstone belts and by remobilization of older grey gneisses. Tectonism in the Archaean (3.9-2.5 Ga ago) perhaps was controlled by small-cell convection (McKenzie & Weiss I975). Little or no ophiolite or eclogite formed, and only minor andesite. Plate tectonics of modern type (involving large, rigid plates) commenced in the early Proterozoic. Uniformitarianism thus goes back one-half of the age of the earth. Tonalites compose about 5-10 % of crust generated in Proterozoic and Phanerozoic time at convergent oceanic-continental margins. They occur here as minor to prominent members of the compositionally continuous continental-margin batholiths. A simple model of generation of these batholiths is offered: mantle-derived mafic magma pools in the lower crust above a subduction zone reacts with and incorporates wall-rock components (Bowen I922), and breaches its roof rocks as an initial diapir. This mantle magma also develops a gradient of partial melting in its wall rocks. This wall-rock melt accretes in the collapsed chamber and moves up the conduit broached by the initial diapir, the higher, less siliceous fractions of melting first, the lower, more siliceous (and further removed) fractions of melting last. The process gives in the optimum case a mafic-to-siliceous sequence of diorite or quartz diorite through tonalite or quartz monzodiorite to granodiorite and granite. The model implies that great masses of cumulate phases and refractory wall rock form the roots of continental- margin batholiths, and that migmatites overlie that residuum and underlie the batholiths.
NASA Technical Reports Server (NTRS)
Beckett, J. R.; Stolper, E.
1994-01-01
Phase fields in which hibonite and silicate melt coexist with spinel CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt D(sub i)(sup Hib/L), vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metasably from a melt. Bulk compositions for all of these CAIs are consistent with an origin as melite + hibonite + spinel + perovskite phase assembalges that were partially altered and in some cases partially or completely melted. The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10(exp -3) atm, hibonite + corundum + vapor equilibrated at approximately 1260 C and hibonite + spinel +/- melilite + vapor at 1215 +/- 10 C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite +/- corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that equilibration temperatures are generally lower than predicted and melilite initially condenses with or even after spinel. Simple thermochemical modes for the substitution of trace elements into the Ca site of meteoritic hibonites suggest that virtually all Eu is divalent in early condensate hibonites but that Eu(2+)/Eu(#+) decreases by a factor of 20 or more during the course of condensation primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phase condense. The relative sizes of Eu and Yb anomalies in meteoritic hibonites and inclusions may be partly due to this effect.
NASA Astrophysics Data System (ADS)
Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.
2004-12-01
As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.
NASA Technical Reports Server (NTRS)
McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.
2000-01-01
To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.
Structure and effective interactions in three-component hard sphere liquids.
König, A; Ashcroft, N W
2001-04-01
Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.
NASA Astrophysics Data System (ADS)
Njombie, Merlin Patrick Wagsong; Temdjim, Robert; Foley, Stephen F.
2018-02-01
The basaltic maar of Youkou, situated in the Adamawa Volcanic Massif in the eastern branch of the continental segment of the Cameroon Volcanic Line, contains mantle-derived xenoliths of various types in pyroclastites. Spinel-bearing lherzolite xenoliths from the Youkou volcano generally exhibit protogranular textures with olivine (Fo89.4-90.5), enstatite (En89 - 91Fs8.7-9.8Wo0.82-1.13), clinopyroxene, spinel (Cr#Sp = 9.4-13.8), and in some cases amphibole (Mg# = 88.5-89.1). Mineral equilibration temperatures in the lherzolite xenoliths have been estimated from three-two pyroxene thermometers and range between 835 and 937 °C at pressures of 10-18 kbar, consistent with shallow mantle depths of around 32-58 km. Trends displayed by bulk-rock MgO correlate with Al2O3, indicating that the xenoliths are refractory mantle residues after partial melting. The degree of partial melting estimated from spinel compositions is less than 10%: evidences for much higher degrees of depletion are preserved in one sample, but overprinted by refertilization in others. Trace element compositions of the xenoliths are enriched in highly incompatible elements (LREE, Sr, Ba, and U), indicating that the spinel lherzolites underwent later cryptic metasomatic enrichment induced by plume-related hydrous silicate melts. The extreme fertility (Al2O3 = 6.07-6.56 wt% in clinopyroxene) and the low CaO/Al2O3 ratios in the spinel lherzolites suggest that they could not be a simple residue of partial melting of primitive mantle and must have experienced refertilization processes driven by the infiltration of carbonatite or carbonated silicate melts.
NASA Astrophysics Data System (ADS)
Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.
2010-12-01
Analyses of enriched mantle (EM) -basalts, using lithophile element-based isotope systems have long provided evidence for discrete, but variable mantle reservoirs [1]. Upon partial melting, the isotopic fingerprint of each reservoir is imparted upon the partial melt produced. However, recent work involving the Re-Os isotope systematics of EM-basalts [2] suggests that it may not be so simple to delimit these previously well defined mantle reservoirs; the “mantle zoo” [3] may contain more reservoirs than previously envisaged. However, a simple model, with varying contributions from two populations of compositionally distinct mantle sulfides can readily account for the observed heterogeneities in Re-Os isotope systematics of such basalts without additional mantle reservoirs. Rhenium-osmium elemental and isotopic analyses of individual sulfide grains separated from spinel lherzolites from Kilbourne Hole, NM, USA demonstrate that two discrete populations of mantle sulfide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os], low [Re] with unradiogenic, typically sub-chondritic, 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulfides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic, 187Os/188Os ([Os] typically ≤ 1-2 ppm, 187Os/188Os ≤ 0.3729; this study). This population is thought to represent metasomatic sulfide (e.g. [4,5]). Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulfide ([Os] ≤ 37 ppm, this study). During the early stages of partial melting, supra-chondritic interstitial sulfides are mobilized and incorporated into the melt, adding their radiogenic 187Os/188Os signature. Only when sulfides armored within silicates are exposed to the melt through continued partial melting will enclosed sulfides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all the metasomatic sulfide, followed by (ii) the incorporation of small amounts of armored sulfide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs. References: [1] Zindler & Hart, (1986) Annu. Rev. Earth Planet. Sci. 14, 493-571. [2] Class et al. (2009) Earth Planet. Sci. Lett. 284, 219-227. [3] Stracke, et al. (2005) Geochem., Geophys., Geosys. 6, doi:10.1029/2004GC000824. [4] Burton et al., Earth Planet. Sci. Lett. (1999) 172, 311-322. [5] Alard et al., (2002) Earth Planet. Sci. Lett. 203, 651-663
Effects of porosity on shock-induced melting of honeycomb-shaped Cu nanofoams
NASA Astrophysics Data System (ADS)
Zhao, Fengpeng
Metallic foams are of fundamental and applied interests in various areas, including structure engineering (e.g., lightweight structural members and energy absorbers), and shock physics (e.g., as laser ablators involving shock-induced melting and vaporization).Honeycomb-shaped metallic foams consist of regular array of hexagonal cells in two dimensions and have extensive applications and represent a unique, simple yet useful model structure for exploring mechanisms and making quantitative assessment. We investigate shock-induced melting in honeycomb-shaped Cu nanofoams with extensive molecular dynamics simulations. A total of ten porosities (phi) are explored, ranging from 0 to 0.9 at an increment of 0.1. Upon shock compression, void collapse induces local melting followed by supercooling for sufficiently high porosity at low shock strengths. While superheating of solid remnants occurs for sufficiently strong shocks at phi<0.1. Both supercooling of melts and superheating of solid remnants are transient, and the equilibrated shock states eventually fall on the equilibrium melting curve for partial melting. However, phase equilibrium has not been achieved on the time scale of simulations in supercooled Cu liquid (from completely melted nanofoams). The temperatures for incipient and complete melting are related to porosity via a power law and approach the melting temperature at zero pressure as phi tends to 1.
Partial melting of TTG gneisses: crustal contamination and the production of granitic melts
NASA Astrophysics Data System (ADS)
Meade, F. C.; Masotta, M.; Troll, V. R.; Freda, C.; Johnson, T. E.; Dahren, B.
2011-12-01
Understanding partial melting of ancient TTG gneiss terranes is crucial when considering crustal contamination in volcanic systems, as these rocks are unlikely to melt completely at magmatic temperatures (1000-1200 °C) and crustal pressures (<500 MPa). Variations in the bulk composition of the gneiss, magma temperature, pressure (depth) and the composition and abundance of any fluids present will produce a variety of melt compositions, from partial melts enriched in incompatible elements to more complete melts, nearing the bulk chemistry of the parent gneiss. We have used piston cylinder experiments to simulate partial melting in a suite of 12 gneisses from NW Scotland (Lewisian) and Eastern Greenland (Ammassalik, Liverpool Land) under magma chamber temperature and pressure conditions (P=200 MPa, T=975 °C). These gneisses form the basement to much of the North Atlantic Igneous Province, where crustal contamination of magmas was commonplace but the composition of the crustal partial melts are poorly constrained [1]. The experiments produced partial melts in all samples (e.g. Fig 1). Electron microprobe analyses of glasses indicate they are compositionally heterogeneous and are significantly different from the whole rock chemistry of the parent gneisses. The melts have variably evolved compositions but are typically trachy-dacitic to rhyolitic (granitic). This integrated petrological, experimental and in-situ geochemical approach allows quantification of the processes of partial melting of TTG gneiss in a volcanic context, providing accurate major/trace element and isotopic (Sr, Pb) end-members for modeling crustal contamination. The experimental melts and restites will be compared geochemically with a suite of natural TTG gneisses, providing constraints on the extent to which the gneisses have produced and subsequently lost melt. [1] Geldmacher et al. (2002) Scottish Journal of Geology, v.38, p.55-61.
The role of subgrain boundaries in partial melting
NASA Astrophysics Data System (ADS)
Levine, Jamie S. F.; Mosher, Sharon; Rahl, Jeffrey M.
2016-08-01
Evidence for partial melting along subgrain boundaries in quartz and plagioclase is documented for rocks from the Lost Creek Gneiss of the Llano Uplift, central Texas, the Wet Mountains of central Colorado, and the Albany-Fraser Orogen, southwestern Australia. Domains of quartz or plagioclase crystals along subgrain boundaries are preferentially involved in partial melting over unstrained domains of these minerals. Material along subgrain boundaries in quartz and plagioclase has the same morphology as melt pseudomorphs present along grain boundaries and is commonly laterally continuous with this former grain boundary melt, indicating the material along subgrain boundaries can also be categorized as a melt pseudomorph. Subgrain boundaries consist of arrays of dislocations within a crystal lattice, and unlike fractures would not act as conduits for melt migration. Instead, the presence of former melt along subgrain boundaries requires that partial melting occurred in these locations because it is kinetically more favorable for melting reactions to occur there. Preferential melting in high strain locations may be attributed to strain energy, which provides a minor energetic contribution to the reaction and leads to preferential melting in locations with weakened bonds, and/or the presence of small quantities of water associated with dislocations, which may enhance diffusion rates or locally lower the temperature needed for partial melting.
NASA Astrophysics Data System (ADS)
Wang, Lu; Kusky, Timothy; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin
2015-04-01
Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence Numerous studies have described partial melting processes in low-high pressure meta-sedimentary rocks, some of which may generate melts that coalesce to form plutons. However, migmatized ultrahigh pressure (UHP) eclogite has never been clearly described from the microscale to macroscale, though experimental studies prove dehydration partial melting of eclogite at high pressure condition1 and low degrees of partially melted eclogite have been reported from the Qaidam UHP orogenic belt in NW China2,3 or inferred from multiphase solid (MS) inclusions within eclogite4 in the Sulu UHP belt. We present field-based documentation of decompression partial melting of UHP eclogite from Yangkou and General's Hill, Sulu Orogen. Migmatized eclogite shows successive stages of anatexis, initially starting from intragranular and grain boundary melt droplets, which grow into a 3D interconnected intergranular network, then segregate and accumulate in pressure shadow areas, and finally merge to form melt channels and dikes that transport melts to upper lithospheric levels. In-situ phengite breakdown-induced partial melting is directly identified by MS inclusions of Kfs+ barium-bearing Kfs + Pl in garnet, connected by 4-10 μm wide veinlets consisting of Bt + Kfs + Pl next to the phengite. Intergranular veinlets of plagioclase + K-feldspar first form isolated beads of melt along grain boundaries and triple junctions of quartz, and with higher degrees of melting, eventually form interconnected 3D networks along grain boundaries in the leucosome, allowing melt to escape from the intergranular realm and collect in low-stress areas. U-Pb (zircon) dating and petrological analyses on residue and leucocratic rocks shows that partial melting occurred at 228-219 Ma, shortly after peak UHP metamorphism (~230 Ma), and at depths of 30-90 km. Whole-rock trace element analyses show that the leucocratic rocks, residue and peak metamorphic stage eclogite (no decompression partial melting) show well matched mass balance relationships. Melts derived from eclogite partial melting lubricated the subducted eclogite slices and facilitated their buoyant rise from mantle depths to crustal levels. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behavior of subducted lithosphere and its rapid exhumation, controlling flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. Deeply subducted, partially melted eclogite from General's Hill show that eclogites can develop regularly spaced melt channels, a meter or two thick, that would act as significant seismic anomalies5. This may provide direct evidence for the nature of enigmatic 'bright zones' presented in some deep-crustal seismic reflection profiles which have been interpreted to represent areas of melt, high fluid content or unusual rock compositions6. Hermann, J. & Green, D. H. (2001). Earth Planet. Sci. Lett. 188, 149-168. Song, S.G., et al. (2014). Geochim. Cosmochim. Acta 130 42-62. Zhang, G.B., et al. (2014). Lithos, doi: 10.1016/j.lithos.2014.12.009 Gao, X. Y., et al. (2012). J. Metamorph. Geol. 30, 193-212. Wang, L., et al. (2014). Nature Communications. 5:5604 doi: 10.1038/ncomms6604. Brown, L. et al. (1996). Science 274, 1688-1690.
Consequences of Melt-Preferred Orientation for Magmatic Segregation in Deforming Mantle Rock
NASA Astrophysics Data System (ADS)
Katz, R. F.; Taylor-West, J.; Allwright, J.; Takei, Y.; Qi, C.; Kohlstedt, D. L.
2014-12-01
In partially molten regions of the mantle, deviatoric stresses cause large-scale deformation and mantle flow. The same stresses also lead to preferential wetting of coherently oriented grain boundaries [DK97, T10]. This alignment is called melt-preferred orientation (MPO). Because of the contrast between the physical properties of melt and solid grains, MPO has the potential to introduce anisotropy into the mechanical and transport properties of the liquid/solid aggregate. Here we consider the possible consequences for (and of) anisotropic viscosity and permeability of the partially molten aggregate. The consequences are evaluated in the context of laboratory experiments on partially molten rocks. The controlled experiments involve deformation of an initially uniform mixture of solid olivine and liquid basalt [KZK10]. The resultant patterns of melt segregation include two robust features: (i) melt segregation into bands with high melt fraction oriented at a low angle to the shear plane; and (ii) melt segregation associated with an imposed gradient in shear stress, in experiments where this is present. Although there are other reproducible features of experiments, these are the most robust and provide a challenge to models. A theoretical model for the effect of MPO on mantle viscosity under diffusion creep is available [TH09] and makes predictions that are consistent with laboratory experiments [TK13,KT13,QKKT14,AK14]. We review the mechanics of this model and the predictions for flow in torsional and pipe Poiseuille flow, showing a quantitative comparison with experimental results. Furthermore, it is logical to expect MPO to lead to anisotropy of permeability, and we present a general model of tensorial permeability. We demonstrate the consequences of this anisotropy for simple shear deformation of a partially molten rock. REFERENCES: DK97 = Daines & Kohlstedt (1997), JGR, 10.1029/97JB00393. T10 = Takei (2010), JGR, 10.1029/2009JB006568. KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TH09 = Takei & Holtzman (2009a), JGR, 10.1029/2008JB005850. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. KT13 = Katz & Takei (2013), JFM, 10.1017/jfm.2013.483. QKKT14 = Qi, Kohlstedt, Katz, Takei (in prep). AK14 = Allwright & Katz (2014), in revision for GJI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, T.J.; Bauer, R.L.; Nabelek, P.I.
1985-01-01
Amphibolite-grade Archean migmatites in the southern Vermilion Granitic Complex with well-defined paleosome-melanosome and melanosome-leucosome boundaries and with exceptionally wide melanosomes (on the order of centimeters) were studied to elucidate granite-forming processes during high-grade metamorphism. Metagreywacke paleosomes containing 50% plag, 28% qtz, 20% biot and minor hbld, and apat, have (Ce/Yb)/sub N/ = 13.5 to 21 with 650-960 ppm Ba, 42-110 ppm Rb, and 982-1159 ppm Sr. Melanosomes containing 45% plag, 35% biot, 20% hbld and minor qtz and apat, have (Ce/Yb)/sub N/ = 6.8 to 9.3 and have 950-1750 ppm Ba, 41-194 ppm Rb, and 1020-1926 ppm Sr. Leucosomes containingmore » 82% plag, 13% qtz, 5% biot and minor hbld and apat, have overall depleted REE patterns with positive Eu anomalies and 460-750 ppm Ba, 41-43 ppm Rb, and 1876-2106 ppm Sr, suggesting cumulate plagioclase. Mass balance calculations preclude formation of the melanosome from mixing the paleosomes and leucosomes. However, major and trace element modeling suggest that the leucosome formed by in situ partial melting followed by fractional crystallization and filter pressing which resulted in the removal of the residual liquid. Model REE patterns for the melt drive off by this process are REE enriched with a negative Eu anomaly. Such patterns which have been found in some low Sr granites are difficult to produce by simple belting models. Partial melting under conditions of tectonic stress may thus provide an explanation for such granites.« less
NASA Astrophysics Data System (ADS)
Yu, James; Bergman, Michael I.; Huguet, Ludovic; Alboussiere, Thierry
2015-09-01
Superimposed on the radial solidification of Earth's inner core may be hemispherical and/or regional patches of melting at the inner-outer core boundary. Little work has been carried out on partial melting of a dendritic mushy layer due to heating from above. Here we study directional solidification, annealing, and partial melting from above of Pb-rich Sn alloy ingots. We find that partial melting from above results in convection in the mushy layer, with dense, melted Pb sinking and resolidifying at a lower height, yielding a different density profile than for those ingots that are just directionally solidified, irrespective of annealing. Partial melting from above causes a greater density deeper down and a corresponding steeper density decrease nearer the top. There is also a change in microstructure. These observations may be in accordance with inferences of east-west and perhaps smaller-scale variations in seismic properties near the top of the inner core.
Melt migration modeling in partially molten upper mantle
NASA Astrophysics Data System (ADS)
Ghods, Abdolreza
The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region beneath the observed neo-volcanic zone. My models consist of three parts; lithosphere, asthenosphere and a melt extraction region. It is shown that melt migrates vertically within the asthenosphere, and forms a high melt fraction layer beneath the sloping base of the impermeable lithosphere. Within the sloping high melt fraction layer, melt migrates laterally towards the ridge. In order to simulate melt migration via crustal fractures and cracks, melt is extracted from a melt extraction region extending to the base of the crust. Performance of the melt focusing mechanism is not significantly sensitive to the size of melt extraction region, melt extraction threshold and spreading rate. In all of the models, about half of the total melt production freezes beneath the cooling base of the lithosphere, and the rest is effectively focused towards the ridge and forms the crust. To meet the computational demand for a precise tracing of the deforming upwelling plume and including the chemical buoyancy of the partially molten zone in my models, a new numerical method is developed to solve the related pure advection equations. The numerical method is based on Second Moment numerical method of Egan and Mahoney [1972] which is improved to maintain a high numerical accuracy in shear and rotational flow fields. In comparison with previous numerical methods, my numerical method is a cost-effective, non-diffusive and shape preserving method, and it can also be used to trace a deforming body in compressible flow fields.
Generation of alkaline magmas in subduction zones by melting of mélange diapirs
NASA Astrophysics Data System (ADS)
Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.; Le Roux, V.
2016-12-01
Alkaline lavas occur globally in subduction-related volcanic arcs. Existing explanations for the occurrence of alkaline lavas in volcanic arcs invoke at least one - and in some cases multiple - `metasomatic' events in addition to the traditional three-component mixing of altered oceanic crust (AOC), sediment melt, and depleted mantle, in order to explain the range of rock types found in a given region. These multi-stage models posit the existence of metasomatized mantle wedge peridotite containing phlogopite or amphibole-enriched veins, which partially melt when fluxed by the addition of materials from the subducted slab. The mélange diapir model is informed by observations and modeling of the subduction side of the arc system, and predicts the generation of alkaline arc magmas by advection of buoyant material from the slab-wedge interface into the mantle wedge below arcs. Here we report results from experiments in which natural mélange materials partially melted at upper mantle conditions were found to produce alkaline magmas compositionally similar to those found in arcs worldwide. The starting material for our experiments is a chlorite-omphacite fels (SY400) from the island of Syros, Greece, that is representative of a hybrid rock containing AOC, sediment, and mantle components. Melting experiments were performed using a piston cylinder apparatus at conditions relevant to the heating-decompression path of mélange diapirs (1000-1300 °C, 1.5-2.5 GPa). The compositions of experimentally produced melts range from 51-61 wt% SiO2, and fall within the trachyte and tephrite-phonolite series (7.5-12.9 wt% Na2O+K2O). Restitic phases in equilibrium with melt include clinopyroxene, garnet (at high P), phlogopite (at high P), amphibole, olivine, rutile, and ilmenite. Partial melts produced in our experiments have trace-element abundance patterns that are typical of alkaline arc lavas, such as enrichment in large ion lithophile elements (Cs, Rb, Ba, Pb, Sr) and alkalis (K and Na), and depletion in Nb and Ta. The presence of a light rare earth element (LREE)-bearing accessory phase results in trace element fractionation by a factor of 4.2 for Nd/Hf and 2.6 for Sr/Nd. Melting of mélange diapirs provides a simple, single-stage model for the origin of alkaline magmatism in the arc and backarc regions of subduction zones.
Melt segregation during Poiseuille flow of partially molten rocks
NASA Astrophysics Data System (ADS)
Quintanilla-Terminel, A.; Dillman, A. M.; Kohlstedt, D. L.
2015-12-01
Studies of the dynamics of partially molten regions of the Earth's mantle provide the basis necessary for understanding the chemical and physical evolution of our planet. Since we cannot directly observe processes occurring at depth, we rely on models and experiments to constrain the rheological behavior of partially molten rocks. Here, we present the results of an experimental investigation of the role of viscous anisotropy on melt segregation in partially molten rocks through Poiseuille flow experiments. Partially molten rock samples with a composition of either forsterite or anorthite plus a few percent melt were prepared from vacuum sintered powders and taken to 1200ºC at 0.1 MPa. The partially molten samples were then extruded through a channel of circular cross section under a fixed pressure gradient at 1200o to 1500oC. The melt distribution in the channel was subsequently mapped through image analyses of optical and backscattered electron microscopy images. In these experiments, melt segregates from the center toward the outer radius of the channel with the melt fraction at the outer radius increasing to twice that at the center. These results are consistent with base-state melt segregation as predicted by Takei and Holtzman (JGR, 2009), Takei and Katz (JFM, 2013) and Allwright and Katz (GJI, 2014) for sheared partially molten rocks for which viscosity is anisotropic due to the stress-induced, grain-scale alignment of melt.
Melt production in large-scale impact events: Implications and observations at terrestrial craters
NASA Technical Reports Server (NTRS)
Grieve, Richard A. F.; Cintala, Mark J.
1992-01-01
The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base.
NASA Astrophysics Data System (ADS)
Simon, I.; Jung, S.; Romer, R. L.; Garbe-Schönberg, D.; Berndt, J.
2017-03-01
The 547 ± 7 Ma old Achas intrusion (Damara orogen, Namibia) includes magnesian, metaluminous to slightly peraluminous, calcic to calc-alkalic granodiorites and ferroan, metaluminous to slightly peraluminous, calc-alkalic to alkali-calcic leucogranites. For the granodiorites, major and trace element variations show weak if any evidence for fractional crystallization whereas some leucogranites are highly fractionated. Both, granodiorites and leucogranites are isotopically evolved (granodiorites: εNdinit: - 12.4 to - 20.5; TDM: 2.4-1.9; leucogranites: εNdinit: - 12.1 to - 20.6, TDM: 2.5-2.0), show similar Pb isotopic compositions, and may be derived from late Archean to Paleoproterozoic crustal source rocks. Comparison with melting experiments and simple partial melting modeling indicate that the granodiorites may be derived by extensive melting (> 40%) at 900-950 °C under water-undersaturated conditions (< 5 wt.% H2O) of felsic gneisses. Al-Ti and zircon saturation thermometry of the most primitive granodiorite sample yielded temperatures of ca. 930 °C and ca. 800 °C. In contrast to other lower crust-derived granodiorites and granites of the Central Damara orogen, the composition of the magma source is considered the first-order cause of the compositional diversity of the Achas granite. Second-order processes such as fractional crystallization at least for the granodiorites were minor and evidence for coupled assimilation-fractional crystallization processes is lacking. The most likely petrogenetic model involves high temperature partial melting of a Paleoproterozoic felsic source in the lower crust ca. 10-20 Ma before the first peak of regional high-temperature metamorphism. Underplating of the lower crust by magmas derived from the lithospheric mantle may have provided the heat for melting of the basement to produce anhydrous granodioritic melts.
NASA Astrophysics Data System (ADS)
Wilson, Lionel; Head, James W.
2017-02-01
We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma reservoir, either at the density trap at the base of the crust or at the rheological trap at the base of the elastic lithosphere, the excess pressure at the top of the magma body will exert an elastic stress on the overlying rocks. This will eventually cause them to fail in tension when the excess pressure has risen to close to twice the tensile strength of the host rocks, perhaps up to ∼10 MPa, allowing a dike to propagate upward from this point. If partial melting occurs in a large region deep in the mantle, however, connections between melt pockets and veins may not occur until a finite amount, probably a few percent, of melting has occurred. When interconnection does occur, the excess pressure at the top of the partial melt zone will rise abruptly to a high value, again initiating a brittle fracture, i.e. a dike. That sudden excess pressure is proportional to the vertical extent of the melt zone, the difference in density between the host rocks and the melt, and the acceleration due to gravity, and could readily be ∼100 MPa, vastly greater than the value needed to initiate a dike. We therefore explored excess pressures in the range ∼10 to ∼100 MPa. If eruptions take place through dikes extending upward from the base of the crust, the mantle magma pressure at the point where the dike is initiated must exceed the pressure due to the weight of the magmatic liquid column. This means that on the nearside the excess pressure must be at least ∼19 ± 9 MPa and on the farside must be ∼29 ± 15 MPa. If the top of the magma body feeding an erupting dike is a little way below the base of the crust, slightly smaller excess pressures are needed because the magma is positively buoyant in the part of the dike within the upper mantle. Even the smallest of these excess pressures is greater than the ∼10 MPa likely maximum value in a magma reservoir at the base of the crust or elastic lithosphere, but the values are easily met by the excess pressures in extensive partial melt zones deeper within the mantle. Thus magma accumulations at the base of the crust would have been able to intrude dikes part-way through the crust, but not able to feed eruptions to the surface; in order to be erupted, magma must have been extracted from deeper mantle sources, consistent with petrologic evidence. Buoyant dikes growing upward from deep mantle sources of partial melt can disconnect from their source regions and travel through the mantle as isolated bodies of melt that encounter and penetrate the crust-mantle density boundary. They adjust their lengths and internal pressure excesses so that the stress intensity at the lower tip is zero. The potential total vertical extent of the resulting melt body depends on the vertical extent of the source region from which it grew. For small source extents, the upper tip of the resulting dike crossing the crust-mantle boundary cannot reach the surface anywhere on the Moon and therefore can only form a dike intrusion; for larger source extents, the dike can reach the surface and erupt on the nearside but still cannot reach the surface on the farside; for even larger source extents, eruptions could occur on both the nearside and the farside. The paucity of farside eruptions therefore implies a restricted range of vertical extents of partial melt source region sizes, between ∼16 and ∼36 km. When eruptions can occur, the available pressure in excess of what is needed to support a static magma column to the surface gives the pressure gradient driving magma flow. The resulting typical turbulent magma rise speeds are ∼10 to a few tens of m s-1, dike widths are of order 100 m, and eruption rates from 1 to 10 km long fissure vents are of order 105 to 106 m3 s-1. Volume fluxes in lunar eruptions derived from lava flow thicknesses and surface slopes or rille lengths and depths are found to be of order 105 to 106 m3 s-1 for volume-limited lava flows and >104 to 105 m3 s-1 for sinuous rilles, with dikes widths of ∼50 m. The lower end of the volume flux range for sinuous rilles corresponds to magma rise speeds approaching the limit set by the fact that excessive cooling would occur during flow up a 30 km long dike kept open by a very low excess pressure. These eruptions were thus probably fed by partial melt zones deep in the mantle. Longer eruption durations, rather than any subtle topographic slope effects, appear to be the key to the ability of these flows to erode sinuous rille channels. We conclude that: (1) essentially all lunar magmas were negatively buoyant everywhere within the crust; (2) positive excess pressures of at least 20-30 MPa must have been present in mantle melts at or below the crust-mantle interface to drive magmas to the surface; (3) such pressures are easily produced in zones of partial melting by pressure-release during mantle convection or simple heat accumulation from radioisotopes; (4) magma volume fluxes available from dikes forming at the tops of partial melt zones are consistent with the 105 to 106 m3 s-1 volume fluxes implied by earlier analyses of surface flows; (5) eruptions producing thermally-eroded sinuous rille channels involved somewhat smaller volume fluxes of magma where the supply rate may be limited by the rate of extraction of melt percolating through partial melt zones.
Partial melting of deeply subducted eclogite from the Sulu orogen in China
Wang, Lu; Kusky, Timothy M.; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin
2014-01-01
We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U–Pb dating and petrological analyses, that partial melting occurred at 228–219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. PMID:25517619
NASA Astrophysics Data System (ADS)
Duncan, Megan S.; Dasgupta, Rajdeep
2014-01-01
Partial melts of subducting sediments are thought to be critical agents in carrying trace elements and water to arc basalt source regions. Sediment partial melts may also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts that derive from partial fusion of downgoing sediment at sub-arc depths remains unconstrained. We conducted CO2-solubility experiments on a rhyolitic composition similar to average, low-degree experimental partial melt of pelitic sediments between 1.5 and 3.0 GPa at 1300 °C and containing variable water content. Concentrations of water and carbon dioxide were measured using FTIR. Molecular CO2(CO2mol.) and carbonate anions (CO32-) both appear as equilibrium species in our experimental melts. Estimated total CO2 concentrations (CO2mol.+CO32-) increased with increasing pressure and water content. At 3.0 GPa, the bulk CO2 solubility are in the range of ∼1-2.5 wt.%, for melts with H2O contents between 0.5 and 3.5 wt.%. For melts with low H2O content (∼0.5 wt.%), CO2mol. is the dominant carbon species, while in more H2O-rich melts CO32- becomes dominant. The experimentally determined, speciation-specific CO2 solubilities yielded thermodynamic parameters that control dissolution of CO2 vapor both as CO2mol. and as CO32- in silicate melt for each of our compositions with different water content; CO2vapor ↔CO2melt :lnK0=-15 to -18, ΔV0 = 29 to 14 cm3 mol-1 and CO2vapor +Omelt →CO32-melt :lnK0=-20 to -14, ΔV0 = 9 to 27 cm3 mol-1, with ΔV0 of reaction being larger for formation of CO2mol. in water-poor melts and for formation of CO32- in water-rich melts. Our bulk CO2 solubility data, [CO2] (in wt.%) can be fitted as a function of pressure, P (in GPa) and melt water content, [H2O] (in wt.%) with the following function: [CO2](wt.%)=(-0.01108[H2O]+0.03969)P2+(0.10328[H2O]+0.41165)P. This parameterization suggests that over the range of sub-arc depths of 72-173 km, water-rich sediment partial melt may carry as much as 2.6-5.5 wt.% CO2 to the sub-arc mantle source regions. At saturation, 1.6-3.3 wt.% sediment partial melt relative to the mantle wedge is therefore sufficient to bring up the carbon budget of the mantle wedge to produce primary arc basalts with 0.3 wt.% CO2. Sediment plumes in mantle wedge: Sediment plumes or diapirs may form from the downgoing slab because the sediment layer atop the slab is buoyant relative to the overlying, hanging wall mantle (Currie et al., 2007; Behn et al., 2011). Via this process, sediment layers with carbonates would carry CO2 to the arc source region. Owing to the higher temperature in the mantle wedge, carbonate can breakdown. Behn et al. (2011) suggested that sediment layers as thin as 100 m, appropriate for modern arcs, could form sediment diapirs. They predicted that diapirs would form from the slab in the sub-arc region for most subduction zones today without requiring hydrous melting. H2O-rich fluid driven carbonate breakdown: Hydrous fluid flushing of the slab owing to the breakdown of hydrous minerals could drive carbonate breakdown (Kerrick and Connolly, 2001b; Grove et al., 2002; Gorman et al., 2006). The addition of water would cause decarbonation creating an H2O-CO2-rich fluid that would then flux through the overlying sediment layer, lower the solidus temperature, and trigger melting. Recent geochemical (Cooper et al., 2012) and geodynamic (van Keken, 2003; Syracuse et al., 2010) constraints suggest that the sub-arc slab top temperatures are above the hydrous fluid-present sediment solidus, thus in the presence of excess fluid, both infiltration induced decarbonation and sediment melting may occur. Hot subduction: This is relevant for subduction zones such as Cascadia and Mexico, where slab-surface temperatures are estimated to be higher (Syracuse et al., 2010). A higher temperature could cause carbonate breakdown and sediment partial melting without requiring a hydrous fluid flux. In this case a relatively dry silicate sediment melt will have the opportunity to dissolve and carry CO2. For hot subduction zones, even if sedimentary layer itself does not carry carbonate, CO2 released from basalt-hosted carbonates may be dissolved in sediment partial melt. Experiments conducted on subducted sediment compositions show that the partial melt compositions are generally rhyolitic (Johnson and Plank, 1999; Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann and Spandler, 2008; Spandler et al., 2010; Tsuno and Dasgupta, 2011). Therefore, solubility of CO2 in rhyolitic sediment partial melts needs to be known. Previous studies on rhyolitic melts experimentally determined CO2 solubility from 0.05 to 0.66 GPa (Fig. 1; Fogel and Rutherford, 1990; Blank et al., 1993; Tamic et al., 2001). This pressure range is not appropriate for global sub-arc depth range of 72-173 km (Syracuse and Abers, 2006) settings (P = 2-5 GPa). Carbon dioxide solubility experiments at pressures from 1.5 to 3.5 GPa are available but only on simple compositions - i.e., albite, which does not have the chemical complexity of natural sediment partial melts (Fig. 1; Brey, 1976; Mysen, 1976; Mysen et al., 1976; Mysen and Virgo, 1980; Stolper et al., 1987; Brooker et al., 1999). For example, natural rhyolitic melt derived from partial fusion of pelitic sediments contain non-negligible concentrations of Ca2+, Mg2+, Fe2+. Many of these studies were also conducted under mixed-volatile conditions (CO2 + H2O) with H2O contents from 0.06 to 3.3 wt.%. These studies were used in calculating various solubility models: Volatile-Calc (Newman and Lowenstern, 2002), that of Liu et al. (2005), and that of Papale et al. (2006). Volatile-Calc can be used to calculate CO2 solubility only on a generic rhyolite composition up to 0.5 GPa. The model of Liu et al. (2005) is also on a generic rhyolite up to 0.5 GPa, but can calculate mixed volatile concentrations provided the vapor composition is known. The model of Papale et al. (2006) can be used to calculate mixed volatile concentrations for a melt composition of interest, but only up to 1.0 GPa.The literature data show that CO2 solubility increases with increasing pressure and decreases with increasing melt silica content (decreasing NBO/T; e.g., Brooker et al., 2001). The effect of temperature remains somewhat ambiguous, but is thought to be relatively smaller than the pressure or compositional effects, with Mysen (1976) measuring increasing CO2 solubility with temperature for albite melt, Brooker et al. (2001) and Fogel and Rutherford (1990) noticing decreasing CO2 solubility with increasing temperature, and Stolper et al. (1987) concluding that temperature has essentially no effect on total melt CO2 concentration at saturation. The presence of water in the melt also is known to affect CO2 solution (e.g., Mysen, 1976; Eggler and Rosenhauer, 1978), yet quantitative effect of water on CO2 solution in natural rhyolitic melt has only been investigated up to 0.5 GPa (Tamic et al., 2001). In order to determine the CO2 carrying capacity of sediment partial melts, experiments must be conducted at conditions (pressure, temperature, major element compositions, and XH2O) relevant to sub-arc settings.In this study we measured the solubility and speciation of CO2 in rhyolitic sediment partial melts. Experiments were conducted from 1.5 to 3.0 GPa at 1300 °C with variable water contents and synthesized glasses were analyzed for water and carbon speciation using Fourier-transformed infrared spectroscopy. Our measured solubility data allowed us to constrain volume change and equilibrium constant of the CO2 dissolution reactions. Moreover, we parameterize CO2 solubility in sediment partial melt as a function of pressure and melt water content. Our data and empirical model suggest that the CO2 carrying capacity of sediment partial melts is sufficiently high at sub-arc depths and hydrous sediment melt can potentially carry the necessary dose of CO2 to arc mantle source regions.
An observational and thermodynamic investigation of carbonate partial melting
NASA Astrophysics Data System (ADS)
Floess, David; Baumgartner, Lukas P.; Vonlanthen, Pierre
2015-01-01
Melting experiments available in the literature show that carbonates and pelites melt at similar conditions in the crust. While partial melting of pelitic rocks is common and well-documented, reports of partial melting in carbonates are rare and ambiguous, mainly because of intensive recrystallization and the resulting lack of criteria for unequivocal identification of melting. Here we present microstructural, textural, and geochemical evidence for partial melting of calcareous dolomite marbles in the contact aureole of the Tertiary Adamello Batholith. Petrographic observations and X-ray micro-computed tomography (X-ray μCT) show that calcite crystallized either in cm- to dm-scale melt pockets, or as an interstitial phase forming an interconnected network between dolomite grains. Calcite-dolomite thermometry yields a temperature of at least 670 °C, which is well above the minimum melting temperature of ∼600 °C reported for the CaO-MgO-CO2-H2O system. Rare-earth element (REE) partition coefficients (KDcc/do) range between 9-35 for adjacent calcite-dolomite pairs. These KD values are 3-10 times higher than equilibrium values between dolomite and calcite reported in the literature. They suggest partitioning of incompatible elements into a melt phase. The δ18O and δ13C isotopic values of calcite and dolomite support this interpretation. Crystallographic orientations measured by electron backscattered diffraction (EBSD) show a clustering of c-axes for dolomite and interstitial calcite normal to the foliation plane, a typical feature for compressional deformation, whereas calcite crystallized in pockets shows a strong clustering of c-axes parallel to the pocket walls, suggesting that it crystallized after deformation had stopped. All this together suggests the formation of partial melts in these carbonates. A Schreinemaker analysis of the experimental data for a CO2-H2O fluid-saturated system indeed predicts formation of calcite-rich melt between 650-880 °C, in agreement with our observations of partial melting. The presence of partial melts in crustal carbonates has important physical and chemical implications, including a drastic drop in rock viscosity and significant change in the dynamics and distribution of fluids within both the contact aureole and the intrusive body.
NASA Astrophysics Data System (ADS)
Zhu, W.; Gaetani, G. A.; Fusseis, F.
2009-12-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle. Estimates for the permeability of partially molten rock require 3D melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along triple junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have obtained the first high quality non-destructive imaging of 3D melt distribution in olivine-basalt aggregates. Textually equilibrated partially molten samples consisting of magnesian olivine plus 2, 5, 10, or 20% primitive basalt were synthesized at 1.5 GPa and 1350°C in experiments lasting 264-336 hours. Microtomographic images of melt distribution were obtained on cylindrical cores, 1 mm in diameter, at a spatial resolution of 1 micron. Textual information such as melt channel size, dihedral angle and channel connectivity was then quantified using AVIZO and MATLAB. Our results indicate that as melt fraction decreases, melt becomes increasingly distributed along 3 grain junctions, in agreement with theoretical predictions. We do not find significant amounts of melt along grain boundaries at low melt fractions. We found that the true dihedral angle ranges from 50 to 70°, in agreements with results using 2D microcopy. Comparison between the samples provides a quantitative characterization of how melt fraction affects melt distribution including connectivity. The geometrical data have been incorporated into our network model to obtain macroscale transport properties for partially molten dunite. Results from this tomographic study thus provide constraints on rates of melt migration and melt extraction within the partially molten regions beneath ocean ridges. Fig 1. Melt channels in an olivine-basalt sample with 10 vol% melt.
NASA Technical Reports Server (NTRS)
Beckett, J. R.; Stolper, E.
1993-01-01
Phase fields in which hibonite (Hib) and silicate melt coexist with spinel (Sp), CaAl4O7 (CA2), gehlenitic melilite (Mel), anorthite (An), or corundum (Cor) in the system CaO-MgO-Al203-SiO2-TiO2 (CMAST) were determined and activity models developed for Mel and Hib solid solutions. Experimentally determined partition coefficients for Ti between Hib and coexisting melt, D sub t, vary from 0.8 to 2.1 and generally decrease with increasing TiO2 content in the liquid (L). Based on Ti partioning between Hib and melt, bulk inclusion compositions and Hib-saturated liquid use phase diagrams, the Hib in Fluffy Type A inclusions (FTA's) from Allende and at least some of the Hib from Hib-rich inclusions is relict; much of the Hib from Hib-glass spherules probably crystallized from a melt under nonequilibrium conditions. Bulk compositions for all of these Ca-Al-rich inclusions (CAI's) are consistent with an origin as Mel + Hib + Sp + perovskite (Pv) proto-inclusions in which Mel was partially altered. In some cases, the proto-inclusion was partially or completely melted with vaporization occurring over a period of time sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. If equilibration temperatures based on Hib-bearing CAI's reflect condensation in a cooling gas of solar composition, then Hib + Cor condensed at approximately 1260 C (referenced to 10 exp -3 atm) and Hib + Sp + Mel at approximately 1215 +/- 10 C. Simple thermochemical models for the substitution of trace elements into the Ca-site of meteoritic Hib suggest that virtually all Eu is divalent in early condensate Hibs but that Eu(2+)/Eu(3+) decreases by a factor of 20 or more during the course of condensation, primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phases condense. The relative sizes of Eu and Yb anomalies in meteoritic Hibs and CAI's may be influenced by this effect.
Nie, Hui; Evans, Alison A.; London, W. Thomas; Block, Timothy M.; Ren, Xiangdong David
2011-01-01
Hepatitis B virus (HBV) carrying the A1762T/G1764A double mutation in the basal core promoter (BCP) region is associated with HBe antigen seroconversion and increased risk of liver cirrhosis and hepatocellular carcinoma (HCC). Quantification of the mutant viruses may help in predicting the risk of HCC. However, the viral genome tends to have nucleotide polymorphism, which makes it difficult to design hybridization-based assays including real-time PCR. Ultrasensitive quantification of the mutant viruses at the early developmental stage is even more challenging, as the mutant is masked by excessive amounts of the wild-type (WT) viruses. In this study, we developed a selective inhibitory PCR (siPCR) using a locked nucleic acid-based PCR blocker to selectively inhibit the amplification of the WT viral DNA but not the mutant DNA. At the end of siPCR, the proportion of the mutant could be increased by about 10,000-fold, making the mutant more readily detectable by downstream applications such as real-time PCR and DNA sequencing. We also describe a primer-probe partial overlap approach which significantly simplified the melting curve patterns and minimized the influence of viral genome polymorphism on assay accuracy. Analysis of 62 patient samples showed a complete match of the melting curve patterns with the sequencing results. More than 97% of HBV BCP sequences in the GenBank database can be correctly identified by the melting curve analysis. The combination of siPCR and the SimpleProbe real-time PCR enabled mutant quantification in the presence of a 100,000-fold excess of the WT DNA. PMID:21562108
Partial melting of the Allende (CV3) meteorite - Implications for origins of basaltic meteorites
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Mittlefehldt, D. W.; Jones, J. H.
1991-01-01
Eucrites and angrites are distinct types of basaltic meteorites whose origins are poorly known. Experiments in which samples of the Allende (CV3) carbonaceous chondrite were partially melted indicate that partial melts can resemble either eucrites or angrites, depending only on the oxygen fugacity. Melts are eucritic if this variable is below that of the iron-wuestite buffer or angritic if above it. With changing pressure, the graphite-oxygen redox reaction can produce oxygen fugacities that are above or below those of the iron-wuestite buffer. Therefore, a single, homogeneous, carbonaceous planetoid greater than 110 kilometers in radius could produce melts of drastically different composition, depending on the depth of melting.
NASA Technical Reports Server (NTRS)
Jurewicz, Stephen R.; Jones, John H.
1994-01-01
Recently, mechanisms for core formation in planetary bodies have received considerable attention. Most current theories emphasize the need for large degrees of silicate partial melting to facilitate the coalescence and sinking of sulfide-metal liquid blebs through a low strength semi-crystalline silicate mush. This scenario is based upon observations that sulfide-metal liquid tends to form circular blebs in partially molten meteorites during laboratory experiments. However, recent experimental work by Herpfer and Larimer indicates that some sulfide-Fe liquids have wetting angles at and slightly below 60 deg in an olivine aggregate, implying an interconnected melt structure at any melt fraction. Such melt interconnectivity provides a means for gravitational compaction and extraction of the majority of a sulfide liquid phase in small planetary bodies without invoking large degrees of silicate partial melting. Because of the important ramifications of these results, we conducted a series of experiments using H-chondrite starting material in order to evaluate sulfide-liquid/silicate wetting behavior in a more complex natural system.
Gel electrophoresis of partially denatured DNA. Retardation effect: its analysis and application.
Lyamichev, V I; Panyutin, I G; Lyubchenko YuL
1982-01-01
The hypothesis about the role of partial denaturation in DNA retardation during its electrophoresis in denaturing gel /1,2/ was tested. We used partially melted DNA molecules in which the size of the melted regions and their location were known. They were obtained through glyoxal treatment of the melted regions by a procedure allowing the denatured state to be fixed at any point within the melting range. The approach and the availability of the melting maps of DNAs made it possible to investigate DNA molecules differing in length and in the size of the melted regions. The presence of a denatured region at the end of the molecule or inside of it was shown to decrease its electrophoretic mobility, the effect depending on the size of the melted region and on the DNA length. On the basis of the experimental results an explanation is proposed for the cause of retardation in the case of partially denatured DNA. Images PMID:7133999
NASA Astrophysics Data System (ADS)
Huang, Jian; Huang, Fang; Wang, Zaicong; Zhang, Xingchao; Yu, Huimin
2017-08-01
To investigate the behavior of Cu isotopes during partial melting and melt percolation in the mantle, we have analyzed Cu isotopic compositions of a suite of well-characterized Paleozoic peridotites from the Balmuccia and Baldissero massifs in the Ivrea-Verbano Zone (IVZ, Northern Italy). Our results show that fresh lherzolites and harzburgites have a large variation of δ65Cu ranging from -0.133 to 0.379‰, which are negatively correlated with Al2O3 contents as well as incompatible platinum-group (e.g., Pd) and chalcophile element (e.g., Cu, S, Se, and Te) contents. The high δ65Cu can be explained by Cu isotope fractionation during partial melting of a sulfide-bearing peridotite source, with the light isotope (63Cu) preferentially entering the melts. The low δ65Cu can be attributed to precipitation of sulfides enriched in 63Cu during sulfur-saturated melt percolation. Replacive dunites from the Balmuccia massif display high δ65Cu from 0.544 to 0.610‰ with lower Re, Pd, S, Se, and Te contents and lower Pd/Ir ratios relative to lherzolites, which may result from dissolution of sulfides during interactions between S-undersaturated melts and lherzolites at high melt/rock ratios. Thus, our results suggest that partial melting and melt percolation largely account for the Cu isotopic heterogeneity of the upper mantle. The correlation between δ65Cu and Cu contents of the lherzolites and harzburgites was used to model Cu isotope fractionation during partial melting of a sulfide-bearing peridotite, because Cu is predominantly hosted in sulfide. The modelling results indicate an isotope fractionation factor of αmelt-peridotite = 0.99980-0.99965 (i.e., 103lnαmelt-peridotite = -0.20 to -0.35‰). In order to explain the Cu isotopic systematics of komatiites and mid-ocean ridge basalts reported previously, the estimated αmelt-peridotite was used to simulate Cu isotopic variations in melts generated by variable degrees of mantle melting. The results suggest that high degrees (>25%) of partial melting extracts nearly all source Cu and it cannot produce Cu isotope fractionation in komatiites relative to their mantle source, and that sulfide segregation during magma evolution have modified Cu isotopic compositions of mid-ocean ridge basalts.
NASA Astrophysics Data System (ADS)
Clemens, J. D.; Stevens, G.
2015-10-01
In this invited 'review' article, the authors come to the conclusion that fluid-present partial melting reactions are of widespread occurrence and critical importance in the processes of high-grade metamorphism and crustal differentiation. In their abstract, the authors correctly restate the conclusions of Clemens and Droop (1998) that it is not necessarily the case that melts formed by fluid-present reactions (even by H2O-saturated melting) cannot leave their sources. This realisation is not actually relevant to the question of formation and ascent of granitic magmas by crustal partial melting. Although they refer to Clemens and Watkins (2001), the authors seem ignore the main point of the argument presented therein, namely that the distribution of temperature and H2O contents in felsic igneous systems is only compatible with derivation of the magmas by fluid-absent partial melting reactions at high-temperature, granulite-facies conditions. Neither fluid-saturated nor fluid-deficient partial melting could have resulted in the observed covariation in temperature and melt H2O content.
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2004-12-01
Important constituents of Archean cratons, formed in the early and hot history of the Earth, are Tonalite-Trondhjemite-Granodiorite (TTG) plutons and greenstone belts. The formation of these granite-greenstone terrains is often ascribed to plate-tectonic processes. Buoyancy considerations, however, do not allow plate tectonics to take place in a significantly hotter Earth. We therefore propose an alternative mechanism for the coeval and proximate production of TTG plutons and greenstone-like crustal successions. That is, when a locally anomalously thick basaltic crust has been produced by continued addition of extrusive or intrusive basalts due to partial melting of the underlying convecting mantle, the transition of a sufficient amount of basalt in the lower crust to eclogite may trigger a resurfacing event, in which a complete crustal section of over 1000 km long sinks into the mantle in less than 2 million years. Pressure release partial melting in the complementary upwelling mantle produces large volumes of basaltic material replacing the original crust. Partial melting at the base of this newly produced crust may generate felsic melts which are added as intrusives and/or extrusives to the generally mafic crustal succession, adding to what resembles a greenstone belt. Partial melting of metabasalt in the sinking crustal section produces a significant volume of TTG melt which is added to the crust directly above the location of 'subduction', presumably in the form of a pluton. This scenario is self-consistently produced by numerical thermochemical mantle convection models, presented in this paper, including partial melting of mantle peridotite and crustal (meta)basalt. The metamorphic p, T conditions under which partial melting of metabasalt takes place in this scenario are consistent with geochemical trace element data for TTGs, which indicate melting under amphibolite rather than eclogite facies. Other geodynamical settings which we have also investigated, including partial melting in small scale delaminations of the lower crust, at the base of a anomalously thick crust and due to the influx of a lower mantle diapir fail to reproduce this behavior unequivocally and mostly show melting of metabasalt in the eclogite stability field instead.
NASA Astrophysics Data System (ADS)
Shearer, C. K.; Floss, C.
Ion microprobe trace-element studies of lunar cumulates [ferroan anorthosites (FAN), highlands Mg suite (HMS), and highlands alkali suite (HAS)] and volcanic glasses have provided an additional perspective in reconstructing lunar magmatism and early differentiation. Calculated melt compositions for the FANs indicate that a simple lunar magma ocean (LMO) model does not account for differences between FANs with highly magnesian mafic minerals and “typical” ferroan anorthosites. The HMS and HAS appear to have crystallized from magmas that had incompatible trace-element concentrations equal to or greater than KREEP. Partial melting of distinct, hybridized sources is consistent with these calculated melt compositions. However, the high-Mg silicates with relatively low Ni content that are observed in the HMS are suggestive of other possible processes (reduction, metal removal). The compositions of the picritic glasses indicate that they were produced by melting of hybrid cumulate sources produced by mixing of early and late LMO cumulates. The wide compositional range of near-primitive mare basalts indicates small degrees of localized melting preserved the signature of distinct mantle reservoirs. The relationship between ilmenite anomalies and 182W in the mare basalts suggests that the LMO crystallized over a short period of time.
Voluminous low-T granite: fluid present partial melting of the crust?
NASA Astrophysics Data System (ADS)
Hand, Martin; Barovich, Karin; Morrissey, Laura; Bockmann, Kiara; Kelsey, David; Williams, Megan
2017-04-01
Voluminous low-T granite: fluid present partial melting of the crust? Martin Hand(1), Karin Barovich(1), Laura Morrissey(1), Vicki Lau(1), Kiara Bockmann(1), David Kelsey(1), Megan Williams(1) (1) Department of Earth Sciences, University of Adelaide, Adelaide, Australia Two general schools of thought exist for the formation of granites from predominantly crustal sources. One is that large-scale anatexis occurs via fluid-absent partial melting. This essentially thermal argument is based on the reasonable premise that the lower crust is typically fluid depleted, and experimental evidence which indicates that fluid-absent partial melting can produce significant volumes of melt, creating compositionally depleted residua that many believe are recorded by granulite facies terranes. The other school of thought is that large-scale anatexis can occur via fluid-fluxed melting. This essentially compositional-based contention is also supported by experimental evidence which shows that fluid-fluxed melting is efficient, including at temperatures not much above the solidus. However, generating significant volumes of melt at low temperatures requires a large reservoir of fluid. If fluid-fluxed melting is a realistic model, the resultant granites should be comparatively low temperature compared to those derived from predominantly fluid-absent partial melting. Using a voluminous suite of aluminous granites in the Aileron Province in the North Australian Craton together with metasedimentary granulites as models for source behaviour, we evaluate fluid-absent verse fluid-present regimes for generating large volumes of crustally-derived melt. The central Aileron Province granites occupy 32,500km2, and in places are in excess of 8 km thick. They are characterised by abundant zircon inheritance that can be matched with metasedimentary successions in the region, suggesting they were derived in large part from melting of crust similar to that presently exposed. A notable feature of many of the granites is their enriched Th concentrations compared to typical Aileron Province sub solidus metapelitic successions. However, based on continuous transects within metasedimentary rocks from a number of different regions that record transitions from sub-solidus assemblages to supra-solidus rocks petrologically characterised by typical fluid-absent peritectic assemblages (central Aileron Province, Broken Hill Zone, Ivrea-Verbano Zone), fluid-absent partial melting does not deplete Th concentrations in the residuum with respect to their sub-solidus protoliths. If these compositional transects are used as a guide to the general behaviour of Th during fluid-absent partial melting, the voluminous Th-enriched granites in the Aileron Province are unlikely to be the products of fluid-absent partial melting. This contention is supported by phase equilibria modelling of sub-solidus metasedimentary units whose detrital zircons match in age the granite-hosted xenocrysts, which indicate that temperatures in excess of 840°C are required to generate significant volumes (ie ≥ 30%) of melt under fluid-absent conditions. However, zircon saturation temperatures for the granites have a weighted mean of 776 ± 4 °C (n = 220). Because the granites contain abundant inheritance, this is an upper-T limit that also suggests fluid-absent partial melting was not the primary mechanism for granite formation. We suggest that voluminous granite formation in the Aileron Province occurred in a fluid-rich regime that was particularly effective at destabilising monazite and liberating Th into melt. Because of the propensity of monazite to destabilise in the presence of fluid, we suggest that high-grade metasedimentary terrains that are notably depleted in Th may be residuum associated with fluid-fluxed melt loss.
NASA Technical Reports Server (NTRS)
Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.
1981-01-01
An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.
NASA Astrophysics Data System (ADS)
Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David
2016-04-01
Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is planar and no channels develop. However, if the melt migration velocity exceeds ˜5 μm/s the reaction layer locally protrudes into the partially molten rock forming finger-like melt-rich channels. The morphology and spacing of the channels depends on the initial melt fraction. With 20 vol% melt, multiple and voluminous channels with an elliptical core formed of pure melt develop. At lower melt contents, fewer and thinner channels develop. Our experiments demonstrate that melt-rock reactions can lead to melt channelization in mantle lithologies. The morphology of the channels seems to depend on the initial permeability perturbations present in the starting material. The observed lithological transformations are in broad agreement with natural observations. However, the resulting channels lack the tabular anastomozing shapes which are likely caused by shear deformation in nature. Therefore, both reaction-driven as well as stress-driven melt segregation have to interact in nature to form the observed dunite channels. Szymczak, P., and A. J. C. Ladd (2014), Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738, 591-630. Pec, M., B. K. Holtzman, M. Zimmerman, and D. L. Kohlstedt (2015), Reaction infiltration instabilities in experiments on partially molten mantle rocks, Geology, 43(7), 575-578, doi:10.1130/G36611.1.
Geochemical constraints on adakites of different origins and copper mineralization
Sun, W.-D.; Ling, M.-X.; Chung, S.-L.; Ding, X.; Yang, X.-Y.; Liang, H.-Y.; Fan, W.-M.; Goldfarb, R.; Yin, Q.-Z.
2012-01-01
The petrogenesis of adakites holds important clues to the formation of the continental crust and copper ?? gold porphyry mineralization. However, it remains highly debated as to whether adakites form by slab melting, by partial melting of the lower continental crust, or by fractional crystallization of normal arc magmas. Here, we show that to form adakitic signature, partial melting of a subducting oceanic slab would require high pressure at depths of >50 km, whereas partial melting of the lower continental crust would require the presence of plagioclase and thus shallower depths and additional water. These two types of adakites can be discriminated using geochemical indexes. Compiled data show that adakites from circum-Pacific regions, which have close affinity to subduction of young hot oceanic plate, can be clearly discriminated from adakites from the Dabie Mountains and the Tibetan Plateau, which have been attributed to partial melting of continental crust, in Sr/Y-versus-La/Yb diagram. Given that oceanic crust has copper concentrations about two times higher than those in the continental crust, whereas the high oxygen fugacity in the subduction environment promotes the release of copper during partial melting, slab melting provides the most efficient mechanism to concentrate copper and gold; slab melts would be more than two times greater in copper (and also gold) concentrations than lower continental crust melts and normal arc magmas. Thus, identification of slab melt adakites is important for predicting exploration targets for copper- and gold-porphyry ore deposits. This explains the close association of ridge subduction with large porphyry copper deposits because ridge subduction is the most favorable place for slab melting. ?? 2012 by The University of Chicago.
NASA Technical Reports Server (NTRS)
Usui, T.; Jones, John H.; Mittlefehldt, D. W.
2010-01-01
Studies of differentiated meteorites have revealed a diversity of differentiation processes on their parental asteroids; these differentiation mechanisms range from whole-scale melting to partial melting without the core formation [e.g., 1]. Recently discovered paired achondrites GRA 06128 and GRA 06129 (hereafter referred to as GRA) represent unique asteroidal magmatic processes. These meteorites are characterized by high abundances of sodic plagioclase and alkali-rich whole-rock compositions, implying that they could originate from a low-degree partial melt from a volatile-rich oxidized asteroid [e.g., 2, 3, 4]. These conditions are consistent with the high abundances of highly siderophile elements, suggesting that their parent asteroid did not segregate a metallic core [2]. In this study, we test the hypothesis that low-degree partial melts of chondritic precursors under oxidizing conditions can explain the whole-rock and mineral chemistry of GRA based on melting experiments of synthesized CR- and H-chondrite compositions.
NASA Astrophysics Data System (ADS)
Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.
2017-12-01
Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (<4.5 Myr), if not continuously fed. This, together with their small size compared to the Tibetan Plateau, suggests that these partially molten zones are ephemeral and local features of the geodynamic evolution. Their transience excludes both long-distance and long-lasting channel flow transport in Tibet.
NASA Astrophysics Data System (ADS)
Song, Shuguang; Niu, Yaoling; Su, Li; Wei, Chunjing; Zhang, Lifei
2014-04-01
Modern adakite or adakitic rocks are thought to result from partial melting of younger and thus warmer subducting ocean crust in subduction zones, with the melt interacting with or without mantle wedge peridotite during ascent, or from melting of thickened mafic lower crust. Here we show that adakitic (tonalitic-trondhjemitic) melts can also be produced by eclogite decompression during exhumation of subducted and metamorphosed oceanic/continental crust in response to continental collision, as exemplified by the adakitic rocks genetically associated with the early Paleozoic North Qaidam ultra-high pressure metamorphic (UHPM) belt on the northern margin of the Greater Tibetan Plateau. We present field evidence for partial melting of eclogite and its products, including adakitic melt, volumetrically significant plutons evolved from the melt, cumulate rocks precipitated from the melt, and associated granulitic residues. This “adakitic assemblage” records a clear progression from eclogite decompression and heating to partial melting, to melt fractionation and ascent/percolation in response to exhumation of the UHPM package. The garnetite and garnet-rich layers in the adakitic assemblage are of cumulate origin from the adakitic melt at high pressure, and accommodate much of the Nb-Ta-Ti. Zircon SHRIMP U-Pb dating shows that partial melting of the eclogite took place at ∼435-410 Ma, which postdates the seafloor subduction (>440 Ma) and temporally overlaps the UHPM (∼440-425 Ma). While the geological context and the timing of adakite melt formation we observe differ from the prevailing models, our observations and documentations demonstrate that eclogite melting during UHPM exhumation may be important in contributing to crustal growth.
Experimental test of the viscous anisotropy hypothesis for partially molten rocks
Qi, Chao; Kohlstedt, David L.; Katz, Richard F.; Takei, Yasuko
2015-01-01
Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the center of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory. PMID:26417107
Experimental test of the viscous anisotropy hypothesis for partially molten rocks.
Qi, Chao; Kohlstedt, David L; Katz, Richard F; Takei, Yasuko
2015-10-13
Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the center of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory.
NASA Astrophysics Data System (ADS)
France, Lydéric; Koepke, Juergen; Ildefonse, Benoit; Cichy, Sarah B.; Deschamps, Fabien
2010-11-01
In ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated.
NASA Astrophysics Data System (ADS)
Zhang, Guibin; Niu, Yaoling; Song, Shuguang; Zhang, Lifei; Tian, Zuolin; Christy, Andrew G.; Han, Lei
2015-06-01
We have studied trace element behavior and timing of decompression melting of UHP rocks during exhumation recorded in the magmatic products, i.e., the melt phase (leucosomes), cumulate (garnetite) and residue (amphibolitized eclogite) from a single outcrop in the south Dulan area, North Qaidam UHPM belt, NW China. Two distinct episodes of partial melting are recognized. First, Grt-free tonalitic-trondhjemitic leucosome melts with higher silica crystallized at 424.0 ± 2.7 Ma. Garnets grew in the leucosome melt but fractionated out to form garnetite cumulates along with Ti-rich phases (rutile and titanite), strengthening the adakitic signature of the leucosome. Later Grt-bearing leucosome melts with an age of 412.4 ± 2.9 Ma cross-cut boudins and layers of amphibolitized eclogite. Geochemical investigation of bulk-rocks and in situ minerals verifies the genetic relationship between the amphibolitized eclogite and the tonalitic-trondhjemitic melts. Zircons from the amphibolitized eclogite have older (> 700 Ma) protolith ages, with subsequent eclogite-facies metamorphism, retrograde granulite-facies overprinting and partial melting. Phase modeling and Zr-in-rutile thermometry calculations in combination with zircon geochronology reveal the evolution P-T-t path for the exhumation and the partial melting of the deeply subducted continental crust at the North Qaidam subduction zone in the Early Paleozoic.
Partial melting of amphibolite to trondhjemite at Nunatak Fiord, St. Elias Mountains, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, F.; McLellan, E.L.; Plafker, G.
1985-01-01
At Nunatak Fiord, 55km NE of Yakutat, Alaska, a uniform layer of Cretaceous basalt ca. 3km thick was metamorphosed ca. 67 million years ago to amphibolite and locally partially melted to pegmatitic trondhjemite. Segregations of plagioclase-quartz+/-biotite rock, leucosomes in amphibolite matrix, range from stringers 5-10mm thick to blunt pods as thick as 6m. They tend to be parallel to foliation of the amphibolite, but crosscutting is common. The assemblage aluminous hornblende-plagioclase-epidote-sphene-quartz gave a hydrous melt that crystallized to plagioclase-quartz+/-biotite pegmatitic trondhjemite. 5-10% of the rock melted. Eu at 2x chondrites is positively anomalous. REE partitioning in melt/residum was controlled largelymore » by hornblende and sphene. Though the mineralogical variability precludes quantitative modeling, partial melting of garnet-free amphibolite to heavy-REE-depleted trondhjemitic melt is a viable process.« less
Identification of mothball powder composition by float tests and melting point tests.
Tang, Ka Yuen
2018-07-01
The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can identify camphor mothballs but melting point tests cannot. We suggest melting point tests for identifying mothball powder and tiny fragments while float tests are recommended for intact mothball and large fragments.
NASA Astrophysics Data System (ADS)
Liu, B.; Liang, Y.
2017-12-01
The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.
NASA Astrophysics Data System (ADS)
Ueki, K.; Iwamori, H.
2015-12-01
Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.
Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite
NASA Astrophysics Data System (ADS)
Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.
2013-12-01
During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate lithologic melt partitioning in our samples, we digitally segment each grain and then fit a sample window, slightly larger than the grain, to calculate the local melt volume fraction. Our results show strong evidence for lithologic partitioning in partially molten harzburgite systems, in a ~2 to 1 ratio of local melt fraction, between olivine and opx across the range of melt fractions tested. We also present permeability, grain size, and connectivity analyses of our samples in order to evaluate the effects of melt partitioning on melt migration rates at mid-ocean ridges, as well as at other locations in the Earth where partial melting occurs. References Watson, E. B. (1999), Lithologic partitioning of fluids and melts, American Minerologist, 84, 1693-1710. Zhu, W., and G. Hirth (2003), A network model for permeability in partially molten rocks, Earth Planet. Sci. Lett., 212(3-4), 407-416, doi:10.1016/S0012-821X(03)00264-4. Zhu, W., G. A. Gaetani, F. Fusseis, L. G. J. Montési, and F. De Carlo (2011), Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite, Science, 332(6025), 88-91, doi:10.1126/science.1202221.
Effect of water on the composition of partial melts of greenstone and amphibolite
NASA Technical Reports Server (NTRS)
Beard, James S.; Lofgren, Gary E.
1989-01-01
Closed-system partial melts of hydrated, metamorphosed arc basalts and andesites (greenstones and amphibolites), where only water structurally bound in metamorphic minerals is available for melting (dehydration melting), are generally water-undersaturated, coexist with plagioclase-rich, anhydrous restites, and have compositions like island arc tonalites. In contrast, water-saturated melting at water pressures of 3 kilobars yields strongly peraluminous, low iron melts that coexist with an amphibole-bearing, plagioclase-poor restite. These melt compositions are unlike those of most natural silicic rocks. Thus, dehydration melting over a range of pressures in the crust of island arcs is a plausible mechanism for the petrogenesis of islands arc tonalite, whereas water-saturated melting at pressure of 3 kilobars and above is not.
Transformation of MT Resistivity Sections into Geologically Meaningful Images
NASA Astrophysics Data System (ADS)
Park, S. K.
2004-05-01
Earthscope offers an unprecedented opportunity for interdisciplinary studies of North America. In addition to a continent-wide seismic study, it includes the acquisition of magnetotelluric (MT) data at many of the Bigfoot array sites. Earthscope will thus provide a uniform 3-D MT survey over regional scales when completed. MT interpreters will be able to include 3-D regional effects in their models for the first time whether they are interpreting local studies. However, the full value of the interdisciplinary nature of Earthscope will be realized only if MT sections and maps are useful to other earth scientists. The standard final product from any 2-D or 3-D MT interpretation is a spatial distribution of electrical resistivity. Inference of the physicochemical state from bulk resistivity is complicated because a variety of factors influence the property including temperature, intrinsic conduction of silicates, and small amounts of interconnected conducting materials (e.g., graphite, metallic minerals, partial melt, fluid). Here, I use petrophysical measurements and a petrological model to transform a resistivity section into cross sections of temperature and partial melt fraction in the mantle beneath the Sierra Nevada. In this manner, I am able to separate the contributions of increasing temperature and melt fraction to the bulk resistivity. Predicted melt fractions match observations from xenoliths relatively well but temperatures are systematically 200C higher than those observed. A small amount of dissolved hydrogen (~70 ppm H/Si) lowers the predicted temperatures to match those from the xenoliths, however. I conclude that while this transformation is a simple first step based on many assumptions, initial results are promising.
Partial melting kinetics of plagioclase-diopside pairs
NASA Astrophysics Data System (ADS)
Tsuchiyama, Akira
1985-09-01
Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190 1,307° C) and time (1.5 192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the “critical temperature”, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10-8 cm2/sec at 1,300° C). Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by sluggish melting controlled by diffusion in the minerals. If melting occurs close to the solidus, this process can be important even for partial melting in the upper mantle.
The Influence of Lithology on the Formation of Reaction Infiltration Instabilities in Mantle Rocks
NASA Astrophysics Data System (ADS)
Pec, M.; Holtzman, B. K.; Zimmerman, M. E.; Kohlstedt, D. L.
2017-12-01
The formation of oceanic plates requires extraction of large volumes of melt from the mantle. Several lines of evidence suggest that melt extraction is rapid and, therefore, necessitates high-permeability pathways. Such pathways may form as a result of melt-rock reactions. We report the results of a series of Darcy-type experiments designed to study the development of channels due to melt-solid reactions in mantle lithologies. We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high pressure (P = 300 MPa) and high temperatures (T = 1200° or 1250°C) with a controlled pressure gradient (∂P/∂z = 0-100 MPa/mm). To study the influence of lithology on the channel formation, we synthesized partially molten rocks of harzburgitic (40:40:20 Ol - Opx - basalt), wehrlitic (40:40:20 Ol - Cpx - basalt) and lherzolitic (65:25:10 Ol - Opx - Cpx) composition. The melt source was a disk of alkali basalt. In all experiments, irrespective of the exact mineralogy, melt - undersaturated in silica - from the source dissolved pyroxene in the partially molten rock and precipitated olivine ( Fo82), thereby forming a dunite reaction layer at the interface between the source and the partially molten rock. In samples annealed under a small pressure gradient, the reaction layer was roughly planar. However, if the velocity of melt due to porous flow exceeded 0.1 µm/s, the reaction layer locally protruded into the partially molten rock forming finger-like, melt-rich channels in rocks of wehrlitic and harzburgitic composition. The lherzolitic rocks were generally impermeable to the melt except at highest-pressure gradients where a narrow fracture developed, forming a dyke which drained the melt reservoir. Three-dimensional reconstructions using micro-CT images revealed clear differences between the dyke (a narrow, through-going planar feature) and the channels formed by reactive infiltration (multiple sinuous finger-like features). Apparently, the fraction of soluble minerals together with the melt fraction in the partially molten rock control whether dykes or reactive channels develop. Our experiments demonstrate that melt-rock reactions can lead to channelization in mantle lithologies, and the observed lithological transformations broadly agree with those observed in nature
NASA Astrophysics Data System (ADS)
Mallik, A.; Dasgupta, R.
2012-12-01
Recycled oceanic crust (MORB-eclogite) is considered to be the dominant heterogeneity in Earth's mantle. Because MORB-eclogite is more fusible than peridotite, siliceous partial melt derived from it must react with peridotite while the latter is still in the subsolidus state. Thus, studying such reactive process is important in understanding melting dynamics of the Earth's mantle. Reaction of MORB-eclogite-derived andesitic partial melt with peridotite can produce alkalic melts by partial reactive crystallization but these melts are not as silica-undersaturated as many natural basanites, nephelinites or melititites [1]. In this study, we constrain how dissolved CO2 in a siliceous MORB-eclogite-derived partial melt affects the reaction phase equilibria involving peridotite and can produce nephelinitic melts. Here we compare experiments on CO2-free [1] and 2.6 wt.% CO2 bearing andesitic melt+lherzolite mixtures conducted at 1375 °C and 3 GPa with added melt fraction of 8-50 wt.%. In both CO2-free and CO2-bearing experiments, melt and olivine are consumed and opx and garnet are produced, with the extent of modal change for a given melt-rock ratio being greater for the CO2-bearing experiments. While the residue evolves to a garnet websterite by adding 40% of CO2-bearing melt, the residue becomes olivine-free by adding 50% of the CO2-free melt. Opx mode increases from 12 to ~55 wt.% for 0 to 40% melt addition in CO2-bearing system and 12 to ~43 wt.% for 0 to 50% melt addition in CO2-free system. Garnet mode, for a similar range of melt-rock ratio, increases from ~10 to ~15 wt.% for CO2 bearing system and to ~11 wt.% for CO2-free system. Reacted melts from 25-33% of CO2-bearing melt-added runs contain ~39 wt.% SiO2 , ~11-13 wt.% TiO2, ~9 wt.% Al2O3, ~11 wt.% FeO*, 16 wt.% MgO, 10-11 wt.% CaO, and 3 wt.% Na2O whereas experiments with a similar melt-rock ratio in a CO2-free system yield melts with 44-45 wt.% SiO2, 6-7 wt.% TiO2, 13-14 wt.% Al2O3, 10-11 wt.% FeO*, 12-13 wt.% MgO, ~8 wt.% CaO, and ~4 wt.% Na2O. Our study shows that with only 2.6 wt.% CO2, andesites, owing to partial reactive crystallization in a peridotite matrix, can evolve to nephelinites (as opposed to basanites for CO2-free runs) that match with silica-undersaturated oceanic basalts better than reacted melts from CO2-free conditions. The effects of CO2 on the partial reactive crystallization of andesite in a fertile peridotite matrix thus are: a) lowered melt- SiO2 owing to increased stability of opx at the liquidus of basalt, b) lowered Al2O3 content of basalts owing to increased crystallization of garnet. Experiments with 1 and 5 wt.% CO2-bearing andesite-peridotite mixture are underway and will be presented. [1] Mallik and Dasgupta (2012), EPSL, 329-330, 97-108.
Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing
NASA Technical Reports Server (NTRS)
Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.
1992-01-01
A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.
Partial Melting in the Inner Core
NASA Astrophysics Data System (ADS)
Hernlund, J. W.
2014-12-01
The inner core boundary (ICB) is often considered to be permeable to flow, because solid iron could melt as it upwells across the ICB. Such a mechanism has been proposed to accompany inner core convective processes (including translation from a freezing to melting hemisphere), and has also been invoked to explain the formation of a dense Fe-rich liquid F-layer above the ICB. However, the conceptions of ICB melting invoked thus far are extremely simplistic, and neglect the many lessons learned from melting in other geological contexts. Owing to some degree of solid solution in relatively incompatible light alloys in solid iron, the onset of melting in the inner core will likely occur as a partial melt, with the liquid being enriched in these light alloys relative to the co-existing solid. Such a partial melt is then subject to upward migration/percolation out of the solid matrix owing to the buoyancy of melt relative to solid. Removal of melt and viscous compaction of the pore space results in an iron-enriched dense solid, whose negative buoyancy will oppose whatever buoyancy forces initially gave rise to upwelling. Either the negative buoyancy will balance these other forces and cause upwelling to cease, or else the solid will become so depleted in light alloys that it is unable to undergo further melting. Thus a proper accounting of partial melting results in a very different melting regime in the inner core, and suppression of upwelling across the ICB. Any fluid that is able to escape into the outer core from inner core partial melting will likely be buoyant because in order to be a melt it should be enriched in incompatiable alloys relative to whatever is freezing at the ICB. Therefore inner core melting is unlikely to contribute to the formation of an F-layer, but instead will tend to de-stabilize it. I will present models that illustrate these processes, and propose that the F-layer is a relic of incomplete mixing of the core during Earth's final stages of formation. Such models imply that the inner core may be somewhat older than models in which it crystallizes from a homogeneous outer core, although without any significant benefits for driving the geodynamo.
NASA Astrophysics Data System (ADS)
Lavier, L. L.; Muntener, O.
2011-12-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the conditions and enigmatic development of magma-poor and magma rich margins.
A Model for Siderophile Element Distribution in Planetary Differentiation
NASA Technical Reports Server (NTRS)
Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.
2005-01-01
Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.
Phase behavior and reactive transport of partial melt in heterogeneous mantle model
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2013-12-01
The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬
NASA Technical Reports Server (NTRS)
Scott, T.; Kohlstedt, D. L.
2004-01-01
One key constraint needed for refinement of the interior geochemical and geodynamic models of Io is the viscosity of the convecting partially- molten silicate mantle. To date, laboratory studies of partially molten mantle rocks have reached melt fractions up to approx.0.12, a value much smaller than thought to be appropriate for the asthenosphere of Io where the degree of partial melting may be 0.15 0.40 or higher. Therefore, we have performed a series of high temperature, triaxial compressive creep experiments on dry synthetic peridotites in a gas medium apparatus at a confining pressure of 300 MPa and temperatures from 1473 to 1573 K in order to understand the influence of large amounts of melt (0.15 < phi < 0.40) on the rheological behavior of partially molten rocks.
NASA Astrophysics Data System (ADS)
Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.
2018-07-01
In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.
NASA Astrophysics Data System (ADS)
Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo
2010-07-01
Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.
Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.
2013-01-01
The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
NASA Technical Reports Server (NTRS)
Lagowski, J.; Gatos, H. C.; Dabkowski, F. P.
1985-01-01
A novel partially confined configuration is proposed for the crystal growth of semiconductors from the melt, including those with volatile constituents. A triangular prism is employed to contain the growth melt. Due to surface tension, the melt will acquire a cylindrical-like shape and thus contact the prism along three parallel lines. The three empty spaces between the cylindrical melt and the edges of the prism will accommodate the expansion of the solidifying semiconductor, and in the case of semiconductor compounds with a volatile constituent, will permit the presence of the desired vapor phase in contact with the melt for controlling the melt stoichiometry. Theoretical and experimental evidence in support of this new type of confinement is presented.
Reactive transport in a partially molten system with binary solid solution
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2017-12-01
Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Gupta, A. K.
2011-12-01
Liquidus phase relations in the system forsterite-diopside-enstatite has been made at 70 kbar under anhydrous conditions using a Walker-type multi-anvil high pressure apparatus. Positions of the pseudoeutectic/ invariant, minimum points and amount of solid solutions of appearing phases are summarized in table 1. Comparison of these phase relations with those conducted by previous investigators at lower pressures and temperatures shows that the fosterite-pyroxene liquidus boundary shifts toward forsterite and away from the diopside apex with increasing pressure. Microprobe analyses indicate that the maximum amount of MgSiO3 that can be incorporated in diopside increases with pressure, and at the solidus (70 kbar, 2010°C), it is about 82%. On the basis of EPMA analyses of coexisting liquid and crystalline phases, three-phase triangles have been constructed. It is observed that at 70 kbar, the early partial melt generated from a model peridotite does not precipitate orthopyroxene. If such a melt instead of crystallizing in-situ, ascend to the surface, then the polybaric-polythermal crystallization path should never intersect the liquidus phase field of orthopyroxene, enstatitess may then appear in the solidus as an exsolution product. Our calculation shows that at 31% partial melting of a model mantle, orthopyroxene should appear as a liquidus phase. With further increase in the degree of partial melting (42-60%), proportion of orthopyroxene crystallizing from the melt progressively increases. With reference to the above discussion we propose that the Gorgona komatiites which are primarily orthopyroxene-deficient komatiites, are an outcome of low degree of partial melting, whereas the orthopyroxene-bearing Commondale komatiites of the southern Kaapvaal Craton, South Africa, are the outcome of a larger degree of partial melting, both generated from melting of an anhydrous mantle.
NASA Technical Reports Server (NTRS)
Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.
1993-01-01
Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.
NASA Technical Reports Server (NTRS)
Daines, Martha J.; Richter, Frank M.
1988-01-01
An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.
Melting of Simple Solids and the Elementary Excitations of the Communal Entropy
NASA Astrophysics Data System (ADS)
Bongiorno, Angelo
2010-03-01
The melting phase transition of simple solids is addressed through the use of atomistic computer simulations. Three transition metals (Ni, Au, and Pt) and a semiconductor (Si) are considered in this study. Iso-enthalpic molecular dynamics simulations are used to compute caloric curves across the solid-to-liquid phase transition of a periodic crystalline system, to construct the free energy function of the solid and liquid phases, and thus to derive the thermodynamical limit of the melting point, latent heat and entropy of fusion of the material. The computational strategy used in this study yields accurate estimates of melting parameters, it consents to determine the superheating and supercooling temperature limits, and it gives access to the atomistic mechanisms mediating the melting process. In particular, it is found that the melting phase transition in simple solids is driven by exchange steps involving a few atoms and preserving the crystalline structure. These self-diffusion phenomena correspond to the elementary excitations of the communal entropy and, as their rate depends on the local material cohesivity, they mediate both the homogeneous and non-homogeneous melting process in simple solids.
Experimental petrology and origin of rocks from the Descartes Highlands
NASA Technical Reports Server (NTRS)
Walker, D.; Longhi, J.; Grove, T. L.; Stolper, E.; Hays, J. F.
1973-01-01
Petrographic studies of Apollo 16 samples indicate that rocks 62295 and 68415 are crystallization products of highly aluminous melts. 60025 is a shocked, crushed and partially annealed plagioclase cumulate. 60315 is a recrystallized noritic breccia of disputed origin. 60335 is a feldspathic basalt filled with xenoliths and xenocrysts of anorthosite, breccia, and anorthite. The Fe/(Fe+Mg) of plagioclase appears to be a relative crystallization index. Low pressure melting experiments with controlled Po2 indicate that the igneous samples crystallized at oxygen fugacities well below the Fe/FeO buffer. Crystallization experiments at various pressures suggest that the 62295 and 68415 compositions were produced by partial or complete melting of lunar crustal materials, and not by partial melting of the deep lunar interior.
Network topology of olivine-basalt partial melts
NASA Astrophysics Data System (ADS)
Skemer, Philip; Chaney, Molly M.; Emmerich, Adrienne L.; Miller, Kevin J.; Zhu, Wen-lu
2017-07-01
The microstructural relationship between melt and solid grains in partially molten rocks influences many physical properties, including permeability, rheology, electrical conductivity and seismic wave speeds. In this study, the connectivity of melt networks in the olivine-basalt system is explored using a systematic survey of 3-D X-ray microtomographic data. Experimentally synthesized samples with 2 and 5 vol.% melt are analysed as a series of melt tubules intersecting at nodes. Each node is characterized by a coordination number (CN), which is the number of melt tubules that intersect at that location. Statistically representative volumes are described by coordination number distributions (CND). Polyhedral grains can be packed in many configurations yielding different CNDs, however widely accepted theory predicts that systems with small dihedral angles, such as olivine-basalt, should exhibit a predominant CN of four. In this study, melt objects are identified with CN = 2-8, however more than 50 per cent are CN = 4, providing experimental verification of this theoretical prediction. A conceptual model that considers the role of heterogeneity in local grain size and melt fraction is proposed to explain the formation of nodes with CN ≠ 4. Correctly identifying the melt network topology is essential to understanding the relationship between permeability and porosity, and hence the transport properties of partial molten mantle rocks.
Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts
NASA Astrophysics Data System (ADS)
Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter
2018-03-01
Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (<50% and <25% crystallization). Step-like compatible Cr (and co-varying Al) and incompatible Ti, Zr, Y and rare earth elements (REE) decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith) following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization) from a hybrid melt. In addition, towards the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu* and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of interstitial differentiated melt are two distinct MASH processes in the lower oceanic crust. They are potentially fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).
The Divnoe meteorite: Petrology, chemistry, oxygen isotopes and origin
NASA Technical Reports Server (NTRS)
Petaev, M. I.; Barsukova, L. D.; Lipschultz, M. E.; Wang, M.-S.; Ariskin, A. A.; Clayton, R. N.; Mayeda, T. K.
1994-01-01
The Divnoe meteorite is an olivine-rich primitive achondrite with subchondritic chemistry and mineralogy. It has a granoblastic, coarse-grained, olivine groundmass (CGL: coarse-grained lithology) with relatively large pyroxene-plagioclase poiklitic patches (PP) and small fine-grained domains of an opaque-rich lithology (ORL). Both PP and ORL are inhomogeneously distributed and display reaction boundaries with the groundmass. Major silicates, olivine Fa(20-28) and orthopyroxyene Fs(20-28 Wo(0.5-2.5), display systematic differences in composition between CGL and ORL as well as a complicated pattern of variations within CGL. Accessory plagioclase has low K content and displays regular igneous zoning with core compositions An(40-45) and rims An(32-37). The bulk chemical composition of Divnoe is similar to that of olivine-rich primitive achondrites, except for a depletion of incompatible elements and minor enrichment of refractory siderophiles. Oxygen isotope compositions for whole-rock and separated minerals from Divnoe fall in a narrow range, with mean delta O-18 = +4.91, delta O-17 = +2.24, and Delta O-17 = -0.26 +/- 0.11. The isotopic composition is not within the range of any previously recognized group but is very close to that of the brachinites. To understand the origin of Divnoe lithologies, partial melting and crystallization were modelled using starting compositions equal to that of Divnoe and some chondritic meteorites. It was found that the Divnoe composition could be derived from a chondritic source region by approximately 20 wt% partial melting at Ta approximately 1300 C and log(fO2) = IW-1.8, followed by approximtely 60 wt% crystallization of the partial melt formed, and removal of the still-liquid portion of the partial melt. Removal of the last partial melt resulted in depletion of the Divnoe plagioclase in Na and K. In this scenario, CGL represents the residue of partial melting, and PP is a portion of the partial melt that crystallized in situ. The ORL was formed during the final stages of partial melting by reaction between gaseous sulfur and residual olivine in the source region. A prominent feature of Divnoe is fine micron-scale chemical variations within olivine grains, related to lamellar structures the olivines display. The origin of these structures is not known.
Blacic, Tanya M.; Ito, Garrett; Shah, Anjana K.; Canales, Juan Pablo; Lin, Jian
2008-01-01
The hot spot-influenced western Galápagos Spreading Center (GSC) has an axial topographic high that reaches heights of ∼700 m relative to seafloor depth ∼25 km from the axis. We investigate the cause of the unusual size of the axial high using a model that determines the flexural response to loads resulting from the thermal and magmatic structure of the lithosphere. The thermal structure simulated is appropriate for large amounts of cooling by hydrothermal circulation, which tends to minimize the amount of partial melt needed to explain the axial topography. Nonetheless, results reveal that the large axial high near 92°W requires that either the crust below the magma lens contains >35% partial melt or that 20% melt is present in the lower crust and at least 3% in the mantle within a narrow column (<∼10 km wide) extending to depths of 45–65 km. Because melt fractions >35% in the crust are considered unreasonable, it is likely that much of the axial high region of the GSC is underlain by a narrow region of partially molten mantle of widths approaching those imaged seismically beneath the East Pacific Rise. A narrow zone of mantle upwelling and melting, driven largely by melt buoyancy, is a plausible explanation.
NASA Astrophysics Data System (ADS)
López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.
2012-07-01
The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (<13% for the equigranular granites), which is generally more pronounced in shallower batholitic leucogranites than in the small and homogeneous sill-like bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.
NASA Astrophysics Data System (ADS)
Aghaei, Omid; Nedimović, Mladen R.; Marjanović, Milena; Carbotte, Suzanne M.; Pablo Canales, J.; Carton, Hélène; Nikić, Nikola
2017-06-01
We use 3-D multichannel seismic data to form partial angle P wave stacks and apply amplitude variation with angle (AVA) crossplotting to assess melt content and melt distribution within two large midcrustal off-axis magma lenses (OAMLs) found along the East Pacific Rise from 9°37.5'N to 9°57'N. The signal envelope of the partial angle stacks suggests that both OAMLs are partially molten with higher average melt content and more uniform melt distribution in the southern OAML than in the northern OAML. For AVA crossplotting, the OAMLs are subdivided into seven 1 km2 analysis windows. The AVA crossplotting results indicate that the OAMLs contain a smaller amount of melt than the axial magma lens (AML). For both OAMLs, a higher melt fraction is detected within analysis windows located close to the ridge axis than within the most distant windows. The highest average melt concentration is interpreted for the central sections of the OAMLs. The overall low OAML melt content could be indicative of melt lost due to recent off-axis eruptions, drainage to the AML, or limited mantle melt supply. Based on the results of this and earlier bathymetric, morphological, geochemical, and geophysical investigations, we propose that the melt-poor OAML state is largely the result of limited melt supply from the underlying mantle source reservoir with smaller contribution attributed to melt leakage to the AML. We hypothesize that the investigated OAMLs have a longer period of melt replenishment, lower eruption recurrence rates, and lower eruption volumes than the AML, though some could be single intrusion events.
Scattered wave imaging of the oceanic plate in Cascadia
Rychert, Catherine A.; Harmon, Nicholas; Tharimena, Saikiran
2018-01-01
Fifty years after plate tectonic theory was developed, the defining mechanism of the plate is still widely debated. The relatively short, simple history of young ocean lithosphere makes it an ideal place to determine the property that defines a plate, yet the remoteness and harshness of the seafloor have made precise imaging challenging. We use S-to-P receiver functions to image discontinuities beneath newly formed lithosphere at the Juan de Fuca and Gorda Ridges. We image a strong negative discontinuity at the base of the plate increasing from 20 to 45 km depth beneath the 0- to 10-million-year-old seafloor and a positive discontinuity at the onset of melting at 90 to 130 km depth. Comparison with geodynamic models and experimental constraints indicates that the observed discontinuities cannot easily be reconciled with subsolidus mechanisms. Instead, partial melt may be required, which would decrease mantle viscosity and define the young oceanic plate. PMID:29457132
Experimental evidence supports mantle partial melting in the asthenosphere.
Chantel, Julien; Manthilake, Geeth; Andrault, Denis; Novella, Davide; Yu, Tony; Wang, Yanbin
2016-05-01
The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (V P) and shear (V S) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high V P/V S values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere.
NASA Technical Reports Server (NTRS)
Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..
2014-01-01
Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78
The influence of partial melting and melt migration on the rheology of the continental crust
NASA Astrophysics Data System (ADS)
Cavalcante, Geane Carolina G.; Viegas, Gustavo; Archanjo, Carlos José; da Silva, Marcos Egydio
2016-11-01
The presence of melt during deformation produces a drastic change in the rheological behavior of the continental crust; rock strength is decreased even for melt fractions as low as ∼7%. At pressure/temperature conditions typical of the middle to lower crust, melt-bearing systems may play a critical role in the process of strain localization and in the overall strength of the continental lithosphere. In this contribution we focus on the role and dynamics of melt flow in two different mid-crustal settings formed during the Brasiliano orogeny: (i) a large-scale anatectic layer in an orthogonal collision belt, represented by the Carlos Chagas anatexite in southeastern Brazil, and (ii) a strike-slip setting, in which the Espinho Branco anatexite in the Patos shear zone (northeast Brazil) serves as an analogue. Both settings, located in eastern Brazil, are part of the Neoproterozoic tectonics that resulted in widespread partial melting, shear zone development and the exhumation of middle to lower crustal layers. These layers consist of compositionally heterogeneous anatexites, with variable former melt fractions and leucosome structures. The leucosomes usually form thick interconnected networks of magma that reflect a high melt content (>30%) during deformation. From a comparison of previous work based on detailed petrostructural and AMS studies of the anatexites exposed in these areas, we discuss the rheological implications caused by the accumulation of a large volume of melt ;trapped; in mid-crustal levels, and by the efficient melt extraction along steep shear zones. Our analyses suggest that rocks undergoing partial melting along shear settings exhibit layers with contrasting competence, implying successive periods of weakening and strengthening. In contrast, regions where a large amount of magma accumulates lack clear evidence of competence contrast between layers, indicating that they experienced only one major stage of dramatic strength drop. This comparative analysis also suggests that the middle part of both belts contained large volumes of migmatites, attesting that the orogenic root was partially molten and encompassed more than 30% of granitic melt at the time of deformation.
NASA Astrophysics Data System (ADS)
Duncan, M. S.; Dasgupta, R.
2011-12-01
Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents between 1.5 and 2.5 wt%. Compared to previous work on CO2 solubility in complex rhyolitic melts at lower pressures [3-5], there is a general trend of increasing CO2 solubility with pressure. Dissolved CO2 is present both as molecular CO2 and as CO32-, consistent with previous, simple system studies at high pressures [e.g. 2, 6]. The CO2mol/CO2Tot values are within the range of previous high pressure studies [e.g. 7] and range from 0.35 to 0.55. Experiments at variable P, T, and melt water content are underway. [1] Fine and Stolper (1985), CMP, 91, 105-121; [2] Stolper et al. (1987), AM, 72, 1071-1085; [3] Blank et al. (1993), EPSL, 119, 27-36; [4] Fogel and Rutherford (1990), AM, 75, 1331-1326; [5] Tamic et al. (2001), CG, 174, 333-347; [6] Mysen and Virgo (1980), AM, 65, 855-899; [7] Mysen (1976), AJS, 276, 969-996.
NASA Astrophysics Data System (ADS)
Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.
2012-12-01
Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.
NASA Astrophysics Data System (ADS)
Ganzhorn, Anne-Céline; Trap, Pierre; Arbaret, Laurent; Champallier, Rémi; Fauconnier, Julien; Labrousse, Loic; Prouteau, Gaëlle
2015-04-01
Partial melting of continental crust is a strong weakening process controlling its rheological behavior and ductile flow of orogens. This strength weakening due to partial melting is commonly constrained experimentally on synthetic starting material with derived rheological law. Such analog starting materials are preferentially used because of their well-constrained composition to test the impact of melt fraction, melt viscosity and melt distribution upon rheology. In nature, incipient melting appears in particular locations where mineral and water contents are favorable, leading to stromatic migmatites with foliation-parallel leucosomes. In addition, leucosomes are commonly located in dilatants structural sites like boudin-necks, in pressure shadows, or in fractures within more competent layers of migmatites. The compositional layering is an important parameter controlling melt flow and rheological behavior of migmatite but has not been tackled experimentally for natural starting material. In this contribution we performed in-situ deformation experiments on natural rock samples in order to test the effect of initial gneissic layering on melt distribution, melt flow and rheological response. In-situ deformation experiments using a Paterson apparatus were performed on two partially melted natural gneissic rocks, named NOP1 & PX28. NOP1, sampled in the Western Gneiss Region (Norway), is biotite-muscovite bearing gneiss with a week foliation and no gneissic layering. PX28, sampled from the Sioule Valley series (French Massif Central), is a paragneiss with a very well pronounced layering with quartz-feldspar-rich and biotite-muscovite-rich layers. Experiments were conducted under pure shear condition at axial strain rate varying from 5*10-6 to 10-3 s-1. The main stress component was maintained perpendicular to the main plane of anisotropy. Confining pressure was 3 kbar and temperature ranges were 750°C and 850-900°C for NOP1 and PX28, respectively. For the 750°C experiments NOP1 was previously hydrated at room pressure and temperature. According to melt fraction, deformation of partially molten gneiss induced different strain patterns. For low melt fraction, at 750°C, deformation within the initially isotropic gneiss NOP1 is localized along large scales shear-zones oriented at about 60° from main stress component σ1. In these zones quartz grains are broken and micas are sheared. Melt is present as thin film (≥20 µm) at muscovite-quartz grain boundaries and intrudes quartz aggregates as injections parallel to σ1. For higher melt fraction, at 850°C, deformation is homogeneously distributed. In the layered gneiss PX28, deformation is partitioned between mica-rich and quartz-rich layers. For low melt fraction, at 850°C, numerous conjugate shear-bands crosscut mica-rich layers. Melt is present around muscovite grains and intrudes quartz grains in the favor of fractures. For high melt fractions, at 900°C, melt assisted creep within mica-rich layers is responsible for boudinage of the quartz-feldspar rich layers. Melt-induced veining assists the transport of melt toward inter-boudin zones. Finite strain pattern and melt distribution after deformation of PX28 attest for appearance of strong pressure gradients leading to efficient melt flow. The subsequent melt redistribution strongly enhance strain partitioning and strength weakening, as shown by differential stress vs. strain graphs. Our experiments have successfully reproduced microstructures commonly observed in migmatitic gneisses like boudinage of less fertile layers. Comparison between non-layered and layered gneisses attest for strong influence of compositional anisotropies inherited from the protolith upon melt distribution and migmatite strength.
Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.
1996-01-01
We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also indicate that Mauna Kea lavas formed through smaller degrees of partial melting at greater depth than Mauna Loa lavas. These chemical and isotopic differences are consistently found between volcanoes along the western "Loa" and eastern "Kea" trends and reflect large-scale variations in source composition and melting environment. We propose a simple model of a radially zoned plume centered beneath the Loa trend. Loa trend lavas generated from the hot plume axis reflect high degrees of partial melting from a source containing a mixture of enriched plume-source material and entrained lower mantle. Kea trend lavas, in contrast, are generated from the cooler, peripheral portions of the plume, record lower degrees of partial melting, and tap a source containing a greater proportion of depleted upper mantle.
Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1
NASA Astrophysics Data System (ADS)
Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard
2018-02-01
Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.
Ratajeski, K.; Sisson, T.W.; Glazner, A.F.
2005-01-01
Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.
Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy
NASA Astrophysics Data System (ADS)
Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David
2016-04-01
Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55° antithetic with respect to the shear plane (i.e., sub-perpendicular to σ3) with a strong SPO (b/a ≈ 0.7) that decreases with increasing finite strain. Our observations of melt alignment at low strains are in agreement with observations performed on analogue materials (borneol, Takei 2010) and provide further constraints for the orientation of viscous anisotropy in the Earth's mantle. The systematic difference in grain-scale melt alignment between samples in which melt segregation did and did not occur - irrespective of the deformation geometry and mineralogy - suggests that melt segregation into bands leads to local stress rotation within the samples.
Single-Molecule Denaturation Mapping of DNA in Nanofluidic Channels
NASA Astrophysics Data System (ADS)
Reisner, Walter; Larsen, Niels; Silahtaroglu, Asli; Kristensen, Anders; Tommerup, Niels; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik
2010-03-01
Nanochannel based DNA stretching can serve as a platform for a new optical mapping technique based on measuring the pattern of partial melting along the extended molecules. We partially melt DNA extended in nanofluidic channels via a combination of local heating and added chemical denaturants. The melted molecules, imaged via a standard fluorescence videomicroscopy setup, exhibit a nonuniform fluorescence profile corresponding to a series of local dips and peaks in the intensity trace along the stretched molecule. We show that this barcode is consistent with the presence of locally melted regions along the molecule and can be explained by calculations of sequence-dependent melting probability. Specifically, we obtain experimental melting profiles for T4, T7, lambda-phage and bacterial artificial chromosome DNA (from human chromosome 12) and compare these profiles to theory. In addition, we demonstrate that the BAC melting profile can be used to align the BAC to its correct position on chromosome 12.
NASA Astrophysics Data System (ADS)
Riel, N., Jr.
2015-12-01
The Tonalite-Trondhjemite-Granodiorite series (TTGs) represent the bulk of the felsic continental crust that formed between 4.4 and 2.5 Ga and is preserved in Archaean craton (3.8-2.5 Ga). It is now recognized that the petrogenesis of TTG series derives from an hydrous mafic system at high pressure. However, the source of the early TTGs (3.5-3.2 Ga) have not been preserved and its characteristics are still debated. In this study we use thermodynamical modelling coupled with two-phase flow to investigate the products of partial melting of high-MgO primary mafic crust. Our model setup is made of a 45-km thick hydrated mafic crust and is heated above the solidus from 50 to 200°C. To explore the effects of melt-rock interactions during melt transfer (via two-phase flow), the melt composition is modelled either in thermodynamic equilibrium with the rock or in thermodynamic disequilibrium. Our modelling results show that partial melting of hydrous high-MgO metabasalt crust can produce significant volumes of felsic melt. The average composition of these melts is SiO2-rich > 62%, Mg# = 40-50, Na2O ~6%, MgO = 0.5-1% which is consistent with the composition of TTGs. The residual rock after melt segregation is composed of olivine + garnet + pyroxene which is in agreement with Archaean eclogites found in mantle xenoliths of Archaean cratons. Moreover, the depleted residual rock is denser than the mantle and is likely to be recycled in the mantle. We show that the early felsic crust with a TTGs signature could have been formed by partial melting of high-MgO hydrated metabasaltic crust, and propose that plume-related activity and/or rapid burial due to high volcanic activity are likely geodynamic conditions to generate an early felsic crust.
Shellnutt, J Gregory
2018-01-01
Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.
2018-01-01
Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745
Partial melting of amphibolite to trondhjemite near Ykutat, Alaska
NASA Technical Reports Server (NTRS)
Barker, F.
1986-01-01
At Nunatak Fiord, 55 km NE of Yakutat, Alaska, a uniform layer of Cretaceous metabasalt approximately 3 km thick was metamorphosed to amphibolite facies and locally partially melted to trondhjemite pegmatite. Results of the rare earth element analysis performed on the amphibolite and the trondhjemite pegmatite are discussed.
Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.
2004-01-01
Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.
NASA Astrophysics Data System (ADS)
Erdmann, Martin; Fischer, Lennart A.; France, Lydéric; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen
2015-04-01
Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity ( aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000-1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.
NASA Astrophysics Data System (ADS)
Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared
2016-12-01
This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of melt generation results in the partial melts from this study varying in composition from phonotephrite to basaltic andesite at 2 GPa and foidite/phonotephrite to basalt at 3 GPa, forming a spectrum of arc magmas. Modeling suggests that the trace element patterns of sediment-melt are unaffected by the process of hybridization within the hotter core of the mantle-wedge. K2O/H2O and H2O/Ce ratios of the sediment-melts are unaffected, within error, by the process of hybridization of the mantle-wedge. This implies that thermometers based on K2O/H2O and H2O/Ce ratios of arc lavas may be used to estimate slab-top temperatures when (a) sediment-melt from the slab reaches the hotter core of the mantle-wedge by focused flow (b) sediment-melt freezes in the overlying mantle at the slab-mantle interface and the hybridized package rises as a mélange diapir and partially melts at the hotter core of the mantle-wedge. Based on the results from this study and previous studies, both channelized and porous flow of sediment-melt/fluid through the sub-arc mantle can explain geochemical signatures of arc lavas under specific geodynamic scenarios of fluid/melt fluxing, hybridization, and subsequent mantle melting.
Against the grain: The physical properties of anisotropic partially molten rocks
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.
2014-12-01
Partially molten rocks commonly develop textures that appear close to textural equilibrium, where the melt network evolves to minimize the energy of the melt-solid interfaces, while maintaining the dihedral angle θ at solid-solid-melt contact lines. Textural equilibrium provides a powerful model for the melt distribution that controls the petro-physical properties of partially molten rocks, e.g., permeability, elastic moduli, and electrical resistivity. We present the first level-set computations of three-dimensional texturally equilibrated melt networks in rocks with an anisotropic fabric. Our results show that anisotropy induces wetting of smaller grain boundary faces for θ > 0 at realistic porosities ϕ < 3%. This was previously not thought to be possible at textural equilibrium and reconciles the theory with experimental observations. Wetting of the grain boundary faces leads to a dramatic redistribution of the melt from the edges to the faces that introduces strong anisotropy in the petro-physical properties such as permeability, effective electrical conductivity and mechanical properties. Figure, on left, shows that smaller grain boundaries become wetted at relatively low melt fractions of 3% in stretched polyhedral grains with elongation factor 1.5. Right plot represents the ratio of melt electrical conductivity to effective conductivity of medium (known as formation factor) as an example of anisotropy in physical properties. The plot shows that even slight anisotropy in grains induces considerable anisotropy in electrical properties.
Single-Molecule Denaturation Mapping of Genomic DNA in Nanofluidic Channels
NASA Astrophysics Data System (ADS)
Reisner, Walter; Larsen, Niels; Kristensen, Anders; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik
2009-03-01
We have developed a new DNA barcoding technique based on the partial denaturation of extended fluorescently labeled DNA molecules. We partially melt DNA extended in nanofluidic channels via a combination of local heating and added chemical denaturants. The melted molecules, imaged via a standard fluorescence videomicroscopy setup, exhibit a nonuniform fluorescence profile corresponding to a series of local dips and peaks in the intensity trace along the stretched molecule. We show that this barcode is consistent with the presence of locally melted regions and can be explained by calculations of sequence-dependent melting probability. We believe this melting mapping technology is the first optically based single molecule technique sensitive to genome wide sequence variation that does not require an additional enzymatic labeling or restriction scheme.
The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
NASA Astrophysics Data System (ADS)
Vuik, C.; Saghir, A.; Boerstoel, G. P.
2000-08-01
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright
Partial melting and melt percolation in the mantle: The message from Fe isotopes
NASA Astrophysics Data System (ADS)
Weyer, Stefan; Ionov, Dmitri A.
2007-07-01
High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with the generally observed difference between peridotites and basalts; this slope was used here to estimate the Fe isotope composition of the fertile upper mantle (at Mg# = 0.894, δ 56Fe ≈ 0.02 ± 0.03‰). Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events, e.g. melt percolation. At two localities (Tok, Siberia and Tariat, Mongolia) δ 56Fe correlates with iron contents of the peridotites, which was increased from about 8% to up to 14.5% FeO by post-melting melt percolation. This process produced a range of Fe isotope compositions in the percolation columns, from extremely light (δ 56Fe = - 0.42‰) to heavy (δ 56Fe = + 0.17‰). We propose reaction with isotopically heavy melts and diffusion (enrichment of light Fe isotopes) as the most likely processes that produced the large isotope variations at these sites. Thus, Fe isotopes might be used as a sensitive tracer to identify such metasomatic processes in the mantle.
NASA Astrophysics Data System (ADS)
Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina
2016-04-01
A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (< 2 vol. %). To fill this gap, we performed in situ electrical conductivity (EC) measurement on a partially-molten olivine aggregate (Fo92-olivine from a natural peridotite of Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.
On mass transport in magmatic porosity waves
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.; Rudge, J. F.
2017-12-01
Geochemical analyses of oceanic basalts indicate the mantle is lithologically heterogenous and subject to partial melting. Here we show that porosity waves-which arise naturally in models of buoyancy driven melt migration-transport mass and preserve geochemical signatures, at least partially. Prior studies of tracer transport in one dimensional porosity waves conclude that porosity waves do not transfer mass. However, it is well known that one-dimensional porosity waves are unstable in two and three dimensions and break up into sets of cylindrical or spherical porosity waves. We show that tracer transport in higher dimensional porosity waves is dramatically different than in one dimension. Lateral melt focusing into these high porosity regions leads to melt recirculating in the center of the wave. Melt focusing and recirculation are not resolvable in one dimension where no sustained transport is observed in numerical experiments of solitary porosity waves. In two and three dimensions, the recirculating melt is separated from the background melt-flow field by a circular or spherical dividing streamline and transported with the phase velocity of the porosity wave. The amount of melt focusing that occurs within any given porosity wave, and thus, the extent of the dividing streamline, and resultant volume of transported melt is extremely sensitive to the selection of porosity-permeability and porosity-rheology relationships. Therefore, we present a regime diagram spanning common parameterizations that illustrates the minimum amplitude and phase velocity required for a solitary porosity wave to transport mass as a function of material properties and common parameters used in magma dynamics and mid-ocean ridge models. The realization that solitary waves are capable of sustaining melt transport may require the reinterpretation of previous studies. For example, transport in porosity waves may allow melts that originated from the partial melting of fertile heterogeneities to retain their incompatible trace element signatures as they rise through the mantle. Porosity waves may also provide a mechanism for mixing melts derived from heterogeneities with ambient melts derived from different depths in the mantle.
Partial melting of UHP calc-gneiss from the Dabie Mountains
NASA Astrophysics Data System (ADS)
Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin
2014-04-01
Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.
Detection of melting by X-ray imaging at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Weidner, Donald J.
2014-06-15
The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup −4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique withmore » a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.« less
Tracing mantle processes with Fe isotopes
NASA Astrophysics Data System (ADS)
Weyer, S.; Ionov, D.
2006-12-01
High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched rocks) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. Pimitive peridotites (Mg# = 0.894) yield delta56Fe = 0.02 and are significantly lighter than the basalts (average delta56Fe = 0.11). Furthermore, the peridotites display a negative correlation of iron isotopes with Mg#. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt [1, 2]. A particularly good correlation of the Fe isotope composition and Mg# shown by poorly metasomatised spinel lherzolites of three localities (Horoman, Kamchatka and Lherz) was used to model Fe isotope fractionation during partial melting, resulting in alphamantle-melt = 1.0003. This value implies higher Fe isotope fractionation between residual mantle and mantle-derived melts (i.e. Delta56Femantle-melt = 0.2-0.3) than the observed difference between the peridotites and the basalts in this study. Our data on plagioclase lherzolites from Horoman and spinel lherzolites from other localities indicate that the difference in Fe isotope composition between mantle and basalts may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events. At two localities (Tok, Siberia and Tariat, Mongolia) Fe isotopes correlates with the Fe concentration of the peridotites, which was increased up to 14.5% FeO by melt percolation. Such processes can be accompanied by chromatographic effects and produce a range of Fe isotope compositions in the percolation columns, from extremely light to heavy (delta56Fe = -0.42 to +0.17). We propose that Fe isotopes can be used as a sensitive tracer to identify such metasomatic processes in the mantle. [1] Weyer et al. (2005) EPSL 240: 251-264 [2] Williams et al. (2005) EPSL 235 : 435-452
Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.
1996-01-01
We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply there has been insufficient.
Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.
1991-01-01
Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.
Do Hf isotopes in magmatic zircons represent those of their host rocks?
NASA Astrophysics Data System (ADS)
Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao
2018-04-01
Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.
NASA Astrophysics Data System (ADS)
Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.
2015-12-01
One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.
NASA Astrophysics Data System (ADS)
Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.
2015-12-01
Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also compare the major and trace element characteristics of bulk rock and minerals found in orthopyroxenites from supra-subduction zones with the residua formed in our experiments, to differentiate between melt versus fluid, and sediment- versus basalt-derived flux in the mantle wedge. [1] Mallik et al. (2015) CMP169(5) [2] Sekine & Wyllie (1982) CMP 81(3)
NASA Astrophysics Data System (ADS)
Li, Yuan; Audétat, Andreas
2012-11-01
The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of partial melting, (ii) both MSS and sulfide liquid are precipitated during fractional crystallization of MORB, and (iii) fractional crystallization of arc magmas is strongly dominated by MSS.
NASA Astrophysics Data System (ADS)
Medard, E.; Grove, T. L.
2006-12-01
We present a thermodynamic model for the influence of H2O on liquidus temperatures of olivine-saturated primitive basaltic and andesitic melts. The thermodynamic model has been fitted to a suite of H2O-saturated liquidus experiments carried out on a primitive high-alumina basalt from Medicine Lake Volcano (82-72f) over a pressure range of 10 to 1000 MPa. The model of Silver and Stolper (S+S, 1985, J.Geol. 93:161) has been applied to the experimental data. This model uses the assumption of simple ideal mixing between water species and the anionic matrix in the melt. Water in the melt dissolves as molecular H2O, or dissociates to hydroxyl groups and an oxygen atomic network. For 82-72f, the liquidus olivine shows little compositional variability (Fo87.4 to Fo88.4) over the broad range of pressures and temperatures investigated that is not correlated with H2O content of the melt. This observation supports our assumption that major effect of H2O is on the anionic species in the melt and not on the cation equilibria (e.g. Mg and Si). The model reproduces the experimental data well. We find that there is a large influence of H2O addition on melting point for small amounts of H2O, resulting in a concave-down curvature when liquidus depression is plotted against the amount of H2O added. For addition of 0.8 and 5 wt% H2O to 82-72f, the liquidus is depressed by 35 K and 130 K, respectively. The best fits are obtained by assuming partial water dissociation to OH and H2O species, using the equilibrium constant measured by Stolper (1982). S+S applied their model to simple systems (diopside/H2O, albite/H2O, silica/H2O), and recovered the melting behavior extremely well. They also suggested that melt structure/composition influences the amount of liquidus depression caused by H2O addition. We have investigated the influence of bulk composition by performing complementary experiments on a high-magnesian andesite from Mount Shasta, and on a K, Na, and P rich alkali basalt from Tibet. With these alkali-rich compositions, H2O has a slightly smaller effect on liquidus depression, with a liquidus depression around 110 K at 5 wt% H2O. This may suggest that alkalis counteract the effect of H2O, by forming NaOH complexes in the cation matrix of the melt.
NASA Astrophysics Data System (ADS)
Gardner-Vandy, Kathryn G.; Lauretta, Dante S.; McCoy, Timothy J.
2013-12-01
The primitive achondrites provide a window into the initial melting of asteroids in the early solar system. The brachinites are olivine-dominated meteorites with a recrystallized texture that we and others interpret as evidence of partial melting and melt removal on the brachinite parent body. We present a petrologic, thermodynamic and experimental study of the brachinites to evaluate the conditions under which they formed and test our hypothesis that the precursor material to the brachinites was FeO-rich compared to the precursors of other primitive achondrites. Petrologic analysis of six brachinites (Brachina, Allan Hills (ALH) 84025, Hughes 026, Elephant Moraine (EET) 99402, Northwest Africa (NWA) 3151, and NWA 4969) and one brachinite-like achondrite (NWA 5400) shows that they are meteorites with recrystallized texture that are enriched in olivine (⩾80 vol.%) and depleted in other minerals with respect to a chondritic mineralogy. Silicates in the brachinites are FeO-rich (Fa32-36). Brachinite-like achondrite Northwest Africa 5400 is similar in mineralogy and texture to the brachinites but with a slightly lower FeO-content (Fa30). Thermodynamic calculations yield equilibration temperatures above the Fe,Ni-FeS cotectic temperature (∼950 °C) for all meteorites studied here and temperatures above the silicate eutectic (∼1050 °C) for all but two. Brachina formed at an fO2 of ∼IW, and the other brachinites and NWA 5400 formed at ∼IW - 1. All the meteorites show great evidence of formation by partial melting having approximately chondritic to depleted chondritic mineralogies, equilibrated mineral compositions, and recrystallized textures, and having reached temperatures above that required for melt generation. In an attempt to simulate the formation of the brachinite meteorites, we performed one-atmosphere, gas-mixing partial melting experiments of R4 chondrite LaPaz Ice Field 03639. Experiments at 1250 °C and an oxygen fugacity of IW - 1 produce residual phases that are within the mineralogy and mineral compositions of the brachinites. These experiments provide further evidence for the formation of brachinites as a result of partial melting of a chondritic precursor similar in mineralogy and mineral compositions to the R chondrites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tianping; Chen, Zhan W.; Gao Wei
2008-11-15
During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a moremore » regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.« less
Shock and Rarefaction Waves in a Heterogeneous Mantle
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave has a zero eigenvalue, corresponding to a wave speed of zero, which preserves a residual imprint of the initial condition. Freezing fronts textemdash those that result in a negative change in porositytextemdash feature fast path waves that travel as shocks, whereas the fast path waves of melting fronts travel as spreading, rarefaction waves.
Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb
NASA Astrophysics Data System (ADS)
Wang, Daya; Yan, Baijun; Sichen, Du
2015-04-01
The activity coefficients of niobium in Cu-Nb melts were measured by equilibrating solid NbO2 with liquid copper under controlled oxygen potentials in the temperature range of 1773 K to 1898 K (1500 °C to 1625 °C). Either CO-CO2 gas mixture or H2-CO2 gas mixture was employed to obtain the desired oxygen partial pressures. Cu-Nb system was found to follow Henry's law in the composition range studied. The temperature dependence of Henry's constant in the Cu-Nb melts could be expressed as follows: The partial molar excess Gibbs energy change of niobium in Cu-Nb melts can be expressed as follows:
NASA Astrophysics Data System (ADS)
Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.
2015-02-01
To determine partitioning of C between upper mantle silicate minerals and basaltic melts, we executed 26 experiments between 0.8 and 3 GPa and 1250-1500 °C which yielded 37 mineral/glass pairs suitable for C analysis by secondary ion mass spectrometry (SIMS). To enhance detection limits, experiments were conducted with 13C-enriched bulk compositions. Independent measurements of 13C and 12C in coexisting phases produced two C partition coefficients for each mineral pair and allowed assessment of the approach to equilibrium during each experiment. Concentrations of C in olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and garnet (gt) range from 0.2 to 3.5 ppm, and resulting C partition coefficients for ol/melt, opx/melt, cpx/melt and gt/melt are, respectively, 0.0007 ± 0.0004 (n = 2), 0.0003 ± 0.0002 (n = 45), 0.0005 ± 0.0004 (n = 17) and 0.0001 ± 0.00007 (n = 5). The effective partition coefficient of C during partial melting of peridotite is 0.00055 ± 0.00025, and therefore C is significantly more incompatible than Nb, slightly more compatible than Ba, and, among refractory trace elements, most similar in behavior to U or Th. Experiments also yielded partition coefficients for F and H between minerals and melts. Combining new and previous values of DFmineral/melt yields bulk DFperidotite/melt = 0.011 ± 0.002, which suggests that F behaves similarly to La during partial melting of peridotite. Values of DHpyx/melt correlate with tetrahedral Al along a trend consistent with previously published determinations. Small-degree partial melting of the mantle results in considerable CO2/Nb fractionation, which is likely the cause of high CO2/Nb evident in some Nb-rich oceanic basalts. CO2/Ba is much less easily fractionated, with incompatible-element-enriched partial melts having lower CO2/Ba than less enriched basalts. Comparison of calculated behavior of CO2, Nb, and Ba to systematics of oceanic basalts suggests that depleted (DMM-like) sources have 75 ± 25 ppm CO2 (CO2/Nb = 505 ± 168, CO2/Ba = 133 ± 44), whereas enriched sources of intraplate basalts similar in concentrations to primitive mantle have 600 ± 200 ppm CO2. If all mantle reservoirs are expressed in the current inventory of oceanic basalts for which nearly undegassed CO2 concentrations are available, then we estimate the likely range of mantle C concentrations to be 1.4-4.8 × 1023 grams of C, or 1.5-5.2 times the mass of the current C surface reservoir. Depending on the assumed Ba and Nb contents of average oceanic crust, resulting ridge fluxes of C range from 7.2 × 1013 to 2.9 × 1014 g/yr.
NASA Astrophysics Data System (ADS)
Safonov, Oleg
2010-05-01
Recent studies prove that the partial melting in some eclogite xenoliths in kimberlites is closely related to formation of diamonds in these rocks at 4-6 GPa and 1150-12500C [e.g. 1, 2]. Along with specific mineral assemblages, the products of the eclogite partial melting commonly include relics of potassium-rich silicic melts (45-65 wt. % of SiO2, 4-14 wt. % of K2O and K2O/Na2O > 1.0) [1, 2]. Available experimental data, however, demonstrate that such melts can not be produced by 'dry' or hydrous melting of a common eclogite. It implies that partial melting and conjugate diamond formation in mantle eclogites was triggered by infiltration of potassic fluids/melts. Assemblages of Cl-bearing phases and carbonates in eclogite xenoliths [1], and eclogitic diamonds [3-6] suggest that these agents were chloride-carbonate-H2O melts or/and chloride-H2O-CO2 fluids. In order to characterize interaction of both types of liquids with eclogites and their minerals, experiments in the eclogite-related systems with participation of CaCO3-Na2CO3-KCl-H2O or H2O-CO2-KCl are reviewed. Melting relations in the system eclogite-CaCO3-Na2CO3-KCl-H2O follow the general scheme proposed earlier for chloride-carbonate-silicate systems [7]. Below 12000C, Grt, Cpx and phlogopite (Phl) coexist with LCC only. Formation of Phl and Ca-rich Grt after Cpx indicate active reactions of Cpx with LCC accompanied by CO2 degassing and depletion of the clinopyroxene in jadeite. Subsequent dissolution of silicates in LCC at >1200OC results in formation of potassic silica-undersaturated carbonate and Cl-bearing melt (LCS) (37-40 wt. % of SiO2, 10-12 wt. % of K2O, ~3.5 wt. % of Cl) immiscible with the LCC. Compositional feature of this melt is very comparable to those of low-Mg carbonate-silicate melt inclusions in diamonds [6]. However, it is not relevant to the melt relics preserved in the partially molten eclogite xenoliths. Melting of eclogites with participation of the H2O-CO2-KCl fluid at 5 GPa at 1200-13000C [8] produces CO2-depleted aluminosilicate melts with up to 46 wt. % of SiO2, 9-10 wt. % of K2O, 2-5 wt. % of Cl, whose SiO2 and K2O contents resemble the silica-poor varieties of melt relics in the eclogite xenoliths [1, 2]. Presence of KCl in the fluid intensifies melting, that is related both to high Cl content in the melt and its enrichment in K2O via K-Na exchange reactions with the immiscible chloride melt. The ratio K2O/Cl in the melts increases with the increase of the KCl content in the system and reaches 2.5-3.5 in the melts coexisting with immiscible chloride liquids. No additional crystalline phases, except Grt, Cpx, and Phl, were observed in the above experiments. However, experiments in the model system jadeite-diopside-KCl(±H2O) at 4-5 GPa shows, that KCl liquids provoke formation of ultrapotassic Cl-bearing silica-rich (i.e. 63-65 wt. % of SiO2) melt, which is able to produce sanidine and Al-celadonite-phlogopite mica, which are observed in partially molten eclogites [2]. Dissolution of pyrope in KCl-rich liquids results in formation of spinel and olivine, which are also common products of garnet breakdown within the zones of partial melting in eclogite xenoliths [1, 2]. Thus, the reviewed experiments imply that the KCl-bearing liquids could serve as triggers for formation of the wide varieties of K-rich aluminosilicate and carbonate-silicate melts during the eclogite melting in the mantle. Nevertheless, compositional variability of the produced melts, as well as formation of some crystalline phases (sanidine, mica, spinel, olivine) during this process could be a result of highly localized action of these liquids. The study is supported by the RFBR (10-05-00040), Russian President Grant (MD-130.2008.5) and Russian Science Support Foundation. References: [1] Misra et al. (2004) Contrib. Mineral. Petrol., V. 146, P. 696-714; [2] Shatsky et al. (2008) Lithos, 105, 289-300; [3] Izraeli et al. (2001) Earth Planet. Sci. Lett., 5807, 1-10; [3] Zedgenizov et al. (2007) Doklady Earth Sci., 415, 961-964; [5] Tomlinson et al. (2006), Earth Planet. Sci. Lett., 250, 581-585; [6] Weiss et al. (2009), Lithos, 112S, 660-674; [7] Safonov et al. (2009), Lithos, 112S, 260-273; [8] Butvina et al. (2009), Doklady Earth Sci., 427A, 956-960.
Constraints on the dynamics of melt migration, flow and emplacement across the continental crust
NASA Astrophysics Data System (ADS)
Cavalcante, Carolina; Viegas, Gustavo
2015-04-01
The presence of partial melting during deformation produces a drastic change in the rheological behavior of the continental crust. The rock strength decreases with melt fractions as low as ~0.7 %. At pressure/temperature conditions typical of the middle crust, melt-bearing systems may play a critical role in the processes of strain localization and in the overall strength of the continental lithosphere. In eastern Brazil, Neoproterozoic tectonics are often associated with wide partial melting and shear zone development, that promote the exhumation of mid- to lower crustal layers where compositionally heterogeneous anatexites with variable melt fractions and leucosome structures are exposed. The leucosomes usually form interconnected networks of magma that reflect the high melt content present during deformation. In this contribution we address two case studies encompassing the dynamics of melt flow at magma chambers, represented by the Carlos Chagas anatexite, and the mechanisms of melt migration and channeling through shear zones, in which the Patos shear zone serves as an analogue. Through detailed petrostructural studies of anatexites exposed at these settings, we aim to demonstrate the way melt deforms and localizes strain, the different patterns of melt flow pathways across the crust, and the implications for the mechanical behaviour of the Earth's lithosphere during orogenic deformation.
An evolved axial melt lens in the Northern Ibra Valley, Southern Oman Ophiolite
NASA Astrophysics Data System (ADS)
Loocke, M. P.; Lissenberg, C. J.; MacLeod, C. J.
2014-12-01
The axial melt lens (AML) is a common feature lying at the base of the upper crust at fast-spreading mid-ocean ridges. It is thought to play a major role in the evolution of MORB and, potentially, accretion of the plutonic lower crust. In order to better understand the petrological processes that operate in AMLs we have examined the nature and variability of the horizon equivalent to the AML preserved in the Oman ophiolite. We present the results of a detailed investigation of a section east of Fahrah in the Ibra Valley. Here, a suite of 'varitextured' gabbros separates the sheeted dykes above from foliated gabbros below. It comprises 3 distinct units: an ophitic gabbro with pegmatitic patches (patchy gabbro; 70 m thick), overlain by a spotty gabbro (50 m), capped by a quartz-diorite (120 m). The sheeted dykes are observed to root in the quartz-diorite. Contacts between the plutonic units are gradational and subhorizontal. All of the units are isotropic. A total of 110 samples were collected for detailed petrographic and chemical analysis. With the exception of a small number of the diorites, all of the samples have a 'cumulate' component. Primary igneous amphibole is ubiquitous, present even as a minor phase in the foliated gabbros beneath, and indicating extensive differentiation and/or the presence of water in the primary liquid. France et al. (2014, Lithos) report patches of granoblastic material from this horizon in the Fahrah area, and suggest they represent the restites of partially melted pieces of the sheeted dykes. We did not, however, find any such granoblastic material, nor can the quartz-diorites represent partial melt; instead, preliminary geochemical modeling suggests that all of the units can be related by simple progressive fractional crystallization of an Oman axial ('V1' or 'Geotimes') melt. Along with the field relationships, as well as the basaltic andesite to dacite composition of the overlying sheeted dykes, this suggests that the AML was the locus of formation of the highly evolved melts. This contrasts with the more primitive AML and sheeted dyke complex documented in Wadi Abyad. From this we conclude that there is significant lateral variability in AML compositions along the Oman ridge axis.
NASA Astrophysics Data System (ADS)
Turner, Simon; Kokfelt, Thomas; Hauff, Folkmar; Haase, Karsten; Lundstrom, Craig; Hoernle, Kaj; Yeo, Isobel; Devey, Colin
2015-11-01
U-series disequilibria have provided important constraints on the physical processes of partial melting that produce basaltic magma beneath mid-ocean ridges. Here we present the first 238U-230Th-226Ra isotope data for a suite of 83 basalts sampled between 5°S and 11°S along the South Mid-Atlantic Ridge. This section of the ridge can be divided into 5 segments (A0-A4) and the depths to the ridge axis span much of the global range, varying from 1429 to 4514 m. Previous work has also demonstrated that strong trace element and radiogenic isotope heterogeneity existed in the source regions of these basalts. Accordingly, this area provides an ideal location in which to investigate the effects of both inferred melt column length and recycled materials. 226Ra-230Th disequilibria indicate that the majority of the basalts are less than a few millennia old such that their 230Th values do not require any age correction. The U-Th isotope data span a significant range from secular equilibrium up to 32% 230Th excess, also similar to the global range, and vary from segment to segment. However, the (230Th/238U) ratios are not negatively correlated with axial depth and the samples with the largest 230Th excesses come from the deepest ridge segment (A1). Two sub-parallel and positively sloped arrays (for segments A0-2 and A3 and A4) between (230Th/238U) and Th/U ratios can be modelled in various ways as mixing between melts from peridotite and recycled mafic lithologies. Despite abundant evidence for source heterogeneity, there is no simple correlation between (230Th/238U) and radiogenic isotope ratios suggesting that at least some of the trace element and radiogenic isotope variability may have been imparted to the source regions >350 kyr prior to partial melting to produce the basalts. In our preferred model, the two (230Th/238U) versus Th/U arrays can be explained by mixing of melts from one or more recycled mafic lithologies with melts derived from chemically heterogeneous peridotite source regions.
Dynamic Crystallization Experiments on LEW97008: Experimental Reproduction of Chondroid Textures
NASA Technical Reports Server (NTRS)
Nettles, J. W.; Le, L.; Lofgren, G. E.; McSween, H. Y, Jr.
2003-01-01
Dynamic crystallization experiments were conducted using LEW97008 (L3.4) as starting material. Experiments were melted at temperatures well below its liquidus (1250-1450 C) in order to document the textural and compositional changes that occur in UOC material with modest amounts of partial melting and subsequent crystallization. The textures of the experimental products compare very well to natural chondroids (partially melted nebular particles that would become chondrules if more completely melted). Thus it is possible to use the textures in these experiments as a guide to unraveling the melting and cooling histories of natural chondroids. The Antarctic meteorite LEW97008 was chosen as the starting material for our experiments. As an L3.4 it is slightly more metamorphosed than would ordinarily be preferred, but this meteorite is unusually fresh for an Antarctic meteorite, which made it attractive.
A model for foam formation, stability, and breakdown in glass-melting furnaces.
van der Schaaf, John; Beerkens, Ruud G C
2006-03-01
A dynamic model for describing the build-up and breakdown of a glass-melt foam is presented. The foam height is determined by the gas flux to the glass-melt surface and the drainage rate of the liquid lamellae between the gas bubbles. The drainage rate is determined by the average gas bubble radius and the physical properties of the glass melt: density, viscosity, surface tension, and interfacial mobility. Neither the assumption of a fully mobile nor the assumption of a fully immobile glass-melt interface describe the observed foam formation on glass melts adequately. The glass-melt interface appears partially mobile due to the presence of surface active species, e.g., sodium sulfate and silanol groups. The partial mobility can be represented by a single, glass-melt composition specific parameter psi. The value of psi can be estimated from gas bubble lifetime experiments under furnace conditions. With this parameter, laboratory experiments of foam build-up and breakdown in a glass melt are adequately described, qualitatively and quantitatively by a set of ordinary differential equations. An approximate explicit relationship for the prediction of the steady-state foam height is derived from the fundamental model.
NASA Astrophysics Data System (ADS)
Eguchi, J.; Dasgupta, R.
2015-12-01
Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions coming from subducted crust and investigate the possible role this process may play in the deep carbon cycle. [1] Dasgupta (2013) RiMG. [2] Shirey, et al. (2013) RiMG. [3] Frost & McCammon (2008) Ann Rev Earth Plan Sci. [4] Stagno, et al. (2015) CMP. [5] Kiseeva, et al. (2012) JPet. [6] Mallik & Dasgupta (2014) G3. [7] Spandler, et al. (2008) JPet.
Deep magmatism alters and erodes lithosphere and facilitates decoupling of Rwenzori crustal block
NASA Astrophysics Data System (ADS)
Wallner, Herbert; Schmeling, Harro
2013-04-01
The title is the answer to the initiating question "Why are the Rwenzori Mountains so high?" posed at the EGU 2008. Our motivation origins in the extreme topography of the Rwenzori Mountains. The strong, cold proterozoic crustal horst is situated between rift segments of the western branch of the East African Rift System. Ideas of rift induced delamination (RID) and melt induced weakening (MIW) have been tested with one- and two-phase flow physics. Numerical model parameter variations and new observations lead to a favoured model with simple and plausible definitions. Results coincide in the scope of their comparability with different observations or vice versa reduce ambiguity and uncertainties in model input. Principle laws of the thermo-mechanical physics are the equations of conservation of mass, momentum, energy and composition for a two-phase (matrix-melt) system with nonlinear rheology. A simple solid solution model determines melting and solidification under consideration of depletion and enrichment. The Finite Difference Method with markers is applied to visco-plastic flow using the streamfunction in an Eulerian formulation in 2D. The Compaction Boussinesq and the high Prandtl number Approximation are employed. Lateral kinematic boundary conditions provide long-wavelength asthenospheric upwelling and extensional stress conditions. Partial melts are generated in the asthenosphere, extracted above a critical fraction, and emplaced into a given intrusion level. Temperature anomalies positioned beneath the future rifts, the sole specialization to the Rwenzori situation, localize melts which are very effective in weakening the lithosphere. Convection patterns tend to generate dripping instabilities at the lithospheric base; multiple slabs detach and distort uprising asthenosphere; plumes migrate, join and split. In spite of appearing chaotic flow behaviour a characteristic recurrence time of high velocity events (drips, plumes) emerges. Chimneys of increased enrichment develop above the anomalies and evolve to narrow low viscous mechanical decoupling zones. Deep rooting dynamic forces then affect the surface, showing a vigorous topography. A geodynamic model, linking magmatism. mantle dynamics and lithospheric extension, qualitatively explains most of observed phenomena. Depending on physical model parameters we cover the whole spectrum from dripping lithospheric base instabilities to the full break off of the mantle lithosphere block below the Rwenzoris.
Relative chronology in high-grade crystalline terrain of the Eastern Ghats, India: new insights
NASA Astrophysics Data System (ADS)
Bhattacharya, S.; Kar, R.; Saw, A. K.; Das, P.
2011-01-01
The two major lithology or gneiss components in the polycyclic granulite terrain of the Eastern Ghats, India, are the supracrustal rocks, commonly described as khondalites, and the charnockite-gneiss. Many of the workers considered the khondalites as the oldest component with unknown basement and the charnockite-protoliths as intrusive into the khondalites. However, geochronological data do not corroborate the aforesaid relations. The field relations of the hornblende- mafic granulite with the two gneiss components together with geocronological data indicate that khondalite sediments were deposited on older mafic crustal rocks. We propose a different scenario: Mafic basement and supracrustal rocks were subsequently deformed and metamorphosed together at high to ultra-high temperatures - partial melting of mafic rocks producing the charnockitic melt; and partial melting of pelitic sediments producing the peraluminous granitoids. This is compatible with all the geochronological data as well as the petrogenetic model of partial melting for the charnockitic rocks in the Eastern Ghats Belt.
Modeling of two-phase porous flow with damage
NASA Astrophysics Data System (ADS)
Cai, Z.; Bercovici, D.
2009-12-01
Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.
Partial melting of metagreywackes, Part II. Compositions of minerals and melts
NASA Astrophysics Data System (ADS)
Montel, Jean-Marc; Vielzeuf, Daniel
A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100-1000MPa, 780-1025°C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11-20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2=67.6-74.4 wt%), peraluminous, and leucocratic (FeO+MgO=0.9-2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5-5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100MPa and 1000MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40°C at 100MPa, and 150°C at 800MPa. The position of the isotects is interpreted in terms of both the solubility of water in the melt and the nature of the reactions involved in the melting process. A comparison with other partial melting experiments suggests that pelites are the most fertile source rocks above 800MPa. The difference in fertility between pelites and greywackes decreases with decreasing pressure. A review of the glass compositions obtained in experimental studies demonstrates that partial melting of fertile rock types in the crust (greywackes, pelites, or orthogneisses) produces only peraluminous leucogranites. More mafic granitic compositions such as the various types of calk-alkaline rocks, or mafic S-type rocks, have never been obtained during partial melting experiments. Thus, only peraluminous leucogranites may correspond to liquids directly formed by partial melting of metasediments. Other types of granites involve other components or processes, such as restite unmixing from the source region, and/or interaction with mafic mantle-derived materials.
NASA Astrophysics Data System (ADS)
Butler, S. L.
2010-09-01
A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the wavelength becomes similar to one compaction length. Once the wavelength becomes similar to one compaction length, the growth of the amplitude of the band slows and shorter wavelength bands that are increasing in amplitude at a greater rate take over. This may provide a mechanism to explain the experimental observation that band spacing is controlled by the compaction length ( Kohlstedt and Holtzman, 2009).
NASA Technical Reports Server (NTRS)
Ryder, Graham
1994-01-01
On the Earth there is no firm evidence that impacts can induce volcanic activity. However, the Moon does provide a very likely example of volcanism induced by an immense impact: the Imbrium basin-forming event was immediately succeeded by a crustal partial melting event that released basalt flows characterized by K, rare-earth elements (REE), P, and other trace elements (KREEP) over a wide area creating the Apennine Bench Formation. Impact total melting is inconsistent with the chemistry and petrography of these Apollo 15 KREEP basalts, which are quite unlike the impact melts recognized at Taurus-Littrow as the products of the Serenitatis impact. The Imbrium impact and the KREEP volcanic events are indistinguishable in radiometric age, and thus the volcanism occurred less than about 20 Ma later than the impact (less than about 0.5% of lunar history). The sample record indicates that such KREEP volcanism had not occurred in the region prior to that time, and demonstrates that it never occurred again. Such coincidence in time implies a genetic relationship between the two events, and impact-induced partial melting or release appears to be the only feasible process. Nonetheless, the characteristics of the Apollo 15 KREEP basalts suggest large-degree crustal melting that is not easy to reconcile with the inability of lunar pressure release alone to induce partial melting unless the source was already almost at its melting point. The earliest history of the surface of the Earth, at a time of greater internal heat production and basin-forming impacts, could have been greatly influenced by impact-induced melting.
NASA Technical Reports Server (NTRS)
Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.
2004-01-01
Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.
NASA Astrophysics Data System (ADS)
Wang, Songjie; Wang, Lu
2015-04-01
Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism. Zr-in-rutile thermometry shows their formation temperature to be 586-664 oC at 1.5-2.5 GPa. Barite-bearing MS inclusions with Ba-bearing K-feldspar (type-II) connected by Kfs+Pl+Bt veinlets of in-situ phengite breakdown and thin barite veinlets along grain boundaries (type-III) are products of phengite breakdown and induced fluid flow during exhumation. These barites have witnessed the gradational separation process of melt/ fluid from miscibility on/above the second critical endpoint during UHP metamorphism, to immiscibility along the exhumation path of the subducted slab. Associated reactions from pyrite to hematite and goethite with the type-III barite ring surrounding the pyrite provide evidence for a local high oxygen fugacity environment during eclogite partial melting and subsequent melt/fluid crystallization processes. Moreover, large grain barite aggregations (type-IV) modified by amphibole+albite symplectite are most likely formed by release of molecular and hydroxyl water from anhydrous minerals of eclogite during high-grade amphibolite-facies retrogression. The growth of multi-stage barites in UHP eclogite further advances our understanding of fluid/melt transfer, crystallization processes along the subduction-exhumation path of the partially melted eclogite, broadening our knowledge of melt/fluid evolution within subduction-collision zones worldwide. REFERENCES Chen Y.X., et al., 2014, Lithos, 200, 1-21. Liu J.B., et al., 2000, Acta Petrologica Sinica 16(4), 482-484. Zeng L.S., et al., 2007, Chinese Science Bulletin, 52(21), 2995-3001. Gao X.Y., et al., 2012, Journal of Metamorphic Geology, 30(2), 193-212.
The Effect of Fe-Ti-rich Cumulate Overturn on Evolution of the Lunar Interior
NASA Astrophysics Data System (ADS)
Mallik, A.; Ejaz, T.; Shcheka, S.; Garapic, G.; Petitgirard, S.; Blanchard, I.
2017-12-01
The last 5% of magma ocean crystallized Fe-Ti rich cumulates (FTC) emplaced below the anorthitic crust [1]. Due to gravitational instability, FTC underwent diapiric downwelling [2], associated with overturn of the lunar mantle. Petrological studies on Apollo basalts with variable TiO2 place their sources between 1.5-3 GPa. This indicates the presence of heterogeneous Ti-rich domains in the lunar interior which could either be produced by inefficient overturn and mixing [3], or due to post-overturn upwelling of FTC from the core-mantle boundary (CMB) [4]. Also, a seismically attenuating layer at the CMB ( 4.5 GPa) maybe associated with partial melt of overturned FTC [5]. Thus, it is important to investigate the phase equilibria of FTC with and without assimilation with the surrounding mantle, to understand better the effect of the overturn process on lunar evolution. We performed phase equilibria experiments at 2 and 4.5 GPa, 1230 to 1700 °C using a multi-anvil apparatus on FTC and a 1:1 mixture of FTC and mantle composition. FTC produced Fe-Ti rich (FeO 13-26 wt.%, TiO2 11-18 wt.%), Mg-poor (MgO 6-10 wt.%) basalts with residues of clinopyroxene+quartz+Fe-metal±spinel, while the mixture of FTC and mantle produced Fe-Ti-Mg rich (FeO 10-13 wt.%, TiO2 5-11 wt.% and MgO 20-30 wt.%) basalts with residues of orthopyroxene+olivine+Fe-metal±spinel±garnet. We find that partial melting of overturned cumulates within the lunar mantle can reproduce certain chemical attributes of Apollo high Ti basalts. Also, to test whether the partial melt of overturned cumulates can be stable at the CMB to produce the attenuating layer, we estimated the densities of these melt compositions using the published range of KT and K' of high Fe-Ti picrites. We find that the densities obtained from the published spread in K' and KT values yield inconclusive results about the stability of these partial melts at the CMB. This is being resolved by in-situ experimental determination of the densities of the high Fe-Ti melt compositions, currently underway. If these partial melts are indeed stable at the CMB, they bracket the present-day CMB temperature between 1300-1490 °C (5 to 30% partial melting [5]).[1] Snyder et al. (1992), GCA [2] Hess & Permentier (1995), EPSL [3] Brown & Grove (2015), GCA [4] Zhong et al. (2000), EPSL [5] Weber et al. (2011), Science
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2016-12-01
We perform ab initio molecular dynamics simulations to study structural and transport properties in liquid A l1 -xC ux alloys, with copper composition x ≤0.4 , in relation to the applicability of the Stokes-Einstein (SE) equation in these melts. To begin, we find that self-diffusion coefficients and viscosity are composition dependent, while their temperature dependence follows an Arrhenius-type behavior, except for x =0.4 at low temperature. Then, we find that the applicability of the SE equation is also composition dependent, and its breakdown in the liquid regime above the liquidus temperature can be related to different local ordering around each species. In this case, we emphasize the difficulty of extracting effective atomic radii from interatomic distances found in liquid phases, but we see a clear correlation between transport properties and local ordering described through the structural entropy approximated by the two-body contribution. We use these findings to reformulate the SE equation within the framework of Rosenfeld's scaling law in terms of partial structural entropies, and we demonstrate that the breakdown of the SE relation can be related to their temperature dependence. Finally, we also use this framework to derive a simple relation between the ratio of the self-diffusivities of the components and the ratio of their partial structural entropies.
NASA Technical Reports Server (NTRS)
Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.
1989-01-01
A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.
Partial structure factors reveal atomic dynamics in metallic alloy melts
NASA Astrophysics Data System (ADS)
Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Kordel, T.; Hansen, T. C.; Meyer, A.
2017-07-01
We investigate the dynamical decoupling of the diffusion coefficients of the different components in a metallic alloy melt, using a combination of neutron diffraction, isotopic substitution, and electrostatic levitation in Zr-Ni melts. We show that excess Ni atoms can diffuse more freely in a background of saturated chemical interaction, causing their dynamics to become much faster and thus decoupled than anticipated from the interparticle interactions. Based on the mode-coupling theory of the glass transition, the averaged structure as given by the partial static structure factors is able to explain the observed dynamical behavior.
NASA Astrophysics Data System (ADS)
Wright, S.; Snow, J. E.; Gazel, E.; Sisson, V.
2010-12-01
The Santa Elena Ophiolite Complex (SEOC) is located on the west coast of Northern Costa Rica, near the Nicaraguan border. It consists primarily of preserved oceanic crustal rocks and underlying upper mantle thrust onto an accretionary complex. The petrogenesis and tectonic origin of this complex have widely been interpreted to be either a preserved mantle portion of the Caribbean Large Igneous Province (CLIP) as it drifted between North and South America from the Galapagos hotpot into the present day Caribbean Ocean around 80 Ma or as the mantle section to the nearby Nicoya complex. Previous structural work suggests that SEOC is a supra-subduction complex, not related to the CLIP or Nicoya. Our preliminary results agree. Mantle peridotites collected from the Santa Elena Ophiolite Complex consist primarily of spinel lherzolite (61 %) with minor amounts of harzburgite and dunite (22 % and 16 % respectively). Spinel Cr# [molar Cr / (Cr+Al)*100] is widely accepted to constrain mantle partial melting and lithospheric melt stagnation. Cr# of spinels within Santa Elena lherzolites fall between 12 and 35, suggesting an extent of 3 % to 13 % partial melting. Cr# of harzburgites range from 35 to 39, suggesting 13 % to 14 % partial melting. This range of partial melting suggests only modest depletion of this exposed portion of the ancient uppermost mantle. TiO2 concentrations of the lherzolite and harzburgite range from 0.004% to 0.128%, with the exception of one sample, SE10 - 17 (0.258%), and fall within the normal melting trend for mantle peridotites. The presence of dunite indicates that melt flow and associated melt - rock reaction with the surrounding peridotite took place within this portion of the mantle. A Cr# of 84.5 from one of these dunite samples indicate that significant melt rock reaction with refractory melts took place. Such results are rarely found in mid-ocean ridge abyssal peridotite settings, and are currently found primarily in forearc tectonic settings. However, due to the overall "normal" TiO2 concentrations in all but one spinel peridotite requires that if melt flow did occur, that the melt be nearly depleted in titanium. The relatively low Cr#'s and TiO2 concentrations of spinel in these peridotites that suggest low degrees of partial melting along with the paleo presence of melt flow and melt-rock reaction by low titanium melts, such as boninites, point toward a young fore-arc model for the tectonic origin of this ophiolite body rather than a preserved mantle portion of the CLIP. Additionally, two lines of evidence suggest SEOC was emplaced prior to the collision of the CLIP with North and South America. The SEOC is 1) capped by a Campanian (83.5 - 70.6 Ma) rudist limestone and 2) lies uncomformably atop Cenomanian (93.6 - 99.6 Ma) radiolarite beds. This suggests that the mantle portion of the SEOC was emplaced and exposed at the Caribbean ocean floor prior to the Late Cretaceous (Campanian), but no earlier than the Cenomanian. This combined tectonic and geochemical evidence suggests SEOC may be a portion of the proto-arc that existed between the Americas in the Cretaceous prior to assault by the CLIP.
Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow
Wang, Qiang; Hawkesworth, Chris J.; Wyman, Derek; Chung, Sun-Lin; Wu, Fu-Yuan; Li, Xian-Hua; Li, Zheng-Xiang; Gou, Guo-Ning; Zhang, Xiu-Zheng; Tang, Gong-Jian; Dan, Wei; Ma, Lin; Dong, Yan-Hui
2016-01-01
There is considerable controversy over the nature of geophysically recognized low-velocity–high-conductivity zones (LV–HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7–0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700–1,050 °C and pressures of 0.5–1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15–50 km in areas where the LV–HCZs have been recognized. This provides new petrological evidence that the LV–HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau. PMID:27307135
NASA Astrophysics Data System (ADS)
Safonov, O.; Butvina, V.
2009-04-01
Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high affinity of Al and Si to potassium. Additional products of this interaction are spinel and, possibly, olivine. These minerals are common products of garnet breakdown within the zones of partial melting of eclogite xenoliths [1, 2]. It is evident that simultaneous action of fluid species (H2O, CO2) and chlorides would produce much stronger effect. Following to this assumption, we further performed experiments on melting of model and natural eclogites with participation of the H2O-CO2-KCl fluids at 5 GPa. Comparison with the KCl-free melting (i.e. H2O-CO2 fluid only) shows that addition of KCl to the fluid intensifies melting. This effect is related both to high Cl content (up to 3-5.5 wt. %) in the newly formed silicate melt and its enrichment in K2O via K-Na exchange reactions with the immiscible chloride melt. Owing to these reactions, the ratio K2O/Cl in the melts increases with the increase of the KCl content in the system and reaches 2.5-3.5 in the melts coexisting with immiscible chloride liquids. However, the KCl/(H2O+CO2) ratio in the fluid does not influence on the K2O/Cl ratio in the melts suggesting that solubility of KCl in the melts practically does not depends on a presence of the H2O-CO2 fluid. Thus, the experiments imply that the KCl-bearing fluids or aqueous(±carbonic) KCl liquids could serve as a possible factor assisting to formation of the K-rich Cl-bearing aluminosilicate melts during the eclogite melting in the mantle. In turn, it means that the KCl content in such rock-melt-fluid systems could exceed 5 wt. %. The study is supported by the RFBR (07-05-00499), the Leading Scientific Schools Program (1949.2008.5), Russian President Grant MD-130.2008.5, and Russian Science Support Foundation. References: [1] Misra et al. (2004) Contrib. Mineral. Petrol. V. 146. P. 696-714; [2] Shatsky et al. (2008) Lithos. 105. 289-300; [3] Zedgenizov et al. (2007) Doklady Earth Sci. 415. 961-964; [4] Izraeli et al. (2001) Earth Planet. Sci. Lett. 5807. 1-10.
Thermo-chemical evolution of a one-plate planet: application to Mars
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Breuer, D.
2012-04-01
Little attention has been devoted so far to find a modelling framework able to explain the geophysical implications of the Martian meteorites, the so-called SNC meteorites. Geochemical analysis of the SNC meteorites implies the rapid formation, i.e. before ~4.5 Ga, of three to four isotopically distinct reservoirs that did not remix since then [3]. In [4] the authors argue that a fast overturn of an early fractionated magma ocean may have given origin to a stably stratified mantle with a large density gradient capable to keep the mantle heterogeneous and to prevent mixing due to thermal convection. This model, albeit capable to provide a plausible explanation to the SNC meteorites, suggests a conductive mantle after the overturn which is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. In this work, we present an alternative scenario assuming a homogeneous mantle and accounting for compositional changes and melting temperature variations due to mantle depletion, dehydration stiffening of the mantle material due to water partitioning from the minerals into the melt, redistribution of radioactive heat sources between mantle and crust and thermal conductivity decrease in crustal regions. We use the 2D cylindrical - 3D spherical convection code Gaia [1, 2] and to model the above mentioned effects of partial melting we use a Lagrangian, particle based method. Simulation results show that chemical reservoirs, which can be formed due to partial melting when accounting for compositional changes and dehydration stiffening, remain stable over the entire thermal evolution of Mars. However, an initially depleted (i.e. buoyant harzburgite) layer of about 200 km is needed. This depleted layer in an otherwise homogeneous mantle may be the consequence of equilibrium fractionation of a freezing magma ocean where only the residual melt rises to the surface. If the heat released by accretion never allowed for a magma ocean to build, a large amount of partial melting of about 20% in the earliest stage is required to form such a buoyant layer. These models show an active convective interior and long lived partial melt production, which agrees with the volcanic history of Mars [5].
NASA Astrophysics Data System (ADS)
Moyen, J.-F.; Martin, H.; Jayananda, M.; Peucat, J.-J.
2003-04-01
The South Indian Dharwar Craton assembled during the late-Archaean (ca. 2.5 Ga). This event was associated with intense granite genesis and emplacement. Based on petrography and geochemistry, 4 main types of late Archaean granitoids were distinguished: (1) Anatectic granites (and diatexites), formed by partial melting of TTG gneisses; (2) Classical TTGs; (3) Sanukitoids, generated by interaction between slab melts (TTG) and mantle peridotite; (4) The high HFSE Closepet granite, interpreted as derived from partial melting of a mantle metasomatized by slab melts (TTG). While the 3 later groups all are interpreted as resulting from slab melt/mantle wedge interactions, their differences are related to decreasing felsic melt/peridotite ratios during the ascent “slab melts” in the mantle wedge above an active subduction zone. Field data together with geochronology and isotope geochemistry allow to subdivide the Dharwar craton into three main domains: (1) The Western Dharwar Craton (WDC) is an old (3.3 2.9 Ga ), stable continental block with limited amounts of 2.5 Ga old anatectic granites. (2) The Eastern Dharwar Craton (EDC) is subdivided into two parts: (2a) West of Kolar Schist Belt, a region of 3.0-2.7 Ga old basement intruded by 2.5 Ga old anatectic granites; (2b) East of Kolar, an area featuring mainly 2.5 Ga old diatexites and granites, derived of partial melting of a newly accreted TTG crust. Anatectic granites are ubiquitous, and late in the cratonic evolution; they witnessed generalized melting of a juvenile crust. In contrast, deep-originated granites emplaced before this melting and are restricted to the boundaries between the blocks. This structure of distinct terranes separated by narrow bands operating as channels for deep-originated magmas provides independent evidences for a two-stage evolution: an arc accretion context for the TTG, sanukitoids and related rocks, immediately followed by high temperature reworking of the newly accreted craton, yielding diatexites and anatectic granites. From West to East, granitoids emplaced during the subduction stage evidence increasing slab-melt/peridotite interactions, from Closepet granite to TTG gneisses East of Kolar. These features are consistent with a model of westward subduction/accretion against a stable cratonic nucleus: partial melting along the subducting slab takes place at deeper and deeper levels from East to West, thus resulting in increasing melt/mantle interactions. Sanukitoids and Closepet type granites thus appear to be related to slab melt/mantle wedge interactions similar to those responsible for the secular evolution of TTG (Martin and Moyen, this session), but with still lower melt/peridotite ratios.
NASA Astrophysics Data System (ADS)
Kargin, Alexei; Sazonova, Lyudmila; Nosova, Anna; Kovalchuk, Elena; Minevrina, Elena
2015-04-01
The Arkhangelsk province is located in the northern East European Craton and includes more than 80 bodies of kimberlite, alkaline picrite and other ultramafic and mafic rocks. They erupted through the Archean-Early Proterozoic basement into the Riphean-Paleozoic sedimentary cover. The Grib kimberlite pipe is located in the central part of the Arkhangelsk province in the Verkhotina (Chernoozerskoe) kimberlite field. The age of the Grib kimberlite is 376+-3 Ma (Rb-Sr by phlogopite). The Grib kimberlite pipe is the moderate-Ti kimberlites (TiO2 1-2 wt %) with strongly fractionated REE pattern , (La/Yb)n = 38-87. The Nd isotopic composition of the Grib pipe ranges epsilon Nd from -0.4 to + 1.0 and 87Sr/86Sr(t) from 0.7042 to 0.7069 (Kononova et al., 2006). Geochemical (Jeol JXA-8200 electron microprobe; SIMS; LA-ICP-MS) composition of clinopyroxene and garnet from mantle-derived xenoliths of the Grib kimberlite pipe was studied to provide new insights into metasomatic processes in the mantle beneath the Arkhangelsk province. Based on both major and trace element data, five geochemical groups of peridotitic garnet were distinguished. The partial melting of metasomatic peridotite with crystallization of a garnet-clinopyroxene association, and orthopyroxene assimilation by protokimberlitic melts was simulated and a model of garnet and clinopyroxene metasomatic origin was proposed. The model includes three stages: 1. Mantle peridotite was fertilized by subduction-derived sediment partial melts/fluids at the lithosphere-asthenosphere boundary to yield a CO2-bearing mantle peridotite (source I). 2. The partial melting of the carbonate-bearing mantle source 1 produced carbonatite-like melts (a degree of partial melting was 1,5 %), which could form the carbonatite-kimberlite rocks of the Mela River (Arkhangelsk province, 50 km North-West of Grib kimberlite) and also produce the metasomatic reworking of (carbonate-bearing) mantle peridotite (mantle source II) and form type-1 garnets. 3. The melting of the reworked carbonate-bearing mantle peridotite (mantle source II, degree of partial melting was 1 %) resulted in the generation of proto-kimberlite melts and type-2 garnet. These proto-kimberlite melts interacted with lithospheric mantle orthopyroxene to produce megacryst garnets and melts that formed the Grib kimberlite. This stage was responsible for the formation of the metasomatic equilibrium clinopyroxene -- garnet assemblage (type-3) in lithospheric peridotite and metasomatic transformation of deformed peridotite (type 4 and 5 garnet). This model suggests that peridotitic garnet originated at the first stage in the presence of subduction-generated melts or fluids. Kononova V.A., Nosova A.A., Pervov V.A., Kondrashov I.A. (2006). Compositional variations in kimberlites of the east European platform as a manifestation of sublithospheric geodynamic processes // Doklady Earth Sciences. V. 409. Is. 2. Pp. 952-957.
Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics
NASA Technical Reports Server (NTRS)
Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.
2014-01-01
High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.
Modelling melting in crustal environments, with links to natural systems in the Nepal Himalayas
NASA Astrophysics Data System (ADS)
Isherwood, C.; Holland, T.; Bickle, M.; Harris, N.
2003-04-01
Melt bodies of broadly granitic character occur frequently in mountain belts such as the Himalayan chain which exposes leucogranitic intrusions along its entire length (e.g. Le Fort, 1975). The genesis and disposition of these bodies have considerable implications for the development of tectonic evolution models for such mountain belts. However, melting processes and melt migration behaviour are influenced by many factors (Hess, 1995; Wolf &McMillan, 1995) which are as yet poorly understood. Recent improvements in internally consistent thermodynamic datasets have allowed the modelling of simple granitic melt systems (Holland &Powell, 2001) at pressures below 10 kbar, of which Himalayan leucogranites provide a good natural example. Model calculations such as these have been extended to include an asymmetrical melt-mixing model based on the Van Laar approach, which uses volumes (or pseudovolumes) for the different end-members in a mixture to control the asymmetry of non-ideal mixing. This asymmetrical formalism has been used in conjunction with several different entropy of mixing assumptions in an attempt to find the closest fit to available experimental data for melting in simple binary and ternary haplogranite systems. The extracted mixing data are extended to more complex systems and allow the construction of phase relations in NKASH necessary to model simple haplogranitic melts involving albite, K-feldspar, quartz, sillimanite and {H}2{O}. The models have been applied to real bulk composition data from Himalayan leucogranites.
NASA Astrophysics Data System (ADS)
Mandler, B. E.; Grove, T. L.
2015-12-01
Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.
A benchmark initiative on mantle convection with melting and melt segregation
NASA Astrophysics Data System (ADS)
Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert
2016-04-01
In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement is achieved among the various participating codes. For case 4 melting/freezing formulations require some attention to avoid sub-solidus melt fractions. A case 5 is planned where all melt will be extracted and, reinserted in a shallow region above the melted plume. The motivation of this presentation is to summarize first experiences and to finalize the case definitions. References: Blankenbach, B., Busse, F., Christensen, U., Cserepes, L. Gunkel, D., Hansen, U., Harder, H. Jarvis, G., Koch, M., Marquart, G., Moore D., Olson, P., and Schmeling, H., 1989: A benchmark comparison for mantle convection codes, J. Geophys., 98, 23-38. Schmeling, H., 2000: Partial melting and melt segregation in a convecting mantle. In: Physics and Chemistry of Partially Molten Rocks, eds. N. Bagdassarov, D. Laporte, and A.B. Thompson, Kluwer Academic Publ., Dordrecht, pp. 141 - 178.
Bridgman growth of semiconductors
NASA Technical Reports Server (NTRS)
Carlson, F. M.
1985-01-01
The purpose of this study was to improve the understanding of the transport phenomena which occurs in the directional solidification of alloy semiconductors. In particular, emphasis was placed on the strong role of convection in the melt. Analytical solutions were not deemed possible for such an involved problem. Accordingly, a numerical model of the process was developed which simulated the transport. This translates into solving the partial differential equations of energy, mass, species, and momentum transfer subject to various boundary and initial conditions. A finite element method with simple elements was initially chosen. This simulation tool will enable the crystal grower to systematically identify and modify the important design factors within her control to produce better crystals.
Chemical consequences of compaction within the freezing front of a crystallizing magma ocean
NASA Astrophysics Data System (ADS)
Hier-Majumder, S.; Hirschmann, M. M.
2013-12-01
The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.
NASA Astrophysics Data System (ADS)
Yu, Xun; Lee, Cin-Ty A.
2016-09-01
The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from <5% to >30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.
Growth of early continental crust by partial melting of eclogite.
Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D
2003-10-09
The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.
Ice-Penetrating Robot for Scientific Exploration
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Carsey, Frank; French, Lloyd
2007-01-01
The cryo-hydro integrated robotic penetrator system (CHIRPS) is a partially developed instrumentation system that includes a probe designed to deeply penetrate the European ice sheet in a search for signs of life. The CHIRPS could also be used on Earth for similar exploration of the polar ice caps especially at Lake Vostok in Antarctica. The CHIRPS probe advances downward by a combination of simple melting of ice (typically for upper, non-compacted layers of an ice sheet) or by a combination of melting of ice and pumping of meltwater (typically, for deeper, compacted layers). The heat and electric power for melting, pumping, and operating all of the onboard instrumentation and electronic circuitry are supplied by radioisotope power sources (RPSs) and thermoelectric converters energized by the RPSs. The instrumentation and electronic circuitry includes miniature guidance and control sensors and an advanced autonomous control system that has fault-management capabilities. The CHIRPS probe is about 1 m long and 15 cm in diameter. The RPSs generate a total thermal power of 1.8 kW. Initially, as this power melts the surrounding ice, a meltwater jacket about 1 mm thick forms around the probe. The center of gravity of the probe is well forward (down), so that the probe is vertically stabilized like a pendulum. Heat is circulated to the nose by means of miniature pumps and heat pipes. The probe melts ice to advance in a step-wise manner: Heat is applied to the nose to open up a melt void, then heat is applied to the side to allow the probe to slip down into the melt void. The melt void behind the probe is allowed to re-freeze. Four quadrant heaters on the nose and another four quadrant heaters on the rear (upper) surface of the probe are individually controllable for steering: Turning on two adjacent nose heaters on the nose and two adjacent heaters on the opposite side at the rear causes melt voids to form on opposing sides, such that the probe descends at an angle from vertical. This steering capability can be used to avoid debris trapped in the ice or to maneuver closer to a trapped object of scientific interest.
NASA Astrophysics Data System (ADS)
Eguchi, J.; Dasgupta, R.
2017-12-01
Investigating the redox state of the convective upper mantle remains challenging as there is no way of retrieving samples from this part of the planet. Current views of mantle redox are based on Fe3+/∑Fe of minerals in mantle xenoliths and thermodynamic calculations of fO2 [1]. However, deep xenoliths are only recoverable from continental lithospheric mantle, which may have different fO2s than the convective oceanic upper mantle [1]. To gain insight on the fO2 of the deep parts of the oceanic upper mantle, we probe CO2-trace element systematics of basalts that have been argued to receive contributions from subducted crustal lithologies that typically melt deeper than peridotite. Because CO2 contents of silicate melts at graphite saturation vary with fO2 [2], we suggest CO2-trace element systematics of oceanic basalts which sample deep heterogeneities may provide clues about the fO2 of the convecting mantle containing embedded heterogeneities. We developed a new model to predict CO2 contents in nominally anhydrous silicate melts from graphite- to fluid-saturation over a range of P (0.05- 5 GPa), T (950-1600 °C), and composition (foidite-rhyolite). We use the model to calculate CO2 content as a function of fO2 for partial melts of lithologies that vary in composition from rhyolitic sediment melt to silica-poor basaltic melt of pyroxenites. We then use modeled CO2 contents in mixing calculations with partial melts of depleted mantle to constrain the fO2 required for partial melts of heterogeneities to deliver sufficient CO2 to explain CO2-trace element systematics of natural basalts. As an example, Pitcairn basalts, which show evidence of a subducted crustal component [3] require mixing of 40% of partial melts of a garnet pyroxenite at ΔFMQ -1.75 at 3 GPa. Mixing with a more silicic composition such as partial melts of a MORB-eclogite cannot deliver enough CO2 at graphite saturation, so in this scenario fO2 must be above the EMOG/D buffer at 4 GPa. Results suggest convecting upper mantle may be more oxidized than continental lithospheric mantle, and fO2 profiles of continental lithospheric mantle may not be applicable to convective upper mantle.[1] Frost, D, McCammon, C. 2008. An Rev E & P Sci. (36) p.389-420; [2] Holloway, J, et al. 1992. Eu J. Min. (4) p. 105-114; [3] Woodhead, J, Devey C. 1993. EPSL. (116) p. 81-99.
NASA Astrophysics Data System (ADS)
Basuyau, C.; Tiberi, C.; Leroy, S.; Stuart, G.; Al-Lazki, A.; Al-Toubi, K.; Ebinger, C.
2010-02-01
Gravity data and P-wave teleseismic traveltime residuals from 29 temporary broad-band stations spread over the northern margin of the Gulf of Aden (Dhofar region, Oman) were used to image lithospheric structure. We apply a linear relationship between density and velocity to provide consistent density and velocity models from mid-crust down to about 250 km depth. The accuracy of the resulting models is investigated through a series of synthetic tests. The analysis of our resulting models shows: (1) crustal heterogeneities that match the main geological features at the surface; (2) the gravity edge effect and disparity in anomaly depth locations for layers at 20 and 50 km; (3) two low-velocity anomalies along the continuation of Socotra-Hadbeen and Alula-Fartak fracture zones between 60 and 200 km depth; and (4) evidence for partial melting (3-6 per cent) within these two negative anomalies. We discuss the presence of partial melting in terms of interaction between the Sheba ridge melts and its along-axis segmentation.
NASA Astrophysics Data System (ADS)
Will, Thomas M.; Schmädicke, Esther; Frimmel, Hartwig E.
2010-11-01
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1-4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7-10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100-1,150°C and c. 20-23 kbar, corresponding to an equilibration depth of c. 70 ± 5 km and an unusually low thermal gradient of some 11-17°C/km. A thermal re-equilibration of the peridotite occurred at ~850-1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70 ± 5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50-160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.
NASA Astrophysics Data System (ADS)
Mallik, A.; Dasgupta, R.
2013-12-01
The presence of heterogeneity in the form of recycled altered oceanic crust (MORB-eclogite) has been proposed in the source of HIMU ocean island basalts (OIBs) [1]. Partial melts of recycled oceanic crust, however, are siliceous and Mg-poor and thus do not resemble the major element compositions of alkalic OIBs that are silica-poor and Mg-rich. In an upwelling heterogenous mantle, MORB-eclogite undergoes melting deeper than volatile-free peridotite, hence, andesitic partial melt derived from eclogite will react with subsolidus peridotite. We have examined the effect of such a melt-rock reaction under volatile-free conditions at 1375 °C, 3 GPa by varying the melt-rock ratio from 8 to 50 wt.% [2]. We concluded that the reacted melts reproduce certain major element characteristics of oceanic basanites, but not nephelinites. Also, the melt-rock reaction produces olivine and garnet-bearing websteritic residue. Because presence of CO2 has been invoked in the source of many HIMU ocean islands, the effect of CO2 on such a melt-rock reaction needs to be evaluated. Accordingly, we performed reaction experiments on mixtures of 25% and 33% CO2-bearing andesitic partial melt and peridotite at 1375 °C, 3 GPa by varying the dissolved CO2 content of the reacting melts from 1 to 5 wt.% (bulk CO2 from 0.25 to 1.6 wt.%) [3, this study]. Owing to melt-rock reaction, with increasing CO2 in the bulk mixture, (a) modes of olivine and cpx decrease while melt, opx and garnet increase, (b) reacted melts evolve to greater degree of Si-undersaturation (from andesite through basanite to nephelinite), (c) enhanced crystallization of garnet take place with higher CO2 in the melt, reducing alumina content of the reacted melts, and (d) CaO and MgO content of the reacted melts increase, without affecting FeO* and Na2O contents (indicating greater propensity of Ca2+ and Mg2+ over Fe2+ and Na+ to enter silicate melt as carbonate). For a given melt-MgO, the CO2-bearing reacted melts are a better match for alkalic basalts in terms of SiO2, Al2O3, CaO and CaO/Al2O3 than the CO2-free ones [3]. Using the experimental data, we have further developed an empirical model to predict mineral modes in residue and reacted melt compositions for olivine-opx saturated lithologies as a function of melt:rock ratio and bulk CO2 content. For example, in case of 5 wt.% eclogite melt infiltrating in fertile peridotite, with bulk CO2 from 0 to 2 wt.%, the derivative melts show an increase in CaO and MgO from 11 to 16 wt.%, 15 to 24 wt.%, respectively and decrease in SiO2 and Al2O3 from 45 to 39 wt.% and 14 to 5 wt.%, respectively. From this model, we have created a major element composition space of MORB-eclogite-derived reactive melt mass vs. bulk CO2 and we predict that primary HIMU-type magmas require <5 to 10 wt.% of MORB-eclogite melt input and up to 0.8 wt.% bulk CO2 in their source. Our model also allows determining the residual lithology at the source of alkalic basalts, produced owing to eclogite melt-peridotite reaction with or without CO2. [1] Jackson & Dasgupta (2008) EPSL 276, 175-186. [2] Mallik & Dasgupta (2012) EPSL 329-330, 97-108. [3] Mallik & Dasgupta (in press) JPetrol.
NASA Astrophysics Data System (ADS)
Taylor-West, J.; Katz, R. F.
2014-12-01
The mechanics of partially molten regions of the mantle are not well understood--in part due to the inaccessibility of these regions to observation. However it is widely agreed that experiments performed on synthetic mantle rocks [e.g KZK10] act as a reasonable test of theoretical models of magma dynamics. One robust feature of experiments on partially molten mantle rocks deformed under strain is the emergence of high-porosity bands at an angle of between 15° and 20° to the shear plane. A number of theoretical approaches have been made to reproduce the formation of these low angle bands in models. The most recent approaches, for example by Takei and Katz [TK13], have involved the inclusion of anisotropic viscosity in diffusion creep arising from the grain-scale redistribution of melt as formulated in a theoretical model by Takei and Holtzman [TH09]. It is reasonable to assume that this melt-preferred orientation (MPO) that leads to anisotropy in viscosity may also lead to anisotropy in permeability. However, the effect of anisotropic permeability remains unexplored. We investigate its impact on the dynamics of partially molten rock, and specifically on its role in low-angle band formation in deformation under simple shear. We work with the continuum model of two-phase-flow as formulated by McKenzie [M84] with the addition of anisotropic permeability. There are some apparent inconsistencies in this model. Firstly, the model predicts continued segregation of melt into bands of 100% porosity, while experiments report maximum porosities in the region of 30%. Secondly, linear stability analyses find maximal growth-rates for porosity perturbations that vary on arbitrarily small length-scales. We study how the inclusion of surface forces into the model could regulate these effects. REFERENCES: KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. TH09 = Takei & Holtzman (2009a), JGR, 10.1029/2008JB005850. M84 = McKenzie (1984), J Pet, 10.1093/petrology/25.3.713.
Ca Isotopes Fingerprinting the Earliest Crustal Evolution
NASA Astrophysics Data System (ADS)
Kreissig, K.; Elliott, T. R.
2001-12-01
The mechanisms of continent formation remain unclear and can be explained in two contrasting ways, using either a steady state crustal growth model involving massive crustal recycling or continuous crustal growth models. Recent developments in mass spectrometry manifest in the new Finnigan-Triton allow Ca isotopic measurements precise enough to use the K-Ca isotope system to address the problem of early Archaean crustal evolution. Due to a strong fractionation of 40K and 40Ca during continent formation and a non-linear growth of 40Ca, Archaean continental crust should show radiogenic initial Ca isotopic composition if large volumes of it have already been existed 3.6 Ga ago. Simple 15-step calculations predict a difference in 40Ca /44Ca of 9 epsilon units at 3.6 Ga between the two crustal growth models. To test this, as well as to study the earliest crust formation processes, plagioclase separates from Archaean provinces reflecting the initial Ca isotopic composition and a range of different whole rock samples have been analysed. Preliminary data for ~ 3.6 Ga old TTGs from Zimbabwe show 40Ca /44Ca indistinguishable from the mantle. This is in agreement with rather chondritic initial Sr and Nd data and might reflect a short residence time of the juvenile mafic oceanic crust before partial melting forming the first continental crust. In contrast, the first results for 3.65 Ga old samples from the Itsaq Gneiss Complex of southern West Greenland yield a more evolved radiogenic Ca signature. This can be interpreted in two different ways. Either as partial melting of juvenile mafic crust shortly after its formation but incorporating already existing crust as also suggested by the existence of older inherited zircons in these rocks and negative ɛ Hf values. Partial melting of mafic oceanic crust long after its formation so that 40K and 40Ca had time to evolve would be an alternative explanation. Importantly, there is no evidence so far for high growth and recycling rates prior to 3.6 Ga as required by the most extreme 'big bang' model.
Depth and degree of melting of komatiites
NASA Astrophysics Data System (ADS)
Herzberg, Claude
1992-04-01
High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).
NASA Technical Reports Server (NTRS)
Latourrette, T. Z.; Burnett, D. S.
1992-01-01
Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.
Crustal formation and recycling in an oceanic environment in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2003-04-01
Several lines of evidence indicate higher mantle temperatures (by some hundreds of degrees) during the early history of the Earth. Due to the strong effect of temperature on viscosity as well as on the degree of melting, this enforces a geodynamic regime which is different from the present plate tectonics, and in which smaller scale processes play a more important role. Upwelling of a hotter mantle produces a thicker oceanic crust, of which the lower part may reside in the eclogite stability field. This facilitates delamination, making room for fresh mantle material which may partly melt and add new material to the crust (Vlaar et al., 1994). We present results of numerical thermo-chemical convection models including a simple approximate melt segregation mechanism in which we investigate this alternative geodynamic regime, and its effect on the cooling history and chemical evolution of the mantle. Our results show that the mechanism is capable of working on two scales. On a small scale, involving the lower boundary of the crust, delaminations and downward transport of eclogite into the upper mantle takes place. On a larger scale, involving the entire crustal column, (parts of) the crust may episodically sink into the mantle and be replaced by a fresh crust. Both are capable of significantly and rapidly cooling a hot upper mantle by driving partial melting and thus the generation of new crust. After some hundreds of millions of years, as the temperature drops, the mechanism shuts itself off, and the cooling rate significantly decreases. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Zuccarello, Francesco
2017-09-01
Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions. Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.
Puffer, J.H.; Volkert, R.A.
1991-01-01
New field and geochemical data place the Losee Metamorphic Suite (a tonalite/trondhjemite complex) of northern New Jersey into the context of a major Proterozoic continental are represented by a discontinuous belt of northern Appalachian metadacite. Samples of Losee rock range from extremely leucocratic trondhjemite locally associated with amphibolite, to banded biotite, hornblende, pyroxene, and garnet-bearing tonalites. The major element and REE composition of the tonalite closely resembles dacite from continental are settings and model melts extracted from an eclogite residue by partial melting at 15 kbar. The REE composition of most Losee trondhjemite is enriched in REE, particularly HREE, compared with Losee tonalite, and is interpreted as the product of local anatectic melting of Losee tonalite (metadacite) that occurred in a granulite facies environment during the Grenville orogeny. ?? 1991.
NASA Technical Reports Server (NTRS)
Rapp, R. P.
1994-01-01
Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and the potential for oceanic crust (including metasediments) to transport water deeper into the mantle.
NASA Astrophysics Data System (ADS)
Park, S. Y.; Lee, S. K.
2015-12-01
Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of composition as well as pressure in natural silicate melts. The changes of the fraction of highly coordinated Al in multi-component silicate glasses and melts with composition can provide insight into the changes of macroscopic properties (e.g., entropy, viscosity, and diffusivity) with varying composition of melt.
Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes
NASA Astrophysics Data System (ADS)
Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne
2014-05-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.
Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2
NASA Astrophysics Data System (ADS)
Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto
2017-02-01
The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8-2.1 GPa and 1,280-1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile-peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption.
A benchmark initiative on mantle convection with melting and melt segregation
NASA Astrophysics Data System (ADS)
Schmeling, Harro; Dohmen, Janik; Wallner, Herbert; Noack, Lena; Tosi, Nicola; Plesa, Ana-Catalina; Maurice, Maxime
2015-04-01
In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we initiate a benchmark comparison. In the initial phase of this endeavor we focus on the usefulness of the definitions of the test cases keeping the physics as sound as possible. The reference model is taken from the mantle convection benchmark, case 1b (Blanckenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and a Rayleigh number of 1e5. Melting is modelled assuming a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) three cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 includes batch melting, melt buoyancy (melt Rayleigh number Rm), depletion buoyancy and latent heat, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms) and qm approaching a statistical steady state. Case 3 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases should be carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. Variations of cases 1 - 3 may be tested, particularly studying the effect of melt extraction. The motivation of this presentation is to summarize first experiences, suggest possible modifications of the case definitions and call interested modelers to join this benchmark exercise. References: Blanckenbach, B., Busse, F., Christensen, U., Cserepes, L. Gun¬kel, D., Hansen, U., Har¬der, H. Jarvis, G., Koch, M., Mar¬quart, G., Moore D., Olson, P., and Schmeling, H., 1989: A benchmark comparison for mantle convection codes, J. Geo¬phys., 98, 23 38. Schmeling, H., 2000: Partial melting and melt segregation in a convecting mantle. In: Physics and Chemistry of Partially Molten Rocks, eds. N. Bagdassarov, D. Laporte, and A.B. Thompson, Kluwer Academic Publ., Dordrecht, pp. 141 - 178.
NASA Astrophysics Data System (ADS)
Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.
2017-12-01
Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as higher temperature leading to partial melting of the silicate portion of the mantle could have contributed to fast enough core formation. 1. Todd, K.A., Watson, H.C., Yu, T., Wang, Y., American Mineralogist, 101.9, 1996-2004, 2016
NASA Astrophysics Data System (ADS)
Ntaflos, Theodoros; Abart, Rainer; Bizimis, Michel
2017-04-01
Pliocene alkali basalts from the western Pannonian Basin carry mantle xenoliths comprising hydrous and anhydrous spinel peridotites. We studied coarse and fine grained fertile to depleted spinel lherzolites, spinel harzubrgites and dunites from Szentbékálla, Balaton, in detail, using XRF, EPMA and LA-ICP-MS and MC-ICP-MS techniques. Pliocene alkali basalts containing mantle xenoliths with three major types of textures are widespread in the studied area: fine-grained primary and secondary equigranular, coarse-grained protogranular and transitional between equigranular and protogranular textures. Melt pockets, are common in the studied xenoliths. The shape of several melt pockets resembles euhedral amphibole. Other samples have thin films of intergranular glass attributed to the host basalt infiltration. Calculations have shown that such xenoliths experienced an up to 2.4% host basalt infiltration. The bulk rock Al2O3 and CaO concentrations vary from 0.75 to 4.1 and from 0.9 to 3.6 wt% respectively, and represent residues after variable degrees of partial melting. Using bulk rock major element abundances, the estimated degree of partial melting ranges from 4 to 20%.. The Primitive Mantle normalized clinopyroxene trace element abundances reveal a complicated evolution of the Lithospheric mantle underneath Balaton, which range from partial melting to modal and cryptic metasomatism. Subduction-related melt/fluids and/or infiltration of percolating undersaturated melts could be account for the metasomatic processes. The radiogenic isotopes of Sr, Nd and Hf in clinopyroxene suggest that this metasomatism was a relatively recent event. Textural evidence suggests that the calcite filling up the vesicles in the melt pockets and in veinlets cross-cutting the constituent minerals is of epigenetic nature and not due to carbonatite metasomatism. Mass balance calculations have shown that the bulk composition of the melt pockets is identical to small amphibole relics found as inclusions in second generation clinopyroxene within the melt pockets. Evidently the melt pockets represent amphibole, which have been incongruently molten. The necessary heat for the amphibole breakdown was derived from the host basalt. The estimated time for diffusive Ca exchange between matrix olivine and olivine overgrowth in contact with the melt pockets is very short, ranging between 21 and 200 days, indicating that amphibole breakdown took place immediately before or during the xenolith entrainment in the alkali basalt.
Investigating the principles of recrystallization from glyceride melts.
Windbergs, Maike; Strachan, Clare J; Kleinebudde, Peter
2009-01-01
Different lipids were melted and resolidified as model systems to gain deeper insight into the principles of recrystallization processes in lipid-based dosage forms. Solid-state characterization was performed on the samples with differential scanning calorimetry and X-ray powder diffraction. Several recrystallization processes could be identified during storage of the lipid layers. Pure triglycerides that generally crystallize to the metastable alpha-form from the melt followed by a recrystallization process to the stable beta-form with time showed a chain-length-dependent behavior during storage. With increasing chain length, the recrystallization to the stable beta-form was decelerated. Partial glycerides exhibited a more complex recrystallization behavior due to the fact that these substances are less homogenous. Mixtures of a long-chain triglyceride and a partial glyceride showed evidence of some interaction between the two components as the partial glyceride hindered the recrystallization of the triglyceride to the stable beta-form. In addition, the extent of this phenomenon depended on the amount of partial glyceride in the mixture. Based on these results, changes in solid dosage forms based on glycerides during processing and storage can be better understood.
A porous flow approach to model thermal non-equilibrium applicable to melt migration
NASA Astrophysics Data System (ADS)
Schmeling, Harro; Marquart, Gabriele; Grebe, Michael
2018-01-01
We develop an approach for heat exchange between a fluid and a solid phase of a porous medium where the temperatures of the fluid and matrix are not in thermal equilibrium. The formulation considers moving of the fluid within a resting or deforming porous matrix in an Eulerian coordinate system. The approach can be applied, for example, to partially molten systems or to brine transport in porous rocks. We start from an existing theory for heat exchange where the energy conservation equations for the fluid and the solid phases are separated and coupled by a heat exchange term. This term is extended to account for the full history of heat exchange. It depends on the microscopic geometry of the fluid phase. For the case of solid containing hot, fluid-filled channels, we derive an expression based on a time-dependent Fourier approach for periodic half-waves. On the macroscopic scale, the temporal evolution of the heat exchange leads to a convolution integral along the flow path of the solid, which simplifies considerably in case of a resting matrix. The evolution of the temperature in both phases with time is derived by inserting the heat exchange term into the energy equations. We explore the effects of thermal non-equilibrium between fluid and solid by considering simple cases with sudden temperature differences between fluid and solid as initial or boundary conditions, and by varying the fluid velocity with respect to the resting porous solid. Our results agree well with an analytical solution for non-moving fluid and solid. The temperature difference between solid and fluid depends on the Peclet number based on the Darcy velocity. For Peclet numbers larger than 1, the temperature difference after one diffusion time reaches 5 per cent of \\tilde{T} or more (\\tilde{T} is a scaling temperature, e.g. the initial temperature difference). Thus, our results imply that thermal non-equilibrium can play an important role for melt migration through partially molten systems where melt focuses into melt channels near the transition to melt ascent by dykes. Our method is based on solving the convolution integration for the heat exchange over the full flow history, which is numerically expensive. We tested to replace the heat exchange term by an instantaneous, approximate term. We found considerable errors on the short timescale, but a good agreement on the long timescale if appropriate parameters for the approximate terms are used. We derived these parameters which may be implemented in fully dynamical two-phase flow formulations of melt migration in the Earth.
Harold F. Haupt
1969-01-01
A simple gage on the lysimeter principle has been developed to provide continuous readings of the volume of water flowing from the base of a snowpack in the form of surface melt alone or rain percolate and surface melt combined. The data obtained show promise, after two seasons of being applicable in river flood forecasting, as well as in studies of snow hydrology....
NASA Astrophysics Data System (ADS)
Romine, William L.; Whittington, Alan G.; Nabelek, Peter I.; Hofmeister, Anne M.
2012-12-01
Thermal diffusivity ( D) was measured using laser-flash analysis on pristine and remelted obsidian samples from Mono Craters, California. These high-silica rhyolites contain between 0.013 and 1.10 wt% H2O and 0 to 2 vol% crystallites. At room temperature, D glass varies from 0.63 to 0.68 mm2 s-1, with more crystalline samples having higher D. As T increases, D glass decreases, approaching a constant value of ˜0.55 mm2 s-1 near 700 K. The glass data are fit with a simple model as an exponential function of temperature and a linear function of crystallinity. Dissolved water contents up to 1.1 wt% have no statistically significant effect on the thermal diffusivity of the glass. Upon crossing the glass transition, D decreases rapidly near ˜1,000 K for the hydrous melts and ˜1,200 K for anhydrous melts. Rhyolitic melts have a D melt of ˜0.51 mm2 s-1. Thermal conductivity ( k = D· ρ· C P) of rhyolitic glass and melt increases slightly with T because heat capacity ( C P) increases with T more strongly than density ( ρ) and D decrease. The thermal conductivity of rhyolitic melts is ˜1.5 W m-1 K-1, and should vary little over the likely range of magmatic temperatures and water contents. These values of D and k are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization. Latent heat release enables bodies that crystallize to remain at high temperatures for much longer times and cool more slowly than glassy bodies. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition in the first case, and cooling only to the solidus in the second.
NASA Astrophysics Data System (ADS)
Lodge, A.; Nippress, S. E. J.; Rietbrock, A.; García-Yeguas, A.; Ibáñez, J. M.
2012-12-01
In recent years, an increasing number of studies have focussed on resolving the internal structure of ocean island volcanoes. Traditionally, active source seismic experiments have been used to image the volcano edifice. Here we present results using the analysis of compressional to shear (P to S) converted seismic phases from teleseismic events, recorded by stations involved in an active source experiment "TOM-TEIDEVS" (Ibáñez et al., 2008), on the island of Tenerife, Canary Islands. We supplement this data with receiver function (RF) analysis of seismograms from the Canary Islands of Lanzarote and La Palma, applying the extended-time multitaper frequency domain cross-correlation estimation method (Helffrich, 2006). We use the neighbourhood inversion approach of Sambridge (1999a,b) to model the RFs and our results indicate magmatic underplating exists beneath all three islands, ranging from 2 to 8 km, but showing no clear correlation with the age of the island. Beneath both La Palma and Tenerife, we find localized low velocity zones (LVZs), which we interpret as due to partial melt, supported by their correlation with the location of historical earthquakes (La Palma) and recent earthquakes (Tenerife). For Lanzarote, we do not sample the most recently volcanically active region and find no evidence for a LVZ. Instead, we find a simple gradational velocity structure, with discontinuities at ˜4, 10 and 18 km depth, in line with previous studies.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.
2016-01-01
Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.
Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.
Pasturel, A; Jakse, N
2016-12-07
It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.
Phase equilibria constraints on models of subduction zone magmatism
NASA Astrophysics Data System (ADS)
Myers, James D.; Johnston, Dana A.
Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc-alkaline lavas could have been formed by crystal fractionation at a range of crustal pressures.
Geochemistry and petrogenesis of the Laramie anorthosite complex, Wyoming
Fountain, J.C.; Hodge, D.S.; Allan, Hills F.
1981-01-01
A geochemical investigation of the Laramie anorthosite complex determined that monsonite associated with the complex are characterized by positive Eu anomalies and display a regular variation in composition with distance from the monzonite/county rock contact. Anorthositic rocks have major and trace element abundance typical of similar complexes. The internal variations in the monzonite were produced by in situ fractionation and contamination. The data indicate that anorthosite and monzonite cannot be comagmatic. It is proposed that the anorthosite and monzonite of the complex evolved from two distinct magmas, and that two stages of anatectic melting contributed to the evolution of the monzonite. An initial stage of partial melting was induced by intrusion of a gabbroic anorthosite magma into the lower crust; a second partial melting event occurred after emplacement where heat from the intrusions melted country rocks resulting in extensive contamination ofthe monzonite. ?? 1981.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.; Barnes, C.G.; Kistler, R.W.
1993-04-01
The Cretaceous Cornucopia stock was emplaced into a greenschist-facies Permo-Triassic arc terrane. The stock comprises five distinct units: hornblende biotite tonalite, biotite trondhjemite, and three cordierite biotite trondhjemites, all with late dacitic and granitic dikes. Tonalite and trondhjemites span a narrow range of SiO[sub 2] contents and exhibit characteristics of a high-Al tonalite-trondhjemite-dacite (TTD) suite: LREE enrichment, low Y (< 15 ppm), Nb (< 10 ppm), Rb/Sr ([le]0.04), and high Sr (550--800 ppm). Euhedral cordierite phenocrysts imply the trondhjemites were H[sub 2]O-rich and were emplaced at pressures of < 2 kbars. Trace element and REE models are consistent with anmore » origin for the tonalite and trondhjemites by variable degrees (< 40%) of partial melting of a low-K tholeiitic source, with a garnet amphibolite residuum. Individual units are not related by fractional crystallization, but instead represent distinct partial melts. High Sr contents in the TTD rocks, the presence of residual garnet, and abundant residual amphibole implied by partial melting models suggest that melting occurred under H[sub 2]O-rich conditions at P [ge] 8--10 kbars.« less
The role of silver in the processing and properties of Bi-2212
NASA Technical Reports Server (NTRS)
Lang, TH.; Heeb, B.; Buhl, D.; Gauckler, L. J.
1995-01-01
The influence of the silver content and the oxygen partial pressure on the solidus temperature and the weight loss during melting of Bi2Sr2Ca1Cu2O(x) has been examined by means of DTA and TGA. By decreasing the oxygen partial pressure the solidus is lowered (e.g. del T = 59 C by decreasing pO2 from 1 atm to 0.001 atm) and the weight loss is increased. The addition of silver causes two effects: (1) the solidus is further decreased (e.g. 2 wt% Ag lower T (solidus) by up to 25 C, depending on the oxygen partial pressure); and (2) the weight loss during melting is reduced. Thick films (10-20 micron in thickness) with 0 and 5 wt% silver and bulk samples with) and 2.7 wt% silver were melt processed in flowing oxygen on a silver substrate in the DTA, allowing the observation of the melting process and a good temperature control. The critical current densities are vigorously dependent on the maximum processing temperature. The highest j(sub c) in thick films (8000 A/sq cm at 77 K, O T) was reached by melting 7 C above the solidus temperature. The silver addition shows no significant effect on the processing parameters or the superconducting properties. The highest j(sub c) for bulk samples (1 mm in thickness) was obtained by partial melting at 900 C or 880 C, depending on the silver content of the powder (0 or 2.7 wt%). The j(sub c) of the samples is slightly enhanced from 1800 A/sq cm (at 77 K, O T) to 2000 A/sq cm by the silver addition. To be able to reach at least 80% of the maximum critical current density, the temperature has to be controlled in a window of 5 C for thick films and 17 C for bulk samples.
NASA Astrophysics Data System (ADS)
Moghadam, Hadi Shafaii; Li, Xian-Hua; Stern, Robert J.; Ghorbani, Ghasem; Bakhshizad, Farzaneh
2016-01-01
We study migmatites and other metamorphic rocks in the Zanjan-Takab region of NW Iran and use these results to report the first evidence of Oligocene core complex formation in Iran. Four samples of migmatites associated with paragneisses, including leucosomes and associated para-amphibolite melanosomes were selected for U-Pb dating and Hf-O isotopic analysis. Zircon cores - interpreted as originally detrital zircons - have variable ages that peak at ca. 100-110 Ma, but their sedimentation age - indicated by the youngest 206Pb/238U ages - is ca. 35-40 Ma. New zircons associated with incipient melting occur as overgrowths around zircon cores and/or as newly grown grains. Morphologies and internal structures suggest that rim growth and formation of new zircons were associated with partial melting. All four samples contain zircons with rims that yield 206Pb/238U ages of 28-25 Ma, indicating that partial melting occurred in Late Oligocene time. δ18O values for zircon rims vary between 8.2 and 12.3‰, significantly higher than expected for mantle inputs (δ18O 6‰) and consistent with equilibrium with surface materials. Zircon rims yield εHf(t) between 2.2 and 12.4 and two-stage Hf model ages of 448-562 Ma, indicating that the region is underlain by Cadomian-Caledonian crust. According to the Hf-O isotopic values, the main mechanism forming zircon rims was dissolution of pre-existing detrital zircons with reprecipitation of new zircon shortly thereafter. Oligocene ages indicate that partial melting accompanied core complex formation in the Zanjan-Takab region. Extension, melting, and core complex formation in south-central Iran are Eocene in age, but younger ages of Oligocene-Miocene in NW Iran and Turkey indicate that extension was distributed throughout the region during Cenozoic time.
Calcium Isotopic Compositions of Normal Mid-Ocean Ridge Basalts From the Southern Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Zhu, Hongli; Liu, Fang; Li, Xin; Wang, Guiqin; Zhang, Zhaofeng; Sun, Weidong
2018-02-01
Mantle peridotites show that Ca is isotopically heterogeneous in Earth's mantle, but the mechanism for such heterogeneity remains obscure. To investigate the effect of partial melting on Ca isotopic fractionation and the mechanism for Ca isotopic heterogeneity in the mantle, we report high-precision Ca isotopic compositions of the normal Mid-Ocean Ridge Basalts (N-MORB) from the southern Juan de Fuca Ridge. δ44/40Ca of these N-MORB samples display a small variation ranging from 0.75 ± 0.05 to 0.86 ± 0.03‰ (relative to NIST SRM 915a, a standard reference material produced by the National Institute of Standards and Technology), which are slightly lower than the estimated Upper Mantle value of 1.05 ± 0.04‰ and the Bulk Silicate Earth (BSE) value of 0.94 ± 0.05‰. This phenomenon cannot be explained by fractional crystallization, because olivine and orthopyroxene fractional crystallization has limited influence on δ44/40Ca of N-MORB due to their low CaO contents, while plagioclase fractional crystallization cannot lead to light Ca isotopic compositions of the residue magma. Instead, the lower δ44/40Ca of N-MORB samples compared to their mantle source is most likely caused by partial melting. The offset in δ44/40Ca between N-MORB and BSE indicates that at least 0.1-0.2‰ fractionation would occur during partial melting and light Ca isotopes are preferred to be enriched in magma melt, which is in accordance with the fact that δ44/40Ca of melt-depleted peridotites are higher than fertile peridotites in literature. Therefore, partial melting is an important process that can decrease δ44/40Ca in basalts and induce Ca isotopic heterogeneity in Earth's mantle.
The electrical conductivity during incipient melting in the oceanic low velocity zone
Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice
2014-01-01
A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219
Electrical conductivity during incipient melting in the oceanic low-velocity zone.
Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice
2014-05-01
The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.
2017-12-01
We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.
2006-04-01
characterize the superconducting properties of powders, field-cooled (FC) Meissner and ZFC measure- ments were performed from 5 to 125 K.46 The SQUID magnet ...measured magnetic susceptibility, and D 0.3333 is the demagnetization factor assuming a spherical particle distribution.6,46 The applied magnetic ...and superconducting properties was studied for a range of partial-melt temperatures. Results were compared to Al203-free films with compositions lying
Altering surface fluctuations by blending tethered and untethered chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. K.; Akgun, B.; Jiang, Z.
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, R g,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of muchmore » greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.« less
Altering surface fluctuations by blending tethered and untethered chains
Lee, J. K.; Akgun, B.; Jiang, Z.; ...
2017-10-16
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, R g,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of muchmore » greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.« less
van Wijk, Esmee
2018-01-01
Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467
Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall
2018-04-01
Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.
Occurrence and mechanisms of impact melt emplacement at small lunar craters
NASA Astrophysics Data System (ADS)
Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.
2014-11-01
Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We infer that the distributions and occurrences of impact melt are strongly influenced by impact velocity and angle, target porosity, pre-existing topography, and degradation. Additionally, areally small and volumetrically thin melt deposits are sensitive to mixing with solid debris and/or burial during the modification stage of impact cratering as well as post-cratering degradation. Thus, the production of melt at craters less than ∼800 m in diameter is likely greater than inferred from the present occurrence of melt deposits, which is rapidly affected by ongoing degradation processes.
NASA Astrophysics Data System (ADS)
Prigent, C.; Guillot, S.; Agard, P.; Godard, M.; Lemarchand, D.; Ulrich, M.
2015-12-01
Although the Oman ophiolite is classically regarded as being the direct analog of oceanic lithosphere created at fast spreading ridges, the geodynamic context of its formation is still highly debated. The other alternative end-member model suggests that this ophiolite entirely formed in a supra-subduction zone setting. The latter one is supported by studies on volcanic sequences whereas studies dealing on the mantle section do not involve a significant influence of subduction processes on its structure and composition. We herein focus on basal peridotites from all along the ophiolite strike in order to decipher and characterize potential fluid/melt transfers relate to subduction processes. Samples were taken across the basal banded unit directly overlying the amphibolitic/granulitic metamorphic sole which represents an accreted part of the lower plate. We carried out a petrological, structural and geochemical study on these rocks and their constitutive minerals. Our results show that basal peridotites range from lherzolites to highly depleted harzburgites in composition. Clinopyroxenes (cpx) display melt impregnation textures and co-crystallized with HT/HP amphiboles (amph), spinels and sulfurs. Major and trace elements of the constitutive minerals indicate that these minerals represent trapped incremental partial melt after hydrous melting. Different cpx-bearing lithologies then result from varying degrees of partial melting and melt extraction. Combined with Boron isotopic data, we demonstrate that fluids responsible for hydrous melting of these ophiolitic basal peridotites are subduction-related, most likely derived from dehydration of the metamorphic sole during its formation in subduction initiation. From these observations and thermal constraints, we interpret the occurrence of these basal lherzolites as representing a freezing front developed by thermal re-equilibration (cooling) during subduction processes: subduction-related hydrous partial melts were extracted at different degrees until getting ultimately trapped, and crystallized cpx, amph and other associated minerals. If our interpretation is correct, the base of the Oman ophiolite could provide the best proxy for the composition of a frozen-in, incipiently forming mantle wedge.
Geochemical Evidence Against Pyroxenites in the Sources of Hawaiian Volcanoes
NASA Astrophysics Data System (ADS)
Humayun, M.; Yang, S.; Clague, D. A.
2017-12-01
Hawaiian lavas exhibit high Fe/Mn ratios, and other elemental and isotopic characteristics, that have been argued to be evidence for chemical interactions at the core-mantle boundary. Alternatively, the enrichment in silica relative to 3 GPa melts of garnet peridotite, and the high Fe/Mn, has been argued to represent the contributions of garnet pyroxenite melts generated beneath a thick lithosphere. Here, we present a set of new elemental ratios designed to effectively discriminate partial melts of peridotite from pyroxenite in mantle sources. A set of 200 Hawaiian volcanic glasses from 7 volcanoes were analyzed by LA-ICP-MS for the abundances of 63 elements, with an emphasis on obtaining precise Ge/Si ratios. From experimental partitioning, silica-rich partial melts of MORB-like garnet pyroxenite are expected to have low Ge/Si ratios relative to their sources due to the retention of Ge in the residue by both garnet and pyroxene. In contrast, partial melts of peridotite are expected to have high Ge/Si ratios relative to mantle peridotites due to the incompatibility of Ge in olivine. We observed that Ge abundances in subaerial Hawaiian volcanoes are correlated with indicators of volcanic degassing, including S, Re and As. Subaerial and submarine lavas exhibit a correlation between Ge/Si ratio and S content that indicates that all Hawaiian lavas share the same pre-eruptive Ge/Si ratio. Submarine glasses with the least evidence of degassing exhibit a constant Ge/Si ratio over the range of SiO2 (44-52 %) observed in Hawaiian volcanics. Surprisingly, MORB glasses exhibit more variation in Ge/Si ratio than the pre-eruptive Ge/Si of Hawaiian glasses, implying the presence of 0-12% recycled crust in the MORB source. The constant Ge/Si ratio of Hawaiian glasses implies that pyroxenite melting did not enrich Hawaiian lavas in silica. Processes that could yield Si-rich melts without changing the Ge/Si ratio may involve melt-lithosphere interaction or bridgmanite/ferropericlase fractionation in the deep mantle.
Magma ocean formation due to giant impacts
NASA Technical Reports Server (NTRS)
Tonks, W. B.; Melosh, H. J.
1993-01-01
The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.
NASA Astrophysics Data System (ADS)
Montanini, A.; Luguet, A.; van Acken, D.; Tribuzio, R.
2017-12-01
Pyroxenites are a major form of mantle heterogeneity and may originate through migration of melts or recycling of mafic crustal lithologies. Here, we present HSE (Os, Ir, Pt, Pd, Re) and 187Os/188Os isotopic systematics of "aged" pyroxenites (Mg-rich, Al-poor garnet websterites and Al-rich garnet clinopyroxenites) enclosed in fertile mantle sequences of the Jurassic Alpine-Apennine ophiolites. The garnet clinopyroxenites have heterogeneous mafic crustal precursors that experienced a long-lived evolution of recycling into the mantle (1.5-1.0 Ga) as inferred from Lu-Hf isotope systematics. They originated as melt-dominated systems by crystallization of eclogite-derived melts. The websterites were interpreted as hybrid lithologies with a crustal geochemical fingerprint and a larger peridotite wall rock contribution. The host lherzolites show flat CI-chondrite-normalized HSE patterns. All the pyroxenites are variably depleted in Os and Ir and enriched in the incompatible HSE (Pt, Pd and Re) with respect to host peridotites and have flat to negatively sloping Pd-Re segments. Centimetre- to metre-scale 187Os isotopic heterogeneity is observed in the investigated mantle sequence. The initial 187Os/188Os ratios recalculated for the age of the Mesozoic partial melting event inferred from Nd-Hf isotope systematics are unradiogenic to slightly radiogenic in the peridotites (0.124-0.134) and vary from moderately to highly radiogenic in the pyroxenites (0.149-2.190). Bulk rock HSE compositions of the pyroxenites do not match gabbroic eclogites nor residua after eclogite partial melting, in agreement with lithophile element geochemistry. The HSE patterns of the garnet clinopyroxenites are related to sulphur saturation and sulfide crystallization from partial melts of gabbro-derived eclogites. Decoupling between Re/Os (TMa = 2.0-2.8 Ga) and Lu-Hf isotope systematics of the pyroxenites may be due to fractionation of Re/Os ratios with no Os isotopic homogenization of the sulfide melt fraction during the eclogite partial melting. We show that observed relics of ancient subducted crust are heterogeneous as a consequence of initial geochemical variation in the protoliths, modification during mantle recycling and different degrees of interaction with the host peridotites.
Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes
Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.
2011-01-01
New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (<9.4ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and an increase in the sediment contribution (higher Th/Nb, La/Sm, and Pb isotopic ratios) from Mt. Pagan to South Pagan could reflect systematic cross-arc or irregular along-arc melting variations. These observations indicate that the length scale of compositional heterogeneity in the mantle wedge beneath Mariana arc volcanoes is small (~10km).
Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China
NASA Astrophysics Data System (ADS)
Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin
2017-04-01
Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water transport out of the mantle transition zone associated with dynamic interactions between the subducted slab and surrounding mantle. References Karato, S. (2011), Water distribution across the mantle transition zone and its implications for global material circulation, EARTH PLANET SC LETT, 301(3), 413-423. Kronbichler, M., et al. (2012), High accuracy mantle convection simulation through modern numerical methods, GEOPHYS J INT, 191(1), 12-29. Tang, Y., et al. (2014), Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling, NAT GEOSCI, 7(6), 470-475.
NASA Astrophysics Data System (ADS)
Almqvist, B.; Misra, S.; Biedermann, A. R.; Mainprice, D.
2013-12-01
We studied the magnetic and elastic wave speed anisotropy of a synthetically prepared quartz-mica schist, prior to, during and after experimental melting. The synthetic rock was manufactured from a mixture of powders with equal volumes of quartz and muscovite. The powders were initially compacted with 200 MPa uniaxial stress at room temperature and sealed in a stainless steel canister. Subsequently the sealed canister was isostatically pressed at 180 MPa and 580 °C for 24 hours. This produced a solid medium with ~25 % porosity. Mica developed a preferred grain-shape alignment due to the initial compaction with differential load, where mica flakes tend to orient perpendicular to the applied stress and hence define a synthetic foliation plane. In the last stage we used a Paterson gas-medium apparatus, to pressurize and heat the specimens up to 300 MPa and 750 °C for a six hour duration. This stage initially compacted the rock, followed by generation of melt, and finally crystallization of new minerals from the melt. Elastic wave speed measurements were performed in situ at pressure and temperature, with a transducer assembly mounted next to the sample. Magnetic measurements were performed before and after the partial melt experiments. Anisotropy was measured in low- and high-field, using a susceptibility bridge and torsion magnetometer, respectively. Additionally we performed measurements of hysteresis, isothermal remanent magnetization (IRM) and susceptibility as a function of temperature, to investigate the magnetic properties of the rock. The elastic wave speed, before the melting-stage of the experiment, exhibits a distinct anisotropy with velocities parallel to the foliation being about 15 % higher than normal to the foliation plane. Measurements of the magnetic anisotropy in the bulk sample show that anisotropy is originating from the preferred orientation of muscovite, with a prominent flattening fabric. In contrast, specimens that underwent partial melting display a weaker elastic and magnetic anisotropy, because muscovite preferentially melts due to dehydration melting at 750 °C. The decrease in anisotropy can be inferred from in situ observation of elastic wave anisotropy, but also from comparison of measurements of magnetic anisotropy prior to and subsequent to experiment. A distinct anisotropy is however identified after the experiments both in susceptibility and remanence, which appears to be controlled by the original foliation. As muscovite undergoes dehydration melting a small amount of Fe is released into the melt. Crystallization from the melt indicates that the Fe is bound in biotite and Fe-oxides. The bulk susceptibility and saturation remanence increase by more than one order of magnitude in samples after the melting experiment. The newly formed ferrimagnetic phase, identified through hysteresis, IRM and thermomagnetic measurements, have a tight grouping in the magnetite pseudo-single-domain field on a Day plot. Our experiments are pertinent to the study of partially molten rocks and provide an opportunity to help guide research in magnetic and elastic wave anisotropy of migmatite and granite. In particular the results from experiments apply to the understanding of generation and percolation of melt prior to, or coeval to, the onset of deformation.
Probing the melt zone of Kilauea Iki lava lake, Kilauea volcano, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardee, H.C.; Dunn, J.C.; Hills, R.G.
1981-12-01
New drilling techniques were recently used to drill and core the melt zone of Kilauea Iki lava lake to a depth of 93 m. A partial melt zone was found to exist at depths between 58 m and 89 m consisting of 40 volume percent melt. Downhole seismic shots detonated in and below the melt zone resulted in the first in situ measurements of seismic velocity directly through well characterized partial melt zone. Periodic seismic sources were used to effectively penetrate the highly fractured hydrothermal zone of the lava lake crust. Low velocity P-wave layers (< or =2.0 km/s) weremore » found at the surface, at 40 m depth, and at 90 m depth. Thermal convective experiments in the melt zone resulted in the first controlled in situ measurements of the interaction of water with a basaltic melt zone. Transient energy rates of 900 kW (980 kW/m/sup 2/) and steady rates of 85 kW (93 kW/m/sup 2/) were observed. The full water recovery (100%), high downhole steam temperatures (670 C), and high energy transfer rates (93 to 980 kW/m/sup 2/) observed in these thermal experiments are consistent with a closed cavity model where the injected water/steam directly contacted basaltic melt or near melt. In addition to understanding lava lakes, these seismic and thermal experiments have applications for the location of magma bodies in the crust and for the efficient extraction of energy from these bodies.« less
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.; Wu, Y.
1988-01-01
A partially confined configuration for the growth of GaAs from melt in space was developed, consisting of a triangular prism containing the seed crystal and source material in the form of a rod. It is suggested that the configuration overcomes two obstacles in the growth of GaAs in space: total confinement in a quartz crucible and lack of arsenic pressure control. Ground tests of the configuration show that it is capable of crystal growth in space and is useful for studying the growth of GaAs from a free-surface melt on earth. The resulting chemical composition, electrical property variations, and phenomenological models to account for the results are presented.
Aspects of forming metal-clad melt-processed Y-Ba-Cu-O tapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, G.; Oberly, C.E.; Ho, J.
1991-03-01
This paper reports on melt-processing of Y-Ba-Cu-O superconductor in a usable form for magnet winding which requires the development of a cladding with demanding properties. Numerous recent efforts in cold forming Bi-based superconductor tapes have been successful because a silver tube can be used to constrain the ceramic material, which is sintered at much lower temperature than the Y-Ba-Cu-O. Typical high temperature metals which can be used to encase Y-Ba-Cu-O during sintering do not permit ready diffusion of oxygen as silver does. Recently, the full or partial recovery of superconductivity has been achieved in transition-metal- doped Y-Ba-Cu-O due to themore » partial-melt processing.« less
Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.
2016-01-01
Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.
Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8-δ by partial melting
NASA Astrophysics Data System (ADS)
Yamaki, Kazuhiro; Bamba, Yoshihiro; Irie, Akinobu
2018-03-01
In this study, fine uniform RuSr2GdCu2O8-δ (RuGd-1212) single crystals have been successfully prepared by partial melting. Synthesis temperature could be lowered to a value not exceeding the decomposition temperature of RuGd-1212 using the Sr-Gd-Cu-O flux. The crystals grown by alumina boats are cubic, which coincides with the result of a previous study of RuGd-1212 single crystals using platinum crucibles. The single crystals were up to 15 × 15 × 15 µm3 in size and their lattice constants were consistent with those of polycrystalline samples reported previously. Although the present size of single crystals is not sufficient for measurements, the partial melting technique will be beneficial for future progress of research using RuGd-1212 single crystals. Appropriate nominal composition, sintering atmosphere, and temperature are essential factors for growing RuGd-1212 single crystals.
NASA Astrophysics Data System (ADS)
Lambart, Sarah; Laporte, Didier; Schiano, Pierre
2013-02-01
Based on previous and new results on partial melting experiments of pyroxenites at high pressure, we attempt to identify the major element signature of pyroxenite partial melts and to evaluate to what extent this signature can be transmitted to the basalts erupted at oceanic islands and mid-ocean ridges. Although peridotite is the dominant source lithology in the Earth's upper mantle, the ubiquity of pyroxenites in mantle xenoliths and in ultramafic massifs, and the isotopic and trace elements variability of oceanic basalts suggest that these lithologies could significantly contribute to the generation of basaltic magmas. The question is how and to what degree the melting of pyroxenites can impact the major-element composition of oceanic basalts. The review of experimental phase equilibria of pyroxenites shows that the thermal divide, defined by the aluminous pyroxene plane, separates silica-excess pyroxenites (SE pyroxenites) on the right side and silica-deficient pyroxenites (SD pyroxenites) on the left side. It therefore controls the melting phase relations of pyroxenites at high pressure but, the pressure at which the thermal divide becomes effective, depends on the bulk composition; partial melt compositions of pyroxenites are strongly influenced by non-CMAS elements (especially FeO, TiO2, Na2O and K2O) and show a progressive transition from the liquids derived from the most silica-deficient compositions to those derived from the most silica-excess compositions. Another important aspect for the identification of source lithology is that, at identical pressure and temperature conditions, many pyroxenites produce melts that are quite similar to peridotite-derived melts, making the determination of the presence of pyroxenite in the source regions of oceanic basalts difficult; only pyroxenites able to produce melts with low SiO2 and high FeO contents can be identified on the basis of the major-element compositions of basalts. In the case of oceanic island basalts, high CaO/Al2O3 ratios can also reveal the presence of pyroxenite in the source-regions. Experimental and thermodynamical observations also suggest that the interactions between pyroxenite-derived melts and host peridotites play a crucial role in the genesis of oceanic basalts by generating a wide range of pyroxenites in the upper mantle: partial melting of such secondary pyroxenites is able to reproduce the features of primitive basalts, especially their high MgO contents, and to impart, at least in some cases, the major-element signature of the original pyroxenite melt to the oceanic basalts. Finally, we highlight that the fact the very silica depleted compositions (SiO2 < 42 wt.%) and high TiO2 contents of some ocean island basalts seem to require the contribution of fluids (CO2 or H2O) through melting of either carbonated lithologies (peridotite or pyroxenite) or amphibole-rich veins.
Toward a coherent model for the melting behavior of the deep Earth's mantle
NASA Astrophysics Data System (ADS)
Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.
2017-04-01
Knowledge of melting properties is critical to predict the nature and the fate of melts produced in the deep mantle. Early in the Earth's history, melting properties controlled the magma ocean crystallization, which potentially induced chemical segregation in distinct reservoirs. Today, partial melting most probably occurs in the lowermost mantle as well as at mid upper-mantle depths, which control important aspects of mantle dynamics, including some types of volcanism. Unfortunately, despite major experimental and theoretical efforts, major controversies remain about several aspects of mantle melting. For example, the liquidus of the mantle was reported (for peridotitic or chondritic-type composition) with a temperature difference of ∼1000 K at high mantle depths. Also, the Fe partitioning coefficient (DFeBg/melt) between bridgmanite (Bg, the major lower mantle mineral) and a melt was reported between ∼0.1 and ∼0.5, for a mantle depth of ∼2000 km. Until now, these uncertainties had prevented the construction of a coherent picture of the melting behavior of the deep mantle. In this article, we perform a critical review of previous works and develop a coherent, semi-quantitative, model. We first address the melting curve of Bg with the help of original experimental measurements, which yields a constraint on the volume change upon melting (ΔVm). Secondly, we apply a basic thermodynamical approach to discuss the melting behavior of mineralogical assemblages made of fractions of Bg, CaSiO3-perovskite and (Mg,Fe)O-ferropericlase. Our analysis yields quantitative constraints on the SiO2-content in the pseudo-eutectic melt and the degree of partial melting (F) as a function of pressure, temperature and mantle composition; For examples, we find that F could be more than 40% at the solidus temperature, except if the presence of volatile elements induces incipient melting. We then discuss the melt buoyancy in a partial molten lower mantle as a function of pressure, F and DFeBg/melt. In the lower mantle, density inversions (i.e. sinking melts) appear to be restricted to low F values and highest mantle pressures. The coherent melting model has direct geophysical implications: (i) in the early Earth, the magma ocean crystallization could not occur for a core temperature higher than ∼5400 K at the core-mantle boundary (CMB). This temperature corresponds to the melting of pure Bg at 135 GPa. For a mantle composition more realistic than pure Bg, the right CMB temperature for magma ocean crystallization could have been as low as ∼4400 K. (ii) There are converging arguments for the formation of a relatively homogeneous mantle after magma ocean crystallization. In particular, we predict the bulk crystallization of a relatively large mantle fraction, when the temperature becomes lower than the pseudo-eutectic temperature. Some chemical segregation could still be possible as a result of some Bg segregation in the lowermost mantle during the first stage of the magma ocean crystallization, and due to a much later descent of very low F, Fe-enriched, melts toward the CMB. (iii) The descent of such melts could still take place today. There formation should to be related to incipient mantle melting due to the presence of volatile elements. Even though, these melts can only be denser than the mantle (at high mantle depths) if the controversial value of DFeBg/melt is indeed as low as suggested by some experimental studies. This type of melts could contribute to produce ultra-low seismic velocity anomalies in the lowermost mantle.
NASA Astrophysics Data System (ADS)
Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.
2018-01-01
The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.
Origin of conductivity anomalies in the asthenosphere
NASA Astrophysics Data System (ADS)
Yoshino, T.; Zhang, B.
2013-12-01
Electrical conductivity anomalies with anisotropy parallel to the plate motion have been observed beneath the oceanic lithosphere by electromagnetic studies (e.g., Evans et al., 2005; Baba et al., 2010; Naif et al., 2013). Electrical conductivity of the oceanic asthenosphere at ~100 km depth is very high, about 10-2 to 10-1 S/m. This zone is also known in seismology as the low velocity zone. Since Karato (1990) first suggested that electrical conductivity is sensitive to water content in NAMs, softening of asthenosphere has been regarded as a good indicator for constraining the distribution of water. There are two difficulties to explain the observed conductivity features in the asthenosphere. Recent publications on electrical conductivity of hydrous olivine suggested that olivine with the maximum soluble H2O content at the top of the asthenosphere has much lower conductivity less than 0.1 S/m (e.g., Yoshino et al., 2006; 2009a; Poe et al., 2010; Du Frane and Tyburczy, 2012; Yang, 2012), which is a typical value of conductivity anomaly observed in the oceanic mantle. Partial melting has been considered as an attractive agent for substantially raising the conductivity in this region (Shankland and Waff, 1977), because basaltic melt has greater electrical conductivity (> 100.5 S/m) and high wetting properties. However, dry mantle peridotite cannot reach the solidus temperature at depth 100 km. Volatile components can dramatically reduce melting temperature, even if its amount is very small. Recent studies on conductivity measurement of volatile-bearing melt suggest that conductivity of melt dramatically increases with increasing volatile components (H2O: Ni et al., 2010a, b; CO2: Gaillard et al., 2008; Yoshino et al., 2010; 2012a). Because incipient melt includes higher amount of volatile components, conductivity enhancement by the partial melt is very effective at temperatures just above that of the volatile-bearing peridotite solidus. In this study, the electrical conductivity of peridotite with trace amount of volatile phases was measured in single crystal olivine capsule to protect escape of water from the sample at 3 GPa. The conductivity values were significantly higher than those of dry peridotite, suggesting that the observed conductivity anomalies at the asthenosphere are caused by a presence of trace amount of volatile component in fluid or melt. On the other hand, conductivity of partial molten peridotite measured under shear showed that the conductivity parallel to the shear direction becomes one order of magnitude higher than that normal direction. These observations suggest that partial melting can explain softening and the observed geophysical anomalies of asthenosphere.
Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2
Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto
2017-01-01
The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8–2.1 GPa and 1,280–1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile–peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption. PMID:28148927
NASA Astrophysics Data System (ADS)
Zhang, Yi-Shen; Hou, Tong; Veksler, Ilya V.; Lesher, Charles E.; Namur, Olivier
2018-02-01
Phase equilibrium experiments have been performed on an extremely high-Ti (5.4 wt.% TiO2) picrite from the base of the Paleogene ( 55 Ma) East Greenland Flood Basalt Province. This sample has a high CaO/Al2O3 ratio (1.14), a steep rare-earth elements (REE) profile, is enriched in incompatible trace elements, and is in chemical equilibrium with highly primitive olivine. This all suggests that the picrite is a near-primary melt that did not suffer major chemical evolution during ascent from the mantle source and through the crust. Near-liquidus phase relations were determined over the pressure range of 1 atm, 1 to 1.5 GPa and at temperatures from 1094 to 1400°C. They provide an important constraint on the petrogenesis of these lavas. The high-Ti picritic melt is multi-saturated with olivine (Ol) + orthopyroxene (Opx) at 1 GPa but has only Ol or Opx on the liquidus at lower and higher pressures, respectively. This indicates the primitive melt was last equilibrated with its mantle source at relatively shallow pressure ( 1 GPa). Melting probably started at 2-3 GPa and the picritic melt was produced by 15-30% melting of the mantle source. Such a degree of partial melting requires a mantle with a high potential temperature (1480-1530˚C). The relatively low CaO content and high FeO/MnO ratios of the most primitive East Greenland picrites, the high Ni content of olivine phenocrysts and the presence of low-Ca pyroxene (i.e., pigeonite) at high pressure in our experiments all suggest that the mantle source contained a major component of garnet pyroxenite. Residual garnet in the source could adequately explain the low Al2O3 content (7.92 wt.%) and steep REE patterns of the picrite sample. However, simple melting of a lherzolitic source, even with a major pyroxenite component, cannot explain the formation of magmas with the very high Ti contents observed in some East Greenland basalts. We therefore propose that magmas highly-enriched in Ti were produced by melting of a metasomatized mantle source containing Ti-enriched amphibole and/or phlogopite.
Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica
NASA Astrophysics Data System (ADS)
Currier, R. M.
2017-12-01
In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be akin to rapakivi granites observed globally in Proterozoic systems. In essence, the melt zone is an embryonic rapakivi granite; not yet fully developed and displaying clear ties to its parental rock.
Study of Chromium Oxide Activities in EAF Slags
NASA Astrophysics Data System (ADS)
Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du
2016-02-01
The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.
A simple model for the evolution of melt pond coverage on permeable Arctic sea ice
NASA Astrophysics Data System (ADS)
Popović, Predrag; Abbot, Dorian
2017-05-01
As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model for the evolution of melt pond coverage on such permeable sea ice floes in which we allow for spatially varying ice melt rates and assume the whole floe is in hydrostatic balance. The model is represented by two simple ordinary differential equations, where the rate of change of pond coverage depends on the pond coverage. All the physical parameters of the system are summarized by four strengths that control the relative importance of the terms in the equations. The model both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. Examples of insights we can gain from the model are that (1) the pond growth rate is more sensitive to changes in bare sea ice albedo than changes in pond albedo, (2) ponds grow slower on smoother ice, and (3) ponds respond strongest to freeboard sinking on first-year ice and sidewall melting on multiyear ice. We also show that under a global warming scenario, pond coverage would increase, decreasing the overall ice albedo and leading to ice thinning that is likely comparable to thinning due to direct forcing. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help improve large-scale model parameterizations and sea ice forecasts in a warming climate.
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Louro Lourenço, D. J.; Tackley, P. J.
2014-12-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics.
NASA Astrophysics Data System (ADS)
Duncan, M. S.; Dasgupta, R.
2013-12-01
Understanding the balance between subduction inputs vs. arc output of carbon is critical for constraining the global carbon cycle. However, the agent of carbon transfer from slab to sub-arc mantle is not constrained [1]. Partial melt of ocean-floor sediments is thought to be a key agent of mass transfer in subduction zones, accounting for the trace element characteristics of arc magmas [2]. Yet the carbon carrying capacity of rhyolitic partial melts of sediments remains unknown at sub-arc depths. In our previous work [3], we constrained CO2 solubility of natural rhyolite from 1.5-3.0 GPa, 1300 °C and logfO2 at FMQ×1.0. However, the effects of T and fO2 on CO2 solubility remain unconstrained. In particular, for sediments with organic carbon, graphite stability is expected and the fO2 of C-dissolution can be lower, which may affect the solubility. Thus it is critical to constrain the CO2 solubility of sediment partial melts under graphite-saturated conditions. We determined CO2 solubility of a model rhyolite composition, similar to partial melt composition of natural metapelite [4], at graphite saturation, using Pt/Gr capsules and a piston cylinder device. Experiments were conducted at 1.5-3.0 GPa and 1100-1400 °C. FTIR was employed to measure the concentrations of CO2 and H2O in doubly polished experimental glasses. Raman and SIMS were used to determine the presence of reduced carbon species and total carbon, respectively. FTIR spectra reveal that CO2 is dissolved as both molecular CO2 (CO2mol.) and carbonates (CO32-). For graphite-saturated, hydrous melts with measured H2O ~2.0 wt.%, CO2tot. (CO2mol.+CO32-) values increase with increasing P from ~0.6 to 1.2 wt.% from 1.5 to 3.0 GPa at 1300 °C. These values are lower than more oxidized melts with the same water content, which were 0.85 to 1.99 wt.% CO2 as P increased. At 3 GPa, graphite-saturated experiments from 1100 to 1300 °C yield CO2tot. value of 1.18-1.20 wt.%, suggesting minor effect of temperature in bulk CO2 solubility. To meet the minimum requirement of 3000 ppm CO2 in primary arc magma [5,6], the required sediment melt contribution is 0.18-0.28 wt.% CO2, which is distinctly lower than the solubility limit of graphite-saturated melt. However, 1.7 wt.% CO2 in primary arc basalts [5] exceeds the solubility limit of reduced, hydrous melts, which is in contrast to more oxidized, hydrous melts which can contribute up to 2 wt.% CO2. We determine that ~1.7-15% of sediment melt would be required to meet 3000 ppm CO2 in the primary arc basalt depending on the depth of melting (1.5-3.0 GPa) and the degree of mantle wedge melting (15-30%). This contribution is higher than that previously calculated for the more oxidized melts, but still may not be an unreasonable slab flux. [1] Dasgupta (2013) RiMG, 75, 183-229; [2] Plank and Langmuir (1993) Nature, 362, 739-743. [3] Duncan and Dasgupta. (in review) GCA; [4] Tsuno and Dasgupta (2011) CMP, 161, 743-763; [5] Blundy et al. (2010) EPSL, 290, 289-301; [6] Wallace (2005) JVGR, 140, 217-240.
Geochemistry of Intra-Transform Lavas from the Galápagos Transform Fault
NASA Astrophysics Data System (ADS)
Morrow, T. A.; Mittelstaedt, E. L.; Harpp, K. S.
2013-12-01
The Galápagos plume has profoundly affected the development and evolution of the nearby (<250 km) Galápagos Transform Fault (GTF), a ~100km right-stepping offset in the Galápagos Spreading Center (GSC). The GTF can be divided into two sections that represent different stages of transform evolution: the northern section exhibits fully developed transform fault morphology, whereas the southern section is young, and deformation is more diffuse. Both segments are faulted extensively and include numerous small (<0.5km3) monogenetic volcanic cones, though volcanic activity is more common in the south. To examine the composition of the mantle source and melting conditions responsible for the intra-transform lavas, as well as the influence of the plume on GTF evolution, we present major element, trace element, and radiogenic isotope analysis of samples collected during SON0158, EWI0004, and MV1007 cruises. Radiogenic isotope ratio variations in the Galápagos Archipelago require four distinct mantle reservoirs across the region: PLUME, DM, FLO, and WD. We find that Galápagos Transform lavas are chemically distinct from nearby GSC lavas and neighboring seamounts. They have radiogenic isotopic compositions that lie on a mixing line between DM and PLUME, with little to no contribution from any other mantle reservoirs despite their geographic proximity to WD-influenced lavas erupted along the GSC and at nearby (<50km away) seamounts. Within the transform, lavas from the northern section are more enriched in radiogenic isotopes than lavas sampled in the southern section. Transform lavas are anomalously depleted in incompatible trace elements (ITEs) relative to GSC lavas, suggesting unique melting conditions within the transform. Isotopic variability along the transform axis indicates that mantle sources and/or melting mechanisms vary between the northern and southern sections, which may relate to their distances from the plume or the two-stage development and evolution of the Galápagos Transform Fault. We present a melting model that reproduces GTF lava chemistry from a mixture of two partial melts of PLUME and DM. We assume that the DM source has an ITE composition similar to the depleted upper mantle, melting is purely fractional, and lavas do not fractionate during ascent. Solutions were achieved using a Metropolis algorithm and constrained by observed GTF lava chemistry. Model results predict that GTF lavas are produced by a mixture of a ~3%×1% partial melt of the PLUME source and a ~5%×4% partial melt of the DM source. Our model predicts that a larger proportion of PLUME melts contribute to GTF lavas than DM melts. Absence of the WD component and relatively low concentrations of ITEs may indicate that lavas in the GTF are produced from a source that has already undergone partial melting and is being re-melted beneath the TF. Re-melting may be caused by extension across the GTF, or development of the southern section of the GTF via the ~1Ma ridge jump.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, A.
1998-07-01
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less
NASA Astrophysics Data System (ADS)
Lang, Helen M.; Gilotti, Jane A.
2015-06-01
Pseudosection modeling constrains the pressure-temperature (P-T) exhumation path of partially melted ultrahigh-pressure (UHP) metapelites exposed in the North-East Greenland UHP terrane. A robust peak P and T estimate of 3.6 GPa and 970 °C based on mineral assemblages in nearby kyanite eclogites is the starting point for the P-T path. Although the peak assemblage for the metapelite is not preserved, the calculated modeled peak assemblage contained substantial clinopyroxene, garnet, phengite, K-feldspar and coesite with minor kyanite and rutile. Combining the pseudosection and observed textures, the decompression path crosses the coesite-quartz transition before reaching the dry phengite dehydration melting reaction where phengite is abruptly consumed. In the range of 2.5 to 2.2 GPa, clinopyroxene is completely consumed and garnet grows to its maximum volume and grossular content, matching the high grossular rims of relict megacrysts. Plagioclase joins the assemblage and the pseudosection predicts up to 12-13 vol.% melt in the supersolidus assemblage, which contained garnet, liquid, K-feldspar, plagioclase, kyanite, quartz and rutile. At this stage, the steep decompression path flattened out and became nearly isobaric. The melt crystallization assemblage that formed when the path crossed the solidus with decreasing temperature contains phengite, garnet, biotite, 2 feldspars, kyanite, quartz and rutile. Therefore, the path must have intersected the solidus at approximately 1.2 GPa, 825 °C. The pseudosection predicts that garnet is consumed on the cooling path, but little evidence of late garnet consumption or other retrograde effects is observed. This may be due to partial melt loss from the rock. Isochemical PT-n and PT-X sections calculated along the P-T path display changes in mineral assemblage and composition that are consistent with preserved assemblages.
Church, S.E.
1985-01-01
Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.
NASA Astrophysics Data System (ADS)
Lamoureux, Gwenaëlle; Ildefonse, Benoı̂t; Mainprice, David
1999-11-01
Although considerable progress has been made in the study of fast-spreading, mid-ocean ridge magma chambers over the past fifteen years, the fraction of melt present in the chamber remains poorly constrained and controversial. We present new constraints obtained by modelling the seismic properties of partially molten gabbros at the ridge axis. P-wave velocities at low frequencies are calculated in the foliation/lineation reference frame using a differential effective medium technique. The model takes into account the lattice preferred orientation of the crystalline phase and the average shape of the melt phase. The structural parameters are obtained from the Oman ophiolite. The structural reference frame is given by the general trend of the gabbro foliation and the melt fraction and shape are estimated using the textures of nine upper gabbro samples. The estimated melt fraction and shape depend on the assumptions regarding which part of the observed textures represent the melt in the gabbroic mush of the magma chamber. However, we can put limits on the reasonable values for the melt fraction and shape. Our results are consistent with a melt fraction of the order of 10 to 20% in the Low-Velocity Zone (i.e. the magma chamber), which is anisotropically distributed with the melt pockets preferentially aligned parallel to the foliation and approximated by oblate ellipsoids with approximate dimensions of 4 : 4 : 1. These results are also consistent with the seismic structure of the East Pacific rise at 9°30'. The anisotropic melt distribution can, at least partially, explain the vertical velocity gradient described in the LVZ.
Stixrude, Lars
2014-04-28
We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.
NASA Astrophysics Data System (ADS)
Takei, Yasuko; Holtzman, Benjamin K.
2009-06-01
Viscous constitutive relations of partially molten rocks deforming in the regime of grain boundary (GB) diffusion creep are derived theoretically on the basis of microstructural processes at the grain scale. The viscous constitutive relation developed in this study is based on contiguity as an internal state variable, which enables us to take into account the detailed effects of grain-scale melt distribution observed in experiments. Compared to the elasticities derived previously for the same microstructural model, the viscosities are much more sensitive to the presence of melt and variations in contiguity. As explored in this series of three companion papers, this "contiguity" model predicts that a very small amount of melt (ϕ < 0.01) significantly reduces the bulk and shear viscosities. Furthermore, a large anisotropy in viscosity is produced by anisotropy in contiguity, which occurs in deforming partially molten rocks. These results have important implications for deformation and melt extraction at small melt fractions, as well as for shear-induced melt segregation. The viscous and elastic constitutive relations derived in terms of contiguity bridge microscopic grain-scale and macroscopic continuum properties. These constitutive relations are essential for investigating melt migration dynamics in a forward sense on the basis of the basic equations of two-phase dynamics and in an inverse sense on the basis of seismological observations.
The harzburgites-lherzolite cycle: depletion and refertilization processes
NASA Astrophysics Data System (ADS)
Dijkstra, A. H.
2011-12-01
Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic melting event of perhaps global significance. Regardless of the nature of these melting events, it is now clear that in their complex overprinting history, oceanic peridotites more and more resemble polygenetic metamorphic rocks.
Lateral variations in lower mantle seismic velocity
NASA Technical Reports Server (NTRS)
Duffy, Thomas S.; Ahrens, Thomas J.
1992-01-01
To obtain a theoretical model which provides a rationale for the observed high values of velocity variations, the effect of a 0.1 to 0.2 percent partially molten volatile-rich material in various geometries which are heterogeneously dispersed in the lower mantle is examined. Data obtained indicate that, depending on aspect ratio and geometry, 0.1-0.2 percent partial melting in conjunction with about 100 K thermal anomalies can explain the seismic variations provided the compressibility of the melt differs by less than about 20 percent from the surrounding solid.
NASA Technical Reports Server (NTRS)
Mustard, J. F.; Hurtrez, S.; Pinet, P.; Sotin, C.
1992-01-01
Ultramafic rocks are relatively rare at the Earth's surface but constitute the vast majority of the Earth by volume. Exposures of ultramafic bodies are therefore crucial for deducing many important processes that occur in the Earth's mantle. An important science question regarding the spatial distribution, abundance, and composition of mafic minerals in ultramafic bodies that can be examined with advanced sensor data is the melting process. When a lherzolite melts, clinopyroxene (cpx) melts first and therefore variations in the modal amount of cpx remaining in the mantle are a reflection of the amount of fractional melting that has occurred. Fe goes preferentially into the melt during melting but a 20 percent batch melting (i.e. closed system) acquires less Fe relative to 20 percent fractional melting (i.e. open system). Since the strength and wavelength of diagnostic absorptions is a strong function of Fe content, it is possible to make maps of the variation in Fe:Mg ratios which can be related to the general melting process. Accurate ground-truth information about local mineralogy provides internal calibration and consistency checks. Investigations using imaging spectrometer are very complementary to field studies because advanced sensor data can provide a synoptic view of modal mineralogy and chemical composition whereas field studies focus on detailed characterization of local areas. Two excellent exposures of ultramafic lithologies are being investigated with visible to mid-infrared imaging spectrometer data: the Ronda peridotite near Ronda, Spain and the Beni Bousera ophiolitic fragment in northern Morocco. Although separated by the Alboran Sea, these bodies are thought to be related and represent fertile sub-continental mantle. The Ronda peridotite is predominantly spinel lherzolite but grades into harzburgite and shows considerable variation in major and trace element compositions. Mafic layering and dykes (i.e. olivine gabbro) are also observed. This indicates some sections of the peridotite have experienced greater degrees of partial melting. The Beni Bousera peridotite also contains mafic layers and dykes and grades into harzburgite representing similar fundamental shifts in the bulk chemistry of this ultramafic body probably related to an episode of partial melting. The specific mode of emplacement of these bodies is controversial and important for understanding the tectonic evolution of this region. Our investigations are not necessarily designed to help resolve this controversy. Rather, these exposures provide excellent and unusual examples of fertile mantle which have undergone variable degrees of partial melting.
NASA Astrophysics Data System (ADS)
France, L.; Ildefonse, B.; Koepke, J.
2009-04-01
Recent detailed field studies performed in the Oman ophiolite on the gabbro/sheeted dike transition, compared to corresponding rocks from the EPR drilled by IODP (Site 1256), constrain a general model for the dynamics of the axial melt lens (AML) present at fast spreading ridges (France et al., 2008). This model implies that the AML/dike transition is a dynamic interface migrating up- and downward, and that the isotropic gabbro horizon on top of the igneous section represents its fossilization. It is also proposed that upward migrations are associated to reheating of the base of the sheeted dike complex and to assimilation processes. Plagiogranitic lithologies are observed close to the truncated base of the dikes and are interpreted to represent frozen melts generated by partial melting of previously hydrothermalized sheeted dikes. Relicts of previously hydrothermalized lithologies are also observed in the fossil melt lens, and are associated to lithologies that have crystallized under high water activities, with clinopyroxene crystallizing before plagioclase, and An-rich plagioclase. To better understand our field data, we performed hydrous partial melting experiments at shallow pressures (0.1 GPa) under slightly oxidizing conditions (NNO oxygen buffer) and water saturated conditions on hydrothermalized sheeted dike sample from the Oman ophiolite. These experiments have been performed between 850°C and 1030°C; two additional experiments in the subsolidus regime were also conducted (750°C and 800°C). Clinopyroxenes formed during incongruent melting at low temperature (<910°C) have compositions that match those from the corresponding natural rocks (reheated base of the sheeted dike and relicts of assimilated lithologies). In particular, the characteristic low TiO2 and Al2O3 contents are reproduced. The experimental melts produced at low temperatures correspond to compositions of typical natural plagiogranites. In natural settings, these silicic liquids would be mixed with the basaltic melt of the AML, resulting in intermediate compositions that can be observed in the isotropic gabbro horizon. Our study suggests that assimilation of previously hydrothermalized lithologies in the melt lens is a common process at fast spreading ridges. This process should consequently be carefully considered in geochemical studies that deal with the origin of MORB. France L., Ildefonse B., Koepke J., (2008) The fossilisation of a dynamic melt lens at fast spreading centers: insights from the Oman ophiolite. Eos Trans. AGU, 89(53), Fall Meet. Suppl. Abstract V51F-2111
Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)
2001-01-01
The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.
Tin in granitic melts: The role of melting temperature and protolith composition
NASA Astrophysics Data System (ADS)
Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier
2018-06-01
Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn-hosts, the small volume of the high-temperature melt will not be diluted by low-temperature, low-Sn melts and, therefore, could have high Sn-contents. The combination of multiple melt extractions and Sn-mobilization at high temperature results in strong Sn enrichment in late, high-temperature melts. Metal enrichment during partial melting becomes particularly efficient, if the sedimentary protolith had experienced intense chemical alteration as the loss of Na and Ca together with a relative enrichment of K favors muscovite-rich metamorphic mineral assemblages that produce large amounts of melt during muscovite dehydration melting.
Ar-Ar and I-Xe Ages of Caddo County and Thermal History of IAB Iron Meteorites
NASA Technical Reports Server (NTRS)
Bogard, Donald D.; Garrison, Daniel H.; Takeda, Hiroshi
2005-01-01
Inclusions in IAB iron meteorites include non-chondritic silicate and those with more primitive chondritic silicate composition. Coarse-grained gabbroic material rich in plagioclase and diopside occurs in the Caddo County IAB iron meteorite and represents a new type of chemically differentiated, extra-terrestrial, andesitic silicate. Other parts of Caddo contain mostly andesitic material. Caddo thus exhibits petrologic characteristics of parent body metamorphism of a chondrite-like parent and inhomogeneous segregation of melts. Proposed IAB formation models include parent body partial melting and fractional crystallization or incomplete differentiation due to internal heat sources, and impact/induced melting and mixing. Benedix et al. prefer a hybrid model whereby the IAB parent body largely melted, then underwent collisional breakup, partial mixing of phases, and reassembly. Most reported 129I- Xe-129 ages of IABs are greater than 4.56 Gyr and a few are greater than or = 4.567 Gyr. These oldest ages exceed the 4.567 Gyr Pb-Pb age of Ca, Al-rich inclusions in primitive meteorites,
Petrogenesis of high-Ti and low-Ti basalts: high-pressure and high-temperature experimental study
NASA Astrophysics Data System (ADS)
Yang, J.; WANG, C.; Jin, Z.
2017-12-01
Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces. However, the petrogenesis of them are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust or delaminated lower crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both of them are from mantle plume or asthenospheric source, but the production of high-Ti basalts are associated with the thick lithosphere and relevant low degrees of melting while the low-Ti basalts are controlled by the thin lithosphere with high degrees of melting (Arndt et al., 1993; Xu et al., 2001). Almost all authors emphasize the role of partial melting but less discuss the crystallization differentiation process. The low Mg# (< 0.7) of these basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts. In order to investigate the generation of these basalts, a series of high pressure and high temperature partial crystallization experiments were performed by using piston-cylinder and multi-anvil press at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700°. Two synthetic picrite glass with different chemical compositions were used as starting materials. Our experimental results show that Ti is preferred to be concentrated in the residual melt during crystallization differentiation. For the same melt fraction, the residual melt of higher pressure experiments has relatively higher TiO2 concentration and higher Mg#. Thus, we propose that most of the high-Ti and low-Ti basalts are inherited from picritic parental magmas which could be formed by high degree partial melting of garnet peridotite. The high-Ti basalts are generated through relatively high pressure crystallization process while the low-Ti basalts are generated at relatively low pressure.
NASA Astrophysics Data System (ADS)
Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.
2006-09-01
Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.
Simple calculation of ab initio melting curves: Application to aluminum.
Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean
2015-03-01
We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1996-01-01
The chemical compositions of magmas can be derived from the compositions of their equilibrium minerals through mineral/magma partition coefficients. This method cannot be applied safely to basaltic rocks, either solidified lavas or cumulates, which have chemically equilibrated or partially equilibrated at subsolidus temperatures, i.e., in the absence of magma. Applying mineral/ melt partition coefficients to mineral compositions from such rocks will typically yield 'magma compositions' that are strongly fractionated and unreasonably enriched in incompatible elements (e.g., REE's). In the absence of magma, incompatible elements must go somewhere; they are forced into minerals (e.g., pyroxenes, plagioclase) at abundance levels far beyond those established during normal mineral/magma equilibria. Further, using mineral/magma partition coefficients with such rocks may suggest that different minerals equilibrated with different magmas, and the fractionation sequence of those melts (i.e., enrichment in incompatible elements) may not be consistent with independent constraints on the order of crystallization. Subsolidus equilibration is a reasonable cause for incompatible- element-enriched minerals in some eucrites, diogenites, and martian meteorites and offers a simple alternative to petrogenetic schemes involving highly fractionated magmas or magma infiltration metasomatism.
Crystal growth of GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.; Pawlowicz, L. M.; Dabkowski, F.; Li, C. J.
1984-01-01
It is shown that stoichiometry variations in the GaAs melt during growth constitute the most critical parameter regarding defect formations and their interactions; this defect structure determines all relevant characteristics of GaAs. Convection in the melt leads to stoichiometric variations. Growth in axial magnetic fields reduces convection and permits the study of defect structure. In order to control stoichiometry in space and to accommodate expansion during solidification, a partially confined configuration was developed. A triangular prism is employed to contain the growth melt. This configuration permits the presence of the desired vapor phase in contact with the melt for controlling the melt stoichiometry.
Small amounts of CO2-H2O-rich melt in the lithosphere-asthenosphere.
NASA Astrophysics Data System (ADS)
Gaillard, Fabrice; Sifre, David; Hashim, Leila; Hier-Majumder, Saswata
2014-05-01
A low viscosity layer at the Lithosphere-Asthenosphere Boundary (LAB) is certainly a requirement for plate tectonics but the nature of the rocks presents in this boundary remains controversial. The seismic low velocities and the high electrical conductivities of the LAB are attributed either to sub-solidus water-related defects in olivine minerals or to a few volume percents of partial melt but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be high enough due to several mineralogical processes that have been so far ignored, including partial melting; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the LAB and by the high melt mobility that can lead to gravitational segregation. All this has long been discussed (30 years ago) when petrologists have defined the petrological LAB as the region of the upper mantle impregnated by incipient melts; that is small amounts of melt caused by small amount of CO2 and H2O. We show here that this incipient melting is a melting regime that is allowed in the entire P-T-fO2 region of the LVZ. The top of the oceanic LVZ (LAB) is best explained by a melt freezing layer due to a decarbonation reaction, whereas the bottom of the LVZ matches the depth at which redox melting defines the lower boundary of stability of incipient melts. Based on new laboratory measurements, we show here that incipient melts must be the cause of the high electrical conductivities in the oceanic LVZ. Considering relevant mantle abundances of H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the LAB for various ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. Incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere.
Deep Crustal Melting and the Survival of Continental Crust
NASA Astrophysics Data System (ADS)
Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.
2017-12-01
Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient ascent of deep crust, whereas slow extension (mm/yr) produces significantly less exhumation. Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.
Foveated Wide Field-of-View Imaging for Missile Warning/Tracking using Adaptive Optics
2007-11-30
their melting temperatures are relatively high because of their long molecular conjugation. To lower the melting points, we have formulated eutectic ...compounds during recrystallization processes. 3. Polar, partially dissociated like organic acids, phenols or bases. Their dissociation level depends on the
NASA Technical Reports Server (NTRS)
Jurewicz, Stephen R.; Jones, J. H.
1993-01-01
Speculation about the possible mechanisms for core formation in small asteroids raises more questions than answers. Petrologic evidence from iron meteorites, pallasites, and astronomical observations of M asteroids suggests that many small bodies were capable of core formation. Recent work by Taylor reviews the geochemical evidence and examines the possible physical/mechanical constraints on segregation processes. Taylor's evaluation suggests that extensive silicate partial melting (preferably 50 vol. percent or greater) is required before metal can segregate from the surrounding silicate and form a metal core. The arguments for large degrees of silicate partial melting are two-fold: (1) elemental trends in iron meteorites require that the metal was at is liquidus; and (2) experimental observations of metal/sulfide inclusions in partially molten silicate meteorites show that the metal/sulfide tends to form spherules in the liquid silicate due to surface tension effects. Taylor points out that for these metal spherules to sink through a silicate mush, high degrees of silicate partial melting are required to lower the silicate yield strength. Although some qualitative experimental data exists, little is actually known about the behavior of metals and liquid sulfides dispersed in silicate systems. In addition, we have been impressed with the ability of cumulative olivine to expel trapped liquid when placed in a thermal gradient. Consequently, we undertook to accomplish the following: (1) experimentally evaluate the potential for metal/sulfide/silicate segregation in a thermal gradient; and (2) obtain quantitative data of the wetting parameters of metal-sulfide melts among silicate grains.
NASA Astrophysics Data System (ADS)
Eguchi, James; Dasgupta, Rajdeep
2017-03-01
We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1-3 GPa, 1375-1550 °C, and fO2 of FMQ -3.2 to FMQ -2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln( K 0) = -21.79 ± 0.04, Δ V 0 = 32.91 ± 0.65 cm3mol-1, Δ H 0 = 107 ± 21 kJ mol-1, and dissolution of CO2 as CO3 2-: ln (K 0 ) = -21.38 ± 0.08, Δ V 0 = 30.66 ± 1.33 cm3 mol-1, Δ H 0 = 42 ± 37 kJ mol-1, where K 0 is the equilibrium constant at some reference pressure and temperature, Δ V 0 is the volume change of reaction, and Δ H 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.
Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data
NASA Astrophysics Data System (ADS)
Hill, Graham J.; Caldwell, T. Grant; Heise, Wiebke; Chertkoff, Darren G.; Bibby, Hugh M.; Burgess, Matt K.; Cull, James P.; Cas, Ray A. F.
2009-11-01
Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)-Mounts St Helens, Adams and Rainier-are located on the margins of a mid-crustal zone of high electrical conductivity. Interconnected melt can increase the bulk conductivity of the region containing the melt, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath this volcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs 9, 10).
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1999-09-01
Incorporating upper mantle differentiation through decompression melting in a numerical mantle convection model, we demonstrate that a compositionally distinct root consisting of depleted peridotite can grow and remain stable during a long period of secular cooling. Our modeling results show that in a hot convecting mantle partial melting will produce a compositional layering in a relatively short time of about 50 Ma. Due to secular cooling mantle differentiation finally stops before 1 Ga. The resulting continental root remains stable on a billion year time scale due to the combined effects of its intrinsically lower density and temperature-dependent rheology. Two different parameterizations of the melting phase-diagram are used in the models. The results indicate that during the Archaean melting occurred on a significant scale in the deep regions of the upper mantle, at pressures in excess of 15 GPa. The compositional depths of continental roots extend to 400 km depending on the potential temperature and the type of phase-diagram parameterization used in the model. The results reveal a strong correlation between lateral variations of temperature and the thickness of the continental root. This shows that cold regions in cratons are stabilized by a thick depleted root.
NASA Technical Reports Server (NTRS)
Rankenburg, K.; Brandon, A. D.; Humayun, M.
2005-01-01
Ureilites are an enigmatic group of primitive carbon-bearing achondrites of ultramafic composition. The majority of the 143 ureilite meteorites consist primarily of olivine and pyroxene (and occasionally chromite) [1]. They are coarse-grained, slowly cooled, and depleted in incompatible lithophile elements. Minor amounts of dark interstitial material consisting of carbon, metal, sulfides, and fine-grained silicates occur primarily along silicate grain boundaries, but also intrude the silicates along fractures and cleavage planes. Variable degrees of impact shock features have also been imparted on ureilites. The prevailing two origins proposed for these rocks are either as melting residues of carbonaceous chondritic material [2], [3], or alternatively, derivation as mineral cumulates from such melts [4], [5], [6]. It has recently been proposed that ureilites are the residues of a smelting event, i.e. residues of a partial melting event under highly reducing conditions, where a solid Fe-bearing phase reacts with a melt and carbon to form Fe metal and carbon monoxide [7]. Rapid, localized extraction and loss of the basaltic component into space resulting from high eruption velocities could preserve unequilibrated oxygen isotopes and produce the observed olivine-pyroxene residues via 25-30% partial melting of chondritic-like precursor material.
The birth, growth and ageing of the Kaapvaal subcratonic mantle
NASA Astrophysics Data System (ADS)
Brey, Gerhard P.; Shu, Qiao
2018-06-01
The Kaapvaal craton and its underlying mantle is probably one of the best studied Archean entity in the world. Despite that, discussion is still vivid on important aspects. A major debate over the last few decades is the depth of melting that generated the mantle nuclei of cratons. Our new evaluation of melting parameters in peridotite residues shows that the Cr2O3/Al2O3 ratio is the most useful pressure sensitive melting barometer. It irrevocably constrains the pressure of melting (melt separation) to less than 2 GPa with olivine (ol), orthopyroxene (opx) and spinel (sp) as residual phases. Garnet (grt) grows at increasing pressure during lithosphere thickening and subduction via the reaction opx + sp → grt + ol. The time of partial melting is constrained by Re-depletion model ages (TRD) mainly to the Archean (Pearson and Wittig 2008). However, only 3% of the ages are older than 3.1 Ga while crustal ages lie mainly between 3.1 to 2.8 Ga for the W- and 3.7 to 2.8 Ga for the E-block. Many TRD-ages are probably falsified by metasomatism and the main partial melting period was older than 3.1 Ga. Also, Nd- and Hf- model ages of peridotitic lithologies from the W-block are 3.2 to 3.6 Ga old. The corresponding very negative ɛNd (-40) and ɛHf values (-65) signal the presence of subducted crustal components in these old mantle portions. Subducted components diversify the mantle in its chemistry and thermal structure. Adjustment towards a stable configuration occurs by fluid transfer, metasomatism, partial melting and heat transfer. Ages of metasomatism from the Lu-Hf isotope system are 3.2 Ga (Lace), 2.9 Ga (Roberts Victor) and 2.62 Ga (Finsch) coinciding with the collision of cratonic blocks, the growth of diamonds, metamorphism of eclogites and of Ventersdoorp magmatism. The cratonic lithosphere was stabilized thermally by the end of the Archean and cooled since then with a rate of 0.07 °C/Ma.
The effects of small amounts of H2O on partial melting of model spinel lherzolite in the system CMAS
NASA Astrophysics Data System (ADS)
Liu, X.; St. C. Oneill, H.
2003-04-01
Water (H_2O) is so effective at lowering the solidus temperatures of silicate systems that even small amounts of H_2O are suspected to be important in the genesis of basaltic magmas. The realization that petrologically significant amounts of H_2O can be stored in nominally anhydrous mantle minerals (olivine and pyroxenes) has fundamental implications for the understanding of partial melting in the mantle, for it implies that the role that H_2O plays in mantle melting may not be appropriately described by models in which the melting is controlled by hydrous phases such as amphibole. Although the effect of water in suppressing the liquidus during crystallization is quite well understood, such observations do not provide direct quantitative information on the solidus. This is because liquidus crystallization occurs at constant major-element composition of the system, but at unbuffered component activities (high thermodynamic variance). By contrast, for partial melting at the solidus the major-element component activities are buffered by the coexisting crystalline phases (low variance), but the major-element composition of the melt can change as a function of added H_2O. Accordingly we have determined both the solidus temperature and the melt composition in the system CMAS with small additions of H_2O, to 4 wt%, in equilibrium with the four-phase lherzolite assemblage of fo+opx+cpx+sp. Experiments were conducted at 1.1 GPa and temperatures from 1473 K to the dry solidus at 1593 K in a piston-cylinder apparatus. Starting materials were pre-synthesised assemblage of fo+opx+cpx+sp, plus an oxide/hydroxide mix of approximately the anticipated melt composition. H_2O was added as either Mg(OH)_2 or Al(OH)_3. The crystalline assemblage and melt starting mix were added as separate layers inside sealed Pt capsules, to ensure large volumes of crystal-free melt. After the run doubly polished sections were prepared in order to analyse the quenched melt by FTIR spectroscopy, to quantify the amounts of H_2O. This is necessary, as Pt capsules are to some extent open to H_2 diffusion. All melts were found to contain CO_2 (<0.7 wt%), which appears to come mainly from the hydroxide starting materials but also by C diffusion through the Pt capsule. Since CO_2 is experimentally correlated with H_2O, its presence significantly effects the interpretation of the results. Ignoring this complication, we find that 1 wt% H_2O decreases the solidus by ˜40 K; melt compositions do not change greatly, the main effect being a small decrease in MgO.
Is EETA79001 Lithology B A True Melt Composition?
NASA Technical Reports Server (NTRS)
Arauza, S. J.; Jones, John H.; Mittlefehldt, D. W.; Le, L.
2010-01-01
EETA79001 is a member of the SNC (shergottite, nakhlite, chassignite) group of Martian meteorites. Most SNC meteorites are cumulates or partial cumulates [1] inhibiting calculation of parent magma compositions; only two (QUE94201 and Y- 980459) have been previously identified as true melt compositions. The goal of this study is to test whether EETA79001-B may also represent an equilibrium melt composition, which could potentially expand the current understanding of martian petrology.
Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel
2016-04-01
Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.
NASA Astrophysics Data System (ADS)
O'Hara, M. J.; Herzberg, C.
2002-06-01
The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of "pseudospidergrams," a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ˜95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.
NASA Astrophysics Data System (ADS)
Bartley, J. M.; Glazner, A. F.; Coleman, D. S.
2016-12-01
Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.
NASA Astrophysics Data System (ADS)
Kokkalas, S.; Joun, H.; Tombros, S.
2017-12-01
Plagiogranite intrusions are common in the Khor Fakkan block of the Semail ophiolite, where the mantle sequence is predominant. Several models have been proposed for the source of these leucocratic intrusions, but their genesis is still under debate. The examined plagiogranites are characterized by 68 wt. % SiO2 and display volcanic-arc granite affinity. They have crystallize at temperatures that range from 550° to 720o C and pressures ranging from 5.0 to 6.5 Kbars. The parental plagiogranite melts, based on the relations of the δ18Omelt or δ18OH2O versus eSr suggest mixing of subducted crust with overlying upper mantle. The relatively wide range of the 87Rb/86Sr ratios, at almost constant 87Sr/86Sr, implies that partial melting and mixing was followed by fractional crystallization. The isotopic ages from the examined plagiogranites range between 94.9-98.5 Ma, predating the sole metamorphism. Based on our source contribution calculations, 96% of the igneous and 4% of sedimentary end-member components are involved in formation of plagiogranitic melts. The igneous end-member derived from partial melting of 3 % upper mantle and 97% recycled oceanic crust. We propose that the mafic melts were initially produced by the off-axis melting of recycled oceanic slab under a compressional regime a supra-subduction zone (SSZ) setting. The mafic melts were modified due to mixing with small amount of melts from the upper mantle by influx of slab-derived fluids. Then these melts underwent extended fractional crystallization with crystallization of An-enriched plagioclase and emplaced on the Moho level to form Dadnah plagiogranites in the Khor Fakkan block.
NASA Astrophysics Data System (ADS)
Avetissov, I.; Kostikov, V.; Meshkov, V.; Sukhanova, E.; Grishechkin, M.; Belov, S.; Sadovskiy, A.
2014-01-01
A VGF growth setup assisted by axial vibrations of baffle submerged into CdTe melt with controlled Cd partial pressure was designed. An influence of baffle shape on flow velocity map, temperature distribution in CdTe melt and interface shape of growing crystal was analyzed by numerical simulation and physical modeling. To produce the desirable shape of crystal melt interface we slant under different angles vertical generatrix in a cylindrical disk and made chasing on faceplates of a disk. It was ascertained that a disk with conical generatrix formed more intensive convective flows from a faceplate with larger diameter. It was shown that at CdTe VGF crystal growth rate about 10 mm/h application of AVC technique made it possible to produce convex interface for 2 in. crystal diameter.
Equivalence of equations describing trace element distribution during equilibrium partial melting
NASA Technical Reports Server (NTRS)
Consolmagno, G. J.; Drake, M. J.
1976-01-01
It is shown that four equations used for calculating the evolution of trace-element abundances during equilibrium partial melting are mathematically equivalent. The equations include those of Hertogen and Gijbels (1976), Shaw (1970), Schilling (1971), and O'Nions and Clarke (1972). The general form to which all these equations reduce is presented, and an analysis is performed to demonstrate their mathematical equivalence. It is noted that the utility of the general equation flows from the nature of equilibrium (i.e., the final state is independent of the path by which that state is attained).
Melt-Vapor Phase Diagram of the Te-S System
NASA Astrophysics Data System (ADS)
Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.
2018-03-01
The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.
NASA Astrophysics Data System (ADS)
Palke, Aaron C.; Renfro, Nathan D.; Berg, Richard B.
2017-05-01
We report here compositions of glassy melt inclusions hosted in sapphires (gem quality corundum) from three alluvial deposits in Montana, USA including the Rock Creek, Dry Cottonwood Creek, and Missouri River deposits. While it is likely that sapphires in these deposits were transported to the surface by Eocene age volcanic events, their ultimate origin is still controversial with many models suggesting the sapphires are xenocrysts with a metamorphic or metasomatic genesis. Melt inclusions are trachytic, dacitic, and rhyolitic in composition. Microscopic observations allow separation between primary and secondary melt inclusions. The primary melt inclusions represent the silicate liquid that was present at the time of sapphire formation and are enriched in volatile components (8-14 wt.%). Secondary melt inclusions analyzed here for Dry Cottonwood Creek and Rock Creek sapphires are relatively volatile depleted and represent the magma that carried the sapphires to the surface. We propose that alluvial Montana sapphires from these deposits formed through a peritectic melting reaction during partial melting of a hydrated plagioclase-rich protolith (e.g. an anorthosite). The heat needed to drive this reaction was likely derived from the intrusion of mantle-derived mafic magmas near the base of the continental lithosphere during rollback of the Farallon slab around 50 Ma. These mafic magmas may have ended up as the ultimate carrier of the sapphires to the surface as evidenced by the French Bar trachybasalt near the Missouri River deposit. Alternatively, the trachytic, rhyolitic, and dacitic secondary melt inclusions at Rock Creek and Dry Cottonwood Creek suggests that the same magmas produced during the partial melting event that generated the sapphires may have also transported them to the surface. Determining the genesis of these deposits will further our understanding of sapphire deposits around the world and may help guide future sapphire prospecting techniques. This work is also important to help reveal the history of mantle-derived mafic magmas as they pass through the continental crust.
NASA Astrophysics Data System (ADS)
Franken, T.; Armitage, J. J.; Fuji, N.; Fournier, A.
2017-12-01
Low shear-wave velocity zones underneath margins of continental break-up are believed to be related to the presence of melt. Many models attempt to model the process of melt production and transportation during mantle upwelling, yet there is a disconnect between geodynamic models, seismic observations, and petrological studies of melt flow velocities. Geodynamic models that emulate melt retention of 2 %, suggested by shear-wave velocity anomalies (Forsyth & MELT Seismic Team, 1998), fail to adequately reproduce the seismic signal as seen in receiver functions (Rychert, 2012; Armitage et al., 2015). Furthermore, numerical models of melt migration conclude mean melt flow velocities up to 1,3 m yr-1(Weatherley & Katz, 2015), whereas Uranium isotope migration rates advocate velocities up to two orders of magnitude higher. This study aims to reconcile the diverting assertions on the partial melting process by analysing the effect of melt presence on the coda of the seismic signal. A 1D forward model has been created to emulate melt production and transportation in an upwelling mantle environment. Scenarios have been modelled for variable upwelling velocities v (1 - 100 mm yr-1), initial temperatures T0 (1200 - 1800 °C) and permeabilities k0 (10-9 - 10-5 m2). The 1D model parameters are converted to anharmonic seismic parameters using look-up tables from phase diagrams (Goes et al., 2012) to generate synthetic seismograms with the Direct Solution Method. The maximum frequency content of the synthetics is 1,25 Hz, sampled at 20 Hz with a low-pass filter of 0,1 Hz. A comparison between the synthetics and seismic observations of the La Reunion mantle plume from the RER Geoscope receiver is performed using a Monte-Carlo approach. The synthetic seismograms show highest sensitivity to the presence of melt in S-waves within epicentral distances of 0-20 degrees. In the 0-10 degree range only a time-shift is observed proportional to the melt fraction at the onset of melting. Within the 10-20 degree range the presence of melt causes an additional change in the coda of the signal compared to a no-melt model. By analysing these altered synthetic waveforms we search for a seismic signature corresponding to melt presence to form a benchmark for the comparison between the Monte-Carlo results and the seismic observations.
NASA Astrophysics Data System (ADS)
Harvey, R. P.
1993-07-01
Type 7 ordinary chondrites have experienced temperatures near or beyond those necessary for partial melting. Two recently collected Antarctic specimens, PAT91501 (PAT) and LEW88663 (LEW), have been tentatively identified as L7 chondrites based on mineral and oxygen isotope compositions [1,2]. The petrology and mineralogy of these meteorites suggests that they have undergone significant metal/sulfide-silicate segregation, with implications for meteorite parent bodies. PAT consists of an equigranular contact-framework of nearly euhedral olivine grains, with interstitial spaces filled by plagioclase, pyroxenes, and several minor phases. Ortho- and clinopyroxene occur in an exsolution relationship. Olivine and pyroxene are highly equilibrated, varying <<1% in Fe-endmember content. Pyroxene equilibration temperatures calculated for PAT using the methods of [3] are self-consistent at about 1180 degrees C. In thin section, PAT contains only traces of metal, as tiny isolated blebs in sulfide grains; large (>1 cm) globular sulfide inclusions are seen in hand-sample [1], but are not present in the section examined. LEW was originally classified as an achondrite with olivine and pyroxene compositions similar to those in L chondrites [2]. Metal is absent in LEW, although the specimen is small and heavily rusted, making it impossible to gauge the original metal content. Olivine grains are commonly rounded in shape and seldom in contact with more than a few other grains. LEW olivine and pyroxene are also highly equilibrated. Veins of Ni-bearing metal oxides and sulfides are common. Both low- and high-Ca pyroxene occur as discrete grains, orthopyroxene often poikilitically enclosing olivine. Pyroxene equilibration temperatures for LEW are more variable than those for PAT and consistently lower, with an average around 900 degrees C. The various textural and compositional characteristics of PAT and LEW suggest they have experienced partial melting to varying degrees. Both visually resemble charges from experimental melting of ordinary chondrites [4-6]. The cumulate-like framework of olivine crystals in PAT suggests a high degree of partial melting, at peak temperatures sufficient to melt all other phases (above 1400 degrees C) [6]. The spheroidal sulfide nodules in PAT and the occurrence of metal (when present) only in association with sulfide strongly suggest gravitational segregation of a metal/sulfide liquid from a partial melt of the original chondritic assemblage. LEW features suggest less partial melting. Veins and grain coatings of sulfides and Fe-Ni oxides (that were probably metal before weathering) infer exposure to temperatures of 900-1000 degrees C [5]. The non-uniform olivine grain size and presence of remnant clinopyroxene grains in LEW imply that peak temperatures reached by this meteorite were not higher than 1200 degrees C [6]. The partial melting observed in PAT and LEW is probably a result of shock heating during impacts, as proposed in studies of Shaw (L7) and other similar lithologies [7]. If significant metal/sulfide-silicate segregation can occur in the relatively small volumes and short heating times associated with impact melting, even small planetesimals might be differentiated. This implies that the timescale necessary for planetary differentiation might have been significantly shortened by the assembly of already differentiated planetesimals to form meteorite parent bodies [8]. References: [1] Mason B. et al. (1992) Ant. Met. News., 15(2), 30. [2] Mason B. and Marlow R. (1992) Ant. Met. News., 15(1), 16. [3] Fonarev V. I. and Graphchikov A. A. (1991) In Progress in Metamorphic and Magmatic Petrology (L. L. Perchuk, ed.), 65-92, Cambridge University. [4] Smith B. A. and Goldstein J. I. (1977) GCA, 41, 1061-1072. [5] McSween H. Y. Jr. et al. (1978) LPS IX, 1437-1447. [6] Takahashi E. (1983) NIPR Spec. Is., 30, 168-180. [7] Taylor G. J. et al. (1979) GCA, 43, 323-337. [8] Taylor G. J. JGR, 97, 14717-14726.
Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony
2008-11-03
Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.
Simple models for the simulation of submarine melt for a Greenland glacial system model
NASA Astrophysics Data System (ADS)
Beckmann, Johanna; Perrette, Mahé; Ganopolski, Andrey
2018-01-01
Two hundred marine-terminating Greenland outlet glaciers deliver more than half of the annually accumulated ice into the ocean and have played an important role in the Greenland ice sheet mass loss observed since the mid-1990s. Submarine melt may play a crucial role in the mass balance and position of the grounding line of these outlet glaciers. As the ocean warms, it is expected that submarine melt will increase, potentially driving outlet glaciers retreat and contributing to sea level rise. Projections of the future contribution of outlet glaciers to sea level rise are hampered by the necessity to use models with extremely high resolution of the order of a few hundred meters. That requirement in not only demanded when modeling outlet glaciers as a stand alone model but also when coupling them with high-resolution 3-D ocean models. In addition, fjord bathymetry data are mostly missing or inaccurate (errors of several hundreds of meters), which questions the benefit of using computationally expensive 3-D models for future predictions. Here we propose an alternative approach built on the use of a computationally efficient simple model of submarine melt based on turbulent plume theory. We show that such a simple model is in reasonable agreement with several available modeling studies. We performed a suite of experiments to analyze sensitivity of these simple models to model parameters and climate characteristics. We found that the computationally cheap plume model demonstrates qualitatively similar behavior as 3-D general circulation models. To match results of the 3-D models in a quantitative manner, a scaling factor of the order of 1 is needed for the plume models. We applied this approach to model submarine melt for six representative Greenland glaciers and found that the application of a line plume can produce submarine melt compatible with observational data. Our results show that the line plume model is more appropriate than the cone plume model for simulating the average submarine melting of real glaciers in Greenland.
Sulfide Melts and Chalcophile Element Behavior in High Temperature Systems
NASA Astrophysics Data System (ADS)
Wood, B. J.; Kiseeva, K.
2016-12-01
We recently found that partition coefficients (Di) of many weakly and moderately chalcophile elements (e.g., Cd, Zn, Co, Cr, Pb, Sb, In) between sulfide and silicate melts are simple functions of the FeO content of the silicate liquid: logDi A-Blog[FeO] where [FeO] is the FeO concentration in the silicate, A and B are constants and the latter is related to the valency of the element of interest. In contrast, some strongly chalcophile (e.g Cu, Ni, Ag) and lithophile elements (e.g Mn) show marked deviations from linearity on a plot of logDi vs log[FeO]. More recent experiments show that linear behavior is confined to elements whose affinities for S and O are similar to those of Fe. In the case of elements more strongly lithophile than Fe (Ti, U, REE, Zr, Nb, Ta, Mn) a plot of logDi versus log[FeO] describes a U-shape with the element partitioning strongly into the sulfide at very low FeO and again at very high FeO content of the silicate melt. In contrast, strongly chalcophile elements (Cu, Ni, Ag) describe an n-shape on the plot of logD vs log[FeO]. The result is that lithophile elements such as Nb become more "chalcophile" than Cu at very low and very high FeO contents of the silicate melt. The reasons for this surprising behavior are firstly that, at very low FeO contents the silicate melt dissolves substantial amounts of sulfur, which drives down the activity of FeO and, from mass-action "pulls" the lihophile element into the sulfide. At high FeO contents of the silicate the sulfide itself starts to dissolve substantial amounts of oxygen and lithophile elements follow the oxygen into the sulfide. Given the principles which we have established, we are able to describe the patterns of chalcophile element behavior during partial melting and fractional crystallisation on Earth and also on bodies such as Mercury and Mars which are, respectively, strongly reduced relative to Earth and more oxidised than Earth.
NASA Astrophysics Data System (ADS)
Guo, Xuan; Zhang, Li; Su, Xue; Mao, Zhu; Gao, Xiao-Ying; Yang, Xiaozhi; Ni, Huaiwei
2018-05-01
Magnetotelluric and seismological studies suggested the presence of partial melts in the middle to lower Himalaya-Tibetan crust. However, the melt fractions inferred by previous work were based on presumed electrical conductivity of melts. We performed measurements on the electrical conductivity of peraluminous granitic melts with 0.16-8.4 wt % H2O (the expected compositions in the Tibetan crust) at 600-1,300°C and 0.5-1.0 GPa. Peraluminous melt exhibits lower electrical conductivity than peralkaline melt at dry condition, but this difference diminishes at H2O > 2 wt %. With our data, the observed electrical anomalies in the Tibetan crust could be explained by 2-33 vol % of peraluminous granitic melts with H2O > 6 wt %. Possible reasons for our inferred melt fractions being higher than seismological constraints include the following: (1) The real melts are more Na and H2O rich, (2) the effect of melt reducing seismic velocities was overestimated, and (3) the anomalies at some locations are due to fluids.
NASA Technical Reports Server (NTRS)
Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.
2015-01-01
Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.
NASA Technical Reports Server (NTRS)
Elthon, D.
1986-01-01
The presence of ultramafic lavas (komatiites) associated with Archean greenstone belts has been suggested to indicate very high increments (50-80%) of partial melting of the Archean mantle. Such extensive melting of the Earth's mantle during the Archean might have profound effects on the early tectonic and chemical evolution of the planet, although problems associated with keeping the komatiite liquid in equilibrium with the residual mantle at such high increments of melting has cast doubt upon aspects of extensive melting. Two important aspects of the origin of komatiites are discussed below.
NASA Astrophysics Data System (ADS)
Misra, Saumitra; Reinhardt, Jürgen; Wilson, Allan H.
2017-08-01
One of the major limitations in understanding the geochemical evolution of the Kaapvaal Craton, South Africa, is the scarcity of whole rock trace element data of the granitoid and other rocks compared to the vastness of this cratonic block. Here we present new XRF major oxide and ICP-MS trace element analyses of the White Mfolozi Granitoid (WMG) pluton, SE Kaapvaal Craton, which suggest that the 3.25 Ga (U-Pb zircon age) old WMG pluton is a peraluminous A-type granite and could be equivalent to the intrusive potassic granite phase of the Anhalt Granitoid suite, occurring to the North of the WMG pluton. The pluton was generated by batch partial melting of a pre-existing TTG source in two major phases under relatively anhydrous conditions, and the heat of partial melting could have been provided by a voluminous mantle-derived mafic magma, which intruded into mid-crustal levels (c. 17 km), perhaps during a period of crustal extension. The estimated pressure and temperature of generation of the WMG parent magma with average molar [or/(or + ab)] 0.48 could be 500 MPa and close to 1000 °C, respectively, when compared with the results of experimental petrology. Interstitial occurrence of relatively iron-rich biotite [Mg/(Mg + Fe) 0.41-0.45] suggests that the final temperature of crystallization of the pluton was close to 800 °C. An important magmatic event following the main phase of partial melting was limited mixing between the intrusive mafic magma and co-existing newly generated granitic melt. This magma mixing resulted in distinct variations in SiO2 and a low initial Sr isotopic ratio (0.7013) of the WMG pluton. Although both the models of partial melting of quartzo-feldspathic sources and fractional crystallization of basaltic magmas with or without crustal assimilation have been proposed for the origin of A-type granites, the model of magmatic evolution of the WMG pluton presented here can also be an alternative model for the generation of A-type granites. In this model, post-partial melting magma mixing is perhaps critical in explaining the Daly gap in composition and extreme variations in chemical (e.g., SiO2) and isotopic compositions observed in many bimodal A-type granite suites. The emplacement of the oldest known A-type granitoid suite in the Kaapvaal Craton, the WMG pluton, marks a period of stabilization of the craton before erosion and deposition of the overlying volcano-sedimentary succession of the Pongola Supergroup.
NASA Astrophysics Data System (ADS)
Weller, D. J.; Stern, C. R.
2018-01-01
Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion in equilibrium with mantle olivine. Table S5. Melting parameters Fm and CoH2O. Table S6. Major element compositions of phenocrysts and glasses occurring with the olivine-hosted melt inclusions.
NASA Astrophysics Data System (ADS)
Acosta-vigil, A.; Barich, A.; Garrido, C. J.; Cesare, B.; Tajčmanová, L.; Bartoli, O.
2014-12-01
We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence garnet decreases whereas biotite increases in proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈5 to 200 micrometers, with a mean size of ≈30-40 micrometers. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈850 ºC and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈800-850 ºC and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Kaminski, Edouard
2017-05-01
The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.
NASA Astrophysics Data System (ADS)
Vilella, K.; Kaminski, E. C.
2016-12-01
The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This "Hottest Thermal Boundary Layer" (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.
NASA Astrophysics Data System (ADS)
Blakely, Richard J.
1994-02-01
The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.
DOT National Transportation Integrated Search
2008-12-01
A common practice for the fabrication of orthotropic bridge deck in the US involves using 80% partial-joint-penetration groove welds (PJP) to join : closed ribs to a deck plate. Avoiding weld melt-through with the thin rib plate may be difficult to a...
Pyroxene-melt equilibria. [for lunar maria basalts
NASA Technical Reports Server (NTRS)
Nielsen, R. L.; Drake, M. J.
1979-01-01
A thermodynamic analysis of pyroxene-melt equilibria is performed through use of a literature survey of analyses of high-Ca pyroxene and coexisting silicate melt pairs and analyses of low-Ca pyroxene silicate melt pairs. Reference is made to a modified version of a model developed by Bottinga and Weill (1972) which more successfully accounts for variations in melt composition than does a model which considers the melt to be composed of simple oxides which mix ideally. By using a variety of pyroxene melt relations, several pyroxene-melt and low-Ca pyroxene-high-Ca pyroxene geothermometers are developed which have internally consistant precisions of approximately + or - 20 C. Finally, it is noted that these equations may have application in modeling the evolution of mineral compositions during differentiation of basaltic magmas.
Interactions between magma and the lithospheric mantle during Cenozoic rifting in Central Europe
NASA Astrophysics Data System (ADS)
Meyer, Romain; Elkins-Tanton, Linda T.
2010-05-01
During the Cenozoic, extensive intraplate volcanic activity occurred throughout Central Europe. Volcanic eruptions extend over France (the Massif Central), central Germany (Eifel, Vogelsberg, Rhön; Heldburg), the Czech Republic (the Eger graben) and SW Poland (Lower Silesia), a region ~1,200 km wide. The origin of this predominantly alkaline intraplate magmatism is often genetically linked to one or several mantle plumes, but there is no convincing evidence for this. We have measured Pb isotope ratios, together with major and trace elements, in a representative set of mafic to felsic igneous rocks from the intra-plate Cenozoic Rhön Mts. and the Heldburg dike swarm in order to gain insight into the melting source and petrogenetic history of these melts. Three different mafic rock types (tholeiitic basalt, alkali basalt, basanite) were distinguished based on petrography and geochemistry within the investigated areas. Except for the lherzolite-bearing phonolite from the Veste Heldburg all other evolved magmas are trachytes. REE geochemistry and calculated partial melting modeling experiments for the three mafic magma types point to different degrees of partial melting in a garnet-bearing mantle source. In addition a new version of the ternary Th-Hf-Ta diagram is presented in this study as a useful petrological tool. This diagram is not only able to define potentially involved melting source end-members (e.g. asthenosphere, sub-continental lithospheric mantle and continental crust) but also interactions between these members are illustrated. An advantage of this diagram compared to partial melting degree sensitive multi-element diagrams is that a ternary diagram is a closed system. An earlier version of this diagram has been recently used to establish the nature and extent of crust mantle melt interaction of volcanic rifted margins magmas (Meyer et al. 2009). The Th-Hf-Ta geochemistry of the investigated magmas is similar to spinel and garnet xenoliths from different continental intra-plate volcanic fields The in the Rhön Mts. and the Heldburg dike swarm tapped mantle source is characterized by an enriched Pb-isotope geology. The highest HIMU component has been measured in the lherzolite-bearing Veste Heldburg phonolite. This higher enriched Pb isotope signature compared to the mafic magmas cannot be explained by crustal contamination. Assimilation fractionation crystallization (AFC) modeling of the Heldburg phonolite allows us to petrogenetically link this melt with HIMU rich shallow mantle amphibole-bearing xenoliths. These new observations suggest that melting started in more depleted mantle segments. And that these melts interacted with more enriched metasomatic overprinted lithospheric mantle domains.
Interactions between magma and the lithospheric mantle during Cenozoic rifting in Central Europe
NASA Astrophysics Data System (ADS)
Meyer, R.; Song, X.; Elkins-Tanton, L. T.
2009-12-01
During the Cenozoic, extensive intraplate volcanic activity occurred throughout Central Europe. Volcanic eruptions extend over France (the Massif Central), central Germany (Eifel, Vogelsberg, Rhön; Heldburg), the Czech Republic (the Eger graben) and SW Poland (Lower Silesia), a region ~1,200 km wide. The origin of this predominantly alkaline intraplate magmatism is often genetically linked to one or several mantle plumes, but there is no convincing evidence for this. We have measured Pb isotope ratios, together with major and trace elements, in a representative set of mafic to felsic igneous rocks from the intra-plate Cenozoic Rhön Mts. and the Heldburg dike swarm in order to gain insight into the melting source and petrogenetic history of these melts. Three different mafic rock types (tholeiitic basalt, alkali basalt, basanite) were distinguished based on petrography and geochemistry within the investigated areas. Except for the lherzolite-bearing phonolite from the Veste Heldburg all other evolved magmas are trachytes. REE geochemistry and calculated partial melting modeling experiments for the three mafic magma types point to different degrees of partial melting in a garnet-bearing mantle source. In addition a new version of the ternary Th-Hf-Ta diagram is presented in this study as a useful petrological tool. This diagram is not only able to define potentially involved melting source end-members (e.g. asthenosphere, sub-continental lithospheric mantle and continental crust) but also interactions between these members are illustrated. An advantage of this diagram compared to partial melting degree sensitive multi-element diagrams is that a ternary diagram is a closed system. An earlier version of this diagram has been recently used to establish the nature and extent of crust mantle melt interaction of volcanic rifted margins magmas (Meyer et al. 2009). The Th-Hf-Ta geochemistry of the investigated magmas is similar to spinel and garnet xenoliths from different continental intra-plate volcanic fields The in the Rhön Mts. and the Heldburg dike swarm tapped mantle source is characterized by an enriched Pb-isotope geology. The highest HIMU component has been measured in the lherzolite-bearing Veste Heldburg phonolite. This higher enriched Pb isotope signature compared to the mafic magmas cannot be explained by crustal contamination. Assimilation fractionation crystallization (AFC) modeling of the Heldburg phonolite allows us to petrogenetically link this melt with HIMU rich shallow mantle amphibole-bearing xenoliths. These new observations suggest that melting started in more depleted mantle segments. And that these melts interacted with more enriched metasomatic overprinted lithospheric mantle domains.
NASA Astrophysics Data System (ADS)
Dasgupta, R.; Stalker, K.; Hirschmann, M. M.
2004-12-01
Derivation of highly silica-undersaturated lavas such as olivine melilitites and melilite nephelinites from the mantle has been attributed to the effects of CO2. However, experimental studies have so far failed to demonstrate equilibrium of melilititic melts with a four-phase peridotite assemblage. Instead, the liquidus mineralogy of these silica-undersaturated magmas at high-pressures appears to be dominated by cpx1. Although, experimental partial melts from natural peridotite+CO2 span a continuum from carbonatite to alkali-basalts2, ocean-island melilitites have distinctly higher TiO2, FeO*, and CaO/(CaO+MgO)3,4 than compositions derived thus far from a carbonated lherzolite source. Partial melting experiments of a nominally anhydrous, natural eclogite with a small amount of added carbonate (SLEC1; 5 wt.% bulk CO2) were performed to investigate the transition between carbonate and silicate melts with increasing temperature. Experiments were conducted in a piston cylinder at 3 GPa from 1050 to 1400 ° C. Garnet and cpx appear in all the experiments and ilmenite is observed from 1075 to ˜1200 ° C. An Fe-bearing calcio-dolomitic melt is present from the solidus (1050-1075 ° C) up to 1375 ° C. Beginning at 1275 ° C, it coexists with a silica-poor silicate melt. Textural criteria indicate only a single CO2-rich silicate melt phase at 1400 ° C, coexisting with garnet and minor cpx. The liquidus temperature is estimated to be ˜1415 ° C from the melt fraction-temperature trend. With increasing temperature, the carbonate melt becomes richer in SiO2 ( ˜2 to 5 wt.%) and Al2O3 ( ˜0.75 to 2.25 wt.%) and poorer in CaO ( ˜30 to 25 wt.% from ˜1200 to 1375 ° C). Compositions of silicate partial melts change systematically with increasing temperature, increasing in SiO2 ( ˜36 to 41 wt.%), Al2O3 ( ˜4.5 to 9.5 wt.%), MgO ( ˜9.5 to 13 wt.%), CaO ( ˜8 to 14 wt.%) and decreasing in TiO2 ( ˜14 to 2.5 wt.%), FeO ( ˜20 to 13 wt.%), Na2O ( ˜3.3 to 1.7 wt.%). A wide temperature interval of coexisting carbonate and silicate partial melts of carbonated eclogite is distinct from the continuous transition from carbonate to silicate melts observed in carbonated peridotite systems2,5. At high-temperature, the silicate melts generated from SLEC1 are comparable to strongly silica-undersaturated, alkalic OIB lavas and closely resembles ocean island melilitite and nepheline melilitite3,4 in its SiO2, FeO*, MgO, CaO, TiO2, and Na2O content. They are also similar to melilite bearing lavas of continental affinity, though the match is not as close. Although the SLEC1 derived immiscible silicate melts are lower in Al2O3 than primitive alkalic OIB lavas, liquids richer in Al2O3 may be produced at slightly lower pressures. Geochemical and geodynamical investigations of carbonated eclogite sources for melilitic volcanic series thus merit consideration. 1. Brey, G and Green, D. H. 1977, CMP 61, 141-162. 2. Hirose, K. 1997, GRL 24, 2837-2840. 3. Clague, D. A. and Frey, F. A. 1982, JP 23, 447-504. 4. Hoernle, K. and Schmincke, H.-U. 1993, JP 34, 573-597. 5. Moore, K. R. and Wood, B. J. 1998, JP 39, 1943-1951.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evenson, Zach, E-mail: Zachary.Evenson@frm2.tum.de; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt; Yang, Fan
2016-03-21
We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of amore » very fragile liquid.« less
Tanahashi, Mitsuru
2010-01-01
Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.
Thermocapillary convection in zone-melting crystal growth - An open-boat physical simulation
NASA Technical Reports Server (NTRS)
Kim, Y. J.; Kou, Sindo
1989-01-01
Thermocapillary convection in a molten zone of NaNO3 contained in a boat with a free horizontal surface, that is heated from above by a centered wire heater, was studied to simulate flow in zone-melting crystal growth. Using a laser-light-cut technique and fine SiO powder as a tracer, convection in the melt zone was visualized in two different cases. In the first case, the entire melt surface was free, while in the second the melt surface was free only in the immediate vicinity of one vertical wall and was covered elsewhere, this wall being to simulate the melt/crystal interface during crystal growth. It was observed that thermocapillary convection near this wall prevailed in the first case, but was reduced significantly in the second. Since thermocapillary rather than natural convection dominated in the melt, the effect of the partial covering of the melt surface on thermocapillary convection in the melt observed in this study is expected to be similar under microgravity.
Design, fabrication, and evaluation of a partially melted ice particle cloud facility
NASA Astrophysics Data System (ADS)
Soltis, Jared T.
High altitude ice crystal clouds created by highly convective storm cells are dangerous to jet transport aircraft because the crystals are ingested into the compressor section, partially melt, accrete, and cause roll back or flame out. Current facilities to test engine particle icing are not ideal for fundamental mixed-phase ice accretion experiments or do not generate frozen droplet clouds under representative conditions. The goal of this research was to develop a novel facility capable of testing fundamental partially melted ice particle icing physics and to collect ice accretion data related to mixed-phase ice accretion. The Penn State Icing Tunnel (PSIT) has been designed and fabricated to conduct partially melted ice particle cloud accretion. The PSIT generated a cloud with air assisted atomizing nozzles. The water droplets cool from the 60psi pressure drop as the water exited the nozzle and fully glaciate while flowing in the -11.0°C tunnel air flow. The glaciated cloud flowed through a duct in the center of the tunnel where hot air was introduced. The temperature of the duct was regulated from 3.3°C to 24°C which melted particle the frozen particle from 0% to 90%. The partially melted particle cloud impinged on a temperature controlled flat plate. Ice accretion data was taken for a range of duct temperature from 3.3°C to 24°C and plate temperature from -4.5°C to 7.0°C. The particle median volumetric diameter was 23mum, the total water content was 4.5 g/m 3, the specific humidity was 1.12g/kg, and the wet bulb temperature ranged from 1.0°C to 7.0°C depending on the duct temperature. The boundaries between ice particle bounce off, ice accretion, and water run off were determined. When the particle were totally frozen and the plate surface was below freezing, the ice particle bounced off as expected. Ice accretion was seen for all percent melts tested, but the plate temperature boundary between water runoff and ice accretion increased from 0°C at 8% melt to 3°C at 90%. There were two types of ice accretion with a transition zone in between. The first type of ice was opaque in color and had a rough surface. This ice occurred roughly from 6.0°C to 12.0°C duct temperatures (8% to 50% melt). The qualitative characteristics of the ice were produced from the low water content in the cloud. The water that was available froze instantly and trapped ice particle. Duct temperatures greater than 17.5°C (80% melt) produced ice that was clear and smooth. The water in the surface did not freeze instantly due to the high water content creating a water film that froze. A mixed-phase cloud dynamics model from NASA Glenn was used to estimate the percent melt of the cloud exiting the duct. There was no way to validate the model by directly measuring the percent melt of the cloud, so single particle melt experiments were conducted and compared to the model. A 0.05g/L solution of rhodamine b was sprayed into a levitator and droplets formed at the nodes of the wave. A 532nm green laser was used to illuminate the dye, and the water emitted orange 593nm light given the luminescent properties of the ink. The emitted light intensity was recorded, and a linear relationship between the light intensity of ice to the light intensity of water was used to determine the percent melt of a droplet. The droplets were frozen with a cold flow of nitrogen gas via a liquid nitrogen heat exchanger. The droplets melted under natural convection when the cold nitrogen was shut off. Fifteen cases were compared with droplet diameters ranging from 324mum to 1112mum, air temperatures from 16°C to 31°C, and relative humidities from 41% to 100%. The average discrepancy between predictions and results for the cases that melted slower than ten seconds was 13% while the cases that melted faster than 10 second had 64% discrepancy between the model and experiment. To explain the discrepancy between the experiment and model, sensitivity studies of the model were conducted. It was seen that the melt time from the model was most sensitive to ambient temperature (1s/°C). It was also seen that the thermistors used in the experiment were accurate to 0.7°C. Transient effects of the rhodamine b caused an overshoot in light intensity, making it difficult to accurately determine the melting stop time. These factors led to the difference in melt time between the model and experiments. A 2.7s difference between model and experiments was deemed to be a successful correlation between predictions and experimental results given the model sensitivity to temperature, the difficulty in measuring temperatures at the position of the droplet, and the transient characteristics of rhodamine b.
Lee, Sang Heon
2013-05-01
BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.
Relaxation of the bulk modulus in partially molten dunite?
NASA Astrophysics Data System (ADS)
Cline, C. J.; Jackson, I.
2016-11-01
To address the possibility of melt-related bulk modulus relaxation, a forced oscillation experiment was conducted at seismic frequencies on a partially molten synthetic dunite specimen (melt fraction = 0.026) utilizing the enhanced capacity of the Australian National University attenuation apparatus to operate in both torsional and flexural oscillation modes. Shear modulus and dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background. Flexural data exhibit a monotonic decrease in complex Young's modulus with increasing temperature under transsolidus temperatures. The observed variation of Young's modulus is well described by the relationship 1/E 1/3G, without requiring relaxation of the bulk modulus. At high homologous temperatures, when shear modulus is low, extensional and flexural oscillation measurements have little resolution of bulk modulus, and thus, only pressure oscillation measurements can definitively constrain bulk properties at these conditions.
NASA Astrophysics Data System (ADS)
Grégoire, Michel; McInnes, Brent I. A.; O'Reilly, Suzanne Y.
2001-11-01
Spinel peridotite xenoliths recovered from the Tubaf and Edison volcanoes, south of Lihir Island in the Tabar-Lihir-Tanga-Feni island arc in Papua New Guinea, are predominantly fresh, refractory harzburgites. Many of the harzburgite xenoliths have cross-cutting vein networks and show evidence of modal metasomatism. These metasomatic veins contain a secondary mineral assemblage consisting of fibrous, radiating orthopyroxene and fine-grained Fe-Ni sulfide with minor olivine, clinopyroxene, phlogopite, amphibole and magnetite. Adjacent to the veins, primary clinopyroxene is cloudy while orthopyroxene exhibits replacement by secondary fibrous orthopyroxene, similar in habit to orthopyroxene occurring in the veins. The mineralogical and geochemical characteristics of the Tubaf mantle xenoliths are the product of two major processes: an early partial melting depletion event that was overprinted by oxidation and alkali enrichment related to percolation of slab-derived, hydrous melts. HREE and MREE concentrations in clinopyroxene from the least metasomatised harzburgites indicate that they are the residues from a 15% to 25% partial melting event, consistent with formation in a MOR setting. The secondary vein assemblages show strong enrichment in the LILE (primarily Sr, Ba, Rb, Th, U and Pb) and the REE (primarily La, Ce, Nd, Sm, Eu and Gd), while the HFSE (Nb, Ta, Zr, Hf, and Ti) are neither enriched nor depleted. The mineral precipitates in the vein assemblages have high LREE/HFSE and LILE/HFSE, and reflect the relative solubility of these elements in hydrous melts. These trace element characteristics are similar to those of the Tabar-Lihir-Tanga-Feni arc lavas, and display the commonly observed HFSE depletion of arc magmatism. These findings support the hypothesis that this so-called "arc signature" is primarily dependent on the relative solubility of elements in slab-derived, hydrous melts, and the enrichment of these soluble elements in metasomatised mantle regions that are prone to preferential partial melting.
NASA Astrophysics Data System (ADS)
Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.
2017-12-01
The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.
NASA Astrophysics Data System (ADS)
Andrault, Denis; Bolfan-Casanova, Nathalie; Nigro, Giacomo Lo; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed
2011-04-01
We investigated the melting properties of a synthetic chondritic primitive mantle up to core-mantle boundary (CMB) pressures, using laser-heated diamond anvil cell. Melting criteria are essentially based on the use of X-rays provided by synchrotron radiation. We report a solidus melting curve lower than previously determined using optical methods. The liquidus curve is found between 300 and 600 K higher than the solidus over the entire lower mantle. At CMB pressures (135 GPa), the chondritic mantle solidus and liquidus reach 4150 (± 150) K and 4725 (± 150) K, respectively. We discuss that the lower mantle is unlikely to melt in the D″-layer, except if the highest estimate of the temperature profile at the base of the mantle, which is associated with a very hot core, is confirmed. Therefore, recent suggestions of partial melting in the lowermost mantle based on seismic observations of ultra-low velocity zones indicate either (1) a outer core exceeding 4150 K at the CMB or (2) the presence of chemical heterogeneities with high concentration of fusible elements. Our observations of a high liquidus temperature as well as a large gap between solidus and liquidus temperatures have important implications for the properties of the magma ocean during accretion. Not only complete melting of the lower mantle would require excessively high temperatures, but also, below liquidus temperatures partial melting should take place over a much larger depth interval than previously thought. In addition, magma adiabats suggest very high surface temperatures in case of a magma ocean that would extend to more than 40 GPa, as suggested by siderophile metal-silicate partitioning data. Such high surface temperature regime, where thermal blanketing is inefficient, points out to a transient character of the magma ocean, with a very fast cooling rate.
Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data
Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, Ray A.F.
2009-01-01
Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)Mounts StHelens, Adams and Rainierare located on the margins of a mid-crustal zone of high electrical conductivity1,5. Interconnected melt can increase the bulk conductivity of the region containing the melt6,7, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath thisvolcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens8, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs9, 10). ?? 2009 Macmillan Publishers Limited. All rights reserved.
Experimental Determination of the H2O-undersaturated Peridotite Solidus
NASA Astrophysics Data System (ADS)
Sarafian, E. K.; Gaetani, G. A.; Hauri, E.; Sarafian, A.
2015-12-01
Knowledge of the H2O-undersaturated lherzolite solidus places important constraints on the process of melt generation beneath oceanic spreading centers. While it is generally accepted that the small concentration of H2O (~50-200 ug/g) dissolved in the oceanic upper mantle has a strong influence on the peridotite solidus, but this effect has not been directly determined through experiments. This is because (1) precisely controlling low concentrations of H2O in high-pressure melting experiments is thought to be difficult, (2) small amounts of melt are difficult to identify, and (3) the size of mineral grains that grow in near-solidus experiments is too small to be analyzed for H2O by either Fourier transform infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). We have developed an experimental approach for determining the peridotite solidus as a function of H2O content that overcomes these difficulties. Our approach utilizes large (~300 um diameter) spheres of San Carlos olivine to monitor the concentration and behavior of H2O in our experiments.. The spheres are mixed in 5:95 proportions with a synthetic peridotite that has the composition of the depleted MORB mantle of Workman and Hart (2005). Partial melting experiments are conducted in is a piston cylinder device using pre-conditioned Au80Pd20 capsules. During an experiment, the H2O content of the San Carlos olivine spheres diffusively equilibrates with the peridotite matrix. After each experiment, the concentration of H2O dissolved in the olivine spheres is determined by secondary ion mass spectrometry. By analyzing the H2O content of the San Carlos olivine spheres and performing a simple mass balance, we can then calculate the amount of H2O in the capsule. The spheres also provides a means to determine the solidus temperature due to the strong partitioning of H2O into silicate melt compared to olivine, pyroxene, and spinel. When a small amount of melt is present the H2O partitions into the melt and the H2O content of the spheres drops in a predictable fashion. The H2O-undersaturated solidus indicated by our experimental results is in agreement with previous experimental determinations of the nominally anhydrous solidus. This suggests that the potential temperature of the oceanic upper mantle is higher than existing petrologic estimates.
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Louro Lourenço, Diogo; Tackley, Paul J.
2016-04-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics or an episodic-lid regime.
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Lourenço, Diogo; Tackley, Paul
2015-04-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics or an episodic-lid regime.
Evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Louro Lourenço, D. J.; Tackley, P.
2016-12-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics or an episodic-lid regime.
Chromium isotope heterogeneity in the mantle
NASA Astrophysics Data System (ADS)
Xia, Jiuxing; Qin, Liping; Shen, Ji; Carlson, Richard W.; Ionov, Dmitri A.; Mock, Timothy D.
2017-04-01
To better constrain the Cr isotopic composition of the silicate Earth and to investigate potential Cr isotopic fractionation during high temperature geological processes, we analyzed the Cr isotopic composition of different types of mantle xenoliths from diverse geologic settings: fertile to refractory off-craton spinel and garnet peridotites, pyroxenite veins, metasomatised spinel lherzolites and associated basalts from central Mongolia, spinel lherzolites and harzburgites from North China, as well as cratonic spinel and garnet peridotites from Siberia and southern Africa. The δ53CrNIST 979 values of the peridotites range from - 0.51 ± 0.04 ‰ (2SD) to + 0.75 ± 0.05 ‰ (2SD). The results show a slight negative correlation between δ53Cr and Al2O3 and CaO contents for most mantle peridotites, which may imply Cr isotopic fractionation during partial melting of mantle peridotites. However, highly variable Cr isotopic compositions measured in Mongolian peridotites cannot be caused by partial melting alone. Instead, the wide range in Cr isotopic composition of these samples most likely reflects kinetic fractionation during melt percolation. Chemical diffusion during melt percolation resulted in light Cr isotopes preferably entering into the melt. Two spinel websterite veins from Mongolia have extremely light δ53Cr values of - 1.36 ± 0.04 ‰ and - 0.77 ± 0.06 ‰, respectively, which are the most negative Cr isotopic compositions yet reported for mantle-derived rocks. These two websterite veins may represent crystallization products from the isotopically light melt that may also metasomatize some peridotites in the area. The δ53Cr values of highly altered garnet peridotites from southern Africa vary from - 0.35 ± 0.04 ‰ (2SD) to + 0.12 ± 0.04 ‰ (2SD) and increase with increasing LOI (Loss on Ignition), reflecting a shift of δ53Cr to more positive values by secondary alteration. The Cr isotopic composition of the pristine, fertile upper mantle is estimated as δ53Cr = - 0.14 ± 0.12 ‰, after corrections for the effects of partial melting and metasomatism. This value is in line with that estimated for the BSE (- 0.12 ± 0.10 ‰) previously.
Earth's Various Recipes for Making Lherzolites
NASA Astrophysics Data System (ADS)
Becker, H.; van Acken, D.
2007-12-01
Petrological and cosmochemical arguments suggest that the convecting upper mantle overall should have a lherzolitic composition, otherwise, continous production of MORB would not be feasible. The predominance of harzburgites among ocean floor peridotites fits this picture because harzburgites are commonly believed to be the residue of high degrees of partial melting at shallow depths, with fertile components lost during polybaric partial melting. Implicitly, it is commonly assumed that the deeper parts of the asthenosphere and new-formed lithosphere should be residues of low-degree partial melting. This view has been supported by the abundance of lherzolites among mantle xenoliths and orogenic peridotite massifs. But is this model really correct? Data and observations on oceanic and continental peridotites accumulated over recent years hint that reality is more complicated. On the basis of mineral and whole rock compositions, and isotopic data, it has long been suspected that many continental peridotites have undergone some form of pyroxene addition via percolating melts, yet the efficacy of these processes has been uncertain. Novel combination of structural and chemical work by Le Roux et al. (2007) indicates that melt influx may have converted deformed harzburgitic rocks of the Lherz peridotite massif into little-deformed spinel lherzolites. Refertilization by MORB-like sub-lithospheric melts, and marble cake style stretching of pyroxenites have been implicated as major processes that affected the composition of peridotites from the Totalp spinel lherzolite body, a fragment of Jurassic ultra-slow spreading Thetys ocean floor in the Swiss Alps (van Acken et al., 2007). Refertilization by melts has been associated with lherzolites from oceanic fracture zones (e. g., Seyler and Bonatti, 1997) and may be responsible for lherzolites alternating with harzburgitic domains at the Arctic Gakkel ridge (Liu et al. 2007). Evidence for compositional transformation of depleted peridotites into fertile rocks, both in young oceanic and in continental settings brings up questions that need to be addressed in the future: How common are truly residual lherzolites? Are lherzolites suitable to constrain the composition of the primitive mantle? How are fertile components in the asthenosphere distributed? Mantle rocks may have more surprises in stock.
Adakites from collision-modified lithosphere
NASA Astrophysics Data System (ADS)
Haschke, M.; Ben-Avraham, Z.
2005-08-01
Adakitic melts from Papua New Guinea (PNG) show adakitic geochemical characteristics, yet their geodynamic context is unclear. Modern adakites are associated with hot-slab melting and/or remelting of orogenic mafic underplate at convergent margins. Rift-propagation over collision-modified lithosphere may explain the PNG adakite enigma, as PNG was influenced by rapid creation and subduction of oceanic microplates since Mesozoic times. In a new (rift) tectonic regime, decompressional rift melts encountered and melted remnant mafic eclogite and/or garnet-amphibolite slab fragments in arc collisional-modified mantle, and partially equilibrated with metasomatized mantle. Alternatively, hot-slab melting in a proposed newborn subduction zone along the Trobriand Trough could generate adakitic melts, but recent seismic P-wave tomographic models lack evidence for subducting oceanic lithosphere in the adakite melt region; however they do show deep subduction zone remnants as a number of high P-wave anomalies at lithospheric depths, which supports our proposed scenario.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wu, Y.; WANG, C.; Jin, Z.
2015-12-01
Large-scale oceanic/continental subduction introduces a range of crustal materials into the Earth's mantle. These subducted material will be gravitationally trapped in the deep mantle when they have been transported to a depth of greater than ~250-300 km ("depth of no return"). However, little is known about the fate of these trapped continental material. Here, we conduct experimental study on a natural continental rock which compositionally similar to the average upper continental crust (UCC) over a pressure and temperature range of 9-16 GPa and 1300-1800 oC to constraint the fate of these trapped continental materials. The experimental results demonstrate that subducted UCC produces ~20-30 wt% K-rich melt (>55 wt% SiO2) in the upper mantle (9-13 GPa). The melting residue is mainly composed of coesite/stishovite + clinopyroxene + kyanite. In contrast, partial melting of subducted UCC in the MTZ produces ~10 wt% K-rich melt (<50 wt% SiO2), together with stishovite, clinopyroxene, K-Hollandite, garnet and CAS-phase as the residue phases. The melting residue phases achieve densities greater than the surrounding mantle, which provides a driving force for descending across the 410 km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of MTZ, leaving the descended residues being accumulated above the 660 km seismic discontinuity and may contribute to the stagnated "second continent". On the other hand, the melt is ~0.3-0.7 g/cm3 less dense than the surrounding mantle and provides a buoyancy force for the ascending of melt to shallow depth. The ascending melt preserves a significant portion of the bulk-rock REEs and LILEs. Thus, chemical reaction between the melt and the surrounding mantle would leads to a variably metasomatised mantle. Re-melting of the metasomatised mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, through subduction, stagnation, partial melting and melt segregation of continental crust may create EM-sources and"second continent" at shallow depth and the base of the MTZ respectively, which may contribute to the observed geochemical/geophysical heterogeneity in Earth's interior.
Methods and systems for monitoring a solid-liquid interface
Stoddard, Nathan G.; Clark, Roger F.; Kary, Tim
2010-07-20
Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.
Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data
NASA Technical Reports Server (NTRS)
Leftwich, T. E.; vonFrese, R. R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, Patrick T.
2003-01-01
Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, N.; Okada, M.; Higashiyama, K.
1997-06-01
The authors have investigated the relationship between oxygen partial pressure (P{sub O{sub 2}}) during the partial-melting process and superconducting properties for doctor-blade processed Bi-2212/Ag tapes. Tapes were heat-treated at various P{sub O{sub 2}} value of 0.01-1.00 atm. The DTA results for the doctor-blade tapes showed the melting point of the oxide rose with increasing P{sub O{sub 2}}. Correspondingly, the optimum heat-treatment temperature also increased with increasing P{sub O{sub 2}}. The tapes at P{sub O{sub 2}}=1.00 atm had the highest J{sub c} values of over 10{sup 5} A/cm{sup 2} at conditions of 4.2K, 10T, and their a.c. susceptibility showed a sharpmore » transition indicating improved intergrain coupling. Examination of cross sections for tapes melted above 0.20atm PO{sub 2} showed the good crystal alignment. From these results, it was concluded that processing at high PO{sub 2} was an effective method to obtain good superconducting properties for doctor-blade tapes.« less
NASA Astrophysics Data System (ADS)
Dasgupta, Rajdeep; Hirschmann, Marc M.; Dellas, Nikki
2005-05-01
To explore the effect of bulk composition on the solidus of carbonated eclogite, we determined near-solidus phase relations at 3 GPa for four different nominally anhydrous, carbonated eclogites. Starting materials (SLEC1, SLEC2, SLEC3, and SLEC4) were prepared by adding variable proportions and compositions of carbonate to a natural eclogite xenolith (66039B) from Salt Lake crater, Hawaii. Near-solidus partial melts for all bulk compositions are Fe Na calcio-dolomitic and coexist with garnet + clinopyroxene + ilmenite ± calcio-dolomitic solid solution. The solidus for SLEC1 (Ca#=100 × molar Ca/(Ca + Mg + FeT)=32, 1.63 wt% Na2O, and 5 wt% CO2) is bracketed between 1,050°C and 1,075°C (Dasgupta et al. in Earth Planet Sci Lett 227:73 85, 2004), whereas initial melting for SLEC3 (Ca# 41, 1.4 wt% Na2O, and 4.4 wt% CO2) is between 1,175°C and 1,200°C. The solidus for SLEC2 (Ca# 33, 1.75 wt% Na2O, and 15 wt% CO2) is estimated to be near 1,100°C and the solidus for SLEC3 (Ca# 37, 1.47 wt% Na2O, and 2.2 wt% CO2) is between 1,100°C and 1,125°C. Solidus temperatures increase with increasing Ca# of the bulk, owing to the strong influence of the calcite magnesite binary solidus-minimum on the solidus of carbonate bearing eclogite. Bulk compositions that produce near-solidus crystalline carbonate closer in composition to the minimum along the CaCO3-MgCO3 join have lower solidus temperatures. Variations in total CO2 have significant effect on the solidus if CO2 is added as CaCO3, but not if CO2 is added as a complex mixture that maintains the cationic ratios of the bulk-rock. Thus, as partial melting experiments necessarily have more CO2 than that likely to be found in natural carbonated eclogites, care must be taken to assure that the compositional shifts associated with excess CO2 do not unduly influence melting behavior. Near-solidus dolomite and calcite solid solutions have higher Ca/(Ca + Mg) than bulk eclogite compositions, owing to Ca Mg exchange equilibrium between carbonates and silicates. Carbonates in natural mantle eclogite, which have low bulk CO2 concentration, will have Ca/Mg buffered by reactions with silicates. Consequently, experiments with high bulk CO2 may not mimic natural carbonated eclogite phase equilibria unless care is taken to ensure that CO2 enrichment does not result in inappropriate equilibrium carbonate compositions. Compositions of eclogite-derived carbonate melt span the range of natural carbonatites from oceanic and continental settings. Ca#s of carbonatitic partial melts of eclogite vary significantly and overlap those of partial melts of carbonated lherzolite, however, for a constant Ca-content, Mg# of carbonatites derived from eclogitic sources are likely to be lower than the Mg# of those generated from peridotite.
Rocks of the early lunar crust
NASA Technical Reports Server (NTRS)
James, O. B.
1980-01-01
Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.
Phase equilibrium constraints on the origin of basalts, picrites, and komatiites
NASA Astrophysics Data System (ADS)
Herzberg, C.; O'Hara, M. J.
1998-07-01
Experimental phase equilibrium studies at pressures ranging from 1 atm to 10 GPa are sufficient to constrain the origin of igneous rocks formed along oceanic ridges and in hotspots. The major element geochemistry of MORB is dominated by partial crystallization at low pressures in the oceanic crust and uppermost mantle, forcing compliance with liquid compositions in low-pressure cotectic equilibrium with olivine, plagioclase and often augite too; parental magmas to MORB formed by partial melting, mixing, and pooling have not survived these effects. Similarly, picrites and komatiites can transform to basalts by partial crystallization in the crust and lithosphere. However, parental picrites and komatiites that were successful in erupting to the surface typically have compositions that can be matched to experimentally-observed anhydrous primary magmas in equilibrium with harzburgite [L+Ol+Opx] at 3.0 to 4.5 GPa. This pressure is likely to represent an average for pooled magmas that collected at the top of a plume head as it flattened below the lithosphere. There is substantial uniformity in the normative olivine content of primary magmas at all depths in a plume melt column, and this results in pooled komatiitic magmas that are equally uniform in normative olivine. However, the imposition of pressure above 3 GPa produces picrites and komatiites with variations in normative enstatite and Al 2O 3 that reveal plume potential temperature and depths of initial melting. Hotter plumes begin to melt deeper than cooler plumes, yielding picrites and komatiites that are enriched in normative enstatite and depleted in Al 2O 3 because of a deeper column within which orthopyroxene can dissolve during decompression. Pressures of initial melting span the 4 to 10 GPa range, increasing in the following order: Iceland, Hawaii, Gorgona, Belingwe, Barberton. Parental komatiites and picrites from a single plume also exhibit internal variability in normative enstatite and Al 2O 3, indicating either a poorly mixed partial melt aggregation process in the plume or the imposition of partial crystallization of olivine-orthopyroxenite on a well-mixed parental magma. Plume shape and thermal structure can also influence the petrology and geochemistry of picrites and komatiites. Liquids extracted from harzburgite residues [L+Ol+Opx] will dominate magmatism in a plume head, and can erupt to form komatiites in oceanic plateaus. Liquids extracted from garnet peridotite residues in a plume axis will gain in importance when the plume head partially solidifies and is removed from the hotspot by a moving lithosphere, as is the case for Hawaii. The paradoxical involvement of garnet indicated by the heavy rare earth elements in picrites that otherwise have a harzburgite signature in Hawaii can be explained by the mixing and collection of magmas from the plume axis. Volcanic rocks from Hawaii and Gorgona and xenoliths from cratonic mantle provide evidence for the importance of partial crystallization of plume magmas when they encounter a cold lithosphere. Harzburgite residua and olivine-orthopyroxene cumulates formed in plumes can yield compositionally distinct lithospheric mantle which is buoyant, and this could have provided an important foundation for the stabilization of the first continents.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Benedix, Gretchen K.; Hammond, Samantha J.; Bland, Philip A.; Rehkämper, Mark; Kreissig, Katharina; Strekopytov, Stanislav
2017-02-01
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni-FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni-FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni-FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections.
Research On Bi-Based High-Temperature Superconductors
NASA Technical Reports Server (NTRS)
Banks, Curtis; Doane, George B., III; Golben, John
1993-01-01
Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.
NASA Astrophysics Data System (ADS)
Dan, Wei; Wang, Qiang; Zhang, Xiu-Zheng; Zhang, Chunfu; Tang, Gong-Jian; Wang, Jun; Ou, Quan; Hao, Lu-Lu; Qi, Yue
2018-05-01
Recognizing the early-developed intra-oceanic arc is important in revealing the early evolution of East Paleo-Tethys Ocean. In this study, new SIMS zircon U-Pb dating, O-Hf isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian-Early Carboniferous arc in Qiangtang, central Tibet. New dating results reveal that the eastern Riwanchaka volcanic rocks were formed at 370-365 Ma and were intruded by the 360 Ma Gangma Co alkali feldspar granites. The volcanic rocks consist of basalts, andesites, dacites, and rhyodacites, whose geochemistry is similar to that typical of subduction-related volcanism. The basalts and andesites were generated by partial melting of the fluid and sediment-melt metasomatized mantle, respectively. The rhyodacites and dacites were probably derived from the fractional crystallization of andesites and from partial melting of the juvenile underplated mafic rocks, respectively. The Gangma Co alkali feldspar granites are A-type granites, and were possibly derived by partial melting of juvenile underplated mafic rocks in a post-collisional setting. The 370-365 Ma volcanic arc was characterized by basalts with oceanic arc-like Ce/Yb ratios and by rhyodacites with mantle-like or slightly higher zircon δ18O values, and it was associated with the contemporary ophiolites. Thus, we propose that it is the earliest intra-oceanic arc in the East Paleo-Tethys Ocean, and was accreted to the Northern Qiangtang Terrane during 365-360 Ma.
Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.
Booker, John R; Favetto, Alicia; Pomposiello, M Cristina
2004-05-27
Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.
NASA Astrophysics Data System (ADS)
Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.
2013-05-01
Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.
Zipper model for the melting of thin films
NASA Astrophysics Data System (ADS)
Abdullah, Mikrajuddin; Khairunnisa, Shafira; Akbar, Fathan
2016-01-01
We propose an alternative model to Lindemann’s criterion for melting that explains the melting of thin films on the basis of a molecular zipper-like mechanism. Using this model, a unique criterion for melting is obtained. We compared the results of the proposed model with experimental data of melting points and heat of fusion for many materials and obtained interesting results. The interesting thing reported here is how complex physics problems can sometimes be modeled with simple objects around us that seemed to have no correlation. This kind of approach is sometimes very important in physics education and should always be taught to undergraduate or graduate students.
Harrison, T.M.; Aleinikoff, J.N.; Compston, W.
1987-01-01
U-Pb analyses of zircons separated from two Concord-type plutons near Sunapee and Dixville Notch, New Hampshire, reveal differences in the pattern and magnitude of zircon inheritance which are related to differences in melt chemistry. The Sunapee pluton contains only slightly more Zr than required to saturate the melt at the peak temperature of 700 ?? 30??C. Traces of inherited zircon in this separate are inferred to be present as small, largely resorbed grains. In contrast, the Long Mountain pluton, near Dixville Notch, contains about 240% more Zr than required to saturate the melt. Thus, more than half of the Zr existed as stable, inherited zircon crystals during the partial fusion event, consistent with the observation of substantial inheritance in all grain size fractions. Ion probe intra-grain analyses of zircon from the Long Mountain pluton indicate a complex pattern of inheritance with contributions from at least two Proterozoic terrenes and caution against simple interpretations of upper and lower intercepts of chords containing an inherited component. Ion probe analyses of zircons from the Sunapee pluton reveal clear evidence of U loss which results in incorrect apparent conventional U-Pb ages. Ages of crystallization for the Long Mountain and Sunapee pluton are ~350 and 354 ?? 5 Ma, respectively. A Sm/Nd measurement for the Long Mountain pluton yields a depleted mantle model age of 1.5 Ga, consistent with the observed inheritance pattern. In contrast, a Sm/Nd model age for the Sunapee pluton is improbably old due to minor monazite fractionation. ?? 1987.
The Ge/Si ratio quantifies the role of recycled crust in the generation of MORBs
NASA Astrophysics Data System (ADS)
Yang, S.; Humayun, M.; Salters, V. J. M.
2017-12-01
Global MORBs cover a broad spectrum of incompatible element compositions from depleted [(La/Sm)N < 0.5] to enriched [(La/Sm)N 0.5-2]. Two explanations for the origin of the enriched mantle sources of E-MORBs from ridge segments not associated with plumes have been proposed: (1) re-fertilization of Depleted Mantle (DM) by infiltration of low-degree melts (<1%) from subducted crust, or (2) by entrainment of solid recycled crust in the Depleted Mantle (DM). Whether pyroxenite contributes melt to E-MORB can be resolved by chemically distinguishing between partial melts of a peridotite source vs. those of a lithologically heterogeneous source of peridotite and pyroxenite. In this study, we exploit the mineralogical preferences of elements like Ge and Si to distinguish melts formed from peridotite or pyroxenite. In-situ analyses of 60 elements in 319 MORB glasses from north (10-36 °N) Mid-Atlantic Ridge (MAR) and Mid-Cayman Rise were performed by LA-ICP-MS. Use of a large laser spot size (150 μm) and high repetition rate (50 Hz) yielded a low blank correction (< 5%) for Ge, and high external precision for the Ge/Si ratio (± 3%, 1σ) in MORB glasses. E-MORBs (6.4±0.2) are systematically lower in Ge/Si than D-MORBs (7.2±0.2), while N-MORBs fall in between and are not fully resolved from either D- or E-MORB. Based on experimental Ds, partial melts from pyroxenites are always lower in Ge/Si than partial melts from peridotites because Ge is more compatible in garnet and clinopyroxene than in olivine [1]. E-MORBs also have lower Sc abundances (37 vs. 43 ppm) but slightly higher Fe/Mn ratios (55 vs. 53) than D-MORBs, and lower La/Nb (0.6 vs. 1-2) and Sr/Nb (<20 vs. >40), consistent with addition of 27% pyroxenite-derived melts to a D-MORB-like composition. This requires that the amount of solid recycled garnet pyroxenite in a peridotite source is 12%. The Ge/Si ratio is a new tool that effectively discriminates between melts derived from peridotite sources and melts derived from pyroxenite sources. Extrapolating from the correlation between K2O/TiO2 and Ge/Si established in this study, we estimated the distribution of pyroxenite, solid recycled crust, in the mantle sources of global MORB segments, which reveals a mode of 3-4% pyroxenite in the MORB source. [1] Davis et al., 2013
NASA Astrophysics Data System (ADS)
Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.
2017-05-01
Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly differentiated 'cratonic carbonatites' have only little in common with those of metasomatic agents that act on the deeper lithosphere. Consequently, carbonatite trace element systematics should only be used with caution when constraining carbon mobility and metasomatism at mantle depths. Regardless of the exact nature of carbonate-bearing melts within the mantle lithosphere, they play an important role in enrichment processes, thereby decreasing the stability of buoyant cratons and promoting rift initiation - as exemplified by the Mesozoic-Cenozoic breakup of the North Atlantic craton.
The role of silver in the processing and properties of Bi-2212
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, T.; Heeb, B.; Buhl, D.
1994-12-31
The influence of the silver content and the oxygen partial pressure on the solidus temperature and the weight loss during melting of Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} has been examined by means of DTA and TGA. By decreasing the oxygen partial pressure the solidus is lowered (e.g. {triangle}T=59{degrees}C by decreasing pO{sub 2} from 1 atm to 0.001 atm) and the weight loss is increased. The addition of silver causes two effects: (a) the solidus is further decreased (e.g. 2wt% Ag lower T{sub solidus} by up to 25{degrees}C, depending on the oxygen partial pressure), (b) the weight loss during meltingmore » is reduced. Thick films (10-20 {mu}m in thickness) with 0 and 5 wt% silver and bulk samples with 0 and 2.7 wt% silver were melt processed in flowing oxygen on a silver substrate in the DTA, allowing the observation of the melting process and a good temperature control. The critical current densities are vigorously dependent on the maximum processing temperature. The highest j{sub c} in thick films (8000 A/cm{sup 2} at 77 K, O T) was reached by melting 7{degrees}C above the solidus temperature. The silver addition shows no significant effect on the processing parameters or the superconducting properties. The highest j{sub c} for bulk samples (1 mm in thickness) was obtained by partial melting at 900{degrees}C or 880{degrees}C, depending on the silver content of the powder (0 or 2.7 wt%). The j{sub c} of the samples is slightly enhanced from 1800 A/cm{sup 2} (at 77 K, O T) to 2000 A/cm{sup 2} by the silver addition. To be able to reach at least 80% of the maximum critical current density, the temperature has to be controlled in a window of 5{degrees}C for thick films and 17{degrees}C for bulk samples.« less
Pristine Igneous Rocks and the Early Differentiation of Planetary Materials
NASA Technical Reports Server (NTRS)
Warren, Paul H.
1998-01-01
Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an extraodinarily large glass spherule, nearly if not entirely free of meteoritic contamination, and provides insight into the diversity of mare basalts in the Hadley-Apennine region. Apollo 14 sample 14434 is in many respects a new rock type, intermediate between nonmare gabbronorites and mare basalts. We helped to both plan and implement a consortium to study the Yamato-793605 SNC/martian meteorite.
A Re-Os Study of Depleted Trench Peridotites from Northern Mariana
NASA Astrophysics Data System (ADS)
Ghosh, T.; Snow, J. E.; Heri, A. R.; Brandon, A. D.; Ishizuka, O.
2017-12-01
Trench peridotites provide information about the influence of subduction initiation on the extent of mantle wedge melting. They preserve melting records throughout subduction history, and as a result, likely experience multiple melt extraction events leading to successive depletion of melt/fluid mobile major and trace elements. To track melting histories of trench peridotites, Re-Os and PGEs can be used as reliable tracers to constrain early melt extraction or re-fertilization events. The Izu-Bonin-Mariana arc, being the largest intra-oceanic subduction system, provides an excellent area to study the formation of supra-subduction zone mantle and crust. Residual peridotite (harzburgite and dunite) samples were collected by dredging from the landward slope of the northern Mariana Trench. The samples are serpentinized to various extents (typical of abyssal peridotites), leaving behind relict grains of spinel, enstatite and olivine embedded within a serpentine matrix along with occasional interstitial diopside. Major element analyses of primary minerals reveal a wide range of variations in Cr# of spinels from 0.31-0.85 indicating 16-20% of melt fraction with dunites apparently experiencing the highest amount of partial melting. For Re-Os and PGE geochemistry, samples with high amounts of spinel (>4 vol %) and variable Cr# were chosen. Initial results show that bulk rock 187Os/188Os ratios range from 0.1113 to 0.1272. All of the samples are sub-chondritic, but in some cases, they are more radiogenic than average abyssal peridotites. Os abundances vary from 1-9 ppb. Sub-chondritic values can be attributed to the samples having evolved from a Re-depleted mantle source indicating a previous melt-extraction event. The cpx-harzburgites, having lower Cr# ( 0.4) are more radiogenic than ultra depleted dunites (Cr# 0.8), which might indicate preferential removal of Os during an apparent higher degree of partial melting experienced by dunites. The higher 187Os/188Os ratios of cpx-harzburgites possibly imply a late stage melt-rock interaction event, which had refertilized the depleted samples in radiogenic Os. Since there are only trace amounts of sediments in the accretionary prism of N. Mariana, Os ratios of these trench peridotites are not influenced by Os from sediments.
Effects of sub-Arctic shrub canopies on snowmelt energetics
NASA Astrophysics Data System (ADS)
Bewley, D.; Essery, R.; Pomeroy, J.
2006-12-01
Much of the low Arctic is covered with shrub tundra, and there is increasing evidence that snowmelt rates are substantially different between shrub tundra and poorly vegetated sites. The cause of this remains uncertain, however, and extends beyond simple differences in albedo. Results are presented in this study from a detailed field investigation at Wolf Creek Research Basin in 2004 to determine the effect of two different shrub canopy structures on both melt rates and the partitioning of melt energy. The low shrub site (LSS) was essentially an unvegetated snowfield prior to melt (mean albedo ~0.85), and shrubs only became exposed during the last few days of melt reaching a mean height of 0.31 m and mean Plant Area Index (PAI) of 0.32. Shrubs at the tall shrub site (TSS) were partially buried initially (shrub fraction, mean height and PAI of 0.2, 0.9 m and 0.41) but dominated the landscape by the end of melt (corresponding values of 0.71, 1.6 m and 0.6). Melt rates were higher at TSS up until the exposure of shrubs and bare ground at LSS, after which the rates converged. A Shrub-Snow Canopy Model (SSCM) is developed to improve snowmelt simulations for shrub canopies by parameterizing the key shrub effects on surface fluxes, including the extinction of shortwave irradiance beneath shrubs and in canopy gaps, and the enhancement of snow surface fluxes of longwave radiation and sensible heat. SSCM was run for LSS assuming no shrubs were present above the variable snow and bare ground tiles, whereas for TSS an increasing shrub fraction above each tile was prescribed from observations. Results from both sites suggest that sensible heat fluxes contributed more melt energy than net radiation, and were greater during early melt at TSS due to the warming of exposed shrubs. SWE was accurately predicted against transect measurements at TSS (rms error 4 mm), but was overestimated at LSS (rms error 13 mm) since both air temperatures and turbulent transport were underestimated by not incorporating shrubs. This demonstrates the need to incorporate the rapid change in surface conditions associated with any shrub canopy (low or tall) within land surface and hydrological models. Most of the information required for running SSCM at other (tall) shrub canopies can be obtained remotely from photos or images of sufficiently high resolution to delineate individual shrub patches and canopy gaps.
NASA Astrophysics Data System (ADS)
Sun, C.; Dasgupta, R.
2017-12-01
Kimberlite is a diamond-bearing CO2-rich ultramafic magma from the mantle at depths of >200 km, featured by enrichment of incompatible elements [1]. It has been considered significant for understanding mantle geochemistry and particularly for providing information of deep carbon cycle. Recent experimental studies suggested that partial melts of carbonated peridotites at high pressures and temperatures could resemble the MgO (>20 wt%) and enriched incompatible elements in kimberlites only when the source experienced refertilization with perhaps prior depletion (e.g., [2]). Although addition of CO2 and incompatible elements in the deep mantle is often linked to subducted components, partial melts directly from carbonated oceanic crusts do not have high enough MgO (e.g., ≤8.2 wt%; [3]). A crucial question is how slab-derived CO2-rich melt evolves in reaction with ambient mantle, which may provide a feasible mechanism for kimberlite generation. To investigate the fate of slab-derived carbonatitic melt in the deep ambient mantle, we have performed multi-anvil experiments at 7-10 GPa and 1400-1450 °C. The starting compositions were synthesized by mixing a fertile peridotite composition, KLB-1, with variable proportions (0-45 wt.%) of Ca-rich carbonatitic melt similar to those derived from a carbonated ocean crust at 13-21 GPa [3]. Experiments were performed in Pt, Pt/Gr, Au-Pd and Au-Pd/Gr capsules, and the experimental phases include olivine ± opx + cpx + majoritic garnet ± carbonated silicate melt. With the increase of melt-rock ratios, experimental melts become progressively enriched in CaO (13.0-23.1 wt%) and CO2 (14.2-38.7 wt%) but depleted in MgO (28.9-19.9 wt%), SiO2 (33.1-7.9 wt%), and Al2O3 (2.7-0.2 wt%). The net flux of melt increases with the increase of infiltrating carbonatitic melt proportion and with the decrease of pressure. Kimberlite melts were produced from experiments with 5-25 wt% infiltrating carbonatitic melts by dissolution of olivine and orthopyroxene and precipitation of clinopyroxene. Thus, a localized influx of slab-derived CO2-rich melts can enlarge the mantle porosity, enhance melt focusing, and initiate a channelized flow of kimberlite melts. [1] Becker & Le Roex (2006) J. Pet. 47: 673-703; [2] Brey et al. (2008) J. Pet. 49: 797-821; [3] Thomson et al. (2016) Nature 529: 76-79.
Development of a mechanical rocker test procedure for ice melting capacity evaluation.
DOT National Transportation Integrated Search
2014-06-01
During Phase 2 of the NDOR deicing chemicals performance evaluation project (No. SPR-P1(10) P328), a : simple and economical test using a martini shaker to evaluate ice melting capacity of liquid deicers showed : good potential to become a standardiz...
DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES
A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...
Hydrodynamic instabilities of flows involving melting in under-saturated porous media
NASA Astrophysics Data System (ADS)
Sajjadi, M.; Azaiez, J.
2016-03-01
The process of melting in partially saturated porous media is modeled for flow displacements prone to hydrodynamic instabilities due to adverse mobility ratios. The effects of the development of instabilities on the melting process are investigated through numerical simulations as well as analytical solution to unravel the physics of the flow. The effects of melting parameters, namely, the melting potential of the fluid, the rate of heat transfer to the frozen phase, and the saturation of the frozen material along with the parameters defining the viscous forces, i.e., the thermal and solutal log mobility ratios are examined. Results are presented for different scenarios and the enhancement or attenuation of instabilities are discussed based on the dominant physical mechanisms. Beside an extensive qualitative analysis, the performance of different displacement scenarios is compared with respect to the melt production and the extent of contribution of instability to the enhancement of melting. It is shown that the hydrodynamic instabilities tend in general to enhance melting but the rate of enhancement depends on the interplay between the instabilities and melting at the thermal front. A larger melting potential and a smaller saturation of the frozen material tend to increase the contribution of instability to melting.
NASA Astrophysics Data System (ADS)
Sanchez-Valle, Carmen; Malfait, Wim J.
2016-04-01
Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.
NASA Astrophysics Data System (ADS)
Fomin, I.; Tackley, P. J.
2017-12-01
Recent investigations have shown mantle solidus close to the range of proposed core-mantle boundary (CMB) temperatures (e.g. [Andrault et al., 2011, 2014], [de Koker et al., 2013]). Certain fraction of distinct rocks may reduce the effective melting temperature to values below the CMB temperature. It is especially true for iron enriched materials such as MORB [Nomura et al., 2011], BIF [Kato et al., 2016], iron-rich periclase [Boukare et al., 2015] and other rock species used to explain observed seismic anomalies. Computer simulations allow to study evolution and stability for chemically distinct piles proposed from geophysical data. Previous researches (e.g. [Mulyukova et al., 2015]) found those piles stirring in several hundreds of Ma. Our investigation adds influence of melting and following chemical differentiation on preservation of such structures.We present StagYY code [Tackley et al., 2008] with extended set of routines to model melting, melt redistribution and melt-dependent rheology in addition to solid-state mantle convection to reveal fate of chemically distinct piles in long-term (millions of years) perspective. A new point of our approach is usage of chemically independent oxides to describe rock composition and physical properties. Thin layers homogenize in few tens of millions of years despite whether melting happens or not. Thick structures (like periclase piles proposed for ULVZ [Wicks et al., 2010] or MORB-bearing domes for LLSVP [Ohta et al., 2008]) undergo partial melting if CMB temperature is above 3700K. Melt migration results in extraction of fusible components and therefore segregation of iron-enriched material. However, we weren't able to obtain any stabilized layer of iron-rich partially molten material at the CMB, because ongoing interaction and reequilibration of melt and solid results in buoyant liquids spreading to the adjacent mantle. Rheological influence of melt on bulk rock properties reduces time pile can exist.Our modeling puts severe constraints on the presence and fate of chemical heterogeneities in the lowermost mantle. Melting enhances stirring of such heterogeneities and generally no silicate melt can be stabilized at CMB for long time. Only low CMB temperatures (generally lower than 3700 K) allow anomalies to exist for geological periods of time (hundreds of Ma).
NASA Astrophysics Data System (ADS)
Barich, Amel; Acosta-Vigil, Antonio; Garrido, Carlos J.; Cesare, Bernardo; Tajčmanová, Lucie; Bartoli, Omar
2014-10-01
We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though strongly thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and in contact with the peridotites, and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence, garnet decreases whereas biotite increases in modal proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈ 5 to 200 μm, with a mean size of ≈ 30-40 μm. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈ 850 °C and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈ 800-850 °C and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.
Melting Efficiency During Plasma Arc Welding
NASA Technical Reports Server (NTRS)
McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.
1999-01-01
A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.
Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts
NASA Technical Reports Server (NTRS)
Nagelberg, A. S.; Hamilton, J. C.
1985-01-01
The extent of surface destabilization of ZrO2 - 8 wt percent Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole percent sodium metavanadate (NaVO3) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.
NASA Astrophysics Data System (ADS)
Haglund, Peter; Frostevarg, Jan; Powell, John; Eriksson, Ingemar; Kaplan, Alexander F. H.
2018-03-01
Laser - material interactions such as welding, heat treatment and thermal bending generate thermal gradients which give rise to thermal stresses and strains which often result in a permanent distortion of the heated object. This paper investigates the thermal distortion response which results from pulsed laser surface melting of a stainless steel sheet. Pulsed holography has been used to accurately monitor, in real time, the out-of-plane distortion of stainless steel samples melted on one face by with both single and multiple laser pulses. It has been shown that surface melting by additional laser pulses increases the out of plane distortion of the sample without significantly increasing the melt depth. The distortion differences between the primary pulse and subsequent pulses has also been analysed for fully and partially overlapping laser pulses.
NASA Astrophysics Data System (ADS)
Ferrero, Silvio; O'Brien, Patrick; Walczak, Katarzyna; Wunder, Bernd; Hecht, Lutz
2014-05-01
Melt inclusions (MI) study in migmatites is a powerful tool to retrieve the original composition of the anatectic melt, both as major elements (Ferrero et al., 2012) and fluid contents (Bartoli et al., 2013). Crystallized MI, or "nanogranites" (Cesare et al., 2009), were identified within HP felsic granulites from Orlica-Śnieżnik Dome, NE Bohemian Massif (Walczak, 2011). The investigated samples are Grt+Ky leucogranulites originated from a granitic protolith, with assemblage Qtz+Pl+Kfs+Grt+Ky+Ttn+Rt+Ilm. Nanogranites occur in garnet as primary inclusions, and consist of Qtz+Ab+Bt+Kfs±Ep±Ap. Such assemblage results from the crystallization of a melt generated during a partial melting reaction; the same reaction is also responsible for the production of the host garnet, interpreted therefore as a peritectic phase. Besides nanogranites, former presence of melt is supported by the occurrence of tiny pseudomorphs of melt-filled pores (Holness & Sawyer, 2008) and euhedral faces in garnet. Garnet composition, with Grs =0.28-0.31, phase assemblage (kyanite, ternary feldspar) and classic thermobarometry suggest that partial melting took place at T≥875°C and P~2.2-2.6 GPa, under eclogite-facies conditions. Although other authors reported palisade quartz after coesite in this area (see e.g. Bakun-Czubarow, 1992), no clear evidence of UHP conditions have been identified during this study. Piston cylinder re-homogenization experiments were performed on MI-bearing garnet chips to obtain the composition of the pristine anatectic melt. The first data from experiments in the range 850-950°C and 2-2.2 GPa show that nanogranites can be re-melted at T≥875°. However, homogenization has not been reached yet since new Grt, with lower CaO and higher MgO, crystallizes on the walls of the inclusion. As P increases, the modal amount of new phase decreases, while its composition evolves closer to those of the host garnet. Further experiments at higher pressure are in underway, with the aim to achieve full re-homogenization and reproduce the system garnet+melt present during anatexis. References Bakun-Czubarow, N., 1992. Quartz pseudomorphs after coesite and quartz exsolutions in eclogitic omphacites of the Zlote Mountains in the Sudetes, SW Poland. Archeological Mineralogy, 48, 3-25. Bartoli, O., Cesare, B., Poli, S., Bodnar, R.J., Acosta-Vigil, A., Frezzotti, M.L. & Meli, S., 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology, 41, 115-118. Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. & Cavallo, A., 2009. Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology, 37, 627-630. Ferrero, S., Bartoli, O., Cesare, B., Salvioli Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C. & Battiston, S., 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. Journal of Metamorphic Geology, 30, 303-322. Holness, M.B. & Sawyer, E.W., 2008. On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Journal of Petrology, 49, 1343-1363. Walczak, K., 2011. "Interpretation of Sm-Nd and Lu-Hf dating of garnets from high pressure and high temperature rocks in the light of the trace elements distribution." Doctoral dissertation, Institute of Geological Sciences, Polish Academy of Sciences, Poland.
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, J. H.; Mittlefehldt, D. W.
1994-01-01
This study looks at partial melting in H and LL chondrites at nearly one atmosphere of total pressure as part of a continuing study of the origins of basaltic achondrites. Previously, melting experiments on anhydrous CM and CV chondrites showed that, near its solidus, the CM chondrite produced melts having major element chemistries similar to the Sioux County eucrite; but, the pyroxenes in the residuum were too iron-rich to form diogenites. Our preliminary results from melting experiments on ordinary (H, LL) chondrites suggested that, although the melts did not look like any known eucrites, pyroxenes from these charges bracketed the compositional range of pyroxenes found in diogenites. We had used the Fe/Mg exchange coefficients calculated for olivine, pyroxene, and melt in these charges to evaluate the approach to equilibrium, which appeared to be excellent. Unfortunately, mass balance calculations later indicated to us that, unlike our CM and CV charges, the LL and H experimental charges had lost significant amounts of iron to their (Pt or PtRh) supports. Apparently, pyroxene stability in chondritic systems is quite sensitive to the amount of FeO, and it was this unrecognized change in the bulk iron content which had stabilized the high temperature, highly magnesian pyroxenes. Accordingly, this work reinvestigates the phase equilibria of ordinary chondrites, eliminating iron and nickel loss, and reports significant differences. It also looks closely at how the iron and sodium in the bulk charge affect the stability of pyroxene, and it comments on how these new results apply to the problems of diogenite and eucrite petrogenesis.
Chemical modification of projectile residues and target material in a MEMIN cratering experiment
NASA Astrophysics Data System (ADS)
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas
2013-01-01
In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE
A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...
Underscreening in ionic liquids: a first principles analysis.
Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre
2018-02-07
An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these 'primitive' and 'semi-primitive' models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length [Formula: see text], which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where [Formula: see text] increases with density beyond a critical density at which the Debye length [Formula: see text] becomes comparable to the ion diameter. In this high density regime the ratio [Formula: see text] increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.
Underscreening in ionic liquids: a first principles analysis
NASA Astrophysics Data System (ADS)
Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre
2018-02-01
An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these ‘primitive’ and ‘semi-primitive’ models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length λS , which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where λS increases with density beyond a critical density at which the Debye length λD becomes comparable to the ion diameter. In this high density regime the ratio λ_S/λD increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.
Monticello - A glass-rich howardite
NASA Technical Reports Server (NTRS)
Olsen, Edward J.; Dod, Bruce D.; Schmitt, Roman A.; Sipiera, Paul P.
1987-01-01
Monticello is a new howardite similar to Malvern in that it contains abundant (15 percent) glass fragments, which show a range of compositions from olivine-normative to quartz-normative. Like Kapoeta, it contains pyroxene grains that range up to highly magnesian compositions, Fs16. Because their pyroxenes are more magnesian than those occurring in diogenites, Monticello and Kapoeta are exceptions to the simple two-component mixing model in which howardites are considered to be mechanical mixtures of fragmented eucrites and diogenites. Monticello also contains clasts of what appear to be a cumulate eucrite and a noncumulate eucrite, as well as a radiating pyroxene chondrule from a chondrite. Monticello is a regolith breccia containing more evolved components than are usually considered in eucrite-diogenite genesis models. As such, it supports those models that involve reworking of a complex parent body crust rather than straightforward partial melting of primitive chondritic parent material.
NASA Technical Reports Server (NTRS)
Wilson, Lionel; Head, James W., III; Parfitt, Elisabeth A.
1992-01-01
The relationship between the maximum height to which a volcanic edifice is able to grow and the depth at which the partial melts providing its magma supply are formed is used to infer various aspects of the thermal and stress state of the lithosphere beneath volcanic constructs on earth, Mars, Io, and Venus. The assumptions behind this relationship are examined, and it is shown that many of them require geologically unreasonable conditions. The evidence cited in the literature for the relationship is assessed critically, and it is found that there are other factors that may explain the observations. It is concluded that volcano heights on the terrestrial planets cannot be related in any simple way to lithospheric thickness or depth to the magma source zone, and the range of other vectors controlling volcano height are reviewed.
Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.
2017-01-01
We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the highest U excess (≥5.8%) also has the most 18O isotope depletion (average δ18Oplag = −4.0‰). The granitoids are a probable assimilant and source of U excess in volcanic rocks from Mt. Mazama. Two granitoids have Th excess and low δ18O values, interpreted to record leaching of U during hydrothermal alteration. A U-Th isochron based on the U excess array of the granitoids and volcanic rocks indicates that hydrothermal circulation initiated ∼40–75 kyrs before the climactic eruption, potentially marking the initiation of a persistent upper-crustal magma chamber. The U-Th ages are consistent with the maximum timescales inferred for hydrothermal alteration based on oxygen isotope zoning in quartz.
Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; ...
2015-01-10
Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work hasmore » shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.« less
Thermal Constraints from Siderophile Trace Elements in Acapulcoite-Lodranite Metals
NASA Technical Reports Server (NTRS)
Herrin, Jason S.; Mittlefehldt, D. W.; Humayun, M.
2006-01-01
A fundamental process in the formation of differentiated bodies is the segregation of metal-sulfide and silicate phases, leading to the formation of a metallic core. The only known direct record of this process is preserved in some primitive achondrites, such as the acapulcoite-lodranites. Meteorites of this clan are the products of thermal metamorphism of a chondritic parent. Most acapulcoites have experienced significant partial melting of the metal-sulfide system but not of silicates, while lodranites have experienced partial melting and melt extraction of both. The clan has experienced a continuum of temperatures relevant to the onset of metal mobility in asteroidal bodies and thus could yield insight into the earliest stages of core formation. Acapulcoite GRA 98028 contains relict chondrules, high modal sulfide/metal, has the lowest 2-pyroxene closure temperature, and represents the least metamorphosed state of the parent body among the samples examined. Comparison of the metal-sulfide component of other clan members to GRA 98028 can give an idea of the effects of metamorphism.
NASA Astrophysics Data System (ADS)
Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.
2013-04-01
The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.
Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.
McGary, R Shane; Evans, Rob L; Wannamaker, Philip E; Elsenbeck, Jimmy; Rondenay, Stéphane
2014-07-17
Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.
Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier
NASA Astrophysics Data System (ADS)
McGary, R. Shane; Evans, Rob L.; Wannamaker, Philip E.; Elsenbeck, Jimmy; Rondenay, Stéphane
2014-07-01
Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.
NASA Astrophysics Data System (ADS)
Day, James M. D.; Walker, Richard J.; Ash, Richard D.; Liu, Yang; Rumble, Douglas; Irving, Anthony J.; Goodrich, Cyrena A.; Tait, Kimberly; McDonough, William F.; Taylor, Lawrence A.
2012-03-01
New major- and trace-element abundances, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances, and oxygen and rhenium-osmium isotope data are reported for oligoclase-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9), six brachinites (Brachina; Elephant Morraine 99402/7; Northwest Africa (NWA) 1500; NWA 3151; NWA 4872; NWA 4882) and three olivine-rich achondrites, which are referred to here as brachinite-like achondrites (NWA 5400; NWA 6077; Zag (b)). GRA 06128/9 represent examples of felsic and highly-sodic melt products from an asteroid that may provide a differentiation complement to brachinites and/or brachinite-like achondrites. The new data, together with our petrological observations, are consistent with derivation of GRA 06128/9, brachinites and the three brachinite-like achondrites from nominally volatile-rich and oxidised 'chondritic' precursor sources within their respective parent bodies. Furthermore, the range of Δ17O values (˜0‰ to -0.3‰) among the meteorites indicates generation from isotopically heterogeneous sources that never completely melted, or isotopically homogenised. It is possible to generate major- and trace-element compositions similar to brachinites and the three studied brachinite-like achondrites as residues of moderate degrees (13-30%) of partial melting of primitive chondritic sources. This process was coupled with inefficient removal of silica-saturated, high Fe/Mg felsic melts with compositions similar to GRA 06128/9. Melting of the parent bodies of GRA 06128/9, brachinites and brachinite-like achondrites halted well before extensive differentiation, possibly due to the exhaustion of the short-lived radionuclide 26Al by felsic melt segregation. This mechanism provides a potential explanation for the cessation of run-away melting in asteroids to preserve achondrites such as GRA 06128/9, brachinites, brachinite-like achondrites, acapulcoite-lodranites, ureilites and aubrites. Moderate degrees of partial melting of chondritic material and generation of Fe-Ni-S-bearing melts are generally consistent with HSE abundances that are within factors of ˜2-10 × CI-chondrite abundances for GRA 06128/9, brachinites and the three brachinite-like achondrites. However, in detail, brachinite-like achondrites NWA 5400, NWA 6077 and Zag (b) are interpreted to have witnessed single-stage S-rich metal segregation, whereas HSE in GRA 06128/9 and brachinites have more complex heritages. The HSE compositions of GRA 06128/9 and brachinites require either: (1) multiple phases in the residue (e.g., metal and sulphide); (2) fractionation after generation of an initial melt, again involving multiple phases; (3) fractional fusion, or; (4) a parent body with non-chondritic relative HSE abundances. Petrological and geochemical observations permit genetic links (i.e., same parent body) between GRA 06128/9 and brachinites and similar formation mechanisms for brachinites and brachinite-like achondrites.
Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits: The Bingham Canyon example
NASA Astrophysics Data System (ADS)
Grondahl, Carter; Zajacz, Zoltán
2017-12-01
Bingham Canyon is one of the world's largest porphyry Cu-Mo-Au deposits and was previously used as an example to emphasize the role of magma mixing and magmatic sulphide saturation in the enhancement of ore fertility of magmatic systems. We analyzed whole rocks, minerals, and silicate melt inclusions (SMI) from the co-genetic, ore-contemporaneous volcanic package (∼38 Ma). As opposed to previous propositions, whole-rock trace element signatures preclude shoshonite-latite genesis via mixing of melanephelinite and trachyte or rhyolite, whereas core to rim compositional profiles of large clinopyroxene phenocrysts suggests the amalgamation of the ore-related magma reservoir by episodic recharge of shoshonitic to latitic magmas with various degrees of differentiation. Major and trace element and Sr and Nd isotopic signatures indicate that the ore-related shoshonite-latite series were generated by low-degree partial melting of an ancient metasomatized mantle source yielding volatile and ore metal rich magmas. Latite and SMI compositions can be reproduced by MELTS modeling assuming 2-step lower and upper crustal fractionation of a primary shoshonite with minimal country rock assimilation. High oxygen fugacities (≈ NNO + 1) are prevalent as evidenced by olivine-spinel oxybarometry, high SO3 in apatite, and anhydrite saturation. The magma could therefore carry significantly more S than would have been possible at more reducing conditions, and the extent of ore metal sequestration by magmatic sulphide saturation was minimal. The SMI data show that the latites were Cu rich, with Cu concentrations in the silicate melt reaching up to 300-400 ppm at about 60 wt% SiO2. The Au and Ag concentrations are also high (1.5-4 and 50-200 ppb, respectively), but show less variation with SiO2. A sudden drop in Cu and S concentrations in the silicate melt at around 65 wt% SiO2 in the presence of high Cl, Mo, Ag, and Au shows that the onset of effective metal extraction by fluid exsolution occurred at a relatively late stage of magma evolution. Overall, our results show that fluid exsolution during simple magmatic differentiation of oxidized alkaline magmas is capable of producing giant porphyry Cu deposits.
NASA Astrophysics Data System (ADS)
Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.
2018-04-01
Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter-mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter-mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine - δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine-spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine-spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult-to-apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet-bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks, the clearly resolvable inter-mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited.
NASA Astrophysics Data System (ADS)
Day, James M. D.; Walker, Richard J.; Warren, Jessica M.
2017-03-01
Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history. Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ± 21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ± 20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ± 25), and 186Os/188Os of 0.1198388 ± 29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield supra-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behavior of Ru at high pressure and temperature.
Iron isotope composition of depleted MORB
NASA Astrophysics Data System (ADS)
Labidi, J.; Sio, C. K. I.; Shahar, A.
2015-12-01
In terrestrial basalts, iron isotope ratios are observed to weakly fractionate as a function of olivine and pyroxene crystallization. However, a ~0.1‰ difference between chondrites and MORB had been reported (Dauphas et al. 2009, Teng et al. 2013 and ref. therein). This observation could illustrate an isotope fractionation occurring during partial melting, as a function of the Fe valence in melt versus crystals. Here, we present high-precision Fe isotopic data measured by MC-ICP-MS on well-characterized samples from the Pacific-Antarctic Ridge (PAR, n=9) and from the Garrett Transform Fault (n=8). These samples allow exploring the Fe isotope fractionation between melt and magnetite, and the role of partial melting on Fe isotope fractionation. Our average δ56Fe value is +0.095±0.013‰ (95% confidence, n=17), indistinguishable from a previous estimate of +0.105±0.006‰ (95% confidence, n=43, see ref. 2). Our δ56Fe values correlate weakly with MgO contents, and correlate positively with K/Ti ratios. PAC1 DR10 shows the largest Ti and Fe depletion after titanomagnetite fractionation, with a δ56Fe value of +0.076±0.036‰. This is ~0.05‰ below other samples at a given MgO. This may illustrate a significant Fe isotope fractionation between the melt and titanomagnetite, in agreement with experimental determination (Shahar et al. 2008). GN09-02, the most incompatible-element depleted sample, has a δ56Fe value of 0.037±0.020‰. This is the lowest high-precision δ56Fe value recorded for a MORB worldwide. This basalt displays an incompatible-element depletion consistent with re-melting beneath the transform fault of mantle source that was depleted during a first melting event, beneath the ridge axis (Wendt et al. 1999). The Fe isotope observation could indicate that its mantle source underwent 56Fe depletion after a first melting event. It could alternatively indicate a lower Fe isotope fractionation during re-melting, if the source was depleted of its Fe3+, likely producing a relatively reduced melt. These hypotheses are testable, and will be discussed in detail at the conference.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Unruh, D. M.; Tatsumoto, M.; Hutchison, R.
1982-01-01
Analyses of whole rock and mineral separates from the Nakhla meteorite are carried out by means of Sm-Nd and U-Tn-Pb systematics and by determining their REE, Ba, Sr, Rb, and K concentrations. Results show that the Sm-Nd age of the meteorite is 1.26 + or - 0.7 b.y., while the high initial epsilon(Nd) value of +16 suggests that Nakhla was derived from a light REE-depleted, old planetary mantle source. A three-stage Sm-Nd evolution model is developed and used in combination with LIL element data and estimated partition coefficients in order to test partial melting and fractional crystallization models and to estimate LIL abundances in a possible Nakhla source. The calculations indicate that partial melting of the source followed by extensive fractional crystallization of the partial melt could account for the REE abundances in the Nakhla constituent minerals. It is concluded that the significantly younger age of Nakhla than the youngest lunar rock, the young differentiation age inferred from U-Th-Pb data, and the estimated LIL abundances suggest that this meteorite may have been derived from a relatively large, well-differentiated planetary body such as Mars.
NASA Astrophysics Data System (ADS)
Morishita, Tomoaki; Ghosh, Biswajit; Soda, Yusuke; Mizukami, Tomoyuki; Tani, Ken-ichiro; Ishizuka, Osamu; Tamura, Akihiro; Komaru, Chihiro; Aari, Shoji; Yang, Hsiao-Chin; Chen, Wen-Shan
2017-12-01
We examine ultramafic and olivine-rich troctolite blocks of the East Taiwan Ophiolite (ETO) in the Lichi Mélange. Although ultramafic rocks are extensively serpentinized, the primary minerals, such as olivine, orthopyroxene, clinopyroxene, spinel and plagioclase can be identified. The ultramafic rocks are classified into harzburgite (± clinopyroxene), dunite, and olivine websterite. Major and trace element compositions of the primary minerals in harzburgites, such as the Cr# [= Cr/(Cr + Al) atomic ratio] of chromian spinel (0.3-0.58) and incompatible elements-depleted trace element patterns of clinopyroxenes, indicate their residue origin after partial melting with less flux components. These compositions are similar to those from mid-ocean ridge peridotites as well as back-arc peridotites from the Philippine Sea Plate. The olivine websterite contains discrete as well as occasional locally concentrated plagioclase grains. Petrological characteristics coupled with similarity in trace element patterns of clinopyroxenes in the harzburgite and olivine websterite samples indicate that the olivine websterite is likely formed by clinopyroxene addition to a lherzolitic/harzburgitic peridotite from a pyroxene-saturated mafic melt. Dunite with medium Cr# spinels indicates cumulus or replacement by melt-peridotite reaction origins. Mineral composition of olivine-rich troctolite cannot be explained by simple crystallization from basaltic magmas, but shows a chemical trend expected for products after melt-peridotite interactions. Mineral compositions of the dunite and olivine-rich troctolite are also within chemical ranges of mid-ocean ridge samples, and are slightly different from back-arc samples from the Philippine Sea Plate. We conclude that peridotites in the ETO are not derived from the northern extension of the Luzon volcanic arc mantle. Further geochronological study is, however, required to constrain the origin of the ETO ophiolite, because peridotites are probably indistinguishable in petrology and mineralogy between the Philippine Sea and the South China Sea/Eurasian Plates.
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.
NASA Astrophysics Data System (ADS)
Piccardo, G. B.
2009-04-01
The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks (Rampone, 2004; Rampone et al., 2008; 2009) provide reliable geochronological informations (i.e. Sm-Nd cpx-plg-wr isochron ages and Sm-Nd model ages) and evidence that the whole mafic and ultramafic rocks show an overall Sm/Nd isotopic homogeneity. Cpx-plg-wr data from gabbroic dykes define internal isochrones yielding Jurassic ages (162+/-10 Ma and 159+/-15 Ma, respectively). The plg-cpx(-wr) isochrons for impregnated plagioclase peridotites yields age of 155+/-6 Ma. The initial ɛNd values (8.9-9.7) are indicative of a MORB affinity. Calculated DM model ages for both spinel and plagioclase peridotites point to a Late Jurassic age (150 Ma). Isotope ratios of cpx from spinel and plagioclase peridotites conform to the linear array defined by overall gabbroic rocks. The isotopic evidence from the melt-percolated, reactive and impregnated peridotites indicates that the pristine lithospheric mantle protoliths were isotopically homogenized by the melt-rock interaction during percolation/impregnation processes which erased any pre-existing isotopic signature. Moreover, the overall Sm/Nd isotopic homogeneity indicates that the asthenospheric mantle sources of the infiltrating melts were isotopically homogeneous. Accordingly, it is plausible that percolation and intrusion were operated by similar and coeval Late Jurassic MORB-type melts. In conclusion, petrologic and isotopic data allow to recognize that the extending sub-continental lithospheric mantle was infiltrated by Late Jurassic MORB melts, formed by asthenospheric decompression-induced partial melting during continental extension and rifting. Melt-peridotite interaction modified the compositional features of the lithospheric mantle and caused its isotopic resetting. Accordingly, the sub-continental lithospheric mantle underwent an "oceanization" process (i.e. isotope resetting to "oceanic" MORB signatures) during Late Jurassic times operated by asthenospheric MORB melts. Depending on the melt composition, the lithospheric level and the mode of melt-rock interaction, fertile peridotites from the sub-continental lithospheric mantle were transformed, concomitantly, to depleted spinel peridotites and refertilized plagioclase peridotites.
NASA Astrophysics Data System (ADS)
Pariani, Federico; Menegon, Luca; Bistacchi, Andrea; Malaspina, Nadia
2014-05-01
The relationships between partial melting and deformation in the continental lower crust are critical for understanding lithosphere rheology and the processes leading to melt segregation. In metapelitic rocks in the lower portions of the crust partial melting typically occurs via dehydration of biotite and is generally characterized by a negative volume change when garnet is produced as a peritectic phase. As a result, segregation of biotite-derived melt by fracturing resulting from dilational strain is not common. Hence segregation of biotite-derived melts in the lower crust is likely to be controlled by active deformation via creation of structural anisotropies (fabric), which define migration pathways from the grain-size to the kilometre scale. This study investigates the relations between deformation mechanisms of minerals, fabric development and grain- and meso-scale deformation partitioning in felsic migmatites. The study area is located in the Valpelline Series of the Dent Blanche Nappe in the north-western Alps, which represents a slice of pre-Alpine lower crust dominated by metapelitic migmatites (i.e. 'kinzigites' in the Alpine literature). The migmatites are stromatic and show a leucosome-melanosome interlayering defining the dominant foliation (S2), which forms along a sinistral shear zone at least 1 km thick and laterally continuous for at least 8 km. Ti-in biotite geothermometry, mineral inclusions in garnet, and literature data indicate that S2 formed at P, T conditions of 800-820°C, 0.4-0.7 GPa, during dehydration melting of biotite. The melanosomes have about 80 vol% of garnet + biotite + sillimanite and are very poor in quartz and feldspars, indicating almost complete removal of melt. Garnet forms slightly elongated grains wrapped by biotite and sillimanite layers. Compositional maps of the elongated garnet do not show any zonation. EBSD analysis indicates that the elongated garnets are actually clusters of individual grains with no internal misorientation. We interpret these microstructures as deriving from amalgamation of individual garnets in elongated sites during shearing. Prismatic sillimanite has a strong crystallographic preferred orientation (CPO) with the c-axes parallel to the stretching lineation. However, evidence for internal misorientaton is scarce, indicating that the CPO was probably achieved by passive rotation during shearing. Elongated K-feldspar grains also do not show any internal misorientation and crystal plasticity features. They are rich of sillimanite and quartz inclusions, suggesting that they represent melt pockets crystallized near the site of production. K-feldspar has a weak CPO with the (010) planes parallel to the foliation and either <100> or <101> axis parallel to the lineation. The high aspect ratio was probably achieved by oriented growth during crystallization of melt. In summary, deformation mechanisms of minerals during melt removal from the melanosome seem to be dominated by passive rotation and oriented growth during magmatic flow, with negligible contribution of dislocation creep. A large (at least several hundred metres thick across foliation) low-strain domain of less pelitic, more quartzofeldspathic composition has escaped the pervasive development of S2. This domain preserves an S1 associated with older stages of partial melting. We speculate that the different bulk and mineralogical composition, reflecting the different nature of the protolith but also the effect of pre-existing melting episodes, determined a reduced melting during D2. This resulted in localization of deformation along melt-richer portions of this lower crustal section.
Manufacture of ceramic tiles from fly ash
Hnat, James G.; Mathur, Akshay; Simpson, James C.
1999-01-01
The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.
Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)
NASA Astrophysics Data System (ADS)
Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.
2017-02-01
At fast-spreading mid-ocean ridges, axial melt lenses (AMLs) sandwiched between the sheeted dyke section and the uppermost gabbros are assumed to be the major magma source of crust formation. Here, we present our results from a field study based on a single outcrop of a frozen AML in the Samail ophiolite in the Sultanate of Oman which presents a whole suite of different lithologies and complex cutting relationships: varitextured gabbro with relics of primitive poikilitic clinopyroxene is intruded by massive quartz diorites and tonalites bearing relics of assimilated sheeted dykes, which in turn are cut by trondhjemite dykes. The whole is cut by basaltic dykes with chilled margins. The geochemical evolutionary trend of the varitextured gabbros, including some of the quartz diorites and tonalites, can be best modelled by fractional crystallisation of an experimental MORB parental melt composition containing 0.4 to 0.8 wt.% H2O. Patchy varitextured gabbros containing domains of primitive poikilitic clinopyroxene and evolved granular networks represent the record of in situ crystallisation. Some quartz diorites, often with xenoliths of sheeted dykes and exceptionally high Al2O3 contents, show a bulk trace element pattern more in accord with melts generated by experimental partial melting of dyke material. Highly evolved, crosscutting trondhjemite dykes show characteristic trace element patterns implying a formation by partial melting of sheeted dykes under lower water activity which is indicated by relatively low Al2O3 contents. The late basaltic dykes with chilled margins crosscutting all other lithologies show a relatively depleted geochemical character with pronounced negative Nb-Ta anomalies implying a genetic relationship to the second phase of magmatic Oman paleo-ridge activity (V2). The field relationships in combination with the petrological/geochemical trends reveal multiple sequences of MORB-type magma cooling (resulting in fractional crystallisation) and re-heating (producing partial melting) during the formation of this special horizon; these are best explained by alternating cycles of vertical AML migration. Since the investigated outcrop shows many characteristic lithological and petrographic features that are well-known from the uppermost gabbros drilled at Site 1256 by the Integrated Ocean Drilling Program (IODP) in the equatorial Eastern Pacific, our results based on 3-D observation in the field help to elucidate the geological observations obtained from the 1-D drill core.
NASA Astrophysics Data System (ADS)
Hu, Yong-bin; Liu, Ji-qiang; Ling, Ming-xing; Liu, Yan; Ding, Xing; Liu, Dun-yi; Sun, Wei-dong
2017-11-01
Chongjiang is a low-grade porphyry Cu deposit, located in the Gangdese belt, south Tibet. The petrogenesis and geodynamic settings of the Miocene intrusions associated with the deposit remain controversial. This study presents new results on in situ zircon Hf-O isotopic compositions and U-Pb ages, whole rock major and trace elements, and Sr-Nd isotopes for the adakitic intrusions from Chongjiang deposit. The ore-bearing biotite monzogranite porphyry has adakitic characteristics, with enriched large-ion-lithophile elements (LILE) and light rare earth elements (LREE), and depleted in high-field-strength elements (HFSE), P and Ti. LA-ICP-MS zircon U-Pb dating indicates that the ore-bearing and barren adakites were emplaced at 14.9 ± 0.3 Ma and 12.9 ± 0.3 Ma, respectively. The porphyry is characterized by relatively high initial 87Sr/86Sr ratios (0.7059 to 0.7066), and negative whole-rock εNd(t) values (- 3.8 to - 2.6). Zircon δ18O is slightly higher than mantle values (5.0 to 7.2‰), with varied εHf(t) (- 1.0 to 7.6). Most of the in situ zircon Hf-O isotopic data plot in a binary mixing trend between MORB and lower continental crust-derived melts. These results indicate contributions from mixing of a mantle-like source (e.g., slab melts) with continental crust. Interestingly, most of the samples plot in the field defined by Dabie adakites (representing partial melting of the lower continental crust), with several samples near/in the circum-Pacific adakite field (representing partial melting of subducted oceanic slabs), which seemingly indicates that Chongjiang adakites mostly formed through partial melting of lower continental crust, with a small amount derived from oceanic slab melts. These may be plausibly explained by plagioclase retention in the thickened Tibetan continental crust, which lowers Sr contents in the magmas during crustal assimilation. Such a model is supported by other adakite discrimination diagrams, which all point towards slab melting. Crustal contamination can compellingly explain the low grade of the Chongjiang deposit. Considering the temporal-spatial distribution of porphyry Cu deposits, geochemical characteristics and high oxygen fugacity, we propose that the subducting Ninetyeast Ridge probably played a critical role in controlling the formation of Miocene adakites and porphyry copper deposits in the eastern Gangdese belt.
Evolved Rocks in Ocean Islands Formed by Melting of Metasomatized Mantle
NASA Astrophysics Data System (ADS)
Ashwal, L. D.; Torsvik, T. H.; Horvath, P.; Harris, C.; Webb, S. J.; Werner, S. C.; Corfu, F.
2015-12-01
Evolved rocks like trachyte occur as minor components of many plume-related basaltic ocean islands (e.g. Hawaii, Gran Canaria, Azores, Réunion), and are typically interpreted as products of extreme fractional crystallization from broadly basaltic magmas. Trachytes from Mauritius (Indian Ocean) suggest otherwise. Here, 6.8 Ma nepheline-bearing trachytes (SiO2 ~63%, Na2O + K2O ~12%) are enriched in all incompatible elements except Ba, Sr and Eu, which show prominent negative anomalies. Initial eNd values cluster at 4.03 ± 0.15 (n = 13), near the lower end of the range for Mauritian basalts (eNd = 3.70 - 5.75), but initial Sr is highly variable (ISr = 0.70408 - 0.71034) suggesting secondary deuteric alteration. Fractional crystallization models starting with a basaltic parent fail, because when plagioclase joins olivine in the crystallizing assemblage, residual liquids become depleted in Al2O3, produce no nepheline, and do not approach trachytic compositions. Mauritian basalts and trachytes do not fall near the ends of known miscibility gaps, eliminating liquid immiscibility processes. Partial melting of extant gabbroic bodies, either from the oceanic crust or from Réunion plume-related magmas should yield quartz-saturated melts different from the critically undersaturated Mauritian trachytes. A remaining possibility is that the trachytes represent direct, small-degree partial melts of fertile, perhaps metasomatized mantle. This is supported by the presence of trachytic glasses in many mantle xenoliths, and experimental results show that low-degree trachytic melts can be produced from mantle peridotites even under anhydrous conditions. If some feldspar is left behind as a residual phase, this would account for the negative Ba, Sr and Eu anomalies observed in Mauritian trachytes. Two trachyte samples that are less depleted in these elements contain xenocrysts of anorthoclase, Al-rich cpx and Cl-rich kaersutite that are out of equilibrium with host trachyte magmas; these may represent fragments of a refertilized mantle source. A model of direct, low-degree partial melting of metasomatized mantle may apply to other worldwide examples of evolved rocks in ocean islands.
NASA Astrophysics Data System (ADS)
Brophy, E.; Hansen, E. C.; Möller, C.; Huffman, M.
2017-12-01
Mafic migmatites with amphibolitic melanosome and tonalitic leucosome are a common feature in continental collision orogenic zones. However, the anatexis of mafic rocks has received much less attention than anatexis in felsic, intermediate or pelitic compositions. We examined mafic migmatites along a traverse within the Eastern Segment of the 1.14-0.9 Ga Sveconorwegian orogen, between Forsheda and Fegen southern Sweden. This traverse occurs in the center of a >150 km metamorphic transition from sub-greenschist facies in the east to high-pressure granulite and eclogite facies in the west (Möller and Andersson, unpublished metamorphic map). The Eastern Segment is a parautochthonous belt made up of rocks of the Fennoscandian shield that were deformed and metamorphosed during the Sveconorwegian orogeny. Within the traverse amphibolite bodies occur within migmatitic felsic to intermediate orthogneisses. The first appearance of tonalitic leucosome in amphibolite was observed towards the eastern edge of the traverse and continued to occur sporadically westward ranging in abundance (by outcrop area) from 0 to 25 %. The mineral assemblage in amphibolite is hbl + plag ( An30) + qtz + bt ± grt ± ilm ± ttn ± py ± SO2-rich scp. No examples of peritectic pyroxene associated with leucosome were found. The lack of peritectic pyroxene suggests that a water-rich phase was present at the onset of anatexis. The highly variable amount of leucosome further suggests that the amount of melt generated was determined by the amount of water available. Together these suggest that partial was driven by the local influx of a water-rich fluid. In the higher grade portions further west migmatitic amphibolite with tonalitic leucosome occurs in two varieties: one with peritectic pyroxene and relatively small amounts of leucosome, interpreted as forming by water-undersaturated dehydration melting, and another without peritectic pyroxene and with larger amounts of leucosome which is interpreted as having formed from water-fluxed melting (Hansen et al., Lithos, 2015). Thus, water-undersaturated melting in mafic rocks appears to have been limited to the higher-grade portions of the orogen. The variable amounts of leucosome produced by partial melting indicate that the presence of water-rich fluids was localized rather than penetrative.
TEM Study of Intergranular Fluid Distributions in Rocks at a Nanometer Scale
NASA Astrophysics Data System (ADS)
Hiraga, T.; Anderson, I. M.; Kohlstedt, D. L.
2002-12-01
The distribution of intergranular fluids in rocks plays an essential role in fluid migration and rock rheology. Structural and chemical analyses with sub-nanometer resolution is possible with transmission and scanning-transmission electron microscopy; therefore, it is possible to perform the fine-scale structural analyses required to determine the presence or absence of very thin fluid films along grain boundaries. For aqueous fluids in crustal rocks, Hiraga et al. (2001) observed a fluid morphology controlled by the relative values of the solid-solid and solid-fluid interfacial energies, which resulted in well-defined dihedral angles. Their high-resolution transmission electron microscopy (TEM) observations demonstrate that grain boundaries are tight even at a nanometer scale, consistent with the absence of aqueous fluid films. For partially molten ultra-mafic rocks, two conflicting conclusions have been reached: nanometer-thick melt films wet grain boundaries (Drury and Fitz Gerald 1996; De Kloe et al. 2000) versus essentially all grain boundaries are melt-free (Vaughan et al. 1982; Kohlstedt 1990). To resolve this conflict, Hiraga et al. (2002) examined grain boundaries in quenched partially molten peridotites. Their observations demonstrate the following: (i) Although a small fraction of the grains are separated by relatively thick (~1 μm) layers of melt, lattice fringe images obtained with a high-resolution TEM reveal that most of the remaining boundaries do not contain a thin amorphous phase. (ii) In addition, the composition of olivine-olivine grain boundaries was analyzed with a nano-beam analytical scanning TEM with a probe size of <2 nm. Although the grain boundaries contained no melt film, the concentration of Ca, Al and Ti were enhanced near the boundaries. The segregation of these elements to the grain boundaries formed enriched regions <7 nm wide. A similar pattern of chemical segregation was detected in subsolidus systems. Creep experiments on the partially molten rocks that were analyzed in this study reveal little weakening even at melt contents approaching 4 vol%, consistent with our observations of melt-free grain boundaries.
NASA Astrophysics Data System (ADS)
Zhang, Yanfei; Wu, Yao; Wang, Chao; Zhu, Lüyun; Jin, Zhenmin
2016-08-01
The subducted continental crust material will be gravitationally trapped in the deep mantle after having been transported to depths of greater than ∼250-300 km (the "depth of no return"). However, little is known about the status of this trapped continental material as well as its contribution to the mantle heterogeneity after achieving thermal equilibrium with the surrounding mantle. Here, we conduct an experimental study over pressure and temperature ranges of 9-16 GPa and 1300-1800 °C to constrain the fate of these trapped upper continental crust (UCC). The experimental results show that partial melting will occur in the subducted UCC along normal mantle geotherm to produce K-rich melt. The residual phases composed of coesite/stishovite + clinopyroxene + kyanite in the upper mantle, and stishovite + clinopyroxene + K-hollandite + garnet + CAS-phase in the mantle transition zone (MTZ), respectively. The residual phases achieve densities greater than the surrounding mantle, which provides a driving force for descent across the 410-km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of the MTZ, leaving the descended residues to be accumulated above the 660-km seismic discontinuity and may contribute to the "second continent". The melt is ∼0.6-0.7 g/cm3 less dense than the surrounding mantle, which provides a buoyancy force for ascent of melt to shallow depths. The ascending melt, which preserves a significant portion of the bulk-rock rare earth elements (REEs), large ion lithophile elements (LILEs), and high-filed strength elements (HFSEs), may react with the surrounding mantle. Re-melting of the metasomatized mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, the deep subducted continental crust may create geochemical/geophysical heterogeneity in Earth's interior through subduction, stagnation, partial melting and melt segregation.
NASA Astrophysics Data System (ADS)
Ulrich, Marc; Picard, Christian; Guillot, Stéphane; Chauvel, Catherine; Cluzel, Dominique; Meffre, Sébastien
2010-03-01
The origin of the New Caledonia ophiolite (South West Pacific), one of the largest in the world, is controversial. This nappe of ultramafic rocks (300 km long, 50 km wide and 2 km thick) is thrust upon a smaller nappe (Poya terrane) composed of basalts from mid-ocean ridges (MORB), back arc basins (BABB) and ocean islands (OIB). This nappe was tectonically accreted from the subducting plate prior and during the obduction of the ultramafic nappe. The bulk of the ophiolite is composed of highly depleted harzburgites (± dunites) with characteristic U-shaped bulk-rock rare-earth element (REE) patterns that are attributed to their formation in a forearc environment. In contrast, the origin of spoon-shaped REE patterns of lherzolites in the northernmost klippes was unclear. Our new major element and REE data on whole rocks, spinel and clinopyroxene establish the abyssal affinity of these lherzolites. Significant LREE enrichment in the lherzolites is best explained by partial melting in a spreading ridge, followed by near in-situ refertilization from deeper mantle melts. Using equilibrium melting equations, we show that melts extracted from these lherzolites are compositionally similar to the MORB of the Poya terrane. This is used to infer that the ultramafic nappe and the mafic Poya terrane represent oceanic lithosphere of a single marginal basin that formed during the late Cretaceous. In contrast, our spinel data highlights the strong forearc affinities of the most depleted harzburgites whose compositions are best modeled by hydrous melting of a source that had previously experienced depletion in a spreading ridge. The New Caledonian boninites probably formed during this second stage of partial melting. The two melting events in the New Caledonia ophiolite record the rapid transition from oceanic accretion to convergence in the South Loyalty Basin during the Late Paleocene, with initiation of a new subduction zone at or near the ridge axis.
Evidence for stable grain boundary melt films in experimentally deformed olivine-orthopyroxene rocks
NASA Astrophysics Data System (ADS)
de Kloe, R.; Drury, M. R.; van Roermund, H. L. M.
The microstructure of olivine-olivine grain boundaries has been studied in experimentally deformed (1200-1227°C, 300MPa) partially molten olivine and olivine-orthopyroxene rocks. In-situ melting produced 1vol% melt in all samples studied. Grain boundary analyses were carried out using a number of transmission electron microscopy techniques. The grain boundary chemistry in undeformed olivine-orthopyroxene starting material showed evidence for the presence of an intergranular phase along some, but not all, of the olivine-olivine boundaries. In the deformed samples, ultrathin Si-rich, Al- and Ca-bearing amorphous films have been observed along all investigated olivine-olivine grain boundaries. The chemistry of the grain boundaries, which is considered to be indicative for the presence of a thin film, was measured with energy-dispersive X-ray spectroscopy (EDX) and energy-filtering imaging. The amorphous nature of the films was confirmed with diffuse dark field imaging, Fresnel fringe imaging, and high-resolution electron microscopy. The films range in thickness from 0.6 to 3.0nm, and EDX analyses show that the presence of Al and Ca is restricted to this ultrathin film along the grain boundaries. Because thin melt films have been observed in all the samples, they are thought to be stable features of the melt microstructure in deformed partially molten rocks. The transition from the occasional presence of films in the undeformed starting material to the general occurrence of the films in deformed materials suggests that deformation promotes the formation and distribution of the films. Alternatively, hot-pressing may be too short for films to develop along all grain boundaries. A difference in creep strength between the studied samples could not be attributed to grain boundary melt films, as these have been found in all deformed samples. However, a weakening effect of grain boundary melt films on olivine rheology could not be ruled out due to the lack of confirmed melt-film free experiments.
NASA Astrophysics Data System (ADS)
Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.
2017-04-01
The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant "soccer ball" zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.
NASA Astrophysics Data System (ADS)
Tsuno, Kyusei; Dasgupta, Rajdeep
2011-05-01
We have experimentally investigated melting phase relation of a nominally anhydrous, carbonated pelitic eclogite (HPLC1) at 2.5 and 3.0 GPa at 900-1,350°C in order to constrain the cycling of sedimentary carbon in subduction zones. The starting composition HPLC1 (with 5 wt% bulk CO2) is a model composition, on a water-free basis, and is aimed to represent a mixture of 10 wt% pelagic carbonate unit and 90 wt% hemipelagic mud unit that enter the Central American trench. Sub-solidus assemblage comprises clinopyroxene + garnet + K-feldspar + quartz/coesite + rutile + calcio-ankerite/ankeritess. Solidus temperature is at 900-950°C at 2.5 GPa and at 900-1,000°C at 3.0 GPa, and the near-solidus melt is K-rich granitic. Crystalline carbonates persist only 50-100°C above the solidus and at temperatures above carbonate breakdown, carbon exists in the form of dissolved CO2 in silica-rich melts and as a vapor phase. The rhyodacitic to dacitic partial melt evolves from a K-rich composition at near-solidus condition to K-poor, and Na- and Ca-rich composition with increasing temperature. The low breakdown temperatures of crystalline carbonate in our study compared to those of recent studies on carbonated basaltic eclogite and peridotite owes to Fe-enrichment of carbonates in pelitic lithologies. However, the conditions of carbonate release in our study still remain higher than the modern depth-temperature trajectories of slab-mantle interface at sub-arc depths, suggesting that the release of sedimentary carbonates is unlikely in modern subduction zones. One possible scenario of carbonate release in modern subduction zones is the detachment and advection of sedimentary piles to hotter mantle wedge and consequent dissolution of carbonate in rhyodacitic partial melt. In the Paleo-NeoProterozoic Earth, on the other hand, the hotter slab-surface temperatures at subduction zones likely caused efficient liberation of carbon from subducting sedimentary carbonates. Deeply subducted carbonated sediments, similar to HPLC1, upon encountering a hotter mantle geotherm in the oceanic province can release carbon-bearing melts with high K2O, K2O/TiO2, and high silica, and can contribute to EM2-type ocean island basalts. Generation of EM2-type mantle end-member may also occur through metasomatism of mantle wedge by carbonated metapelite plume-derived partial melts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Viet Hoang; Pan, Feng; Sagui, Celeste, E-mail: sagui@ncsu.edu
We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′){sub 2} sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fastmore » comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.« less
A DNA Melting Exercise for a Large Laboratory Class
ERIC Educational Resources Information Center
Levine, Lauren A.; Junker, Matthew; Stark, Myranda; Greenleaf, Dustin
2015-01-01
A simple and economical experimental setup is described that enables multiple individuals or groups within a laboratory class to measure the thermal melting of double stranded DNA simultaneously. The setup utilizes a basic spectrophotometer capable of measuring absorbance at 260 nm, UV plastic cuvettes, and a stirring hot plate. Students measure…
The thermal properties of beeswaxes: unexpected findings.
Buchwald, Robert; Breed, Michael D; Greenberg, Alan R
2008-01-01
Standard melting point analyses only partially describe the thermal properties of eusocial beeswaxes. Differential scanning calorimetry (DSC) revealed that thermal phase changes in wax are initiated at substantially lower temperatures than visually observed melting points. Instead of a sharp, single endothermic peak at the published melting point of 64 degrees C, DSC analysis of Apis mellifera Linnaeus wax yielded a broad melting curve that showed the initiation of melting at approximately 40 degrees C. Although Apis beeswax retained a solid appearance at these temperatures, heat absorption and initiation of melting could affect the structural characteristics of the wax. Additionally, a more complete characterization of the thermal properties indicated that the onset of melting, melting range and heat of fusion of beeswaxes varied significantly among tribes of social bees (Bombini, Meliponini, Apini). Compared with other waxes examined, the relatively malleable wax of bumblebees (Bombini) had the lowest onset of melting and lowest heat of fusion but an intermediate melting temperature range. Stingless bee (Meliponini) wax was intermediate between bumblebee and honeybee wax (Apini) in heat of fusion, but had the highest onset of melting and the narrowest melting temperature range. The broad melting temperature range and high heat of fusion in the Apini may be associated with the use of wax comb as a free-hanging structural material, while the Bombini and Meliponini support their wax structures with exogenous materials.
Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M
2013-07-15
The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.
The coupled response to slope-dependent basal melting
NASA Astrophysics Data System (ADS)
Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.
2009-12-01
Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.
NASA Astrophysics Data System (ADS)
Carvalho, Bruna B.; Sawyer, Edward W.; de Assis Janasi, Valdecir
2016-04-01
The deep levels of the continental crust have been extensively reworked as result of crustal differentiation. Migmatites are widespread in these high-grade metamorphic terrains, and provide valuable information on how processes such as partial melting, segregation of the melt from the residue and subsequent chemical exchanges lead to the petrological diversity found in the deep crust. This study investigates processes that transformed a largely uniform, metagranodiorite protolith into a very complex migmatite that contains three varieties of diatexites (grey, schlieren and homogenous diatexites) and several types of leucosomes. The Kinawa Migmatite is part of the Archean TTG crust in the São Francisco Craton (Brazil), which has been reworked in a shear zone environment at upper amphibolite facies conditions (<730°C and 5-6 kbar); thus it may be typical of crustal reworking in the interior of old cratons [1]. Grey diatexites are residual rocks formed by the extraction of a water-fluxed melt created via the reaction Pl + Kfs + Qz + H2O = melt. Diversity within the grey diatexites arises from different degrees of melt segregation (maximum ~40% melt). Schlieren diatexites are very heterogeneous rocks in which residuum-rich domains alternate with leucocratic quartzo-feldspathic domains where melt accumulated. Homogeneous diatexites are coarse-grained leucocratic rocks and represent larger bodies of anatectic melt with minor amounts (<20%) of entrained residuum. Leucosomes display a wide range of compositions from tonalitic to alkali-feldspar granite. Leucosomes, homogeneous diatexites and the quartzo-feldspathic domains in the schlieren diatexites all show a sequence of microstructural stages from plagioclase-dominated to K-feldspar-dominated frameworks many of which show evidence for tectonic compaction. Thus, further segregation of melt from solids occurred during crystallization. Minor amphibolite dykes in the metagranodiorite did not melt. They occur as angular to rounded fragments (schollen or rafts) in the diatexites and show strong evidence for mechanical and chemical interaction with their melt rich hosts. Typically, the diatexites and the leucosomes around the schollen contain higher proportion of amphibole and/or biotite than that farther away; a number of features suggest that this is due to disaggregation that contaminated the melt rich rocks. Our data indicates that in the deep levels of the crust petrological diversity is produced by melt segregation, both during partial melting and crystallization, and by interaction of the anatectic melt with unmelted material in the source. During melting, segregation produced residuum plus anatectic melt and all intermediate stages, whereas during crystallization it resulted in crystal fractionation and generated diverse plagioclase-rich rocks and fractionated melts. Finally, crystals disaggregated from the amphibolites entrained and interact with anatectic melt producing leucosomes and diatexites with the compositional signature of contamination. [1] Carvalho, B.B; Sawyer, E.W.; Janasi, V.A. (2016). Crustal reworking in a shear zone: transformation of metagranite to migmatite. Journal of Metamorphic Geology DOI: 10.1111/jmg.12180
NASA Astrophysics Data System (ADS)
Lang, H. M.; Gilotti, J. A.
2005-12-01
Although paragneiss is not common in the North-East Greenland Eclogite Province (NEGEP), of the few paragneiss samples collected in the UHP zone, some contain inclusion-rich garnet megacrysts (to 2 cm) in an anatectic matrix. In the matrix, quartz ribbons are segregated from anatectic melt layers and lenses that contain plagioclase, antiperthitic alkali-feldspar, white mica, biotite, small garnets, rutile and minor kyanite. In addition to one-phase and two-phase inclusions of quartz, polycrystalline quartz (no definitive coesite-replacement textures), and phengitic white mica, the garnet megacrysts contain some relatively large polyphase inclusions with all or most of the following phases: kyanite, rutile, phengitic white mica, biotite, quartz, Na-rich plagioclase, K-feldspar and zircon. Textures in these complex, polyphase inclusions suggest that their constituent minerals crystallized from a melt. Crystals are randomly oriented with early crystallizing minerals (kyanite, rutile, micas) forming euhedral grains and later crystallizing minerals (quartz and feldspars) filling the interstitial spaces. The textures and mineral assemblages are consistent with dehydration melting of phengitic white mica + quartz (enclosed in garnet) during decompression of the rocks from UHP metamorphic conditions. Although anatectic minerals in the matrix may have experienced extensive retrograde re-equilibration subsequent to crystallizing from a melt, the minerals trapped in the crystallized melt inclusions in garnet are likely to preserve their original textures and compositions. Microtextures in the melt inclusions and surrounding garnet suggest that partial melting was accompanied by volume expansion and that some melt penetrated garnets. Some radial fractures extend from inclusion margins into surrounding garnet. Individual fractures may have formed by volume expansion on melting or expansion accompanying the coesite-quartz transformation. Small and large polycrystalline quartz inclusions are commonly rimmed by a moat of plagioclase + K-feldspar, which extends into apophyses in garnet. These feldspar rims indicate that the most mobile and volatile-rich portion of the melt was able to penetrate garnets and travel along garnet-inclusion boundaries. Possible melt inclusions have been described in natural garnets from other UHP terranes (Stockert, et al., 2001, Geology; Hwang, et al., 2001, Earth and Planetary Science Letters) and have been produced experimentally (Perchuk, et al., 2005, Terra Nova). In the experiments and at least one of the natural occurrences, patchy microstructures (attributed to high Ca) were observed in BSE images of garnet surrounding the melt inclusions. Although we observe no garnet zoning in BSE images, patchy high-Ca zoning is apparent on X-ray maps of garnet surrounding the melt inclusions in our samples. Small, euhedral, high-Ca garnets are abundant in melt lenses in the matrix, so crystallization or recrystallization of high-Ca garnet surrounding the melt inclusions is not surprising.
Simple rules govern the patterns of Arctic sea ice melt ponds
NASA Astrophysics Data System (ADS)
Popovic, P.; Cael, B. B.; Abbot, D. S.; Silber, M.
2017-12-01
Climate change, amplified in the far north, has led to a rapid sea ice decline in recent years. Melt ponds that form on the surface of Arctic sea ice in the summer significantly lower the ice albedo, thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback. However, currently it is unclear how to model this intricate geometry. Here we show that an extremely simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The model has only two parameters, circle scale and the fraction of the surface covered by voids, and we choose them by comparing the model to pond images. Using these parameters the void model robustly reproduces all of the examined pond features such as the ponds' area-perimeter relationship and the area-abundance relationship over nearly 7 orders of magnitude. By analyzing airborne photographs of sea ice, we also find that the typical pond scale is surprisingly constant across different years, regions, and ice types. These results demonstrate that the geometric and abundance patterns of Arctic melt ponds can be simply described, and can guide future models of Arctic melt ponds to improve predictions of how sea ice will respond to Arctic warming.
Methods and systems for monitoring a solid-liquid interface
Stoddard, Nathan G [Gettysburg, PA; Clark, Roger F [Frederick, MD
2011-10-04
Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).
Origin of Archean migmatites from the Gwenoro Dam area, Zimbabwe-Rhodesia
NASA Astrophysics Data System (ADS)
Condie, Kent C.; Allen, Philip
1980-09-01
Archean migmatites in the vicinity of Gwenoro Dam in Zimbabwe-Rhodesia are composed chiefly of trondhjemite gneiss (TR), mafic tonalite (MT), amphibolite (AM), leuco-trondhjemite veins (LTR), and pegmatites. The gneiss is intruded in nearby areas with small tonalite plutons (TN). Geochemical model studies together with field relationships are consistent with the following model for migmatite production: AM is produced by partial melting of a partly depleted ultramafic parent in which neither garnet nor amphibole remain in the residue; TR and TN are produced by partial melting of undepleted to variably depleted amphibolite in which garnet does not remain in the residue; MT is produced by mixing of plagioclase-rich TR with AM; and LTR represents the solid residue after fractional crystallization of TR.
Raman and X-Ray Investigation of High-Temperature Methane in the Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Spaulding, D.; Weck, G.; Loubeyre, P.; Mezouar, M.
2016-12-01
The chemistry and equations of state of simple molecular systems are of extreme importance to planetary astrophysics and for accurate characterization of reaction products and pathways at high pressures and temperatures. Simple molecules such as H2O, CO2 and CH4 are model systems for understanding the effects of pressure on chemical bonding. Here we present recent work to conduct fine-scale studies of the vibrational, chemical and structural properties of CH4 at pressures and temperatures up to 12 GPa and 1000K, with particular attention to behavior in the vicinity of the melting curve. We present results from resistive and laser-heating experiments, coupled with Raman spectroscopy. In addition, high P/T synchrotron powder x-ray diffraction provides tight constraints on melting and solid structure. Our results favor a somewhat higher melting curve and lower dissociative stability limit for the CH4 molecule than other recent work.
Morinha, Francisco; Travassos, Paulo; Seixas, Fernanda; Santos, Nuno; Sargo, Roberto; Sousa, Luís; Magalhães, Paula; Cabral, João A; Bastos, Estela
2013-05-01
High-resolution melting (HRM) analysis is a very attractive and flexible advanced post-PCR method with high sensitivity/specificity for simple, fast and cost-effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real-time PCR systems, along with improved saturating DNA-binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex-specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed-tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real-time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing. © 2013 Blackwell Publishing Ltd.
Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs
NASA Astrophysics Data System (ADS)
Berger, J.; Burg, J.-P.
2012-04-01
Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F <10 %) near the solidus produces trondhjemitic melt and garnet granulites residue. The latter has composition very close to that of igneous precursors but is characterized by contrasted physical properties (density: 3.2-3.3, Vp: 6.9-7.4 km/s). Higher partial melting degrees (F: 10-20 %) lead to the formation of anorthositic melts in equilibrium with garnet-clinopyroxene-rutile residues (density: up to 3.45, Vp: up to 7.7 km/s). These melts are rich in LILE (Rb, Ba, Sr) and LREE but strongly depleted in HREE and Y, while the residues are moderately enriched in Ti, Zr, Nb, HREE and Y but depleted in LREE relative to their igneous precursors. Compared to depleted mantle values, the residues also have low Rb/Sr but high Sm/Nd and Lu/Hf ratios. Partial melting in the lowermost oceanic arc crust thus produces the conditions to trigger gravity-driven delamination of the root and could lead to introduction of fertile arc garnet pyroxenites within the upper mantle. However, in Kohistan and at Amalaoulaou, the dense garnet-clinopyroxene residues are dispersed in the arc roots; they are intermingled with hornblendite and pyroxenite bodies. The small density contrast between garnet granulites and the harzburgitic mantle, and the low volumes of garnet-clinopyroxene residues preclude massive delamination of the partial melting residues. Further numerical modeling of physical modifications induced by dehydration-melting together with igneous mineral segregation in arc roots will help constraining fundamental parameters (mantle and arc crust rheology and density, composition, P-T conditions, volume and rate of incoming basaltic fluxes…) that control the stability of the lowermost arc crust.
Investigation of RNA Hairpin Loop Folding with Time-Resolved Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Stancik, Aaron Lee
Ribonucleic acids (RNAs) are a group of functional biopolymers central to the molecular underpinnings of life. To complete the many processes they mediate, RNAs must fold into precise three-dimensional structures. Hairpin loops are the most ubiquitous and basic structural elements present in all folded RNAs, and are the foundation upon which all complex tertiary structures are built. A hairpin loop forms when a single stranded RNA molecule folds back on itself creating a helical stem of paired bases capped by a loop. This work investigates the formation of UNCG hairpin loops with the sequence 5'-GC(UNCG)GC-3' (N = A, U, G, or C) using both equilibrium infrared (IR) and time-resolved IR spectroscopy. Equilibrium IR melting data were used to determine thermodynamic parameters. Melting temperatures ranged from 50 to 60°C, and enthalpies of unfolding were on the order of 100 kJ/mol. In the time-resolved work, temperature jumps of up to 20°C at 2.5°C increments were obtained with transient relaxation kinetics spanning nanoseconds to hundreds of microseconds. The relaxation kinetics for all of the oligomers studied were fit to first or second order exponentials. Multiple vibrational transitions were probed on each oligomer for fully folded and partially denatured structures. In the time-resolved limit, in contrast to equilibrium melting, RNA does not fold according to two-state behavior. These results are some of the first to show that RNA hairpins fold according to a rugged energy landscape, which contradicts their relatively simple nature. In addition, this work has proven that time-resolved IR spectroscopy is a powerful and novel tool for investigating the earliest events of RNA folding, the formation of the hairpin loop.
NASA Astrophysics Data System (ADS)
Ackerman, Lukáš; Magna, Tomáš; Žák, Karel; Skála, Roman; Jonášová, Šárka; Mizera, Jiří; Řanda, Zdeněk
2017-08-01
Impact processes are natural phenomena that contribute to a variety of physico-chemical mechanisms over an extreme range of shock pressures and temperatures, otherwise seldomly achieved in the Earth's crust through other processes. Under these extreme conditions with transient temperatures and pressures ≥3000 K and ≥100 GPa, followed by their rapid decrease, the behavior of elements has remained poorly understood. Distal glassy ejecta (tektites) were produced in early phases of contact between the Earth's surface and an impacting body. Here we provide evidence for a complex behavior of Os and other highly siderophile elements (HSE; Ir, Ru, Pt, Pd, and Re) during tektite production related to a hyper-velocity impact that formed the Ries structure in Germany. Instead of simple mixing between the surface materials, which are thought to form the major source of central European tektites (moldavites), and impactor matter, the patterns of HSE contents and 187Re/188Os - 187Os/188Os ratios in moldavites, target sediments and impact-related breccias (suevites) can be explained by several sequential and/or contemporary processes. These involve (i) evaporative loss of partially oxidized HSE from the overheated tektite melt, (ii) mixing of target-derived and impactor-derived HSE vapor (plasma) phases, and (iii) early (high-temperature) condensation of a part of the mixed vapor phase back to silicate melt droplets. An almost complete loss of terrestrial Os from the tektite melt and its replacement with extra-terrestrial Os are indicated by low 187Os/188Os ratios in tektites (<0.163) relative to precursor materials (>0.69). This is paralleled by a co-variation between Os and Ni contents in tektites but not in suevites formed later in the impact process.
Manufacture of ceramic tiles from fly ash
Hnat, J.G.; Mathur, A.; Simpson, J.C.
1999-08-10
The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.
NASA Astrophysics Data System (ADS)
Simakin, A.; Ghassemi, A.
2005-03-01
A poroviscoelastic constitutive model is developed and used to study coupled rock deformation and fluid flow. The model allows the relaxation of both shear and symmetric components of the effective stress. Experimental results are usually interpreted in terms of the power law viscous material. However, in this work the effect of strain damage on viscosity is considered by treating the viscosity as a dynamic time-dependent parameter that varies proportionally to the second invariant of the strain rate. Healing is also taken into account so that the dynamic power law viscosity has a constant asymptotic at a given strain rate. The theoretical model is implemented in a finite element (FE) formulation that couples fluid flow and mechanical equilibrium equations. The FE method is applied to numerically study the triaxial compression of partially melted rocks at elevated PT conditions. It is found that the numerically calculated stress-strain curves demonstrate maxima similar to those observed in laboratory experiments. Also, the computed pattern of melt redistribution and strain localization at the contact between the rock sample and a stiff spacer is qualitatively similar to the experimental observations. The results also indicate that the matrix sensitivity to damage affects the scale of strain localization and melt redistribution.
Melting-induced crustal production helps plate tectonics on Earth-like planets
NASA Astrophysics Data System (ADS)
Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.
2016-04-01
Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical annulus simulations (Hernlund and Tackley, PEPI 2008) using StagYY (Tackley, PEPI 2008), which uses a finite-volume scheme for advection of temperature, a multigrid solver to obtain a velocity-pressure solution at each timestep, tracers to track composition, and a treatment of partial melting and crustal formation. We address the question of whether melting-induced crustal production changes the critical yield stress needed to obtain mobile-lid behaviour (plate tectonics). Our results show that melting-induced crustal production strongly influences plate tectonics on Earth-like planets by strongly enhancing the mobility of the lid, replacing a stagnant lid with an episodic lid, or greatly extending the time in which a smoothly evolving mobile lid is present in a planet. Finally, we show that our results are consistent with analytically predicted critical yield stress obtained with boundary layer theory, whether melting-induced crustal production is considered or not.
Depth and Differentiation of the Orientale Melt Lake
NASA Technical Reports Server (NTRS)
Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2012-01-01
Impact melt emplacement and evolution in lunar multi-ring basins is poorly understood since impact melt deposits in basins are generally buried by mare basalt fill and obscured by subsequent impact cratering. The relatively young Orientale basin, which is only partially flooded with mare basalt, opens a rare window into basin-scale impact melts. We describe the geology of impact melt-related facies in Orientale and suggest that the central depression of Orientale may represent a solidified impact melt lake that vertically subsided shortly after basin formation due to solidification and cooling. We use Lunar Orbiter Laser Altimeter (LOLA) data to measure the depth (approx. 1.75 km) and diameter (approx 350 km) of this central depression. If all the observed subsidence of the central depression is due to solidification and cooling, the melt lake should be approx 12.5-16 km deep, far more voluminous (approx 106 km3) than the largest known differentiated igneous intrusions on Earth. We investigate the possibility that the Orientale melt lake has differentiated and model 1) the bulk composition of the melt lake, 2) the operation of melt mixing in the melt lake, and 3) the chemical evolution of the resulting liquids on the An-Fo-Qz ternary in order to predict the lithologies that might be present in the solidified Orientale melt lake. Finally, we consider the possible significance of these lithologies.
Transport and thermodynamic properties of hydrous melts in the system An-Di.
NASA Astrophysics Data System (ADS)
Giordano, D.; Potuzak, M.; Romano, C.; Russell, J. K.; Nowak, M.; Dingwell, D. B.
2006-12-01
The thermodynamic and transport properties hydrous silicate melts are of fundamental importance for characterization of the dynamics and energetics associated with silicate melts in the Earth. The literature concerning the transport and calorimetric properties of hydrous silicate melts remains scarce. With few exceptions little has been effectively done in order to provide chemical models that bridge the gap between the description of both complex and simple systems. The An-Di system is of general interest to geochemists as well as petrologists because it serves as a simple analogue for basaltic compositions. It was chosen here due to the combination of its simple chemical description and the presence of an extensive database of published experimental data on both its transport and thermodynamic properties. We have measured the viscosity (η)), the glass transition temperatures (Tg) and the heat capacity (Cp) of silicate melts in the An-Di system containing up to 3 wt.% of dissolved H2O. Viscosity data were obtained by using the dilatometric method of micropenetration, whereas a differential scanning calorimeter (DSC) was employed to determine the glass transition temperatures and the heat capacities. In order to characterize the well-known cooling/heating rate dependence of the glass transition temperatures the calorimetric measurements were performed at heating/cooling rate of 5, 10, 15 and 20 K/min. These results together with those of previous experimental studies have been used to provide a compositional model capable of calculating the Newtonian viscosity of melts as well as the Tg and Cp values for the An- Di+H2O system. The non-Arrhenian T-dependence of viscosity is accounted for by the Vogel-Fulcher- Tammann (VFT) and the Adam Gibbs (AG) equations. Our optimizations assume a common, high-T limit (A) for silicate melt viscosity, consistent with values provided by both theoretical and experimental studies. In particular, we also show that glass transition temperatures taken at each single heating/cooling rate are associated to single viscosity values. The equivalence of the activation energy associated to viscous and enthalpic relaxation process at specific temperatures also allow us to calibrate a tool to predict the viscosity of silicate melts by using specific heat curves. The effect of water on the heat capacity of the glass (Cpglass), from dry to nearly 3 wt% H2O, ranges from almost absent up to 20% of the measured Cp,glass values.
NASA Astrophysics Data System (ADS)
Schmandt, B.; Huang, H. H.; Farrell, J.; Hansen, S. M.; Jiang, C.
2017-12-01
The western U.S. Cordillera has hosted widespread magmatic activity since the Eocene including ≥1,000 km3 silicic eruptions since 1 Ma. A review of recent seismic constraints on relatively young (≤1.1 Ma) and old (Oligocene) magmatic systems provides insight into the heterogeneity among these systems and their temporal evolution. Local seismic data vary widely but all of these systems are covered by the USArray's 70-km spacing. Among 3 young systems with ≥300 km3 silicic eruptions (Yellowstone - 0.64 Ma; Long Valley - 0.76 Ma; Valles - 1.1 Ma) only Yellowstone shows sufficiently low seismic velocities to require partial melt in the upper crust at scales visible with USArray data. Finer-scale arrays refine the shape of large (>1,000 km3) partially molten volumes in the upper and lower crust at Yellowstone, and similar studies at Long Valley and Valles indicate much smaller volumes of partial melt. Notably, Long Valley Caldera is seismically active in the upper and lower crust, has a high flux of CO2 degassing, and multi-year geodetic transients consistent with an inflating upper crustal reservoir of 2-4 km radius (compared to 20x50x5 km at Yellowstone). Upper mantle seismic imaging finds strong low velocity anomalies that require some partial melt beneath Yellowstone and Long Valley, but more ambiguous results beneath Valles. Thus, the structures of the three young large-volume silicic systems are highly variable suggesting that large reservoirs of melt in the upper crust are short-lived with respect to the ≤1.1 Ma since the last major eruption, consistent with recent inferences from geochemically constrained thermal histories of erupted crystals. Among long-extinct silicic systems, most were severely overprinted by extensional deformation. The San Juan and Mogollon Datil are exceptions with only modest deformation. These systems show low-to-average velocity crust down to a sharp Moho and relatively thin crust for their elevations. Both are consistent with a felsic to intermediate crustal column, suggesting that mafic cumulates required to produce silicic magma from basaltic inputs are not present in large quantities (>5 km layers). We infer that post-eruption foundering of mafic cumulates into the mantle occurred and was not followed by another major episode of basaltic melt input.
Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand
Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.
2010-01-01
Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to <0.6 GPa @ 650??C, peak garnet granulite facies metamorphic conditions to 680-815??C @ 1.1-1.4. GPa, and a P-T path with a P increase of???0.5. GPa. These sections are compatible with water contents???0.28wt.%, local dehydration during garnet granulite metamorphism, and <0.3. GPa P increases during garnet growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern Fiordland, must have occurred prior to 126. Ma, that loading occurred at a rate of ca. 0.06. GPa/m.y., and that garnet granulite metamorphism lasted 3-7m.y. Locally-derived partial melts formed and crystallized in considerably less than 10 and perhaps as little as 3m.y. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yu, X.; Dick, H. J. B.; Chu, F.; Li, X.; Tang, L.
2017-12-01
The Southwest Indian Ridge with obvious mantle heterogeneity is often attributed to the influence of nearby hotspots. The Dragon Flag Supersegment between 46°E and 52°E on Marion Rise has thicker crust, shallower axial depth, and lower mantle Bouguer anomaly, which indicates ridge-hotspot interaction. However, the great distance between Crozet hotspot and the supersegment (about 1,000km) and the controversial geochemical data are both against the prospective ridge-hotspot interaction. Here we compiled major element, trace element, Sr-Nd-Pb and He isotopic data of new samples from the supersegment. The mantle source, partial melting process as well as the crystallization history of these basalts are further constrained based on the synthetic analysis of the dataset. Most basalts from the supersegment require 0 to 30% olivine and plagioclase fractionation to account for their present composition, whereas the crystallization of clinopyroxene appears to be rather limited. The parental magmas of the supersegment are distinctive from east to west. Most samples from the Eastern Group can be modeled as the product of 10% partial melting of a DMM-like source, while some extremely depleted samples from the central valley may require two stages of partial melting, i.e. ancient melting of DMM-like source, followed by recent remelting of the residues. The Western Group may be resulted from lower degree of partial melting (5-10%), or a previously less depleted mantle source. The Eastern Group is favor of the involvement of Crozet hotspot in terms of Pb isotope and helium isotope signatures, but the trace element and Sr-Nd isotopes are not supportive for this interaction. The especially high 206Pb/204Pb for some of the samples from the Eastern Group, similar to the Crozet hotspot, requires the sporadical entrainment of blobs of relatively enriched source material, like the Crozet component. The Crozet hotspot is distinctive in its Sr-Nd-Pb-He isotopes among different islands, thus it is more complicate to address the issue of ridge-hotspot interaction. We suggest that the prospective Crozet-SWIR interaction is possible and can explain most of the geological and geochemical signatures.
Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle.
Freitas, D; Manthilake, G; Schiavi, F; Chantel, J; Bolfan-Casanova, N; Bouhifd, M A; Andrault, D
2017-12-19
The low-velocity layer (LVL) atop the 410-km discontinuity has been widely attributed to dehydration melting. In this study, we experimentally reproduced the wadsleyite-to-olivine phase transformation in the upwelling mantle across the 410-km discontinuity and investigated in situ the sound wave velocity during partial melting of hydrous peridotite. Our seismic velocity model indicates that the globally observed negative Vs anomaly (-4%) can be explained by a 0.7% melt fraction in peridotite at the base of the upper mantle. The produced melt is richer in FeO (~33 wt.%) and H 2 O (~16.5 wt.%) and its density is determined to be 3.56-3.74 g cm -3 . The water content of this gravitationally stable melt in the LVL corresponds to a total water content in the mantle transition zone of 0.22 ± 0.02 wt.%. Such values agree with estimations based on magneto-telluric observations.
Does Sea Level Change when a Floating Iceberg Melts?
ERIC Educational Resources Information Center
Lan, Boon Leong
2010-01-01
On the answer page to a recent "Figuring Physics" question, the cute mouse asks another question: "Does the [sea] water level change if the iceberg melts?" The conventional answer is "no." However, in this paper I will show through a simple analysis involving Archimedes' principle that the sea level will rise. The analysis shows the wrong…
Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway
NASA Astrophysics Data System (ADS)
Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.
2016-12-01
Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.
Tape casting and partial melting of Bi-2212 thick films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhl, D.; Lang, T.; Heeb, B.
1994-12-31
To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density ofmore » 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).« less
Tape casting and partial melting of Bi-2212 thick films
NASA Technical Reports Server (NTRS)
Buhl, D.; Lang, TH.; Heeb, B.; Gauckler, L. J.
1995-01-01
To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 microns. The orientation of the (a,b)-plane of the grains was parallel to the substrate with a misalignment of less than 6 deg. At 77 K/0T a critical current density of 15, 000 A/sq cm was reached in films of the dimension 1 cm x 2 cm x 20 microns (1 micron V/cm criterion, resistively measured). At 4 K/0T the highest value was 350,000 A/sq cm (1 nV/cm criterion, magnetically measured).
Compaction Around a Spherical Inclusion in Partially Molten Rock
NASA Astrophysics Data System (ADS)
Alisic, Laura; Rhebergen, Sander; Rudge, John F.; Katz, Richard F.; Wells, Garth N.
2015-04-01
Conservation laws that describe the behavior of partially molten mantle rock have been established for several decades, but the associated rheology remains poorly understood. Constraints on the rheology may be obtained from recently published torsion experiments involving deformation of partially molten rock around a rigid, spherical inclusion. These experiments give rise to patterns of melt segregation that exhibit the competing effects of pressure shadows around the inclusion and melt-rich bands through the medium. Such patterns provide an opportunity to infer rheological parameters through comparison with models based on the conservation laws and constitutive relations that hypothetically govern the system. To this end, we have developed software tools using the automated code generation package FEniCS to simulate finite strain, two-phase flow around a rigid, spherical inclusion in a three-dimensional configuration that mirrors the laboratory experiments. The equations for compaction and advection-diffusion of a porous medium are solved utilising newly developed matrix preconditioning techniques. Simulations indicate that the evolution of porosity and therefore of melt distribution is predominantly controlled by the non-linear porosity-weakening exponent of the shear viscosity and the poorly known bulk viscosity. In the simulations presented here, we find that the balance of pressure shadows and melt-rich bands observed in experiments only occurs for bulk-to-shear viscosity ratio of less than about five. However, the evolution of porosity in simulations with such low bulk viscosity exceeds physical bounds at unrealistically small strain due to the unchecked, exponential growth of the porosity variations. Processes that limit or balance porosity localization will have to be incorporated in the formulation of the model to produce results that are consistent with the porosity evolution in experiments.
THE MELTING MECHANISM OF DNA TETHERED TO A SURFACE
QAMHIEH, KHAWLA; WONG, KA-YIU; LYNCH, GILLIAN C.; PETTITT, B. MONTGOMERY
2009-01-01
The details of melting of DNA immobilized on a chip or nanoparticle determines the sensitivity and operating characteristics of many analytical and synthetic biotechnological devices. Yet, little is known about the differences in how the DNA melting occurs between a homogeneous solution and that on a chip. We used molecular dynamics simulations to explore possible pathways for DNA melting on a chip. Simulation conditions were chosen to ensure that melting occurred in a submicrosecond timescale. The temperature was set to 400 K and the NaCl concentration was set to 0.1 M. We found less symmetry than in the solution case where for oligomeric double-stranded nucleic acids both ends melted with roughly equal probability. On a prepared silica surface we found melting is dominated by fraying from the end away from the surface. Strand separation was hindered by nonspecific surface adsorption at this temperature. At elevated temperatures the melted DNA was attracted to even uncharged organically coated surfaces demonstrating surface fouling. While hybridization is not the simple reverse of melting, this simulation has implications for the kinetics of hybridization. PMID:19802357
Deep crustal melt plumbing of Bárðarbunga volcano, Iceland
NASA Astrophysics Data System (ADS)
Hudson, T. S.; White, R. S.; Greenfield, T.; Ágústsdóttir, T.; Brisbourne, A.; Green, R. G.
2017-09-01
Understanding magmatic plumbing within the Earth's crust is important for understanding volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga volcano, Iceland, over a 4 year period encompassing the largest Icelandic eruption in 230 years. Microseismicity extends through the usually ductile region of the Earth's crust, from 7 to 22 km depth in a subvertical column. Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent with the deep (>7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The seismically inferred melt path from the mantle source is offset laterally from the center of the Bárðarbunga caldera by 12 km, rather than lying directly beneath it. It is likely that an aseismic melt feed also exists directly beneath the caldera and is aseismic due to elevated temperatures and pervasive partial melt under the caldera.
Earth's interior. Dehydration melting at the top of the lower mantle.
Schmandt, Brandon; Jacobsen, Steven D; Becker, Thorsten W; Liu, Zhenxian; Dueker, Kenneth G
2014-06-13
The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone. Copyright © 2014, American Association for the Advancement of Science.
Experimental study of eclogitization and melting of basic rocks at P = 4 GPa and T = 1200-1400°C
NASA Astrophysics Data System (ADS)
Gorbachev, N. S.; Shapovalov, Yu. B.; Kostyuk, A. V.
2017-06-01
Experimental study of gabbro-norite eclogitization and melting at P = 4 GPa has made it possible to reveal the effective influence of fluid and temperature on the phase relationships. The melt composition varies from andesite-dacite in "dry conditions" to phonolite and carbonate in the presence of a fluid. The Grt-containing melting curve is replaced by the Cpx-containing liquidus as the temperature changes or a fluid is added. Hence, the possible presence of "garnetitite" and "clinopyroxenite" in the upper mantle was proved experimentally. The ultimate pressure of the spinel facies at the depth of the eclogite upper mantle is controlled by the stability of Cht ≤ 4 GPa. The revealed similarity of the spectra of REE-adakite, tonalite-trondhjemite-granodiorite (TTG), and melts formed under the partial melting of eclogitized gabbro-norite does not contradict the existing ideas of the eclogite source of the TTG rocks. Wide variations in the interphase microelement distribution factors D (Grt, Cpx)/L are indicative of effective fractionation of the microelements in the course of eclogite melting and differentiation.
Texturing by cooling a metallic melt in a magnetic field.
Tournier, Robert F; Beaugnon, Eric
2009-02-01
Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.
Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Katz, R. F.
2010-12-01
The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.
Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data
NASA Technical Reports Server (NTRS)
Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.
2003-01-01
Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.
Desulfurization kinetics of molten copper by gas bubbling
NASA Astrophysics Data System (ADS)
Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.
1991-02-01
Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.
Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge
NASA Astrophysics Data System (ADS)
Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald
2014-09-01
Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.
Crustal growth in subduction zones
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Castro, Antonio; Gerya, Taras
2015-04-01
There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other crustal units may collide with continental margins to form collisional orogens and accreted terranes in places where oceanic lithosphere is recycled back into the mantle. We use thermomechanical-petrological models of an oceanic-continental subduction zone to analyse the dynamics of terrane accretion and its implications to arc magmatisim. It is shown that terrane accretion may result in the rapid growth of continental crust, which is in accordance with geological data on some major segments of the continental crust. Direct consequences of terrane accretion may include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes and partial melting (Vogt and Gerya., 2014), forming complex suture zones of accreted and partially molten units. Castro, A., Vogt, K., Gerya, T., 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23, 1554-1566. Vogt, K., Castro, A., Gerya, T., 2013. Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 14, 470-487. Vogt, K., Gerya, T., 2014. From oceanic plateaus to allochthonous terranes: Numerical Modelling. Gondwana Research, 25, 494-508
Lunar paleomagnetism: a new analysis of the Apollo-era paleomagnetic measurements
NASA Astrophysics Data System (ADS)
Fuller, M.; Weiss, B. P.
2011-12-01
The Apollo era lunar paleomagnetism suffered from the lack of modern instrumentation and data analysis techniques. However, paleomagnetic data for nearly 100 samples were reported. We have completed a reanalysis of these old Apollo paleomagnetic data using modern techniques of analysis. The principal result from the mare basalts is that many samples such as 10020, 10017, 10049, 12022, and 70215 appear to be carrying primary natural remanent magnetization (NRM) acquired on the Moon as they initially cooled on the lunar surface, but in almost every case alternating field (AF) demagnetization was not carried out to strong enough fields to isolate this primary magnetization properly. When modern measurements are available, the agreement between old Apollo era data and new data is strikingly good. It also appears that the fields recorded by the basalts of Apollo 11 and Apollo 17 may be stronger than those recorded by Apollo 12 basalts, but the small number of high fidelity magnetic recorders among the latter group make this tentative at present. The histories of breccias are more complicated than those of mare basalts and their NRM is harder to interpret. The regolith and fragmental breccias have NRM, which is either a combination of shock remanent magnetization (SRM) acquired during shock lithification and partial to total thermal remanent magnetization (TRM) depending upon the residual temperature after the shock event. For regolith breccias, interpretations are complicated because of their strong superparamagnetic components and their complex, polymict lithologies. It would be unwise to use these samples for paleointensity estimates unless one can be sure that the NRM was entirely acquired as TRM during cooling after the shock event, such as may be the case for 15498. In contrast, the melt rock and melt breccias, which are formed at high temperatures far above the Curie point of any magnetic carriers, have an excellent chance of recording lunar fields faithfully when they cool. This cooling may have taken place in a melt pool in a simple crater, or in a melt layer in a complex crater. Such samples would then have been excavated and deposited in the regolith. Samples 14310, 68416, 77017 and 77135 may have had such simple histories and some appear to have recorded strong fields, but more work needs to be done to test this suggestion. Other melt rocks and melt breccias have had more complicated histories and appear to have been deposited in ejecta blankets, where final cooling took place. The samples from the Apollo 17 layered boulder 1 at station 2 provide an example of this history. If a pTRM can be related to this secondary cooling, then we may recover a record of the field during this cooling. Samples such as 62235 and 72215 may provide just such a record, with Apollo-era and modern estimates of fields of the order of around 100 microT. Explaining such high paleointensities so late in lunar history is a major challenge to dynamo models given the small size of the lunar core.
NASA Astrophysics Data System (ADS)
Stebbins, J. F.
2009-12-01
Extensive recent NMR studies show large effects of composition on the extent of structural change in aluminosilicate glasses quenched from melts at high pressure, which correlate with observed, recovered density increases. Although such results will eventually need to be complemented by quantitative, in situ spectroscopic and scattering measurements, they already provide important constraints on the types of models necessary to capture the complexity of structure-property relationships for multicomponent natural magmas. For example, smaller and/or higher charged network modifier/charge compensator cations (e.g. Mg2+ vs. Ca2+, Ca2+ vs. K+) generally promote greater densification as well as increased conversion of four-coordinated to five- and six-coordinated Al (Al-27 NMR), but such effects may be non-linear in mixed-cation systems. At the same time, simple calculations with estimates of changes in partial molar volumes suggest that much of the observed density increases must be due to compression of “soft” sites in the structure and to the accompanying narrowing of inter-tetrahedral network bond angles (e.g. Si-O-Si). These can in turn be detected as reductions in mean Na-O distances (Na-23 NMR) and shifts in Si-29 spectra. As the field strength of the modifier cation increases farther (e.g. from Ca2+ to La3+), this pattern shifts: such “intermediate” cations can react to pressure increases by increasing their own coordinations and M-O distances (La K-edge XAS), reducing effects on network cation coordination. An extreme example of this can be seen as the Al/Si ratio changes: only at low Al contents are increases in Si coordination large enough to be detected by Si-29 NMR. Numerous recent studies of high-pressure glasses by O-17 NMR (e.g. S.K. Lee et al.) have emphasized the role of non-bridging oxygens (NBO) in increases of Si and Al coordination with pressure, as well as the critical importance of this species to melt properties. It is likely that modifier cation field strength has an important effect on this process as well: it is now well-known from borosilicate analog systems that higher field-strength modifiers (e.g. Ca2+ vs. Na+) stabilize local concentrations of negative charge as on NBO. This competing effect may again complicate models of density vs. composition. At best, quenched and decompressed glasses sample the melt structure only at the high P glass transition temperature. Given that the solidus temperatures of greatest interest to geological processes generally increase with pressure, changes in melt structure with temperature become even more important. The still poorly-known effects of ambient T decompression on glass structure also need to be resolved by future studies of the kinetics of this process and key in-situ measurements. Simple estimates of density changes during quench from a high P/T melt and subsequent decompression suggest that there is not a great deal of “room” for inelastic structural relaxation in typical aluminosilicate glasses, unless the high pressure thermal expansivity has a much larger structural contribution (Si coordination shift with T?) than is known from ambient P.
Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki
2016-03-03
We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.
Soares, Marcelo B.; Efstratiadis, Argiris
1997-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Soares, M.B.; Efstratiadis, A.
1997-06-10
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3{prime} noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
Oxidation kinetics of molten copper sulfide
NASA Astrophysics Data System (ADS)
Alyaser, A. H.; Brimacombe, J. K.
1995-02-01
The oxidation kinetics of molten Cu2S baths, during top lancing with oxygen/nitrogen (argon) mixtures, have been investigated as a function of oxygen partial pressure (0.2 to 0.78), bath temperature (1200 °C to 1300 °C), gas flow rate (1 to 4 L/min), and bath mixing. Surface-tension-driven flows (the Marangoni effect) were observed both visually and photographically. Thus, the oxidation of molten Cu2S was found to progress in two distinct stages, the kinetics of which are limited by the mass transfer of oxygen in the gas phase to the melt surface. During the primary stage, the melt is partially desulfurized while oxygen dissolves in the liquid sulfide. Upon saturation of the melt with oxygen, the secondary stage commences in which surface and bath reactions proceed to generate copper and SO2 electrochemically. A mathematical model of the reaction kinetics has been formulated and tested against the measurements. The results of this study shed light on the process kinetics of the copper blow in a Peirce-Smith converter or Mitsubishi reactor.
NASA Astrophysics Data System (ADS)
Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier
2017-06-01
In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing < 20- 40% interstitial melt develops over a ∼105-yr timescale for basalt fluxes of 0.008 to 0.010 m3 /m2 /yr (∼0.0008 to ∼0.001 km3/yr injection rate) given extension rates at or below the current value of ∼0.01 m/yr (Brothers et al., 2009). These regions of partial melt are a natural consequence of a thermal regime that scales with average surface heat flow in the Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.
NASA Astrophysics Data System (ADS)
Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew
2018-04-01
This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.
NASA Technical Reports Server (NTRS)
Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.
1994-01-01
The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.
Emergency deployable core catcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewell, M.P.
An emergency melt down core catcher apparatus for a nuclear reactor having a retrofitable eutectic solute holding vessel connected to a core containment vessel with particle transferring fluid and particles or granules of solid eutectic solute materials contained therein and transferable by automatically operated valve means to transport and position the solid eutectic solute material in a position below the core to catch and react with any partial or complete melt down of the fuel core.
Worldwide Emerging Environmental Issues Affecting the U.S. Military. August 2005 Report
2005-08-01
Frozen Areas Accelerates Siberia’s melting accelerates global warming . Scientists recently discovered that in the last three or four years the...melting, considered to be partially caused by global warming , becomes in its turn an accelerating factor of it. This finding follows a similar...Greenland Conference on Global Warming Environmental ministers and other officials from 23 countries around the world and the EU met on the edge of a
NASA Astrophysics Data System (ADS)
Qi, Y.; Liu, X.; Kang, J.; He, L.
2017-12-01
Equilibrium isotope fractionation factors are essential for using stable isotope data to study many geosciences processes such as planetary differentiation and mantle evolution. The mass-dependent equilibrium isotope fractionation is primarily controlled by the difference in bond energies triggered by the isotope substitution. With the recent advances in computational capabilities, first-principles calculation has become a reliable tool to investigate equilibrium isotopic fractionations, greatly improving our understanding of the factors controlling isotope fractionations. It is important to understand the isotope fractionation between melts and minerals because magmatism is critical for creating and shaping the Earth. However, because isotope fractionation between melts and minerals is small at high temperature, it is difficult to experimentally calibrate such small signature. Due to the disordered and dynamic character of melts, calculations of equilibrium isotope fractionation of melts are more challenging than that for gaseous molecules or minerals. Here, we apply first-principles molecular dynamics method to calculate equilibrium Ca, Mg, Si, and O isotope fractionations between silicate melts and minerals. Our results show that equilibrium Mg, Si, and O isotope fractionations between olivine and pure Mg2SiO4 melt are close to zero at high temperature (e.g. δ26Mgmelt-ol = 0.03 ± 0.04‰, δ30Simelt-ol = -0.06 ± 0.07‰, δ18Omelt-ol = 0.07‰ ± 0.08 at 1500 K). Equilibrium Ca, Mg, Si, and O isotope fractionations between diopside and basalt melt (67% CaMgSi2O6 + 33% CaAl2Si2O8) are also negligible at high temperature (e.g. δ44/40Camelt-cpx = -0.01 ± 0.02‰, δ26Mgmelt-cpx = -0.05 ± 0.14‰, δ30Simelt-cpx = 0.04 ± 0.04‰, δ18Omelt-cpx = 0.03 ± 0.07‰ at 1500 K). These results are consistent with the observations in natural samples that there is no significant Ca, Mg, Si, and O isotope fractionation during mantle partial melting, demonstrating the reliability of our methods. Thus, our results can be used to understand stable isotope fractionation during partial melting of mantle peridotite or fractional crystallization during magmatic differentiation. The first-principles molecular dynamics method is a promising tool to obtain equilibrium fractionation of more isotope systems for complicate liquids.
NASA Astrophysics Data System (ADS)
Dai, Chengda; Hu, Jianbo; Tan, Hua
2009-08-01
LiF single crystal was used as transparent window (anvil) to tamp the shock-induced free surface expansion of Ta specimen, and the Ta/LiF interface temperature was measured under shock compression using optical pyrometry technique. The shock temperatures and/or melting temperatures of Ta up to ˜400 GPa were extracted from the observed interface temperatures based on the Tan-Ahrens' model for one-dimensional heat conduction across metal/window ideal interface in which initial melting and subsequent solidification were considered under shock loading. The obtained data within the experimental uncertainties are consistent with the results from high-pressure sound velocity measurements. The temperature of the partial melting on Ta Hugoniot is estimated to be ˜9700 K at 300 GPa, supported by available results from theoretical calculations.
Optically induced melting of colloidal crystals and their recrystallization.
Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi
2007-04-15
Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.
NASA Astrophysics Data System (ADS)
Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo
2016-04-01
Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.
Method and apparatus for melting metals
Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley
2006-03-14
A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.
On mass transport in porosity waves
NASA Astrophysics Data System (ADS)
Jordan, Jacob S.; Hesse, Marc A.; Rudge, John F.
2018-03-01
Porosity waves arise naturally from the equations describing fluid migration in ductile rocks. Here, we show that higher-dimensional porosity waves can transport mass and therefore preserve geochemical signatures, at least partially. Fluid focusing into these high porosity waves leads to recirculation in their center. This recirculating fluid is separated from the background flow field by a circular dividing streamline and transported with the phase velocity of the porosity wave. Unlike models for one-dimensional chromatography in geological porous media, tracer transport in higher-dimensional porosity waves does not produce chromatographic separations between relatively incompatible elements due to the circular flow pattern. This may allow melt that originated from the partial melting of fertile heterogeneities or fluid produced during metamorphism to retain distinct geochemical signatures as they rise buoyantly towards the surface.
The origin of pallasites. A combined experimental and numerical approach.
NASA Astrophysics Data System (ADS)
Golabek, G.; Solferino, G. F. D.
2017-12-01
Pallasites are simple stony-iron meteorites made of olivine, FeNi, FeS +/- pyroxene. The presence of olivine as well-rounded grains or highly angular fragments, and occasionally both types (mixed-type pallasites) combined with the dunite-like mineralogy make is difficult to define a robust scenario for pallasite genesis. It has been suggested that mixing of Fe-Ni-S and olivine was caused by a non-destructive collision among planetesimals. Yet, this hypothesis needs to be tested and hitherto no attempt to reproduce the simultaneous presence of olivine, solid Fe(Ni) and molten FeS has been done. In this study we performed experiments with olivine plus partially molten Fe(Ni)-S, a composition most similar to those of pallasite meteorites. The main goal was to define the grain growth rate of olivine surrounded by a matrix of Fe(Ni) and FeS melt. Additionally, a 2D finite-difference numerical model was used to define a realistic scenario (e.g., time of impact, depth of intrusion of the Fe-Ni-S) for the formation of rounded- and mixed-type pallasites for the first time. Olivine grain growth rate in partially molten Fe-S follows: d n - d0n = k0 exp(-Ea/RT) t, where, d is the grain size at time t, d0 is the starting grain size, n = 3.70 (61) the growth exponent, k0 = 3.20 μmns-1 a characteristic constant, Ea = 101 (78) kJ/mol the activation energy for a specific growth process, R the gas constant, and T the absolute temperature. This is a substantially slower grain growth than in the case of olivine surrounded by FeS melt (i.e., n = 2.42), but significantly faster than for olivine+FeNi or olivine+Ni (n > 4 or 5). We concluded that the olivine grain growth limiting factor is the coarsening rate of solid Fe(Ni), which is in agreement with previous studies. Yet, we proved that the presence of FeS melt in contact with Fe(Ni) catalyzes the ripening of the latter. The overarching conclusion of this study is that all main phases known to be present during annealing of a given silicate mineral must be reproduced experimentally in order to accurately define its growth rate, with simplified systems not suited for the scope.
Evidence for hydrous high-MgO melts in the Precambrian
NASA Astrophysics Data System (ADS)
Stone, William E.; Deloule, Etienne; Larson, Michelle S.; Lesher, C. Michael
1997-02-01
Prevailing petrogenetic models for Precambrian high-MgO melts such as komatiites invoke crystallization from nearly anhydrous melts (≪0.5% H2O) generated by partial melting of mantle peridotite at temperatures of (≤ 1900 °C and pressures of (18 GPa. However, ultramafic cumulate and gabbro zones of komatiitic and other high-MgO units in Precambrian greenstone belts contain vesicles and minor to major amounts (≤ 25%) of igneous amphibole. The textures (oikocrysts, rims on intercumulate pyroxene, and mineral inclusions within orthocumulate olivine) and the water-rich compositions (1.00% 2.50% H2O) of igneous amphiboles from the Archean Abitibi belt indicate crystallization in situ from significantly hydrous melts while the melt fraction was still as high as 40% 50%. Comparisons to experimental phase equilibria suggest that the residual melts from which the amphiboles crystallized contained 3% 4% H2O, and adjustments for fractional crystallization suggest that the initial melts may have contained as much as 2% H2O. H2O contents of this magnitude would require substantial revision of the nearly anhydrous models for Precambrian high-MgO melts, possibly permitting generation at lower temperatures and pressures, lowering their densities and viscosities, increasing their eruptibility, and enhancing the formation of spinifex textures.
Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M
2018-01-23
Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.
A melting-point-of gallium apparatus for thermometer calibration.
Sostman, H E; Manley, K A
1978-08-01
We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.
Melting and thermal expansion in the Fe-FeO system at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, C. T.; Heinz, D. L.; Campbell, A. J.
2015-02-26
Melting in the Fe–FeO system was investigated at pressures up to 93 GPa using synchrotron X-ray diffraction (XRD) and a laser heated diamond anvil cell (DAC). The criteria for melting were the disappearance of reflections associated with one of the end-member phases upon raising the temperature above the eutectic and the reappearance of those reflections on dropping the temperature below the eutectic. The Fe–FeO system is a simple eutectic at 50 GPa and remains eutectic to at least 93 GPa. The eutectic temperature was bound at several pressure points between 19 and 93 GPa, and in some cases the liquidusmore » temperature was also determined. The eutectic temperature rises rapidly with pressure closely following the melting curve of pure Fe. A detailed phase diagram at 50 GPa is presented; the eutectic temperature is 2500 ± 150 K and the eutectic composition is bound between 7.6 ± 1.0 and 9.5 ± 1.0 wt.% O. The coefficient of thermal expansion of FeO is a strong function of volume and decreases with pressure according to a simple power law.« less
Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds
NASA Astrophysics Data System (ADS)
Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.
2018-04-01
Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.
Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.
Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S
2018-04-06
Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.
Mineralogy and composition of the oceanic mantle
Putirka, Keith; Ryerson, F.J.; Perfit, Michael; Ridley, W. Ian
2011-01-01
The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300°C) related to the Hawaiian mantle plume. DNi is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where DNi is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1·5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2 contents, however, that are enriched compared with melts from natural peridotites and magmas derived from the Siqueiros depleted mantle, and consequently may require an enriched source. TiO2 is not the only element that is enriched relative to melts of natural peridotites. Moderately incompatible elements, such as Ti, Zr, Hf, Y, and Eu, and compatible elements, such as Yb and Lu, are all enriched at the Hawaiian Islands. Such enrichments can be explained by adding 5-10% mid-ocean ridge basalt (crust) to depleted mantle; when the major element composition of such a mixture is recast into mineral components, the result is a fertile peridotite mineralogy.
Europium and strontium anomalies in the MORB source mantle
NASA Astrophysics Data System (ADS)
Tang, Ming; McDonough, William F.; Ash, Richard D.
2017-01-01
Lower crustal recycling depletes the continental crust of Eu and Sr and returns Eu and Sr enriched materials into the mantle (e.g., Tang et al., 2015, Geology). To test the hypothesis that the MORB source mantle balances the Eu and Sr deficits in the continental crust, we carried out high precision Eu/Eu∗ and Sr/Sr∗ measurement for 72 MORB glasses with MgO >8.5% from the Pacific, Indian, and Atlantic mid-ocean ridges. MORB glasses with MgO ⩾ 9 wt.% have a mean Eu/Eu∗ of 1.025 ± 0.025 (2 σm, n = 46) and Sr/Sr∗ of 1.242 ± 0.093 (2 σm, n = 41) and these ratios are positively correlated. These samples show both positive and negative Eu and Sr anomalies, with no correlations between Eu/Eu∗ vs. MgO or Sr/Sr∗ vs. MgO, suggesting that the anomalies are not produced by plagioclase fractionation at MgO >9 wt.% and, thus, other processes must be responsible for generating the anomalies. We term these MORB samples primitive MORBs, as they record the melt Eu/Eu∗ and Sr/Sr∗ before plagioclase fractionation. Consequently, the mean oceanic crust, including cumulates, has a bulk Eu/Eu∗ of ∼1 and 20% Sr excess. Considering that divalent Sr and Eu(II) diffuse faster than trivalent Pr, Nd, Sm, and Gd, we evaluated this kinetic effect on Sm-Eu-Gd and Pr-Sr-Nd fractionations during spinel peridotite partial melting in the MORB source mantle. Our modeling shows that the correlated Eu and Sr anomalies seen in primitive MORBs may result from disequilibrium mantle melting. Melt fractions produced during early- and late-stage melting may carry positive and negative Eu and Sr anomalies, respectively, that overlap with the ranges documented in primitive MORBs. Because the net effect of disequilibrium melting is to produce partial melts with bulk positive Eu and Sr anomalies, the MORB source mantle must have Eu/Eu∗ < 1.025 ± 0.025 (2 σm) and Sr/Sr∗ < 1.242 ± 0.093 (2 σm). Although we cannot rule out the possibility that recycled lower continental crustal materials, which have positive Eu and Sr anomalies, are partially mixed into the upper mantle (i.e., MORB source region), a significant amount of this crustal component must have been sequestered into the deep mantle, as supported by the negative 206Pb/204Pb-Eu/Eu∗ and 206Pb/204Pb-Sr/Sr∗ correlations in ocean island basalts.
NASA Astrophysics Data System (ADS)
Zuluaga, C. A.; Amaya, S.; Urueña, C.; Bernet, M.
2017-03-01
The core of the Santander Massif in the northern Andes of Colombia is dominated by migmatitic gneisses with a < 1.71 Ga protolith and was affected by continuous interactions of oceanic plates to the west and the northwestern corner of the South American continental plate. The exposed metamorphic core of the massif offers a unique opportunity to understand the tectonic evolution of northwestern South America. We present new metamorphic petrology and geochemistry data from the Bucaramanga Gneiss in the Santander Massif to document part of this tectonic evolution from late Proterozoic to Jurassic times. Metapelitic migmatite gneiss, quartz-feldspathic gneiss, and amphibolite from the Bucaramanga Gneiss recorded metamorphic peak conditions in the range of 660-850 °C at pressures of > 7.5 kbar. Lithologies are overprinted by low-pressure metamorphism, related to extensive Jurassic intrusions and linked with growth of cordierite and equilibration of low-pressure mineral assemblages, recorded metamorphic conditions are < 750 °C and < 6.5 kbar. Observed leucosomes display significant compositional variations and can be grouped in three groups: i) Group One leucosomes with high total REE content, high LREE/HREE, and negative Eu anomaly, ii) Group Two leucosomes with low total REE, low LREE/HREE, and positive Eu anomalies, and iii) Group Three leucosomes with relatively low LREE/HREE and strong positive Eu anomaly. Geochemical data support the interpretation that Group Two leucosomes crystallized from melts originated in a partial melting event affecting mostly pelitic and quartz-feldspathic lithologies with fluid-present melting reactions. The evaluation of mesosomes (amphibolite, pelitic and quartz-feldspathic rocks) as potential protoliths or restites indicates that at least two pelitic samples of the analyzed lithologies have characteristics consistent with the occurrence of fluid-present melting reactions involving quartz and feldspar. The leucosomes produced by crystallization of modified partial melts contrast with several other leucosomes that were injected; however, in some cases the melts crystallized as injected leucosomes show consistent geochemistry with partial melting of lithologies geochemically similar to the ones observed in the unit. The migmatization and the low pressure metamorphic overprint are related here to two main tectonic events: an early Paleozoic tectonic pulse produced by subduction of the oceanic crust of the Iapetus Ocean beneath northwestern Gondwana, and an Upper Triassic to Lower Jurassic tectonic pulse produced by subduction of oceanic crust of the proto-Pacific ocean beneath western Pangaea.
NASA Astrophysics Data System (ADS)
Xu, Zheng; Zheng, Yong-Fei
2017-09-01
Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by the crustal metasomatism through melt-peridotite reaction at the slab-mantle interface in oceanic subduction channels. Continental basalts of Mesozoic to Cenozoic ages from eastern China are used as a case example to illustrate the above petrogenetic mechanism. Subduction of the paleo-Pacific oceanic slab beneath the eastern edge of Eurasian continent in the Early Mesozoic would have transferred the crustal signatures into the mantle sources of these basalts. This process would be associated with rollback of the subducting slab at that time, whereas the partial melting of metasomatites takes place mainly in the Late Mesozoic to Cenozoic to produce the continental basalts. Therefore, OIB-like continental basalts are also the product of subduction-zone magmatism though they occur in intraplate settings.
NASA Astrophysics Data System (ADS)
Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael
2018-01-01
Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to cause a departure of N isotopic composition of the primitive mantle from today's δ15N of -5‰ to - 6.8 ± 0.9 ‰ or - 6.3 ± 1.2 ‰. Future studies of Earth's parent bodies based on the bulk Earth N isotopic signature should take into account these revised values for the δ15N composition of the primitive mantle. Also, the Archaean atmosphere had a N partial pressure of 1.4-1.6 times higher than today, which may have warmed the Earth's surface above freezing despite a faint young Sun.
NASA Astrophysics Data System (ADS)
Ahmed, Ahmed Hassan; Harbi, Hesham M.; Habtoor, Abdelmonem M.
2012-08-01
Wadi Al Hwanet area in NW of Saudi Arabia is part of the Jebel Ess ophiolite constituting the northeastern part of the ˜700 Ma Yanbu-Sol Hamed-Onib-Allaqi-Heiani suture of the northern Arabian-Nubian Shield. The mantle section of Wadi Al Hwanet ophiolite consists mainly of voluminous harzburgites overlain by thick, massive transition-zone dunites, and small-scale chromitite pods. The harzburgites and massive dunites are exceptionally fresh; primary magmatic textures and silicate minerals are still preserved. Two modes of podiform chromitites exist; small lensoidal pods (group I), and relatively large dike-like pods (group II). Geochemically, the former chromitite type contains chromian spinels with high Cr# (0.79-0.81) and displays a PGE-poor character, with steep negatively-sloped PGE distribution patterns, whereas the latter chromitite type contains chromian spinels with relatively lower Cr# (0.61-0.71) and is PGE-rich (up to 1000 ppb), with positively-sloped PGE distribution patterns. The group II chromitites have much higher sulfide content than the group I suite. Parental melt compositions, in equilibrium with podiform chromitites, vary in Al2O3, FeO*/MgO and TiO2 contents from group I to group II chromitites, although both of them are in the range of the boninitic melts. The differences in the chromitites chemistry are most probably due to variable degrees of partial melting of the involved melts. Two stages of a magmatic activity were inferred for the chromitites genesis. The group I chromitites, of high Cr# of chromian spinels and PGE-poor negatively-sloped patterns, were precipitated in the first stage from a boninitic melt produced by a high degree of partial melting at a supra-subduction zone setting. The second chromitite-forming stage involves a relatively low degree of partial melting under high activities of sulfur and oxygen to produce the group II chromitites with enrichment in sulfides and PGE contents, possibly in a supra-subduction zone setting. In contrast to the chromitites, the harzburgites have low PGE contents, with characteristic unfractionated patterns, and low Cr# (0.46-0.57) of the chromian spinels suggesting mantle residues after low degrees of mantle melting beneath a mid-ocean ridge setting. Together with the entire plotting within the olivine-spinel mantle array, the similarity of olivine and spinel chemistry of dunites with those of harzburgites suggests a replacement origin for the dunites by the consumption of pyroxenes. It is likely that Wadi Al Hwanet mantle section was initially derived from a mid-ocean ridge environment and modified later, under a supra-subduction zone regime, to form podiform chromitites.
Experimental constraints on mantle metasomatism caused by silicate and carbonate melts
NASA Astrophysics Data System (ADS)
Gervasoni, Fernanda; Klemme, Stephan; Rohrbach, Arno; Grützner, Tobias; Berndt, Jasper
2017-06-01
Metasomatic processes are responsible for many of the heterogeneities found in the upper mantle. To better understand the metasomatism in the lithospheric mantle and to illustrate the differences between metasomatism caused by hydrous silicate and carbonate-rich melts, we performed various interaction experiments: (1) Reactions between hydrous eclogite-derived melts and peridotite at 2.2-2.5 GPa and 900-1000 °C reproduce the metasomatism in the mantle wedge above subduction zones. (2) Reactions between carbonate-rich melts and peridotite at 2.5 GPa and 1050-1000 °C, and at 6 GPa and 1200-1250 °C simulate metasomatism of carbonatite and ultramafic silicate-carbonate melts in different regions of cratonic lithosphere. Our experimental results show that partial melting of hydrous eclogite produces hydrous Si- and Al-rich melts that react with peridotite and form bi-mineralic assemblages of Al-rich orthopyroxene and Mg-rich amphibole. We also found that carbonate-rich melts with different compositions react with peridotite and form new metasomatic wehrlitic mineral assemblages. Metasomatic reactions caused by Ca-rich carbonatite melt consume the primary peridotite and produce large amounts of metasomatic clinopyroxene; on the other hand, metasomatism caused by ultramafic silicate-carbonate melts produces less clinopyroxene. Furthermore, our experiments show that ultramafic silicate-carbonate melts react strongly with peridotite and cause crystallization of large amounts of metasomatic Fe-Ti oxides. The reactions of metasomatic melts with peridotite also change the melt composition. For instance, if the carbonatite melt is not entirely consumed during the metasomatic reactions, its melt composition may change dramatically, generating an alkali-rich carbonated silicate melt that is similar in composition to type I kimberlites.
NASA Astrophysics Data System (ADS)
Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.
2017-02-01
We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths of intra-oceanic arc sources can have extremely low Cl/F (0.002-0.007) before being overprinted by subduction-derived components. (ii) Chlorine has a higher percolation distance in the mantle than F. Even for small fluid or melt volumes, Cl and F signatures of partial melting are overprinted by those of pervasive percolation, which increases Cl/F in percolating agents and bulk peridotites during chromatographic interaction and/or amphibole-forming metasomatic reactions. These processes ultimately control the bulk Cl and F compositions of the residual mantle lithosphere beneath arcs, and likely in other tectonic settings. (iii) Fluxed melting models suggest that Cl enrichment in arc picrite and boninite melts in this study, and in many arc melt inclusions reported in the literature, could be related to the infiltration of high Cl/F fluids derived from subducted serpentinite or altered crust in mantle wedge sources. However, these high Cl/F signatures should be re-evaluated with new models in light of the possible overprint of pervasive percolation effects in the mantle. The breakdown of amphibole (and/or mica) in the deep metasomatised mantle at higher pressure and temperature conditions than in the slab may explain, at least in part, the positive correlations between F abundances and Cl/F in primitive arc melt inclusions and slab depth.
Sulfur and Metal Fertilization of the Lower Continental Crust
NASA Technical Reports Server (NTRS)
Locmelis, Marek; Fiorentini, Marco L.; Rushmer, Tracy; Arevalo, Ricardo, Jr.; Adam, John; Denyszyn, Steven W.
2015-01-01
Mantle-derived melts and metasomatic fluids are considered to be important in the transport and distribution of trace elements in the subcontinental lithospheric mantle. However, the mechanisms that facilitate sulfur and metal transfer from the upper mantle into the lower continental crust are poorly constrained. This study addresses this knowledge gap by examining a series of sulfide- and hydrous mineral-rich alkaline mafic-ultramafic pipes that intruded the lower continental crust of the Ivrea-Verbano Zone in the Italian Western Alps. The pipes are relatively small (<300 m diameter) and primarily composed of a matrix of subhedral to anhedral amphibole (pargasite), phlogopite and orthopyroxene that enclose sub-centimeter-sized grains of olivine. The 1 to 5 m wide rim portions of the pipes locally contain significant blebby and disseminated Fe-Ni-Cu-PGE sulfide mineralization.Stratigraphic relationships, mineral chemistry, geochemical modeling and phase equilibria suggest that the pipes represent open-ended conduits within a large magmatic plumbing system. The earliest formed pipe rocks were olivine-rich cumulates that reacted with hydrous melts to produce orthopyroxene, amphibole and phlogopite.Sulfides precipitated as immiscible liquid droplets that were retained within a matrix of silicate crystals and scavenged metals from the percolating hydrous melt. New high-precision chemical abrasion TIMS-UPb dating of zircons from one of the pipes indicates that these pipes were emplaced at 249.1+/-0.2 Ma, following partial melting of lithospheric mantle pods that were metasomatized during the Eo-Variscan oceanic to continental subduction (approx. 420-310 Ma). The thermal energy required to generate partial melting of the metasomatized mantle was most likely derived from crustal extension, lithospheric decompression and subsequent asthenospheric rise during the orogenic collapse of the Variscan belt (<300 Ma). Unlike previous models, outcomes from this study suggest a significant temporal gap between the occurrence of mantle metasomatism, subsequent partial melting and emplacement of the pipes.We argue that this multi-stage process is a very effective mechanism to fertilize the commonly dry and refractory lower continental crust in metals and volatiles. During the four-dimensional evolution of the thermo-tectonic architecture of any given terrain, metals and volatiles stored in the lower continental crust may become available as sources for subsequent ore-forming processes, thus enhancing the prospectivity of continental block margins for a wide range of mineral systems.
NASA Astrophysics Data System (ADS)
Zhang, He; Li, Shuang-Qing; Fang, Bo-Wen; He, Jian-Feng; Xue, Ying-Yu; Siebel, Wolfgang; Chen, Fukun
2018-01-01
Migmatites provide a record of melt formation and crustal rheology. In this study we present zircon U-Pb ages and geochemical composition of migmatites from the Foping dome and granites from the Wulong pluton. U-Pb results from migmatite zircons indicate two episodes of partial melting. Rim domains from a leucosome in the Longcaoping area yield an age of ca. 209 Ma. Migmatites collected from the Foping dome yield U-Pb zircon ages of 2910 to 190 Ma, suggesting the involvement of meta-sedimentary source components. Rim domains of the zircons with low Th/U ratios (< 0.1) give ages of 225-190 Ma and the youngest age domains (ca. 195 Ma) are characterized by low contents of heavy rare earth elements, which is related to crystallization of garnet. Magmatic rocks from the Wulong pluton can be subdivided into high Sr/Y and low Sr/Y granites. U-Pb zircon ages vary from 219 to 214 Ma for the high Sr/Y granites and from 214 to 192 Ma for the low Sr/Y granites. High Sr/Y granites have higher Na2O and Sr contents than the low Sr/Y granites. They also lack negative Eu anomalies and are depleted in HREE compared to the low Sr/Y granites. Initial 87Sr/86Sr ratios and εNd values of all the samples roughly overlap with those of Neoproterozoic basement rocks exposed in South Qinling. Including previous studies, we propose that the high and low Sr/Y granites formed by melting of thickened and normal crust, respectively. Close temporal-spatial relationship of the high and low Sr/Y granites with the two-stage migmatization events implies variation of crustal thickness and thermal overprints of the orogenic crust in post-collisional collapse. Following the collision of South Qinling and the Yangtze block prior to 219 Ma, partial melting of the deep crust occurred. The melts migrated upwards to form the high Sr/Y granites. This process occurred rapidly and caused collapse of the thickened crust and carried heat upwards, leading to further partial melting within the shallower crust and formation of the low Sr/Y granites.
NASA Astrophysics Data System (ADS)
Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming
2018-06-01
The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional environments in the Early Cretaceous. This process resulted in the upwelling of the asthenospheric or lithospheric mantle, causing partial melting of the mafic lower crust and forming the adakitic dioritic melts.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Nicotra, Eugenio; Urso, Salvatore
2015-11-01
The early phase of the 2010 eruption at the Eyjafjallajökull volcano (Iceland) produced poorly evolved mildly alkaline basalts that have a signature more enriched with respect to the typically depleted basalts emitted at ocean ridges. The whole rock geochemistry of these basaltic magmas offers a great opportunity to investigate the mantle source characteristics and reasons leading to this enriched fingerprint in proximity of the ocean ridge system. Some basaltic products of Katla volcano, ∼25 km east of Eyjafjallajökull, have been chosen from the literature, as they display a similar mildly alkaline signature and can be therefore useful to explore the same target. Major and trace element variations of the whole rock suggest a very limited evolutionary degree for the 2010 Eyjafjallajökull products and the selected Katla magmas, highlighting the minor role played by differentiation processes such as fractional crystallization. Nevertheless, effects of the limited fractionation have been erased through re-equilibration of the major and trace element abundances at primary conditions. Concentrations of Th after re-equilibration have been assumed as indexes of the partial melting degree, given the high incompatibility of the element, and enrichment ratios calculated for each trace element. Especially for LILE (Rb, Ba, K, Sr), the pattern of resulting enrichment ratios well matches that obtained from fractional melting of peridotite bearing hydrous phases (amphibole/phlogopite). This put forward the idea that magmas have been generated through partial melting of enriched mantle domains where hydrous minerals have been stabilized as a consequence of metasomatic processes. Refertilization of the mantle has been attributed to intrusion of hydrous silicate melts and fractional crystallization of hydrous cumulates. These refertilizing melts, inherited from an ancient subducted oceanic crust, intruded into a depleted oceanic lithosphere that remained stored for a long time (hundreds of Ma or Ga) before being re-entrained in partial melting. This means that magmas could have acquired their main geochemical differences in response of the variable depletion/enrichment degree of the heterogeneous mantle portion tapped at rather shallow depth (≤100 km). Our finding is another tessera in the open debate on the plume-related vs. non plume-related origin of Icelandic magmatism.
NASA Astrophysics Data System (ADS)
Brown, D. B.; Day, J. M.; Waters, C. L.
2016-12-01
Abyssal peridotites are residues of both modern and ancient partial melt extraction at oceanic ridges and can be used to examine melting processes and mantle heterogeneity. The highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re, and the 187Re-187Os system embedded within them), are useful for investigating these issues, as they are generally strongly compatible. To date, limited data on HSE and Os isotopes has been obtained on abyssal peridotites from fast spreading centers. Here, we report new HSE abundance and 187Os/188Os data for Pacific Antarctic Ridge (PAR) and East Pacific Rise (EPR) abyssal peridotites. Samples from the PAR were dredged from two separate localities along the Udintsev Fracture Zone, and EPR samples were taken from Hess Deep. The PAR full spreading rate ranges from 54-83mm/year [1,2] and is 75 mm/year [2] at the Udintsev Fracture Zone. These spreading rates characterize the PAR as an intermediate spreading ridge, whereas the fast spreading EPR has a full rate ranging from 128-157 mm/year [3]. The 187Os/188Os ratios for whole-rocks from the PAR range from 0.114 to 0.134, with Re depletion ages (TRD) varying from 1 Ga to present. Despite the large variation in 187Os/188Os, HSE patterns are primitive mantle-like [4], with Ru/Ir ratios ranging from 1.5-2.1. Depletions in Re and Pd are present, as is expected in partial melt residues, and the samples have undergone 4-15% partial melting based on the rare earth elements (REE). The EPR exhibits higher levels of melt depletion ranging from 18-24%. New results show Hess Deep samples have 187Os/188Os ratios of 0.123 and 0.125 for whole-rocks. These findings indicate that PAR and EPR Os isotopic data overlap with the global record of abyssal peridotites from slower ridges and that Os isotopic heterogeneities are preserved across a wide range of spreading rates and degrees of melt extraction. [1] Géli, L., et al. (1997), Science, 278, 1281-1284; [2] Castillo, P.R., et al. (1998) EPSL, 154,109-125; [3] Warren, J.M., (2016) Lithos, 248-251, 193-219; [4] Becker, H., et al. (2006) GCA, 70, 4528-4550
NASA Astrophysics Data System (ADS)
West, M. E.; Christensen, D. H.; Pritchard, M. E.; Del Potro, R.; Gottsmann, J.; Unsworth, M.; Minaya, E.; Sunagua, M.; McNutt, S. R.; Yu, Q.; Farrell, A. K.
2012-12-01
The PLUTONS project is attempting to capture the process of magma intrusion and pluton formation, in situ, through multi-disciplinary study of known magmatic inflation centers. With support from the NSF Continental Dynamics program, and a sister project in the UK funded by NERC, two such centers are receiving focused study. Uturuncu volcano in the Altiplano of southern Bolivia is being investigated with combined seismics, magnetotellurics, geodesy, microgravity, geomorphology, petrology, geochemistry, historical studies and modeling. 350 km to the south, comparable investigations are targeting the Lastarria-Cordon del Azufre complex. Field studies are ongoing into 2013. In this presentation we highlight results from Uturuncu that bear on the crustal magmatic process. Seismic tomography, gravity and magnetotellurics indicate a complex structure in the upper 20 km with some evidence for partial melt. Seismic receiver functions indicate a layer of very low velocities across the region at 15-25 km depth that is almost certainly melt-rich. High conductivities corroborate the interpretation of a partial melt component to this layer. In addition to the throughgoing melt layer, seismic velocities and attenuation indicate shallow features above the melt body extending upward toward the surface. It is not clear whether these features are associated with recent uplift or are remnants from a previous period of activity. Uturuncu is seismically active with hundreds of locatable earthquakes each year. Seismic lineations and swarm behavior suggest that the seismicity reflects regional stress patterns. While there is little evidence that these earthquakes are the direct result of magmatic intrusion, the resulting high heat flow may be hastening existing strains.
NASA Astrophysics Data System (ADS)
Wang, Chao; Song, Shuguang; Niu, Yaoling; Allen, Mark B.; Su, Li; Wei, Chunjing; Zhang, Guibin; Fu, Bin
2017-11-01
Magmatism in eastern China in response to paleo-Pacific plate subduction during the Mesozoic was complex, and it is unclear how and when exactly the magmas formed via thinning and partial destruction of the continental lithosphere. To better understand this magmatism, we report the results of a geochronological and geochemical study of Early Cretaceous adakitic rhyolite (erupted at 125.4 ± 2.2 Ma) in the Xintaimen area within the eastern North China Craton (NCC). In situ zircon U-Pb dating shows that this adakitic rhyolite records a long ( 70 Myrs) and complicated period of magmatism with concordant 206Pb/238U ages from 193 Ma to 117 Ma. The enriched bulk rock Sr-Nd isotopic compositions of the Xintaimen adakitic rhyolite, as well as the enriched zircon Hf and O isotopic compositions, indicate that the magmas parental to the adakitic rhyolite were derived from partial melting of the Paleoproterozoic mafic lower crust, heated by mafic melts derived from the mantle during the paleo-Pacific plate subduction. A minor older basement component is indicated by the presence of captured Neoarchean to Early Paleoproterozoic zircons. The Mesozoic zircons have restricted Hf and O isotopic compositions irrespective of their ages, suggesting that they formed from similar sources at similar melting conditions. The Xintaimen adakitic rhyolite offers an independent line of evidence that the ancient lower crust of eastern China underwent a long period ( 70 Myrs) of destruction, melting or remelting, from 193 to 120 Ma, related to the subduction of the paleo-Pacific plate beneath eastern China.
NASA Astrophysics Data System (ADS)
Benko, Z.; Mogessie, A.; Molnar, F.; Severson, M.; Hauck, S.; Lechler, P.; Arehart, G.
2012-04-01
The footwall of the South Kawishiwi Intrusion (SKI) a part of the Mesoproterozoic (1.1 Ga) Duluth Complex consists of Archean granite-gneiss, diorite, granodiorite (Giant Range Batholith), thin condensed sequences of Paleoproterozoic shale (Virginia Fm.), as well as banded iron formation (Biwabik Iron Fm). Detailed (re)logging and petrographic analysis of granitic footwall rocks in the NM-57 drillhole from the Dunka Pit area has been performed to understand metamorphic processes, partial melting, deformation and geochemical characteristics of de-volatilization or influx of fluids. In the studied drillhole the footwall consists of foliated metagranite that is intersected by mafic (dioritic) dykes of older age than the SKI. In the proximal contact zones, in the mafic dykes, the orthopyroxene+clinopyroxene+plagioclase+quartz+Fe-Ti-oxide+hornblende±biotite porphyroblasts embedded in a plagioclase+K-feldspar+orthopyroxene+apatite matrix indicate pyroxene-hornfels facies conditions. Migmatitization is revealed by the euhedral crystal faces of plagioclase and pyroxene against anhedral quartz crystals in the in-situ leucosome and by the presence of abundant in-source plagioclase±biotite leucosome veinlets. Amphibole in the melanosome of mafic dykes was formed with breakdown of biotite and implies addition of H2O to the system during partial melting. Towards the deeper zones, the partially melted metatexite-granite can be characterized by K-feldspar+plagioclase+quartz+ortho/clinopyroxene+biotite+Fe-Ti-oxide+apatite mineral assemblage. The felsic veins with either pegmatitic or aplititic textures display sharp contact both to the granite and the mafic veins. They are characterized by K-feldspar+quartz±plagioclase±muscovite mineral assemblage. Sporadic occurrence of muscovite suggest local fluid saturated conditions. Emplacement of gabbroic rocks of the SKI generated intense shear in some zones of the granitic footwall resulting in formation of biotite-rich mylonites with lepidoblastic texture. High modal content of syn-tectonic biotite in these shear zones indicate involvement of large amount of fluids during deformation. Apatite is an omnipresent accessory mineral in all rock types, with up to 1-3% modal proportion. Crystal habit is columnar or rarely needle-like. XCl/XF and XOH/XF ratios of apatite were compared with depth in the drillhole and in relation to the host rock type. Apatite in the metagranite and in the mafic dyke is fluorine-rich (XFgranite≈1,27-1,63; XFmafic dyke≈1,51-1,83) and their XCl/XFgranite≈0,083 to 0,051 and XCl/XFmafic dyke≈0,051 to 0,044 ratios decrease towards the distal parts of the contact. Apatite in biotite-rich mylonite, as well as in the porphyroblasts of mafic dykes, is extremely depleted in chlorine- and hydroxyl-anions (XCl/XFmylonite≈0,02 and XOH/XFmylonite≈0,14), whereas apatite in felsic dykes and in the in-source leucosome are enriched in hydroxyl and chlorine relative to fluorine (XCl/XFfelsic vein≈0,21 and XOH/XFfelsic vein≈0,37). These variations suggest release of chlorine enriched fluids from the partially melted contact zones and movement and enrichments of these fluids in migration channels of partial melts. It has been for a long time accepted that fluids emerging from the metamorphosed Virginia Formation played an essential role in the formation of the Cu-Ni sulphide and PGE mineralization at the bottom of the gabbroic intrusions in the northwestern marginal zones of the Duluth Complex. Our study proves that the granitic footwall was also an important source of fluids and melts. We acknowledge the Austrian Science Found (FWF P23157-N21) to A. Mogessie for the financial support.
NASA Astrophysics Data System (ADS)
Xu, Ting; Xu, Wen-Liang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.
2018-02-01
This paper presents new geochronological and geochemical data for early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East, with the aim of elucidating the Paleozoic evolution and tectonic attributes of the Khanka Massif. New U-Pb zircon data indicate that early Paleozoic magmatism within the Khanka Massif can be subdivided into at least four stages: 502, 492, 462-445, and 430 Ma. The 502 Ma pyroxene diorites contain 58.28-59.64 wt% SiO2, 2.84-3.69 wt% MgO, and relatively high Cr and Ni contents. Negative εHf(t) values (- 1.8 to - 0.4), along with other geochemical data, indicate that the primary magma was derived from partial melting of mafic lower crust with the addition of mantle material. The 492 Ma syenogranites have high SiO2 and K2O contents, and show positive Eu anomalies, indicating the primary magma was generated by partial melting of lower crust at relatively low pressure. The 445 Ma Na-rich trondhjemites display high Sr/Y ratios and positive εHf(t) values (+ 1.8 to + 3.9), indicating the primary magma was generated by partial melting of thickened hydrous mafic crust. The 430 Ma granitoids have high SiO2 and K2O contents, zircon εHf(t) values of - 5.4 to + 5.8, and two-stage model ages of 1757-1045 Ma, suggesting the primary magma was produced by partial melting of heterogeneous Proterozoic lower crustal material. The geochemistry of these early Paleozoic intrusive assemblages indicates their formation in an active continental margin setting associated with the subduction of a paleo-oceanic plate beneath the Khanka Massif. The εHf(t) values show an increasingly negative trend with increasing latitude, revealing a lateral heterogeneity of the lower crust beneath the Khanka Massif. Regional comparisons of the magmatic events indicate that the Khanka Massif in the Russian Far East has a tectonic affinity to the Songnen-Zhangguangcai Range Massif rather than the adjacent Jiamusi Massif.
NASA Astrophysics Data System (ADS)
Ding, S.; Dasgupta, R.
2014-12-01
Magmatism in mid-ocean ridges is the main pathway of sulfur (S) from the Earth's mantle to the surficial reservoir. MORB is generally considered sulfide saturated due to the positive correlation between S and FeOT concentration (e.g., [1]). However, most MORBs are differentiated, and both S content and sulfur concentration at sulfide saturation (SCSS) change with P, T, and magma composition (e.g., [2]). Therefore, it remains uncertain, from the MORB chemistry alone, whether mantle melts parental to MORB are sulfide saturated. In this study, we modeled the behavior of S during isentropic partial melting of a fertile peridotite using pMELTS [3] and an SCSS parameterization [4]. Our results show that during decompression melting, at a fixed mantle potential temperature, TP (e.g., 1300 °C), SCSS of aggregate melt first slightly increases then decreases at shallower depth with total variation <200 ppm. However, an increase of TP results in a significant increase of SCSS of primitive melts. Our model shows that at 15% melting (F), sulfide in the residue is exhausted for a mantle with <200 ppm S. The resulted sulfide-undersaturated partial melts contain <1000 ppm S and are 4-6 times enriched in Cu compared to the source. In order to compare our modeled results directly to the differentiated basalts, isobaric crystallization calculation was performed on 5, 10, and 15% aggregate melts. SCSS changes along liquid line of descent with a decrease in T and increase in FeOT. Comparison of S contents between the model results and MORB glasses [5] reveals that many MORBs derive from sulfide undersaturated melts. Further, for a TP of 1300-1350 °C and F of 10-15 wt.%, reproduction of self-consistent S, and Cu budget of many MORB glasses requires that S of their mantle source be ~25-200 ppm. We will discuss the interplay of TP, average F, and the conditions of differentiation to bracket the S geochemistry of MORB and MORB source mantle and develop similar systematics for OIBs and OIB source. References: [1] Le Roux et al. (2006) EPSL, 251, 209-231. [2] Baker and Moritti (2011) Rev. in Mineral. Geochem, 73, 167-213. [3] Ghiorso et al. (2002) Geochem. Geophy. Geosy. 3, 5. [4] Li and Ripley (2009) Econ. Geol. 104, 405-412. [5] Jenner and O'Neill (2012) Geochem. Geophy. Geosy. 13, 1.
NASA Astrophysics Data System (ADS)
Verma, Sudeep; Dewan, Anupam
2018-01-01
The Partially-Averaged Navier-Stokes (PANS) approach has been applied for the first time to model turbulent flow and heat transfer in an ideal Czochralski set up with the realistic boundary conditions. This method provides variable level of resolution ranging from the Reynolds-Averaged Navier-Stokes (RANS) modelling to Direct Numerical Simulation (DNS) based on the filter control parameter. For the present case, a low-Re PANS model has been developed for Czochralski melt flow, which includes the effect of coriolis, centrifugal, buoyant and surface tension induced forces. The aim of the present study is to assess improvement in results on switching to PANS modelling from unsteady RANS (URANS) approach on the same computational mesh. The PANS computed results were found to be in good agreement with the reported experimental, DNS and Large Eddy Simulation (LES) data. A clear improvement in computational accuracy is observed in switching from the URANS approach to the PANS methodology. The computed results further improved with a reduction in the PANS filter width. Further the capability of the PANS model to capture key characteristics of the Czochralski crystal growth is also highlighted. It was observed that the PANS model was able to resolve the three-dimensional turbulent nature of the melt, characteristic flow structures arising due to flow instabilities and generation of thermal plumes and vortices in the Czochralski melt.
NASA Astrophysics Data System (ADS)
McGoldrick, Siobhan; Canil, Dante; Zagorevski, Alex
2018-03-01
The Permo-Triassic Nahlin ophiolite is the largest and best-preserved ophiolite in the Canadian Cordillera of British Columbia and Yukon, Canada. The ophiolite is well-exposed along its 150 km length with mantle segments divisible into the Hardluck and Menatatuline massifs. Both massifs comprise mostly depleted spinel harzburgite (< 2 wt% Al2O3 and 45 wt% MgO). Chondrite normalized REE abundances in clinopyroxene vary in (Gd/Yb)N from 0.2 to 1.1. Inversion modelling of clinopyroxene REE abundances requires 10-16% and 16-20% partial melting in the Hardluck and Menatatuline massifs, respectively. The two-pyroxene and Fe-Mg exchange temperatures in the mantle of the ophiolite also change systematically along strike with the degree of partial melt depletion. The temperatures recorded by REE and Ca-Mg exchange between coexisting pyroxenes require markedly higher peak temperatures and cooling rates for the Menatatuline massif (1250 °C, 0.1-0.01 °C/year) compared to the Hardluck massif (< 1100 °C, 10- 4 °C/year). The differences between these two contiguous massifs can be reconciled by their evolution as two separate segments along a ridge system having varying melt depletion, with contrasting cooling rates controlled by presence or absence of a crustal section above the mantle lithosphere, or by rapid exhumation along a detachment.
NASA Astrophysics Data System (ADS)
Wang, Dong; Wang, Yu-Jin; Huo, Si-Jia; Zhao, Yan-Wei; Ouyang, Jia-Hu; Song, Gui-Ming; Zhou, Yu
2018-03-01
W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.
Mantle Flow and Melting Processes Beneath Back-Arc Basins
NASA Astrophysics Data System (ADS)
Hall, P. S.
2007-12-01
The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.
Experiments with the low melting indium-bismuth alloy system
NASA Technical Reports Server (NTRS)
Krepski, Richard P.
1992-01-01
The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.
Porous carbon-free SnSb anodes for high-performance Na-ion batteries
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min
2018-05-01
A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.
NASA Technical Reports Server (NTRS)
Harvey, Ralph P.; McKay, Gordon A.
1997-01-01
Currently there are 12 meteorites thought by planetary scientists to be martian samples, delivered to the Earth after violent impacts on that planet's surface. Of these 12 specimens, 4 are basaltic: Shergotty, Zagami, EETA 79001 and QUE 94201. Basalts are particularly important rocks to planetary geologists- they are the most common rocks found on the surfaces of the terrestrial planets, representing volcanic activity of their parent worlds. In addition, because they are generated by partial melting of the mantle and/or lower crust, they can serve as guide posts to the composition and internal processes of a planet. Consequently these four meteorites can serve as 'ground-truth' representatives of the predominant volcanic surface rocks of Mars, and offer researchers a glimpse of the magmatic history of that planet. Unfortunately, unraveling the parentage of a basaltic rock is not always straightforward. While many basalts are simple, unaltered partial melts of the mantle, others have undergone secondary processes which change the original parental chemistry, such as assimilation of other crustal rocks, mixing with other magmas, accumulation, re-equilibration between mineral species after crystallization, loss of late-stage magmatic fluids and alteration by metamorphic or metasomatic processes. Fortunately, magmatic inclusions can trap the evolving magmatic liquid, isolating it from many of these secondary processes and offering a direct look at the magma during different stages of development. These inclusions form when major or minor phases grow skeletally, surrounding small amounts of the parental magma within pockets in the growing crystal. The inclusion as a whole (usually consisting of glass with enclosed crystals) continues to represent the composition of the parental magma at the time the melt pocket closed, even when the rock as a whole evolves under changing conditions. The four basaltic martian meteorites contain several distinct generations of melt inclusions; those found within early-forming pigeonite, intermediate and late-forming Ti, Fe-oxides and sulfides, and intermediate to late-forming phosphates. In this summer' s study we have made a detailed study of all of the various forms of inclusions found within the 4 basaltic martian meteorites listed above. Glasses and minerals within the inclusions were analyzed using the Camera SX-100 Electron Microprobe in Building 31. The mineralogy and textural context of the inclusions will then be used to explore the crystallization history of these specimens, and to investigate any differences in crystallization history or parental magma compositions between these rocks. In this manner, the magmatic inclusions provide a road map backwards toward the 'parental' compositions for the basaltic martian meteorites and provide significant insight into the igneous processes found within the crust of Mars.
NASA Astrophysics Data System (ADS)
Thompson, R. N.; Dickin, A. P.; Gibson, I. L.; Morrison, M. A.
1982-06-01
One of the major puzzles presented by the geochemistry of the Palaeocene plateau lavas of Skye and Mull (N.W. Scotland) is that, although a very strong case can be made that the magmas are variably isotopically contaminated by Archaean Lewisian continental crust, little evidence has been gleaned to date from their major- and trace-element compositions to illuminate this hypothetical process. The combined results of published Sr-, Nd- and Pb-isotope studies of these lavas allow the basalts and hawaiites to be divided into three broad groups: essentially uncontaminated; contaminated with granulite-facies Archaean crust; contaminated with amphibolite-facies Archaean crust. Members of each group show distinctive chondrite-normalised incompatible-element patterns. The processes which gave rise to isotopic contamination of these lavas also affected the abundances and ratios of Ba, Rb, Th, K, Sr and light REE in the magmas, whilst having negligible effects on their abundances and ratios of Nb, Ta, P, Zr, Hf, Ti, Y and middle-heavy REE. Because such a wide range of elements were affected by the contamination process, it is postulated that the contaminant was a silicate melt of one or more distinctive crustal rock types, rather than an aqueous or similar fluid causing selective elemental movements from wall rocks into the magmas. As previous experimental and isotopic studies have shown that the Skye and Mull basic magmas were not constrained by cotectic equilibria at the time when they interacted with sial, the compositions of the contaminated lavas have been modelled in terms of simple magma-crust mixtures. Very close approximations to both the abundances and ratios of incompatible elements in the two groups of contaminated basalts may be obtained by adding 15% to 20% of Lewisian leucogneisses to uncontaminated Palaeocene basalt. Nevertheless, major-element constraints suggest that the maximum amount of granitic contaminant which has been added to these magmas lies between 5% and 10%. These estimates may be reconciled by postulating that the contaminants were large-fraction cotectic partial melts of Lewisian leucogneisses, leaving plagioclase residua. A corollary of this hypothesis is that it is necessary to postulate that the “magma chambers” where the sialic contamination occurred were, in fact, dykes or (more probably) sills. The very large surface-to-volume ratios of such magmas bodies would permit the systematic stripping, by partial melting, of the most-easily-fusible leucogneisses and pegmatites from the Lewisian crust, whilst failing to melt its major rock types. A present-day analogue to this situation may be the extensive sill-like magma bodies detected by geophysical methods within the continental crust beneath the Rio Grande Rift, southwestern U.S.A.
Wilshire, H.G.; McGuire, A.V.
1996-01-01
Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ???7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts (> ??? 60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents.
NASA Astrophysics Data System (ADS)
Xu, Wenliang; Gao, Shan; Wang, Qinghai; Wang, Dongyan; Liu, Yongsheng
2006-09-01
A suite of xenoliths of eclogite, garnet clinopyroxenite, and felsic gneiss is found in Early Cretaceous high-Mg [Mg# >45, where Mg# = molar 100 × Mg/(Mg + Fetotal)] adakitic intrusions from the Xuzhou-Huaibei (Xu-Huai) region along the southeastern margin of the North China craton. The primary mineral assemblage of garnet + omphacite/augite + quartz + rutile ± pargasite of the eclogite and garnet clinopyroxenite xenoliths defines a minimum pressure of >1.5 GPa, while the estimated peak metamorphic temperatures range from 800 to 1060 °C. An Sm-Nd whole-rock garnet isochron and zircon U-Pb dates show that timing of the eclogite facies metamorphism took place ca. 220 Ma. This Triassic age agrees with the age of eclogites from the Dabie-Sulu ultrahigh-pressure metamorphic (UHPM) belt. The ages of abundant Late Archean to early Paleoproterozoic (2.3 2.6Ga) inherited zircons correspond to the most prominent crustal growth event in the North China craton. In addition, these xenoliths and their host high-Mg adakitic intrusions have complementary major and trace element compositions, suggesting that the adakites formed by partial melting of Archean metabasalts that were the protoliths of the Xu-Huai eclogite and garnet clinopyroxenite xenoliths. Trace element and Sr-Nd isotopic modeling shows that the high-Mg adakitic intrusions can be modeled as melts from ˜40% partial melting of the metabasalts in the eclogite facies, followed by interaction with the convecting mantle and variable degrees of crustal assimilation. Together with the similar zircon age populations between the xenoliths and the host rocks, these lines of evidence strongly suggest their genetic link via thickening, foundering, and partial melting of the Archean North China craton mafic lower crust, followed by adakitic melt-mantle interaction. The crustal thickening resulted from Triassic collision between the Yangtze craton and the North China craton, which produced the Dabie-Sulu UHPM belt in the subducting Yangtze plate and eclogitization of the basaltic crustal root of the overriding North China craton plate. Such processes may have played an important role in generating the high-Mg character of the continental crust.
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Fat'yanov, O. V.; Su, C.; Ma, X. J.
2017-12-01
Shock temperature measurements in transparent samples provide key constraints on the phase transitions and thermodynamic properties of materials at high pressure and temperature. Such measurements are necessary, for example, to allow equation of state measurements taken along the Hugoniot to be translated to P-V-T space. We have recently completed a detailed study of the accuracy and reproducibility of calibration of our 6-channel fast pyrometer. We have also introduced improved analysis procedures of the time-dependent multi-wavelength radiance signal that avoid the need for a greybody assumption and therefore have better precision than earlier results. This has motivated (a) renewed study of the shock temperature of forsterite in the superheating, partial melting, and complete melting regimes, (b) pre-heated diopside-anorthite glass shock temperature experiments for comparison to pre-heated silicate liquid equation of state results, and (c) new soda-lime glass shock temperature experiments. Single-crystal synthetic forsterite samples were shocked along (100) to pressures between 120 and 210 GPa on the Caltech two-stage light gas gun. Uncertainties on most results are 50 K. Results above the onset of partial melting at 130 GPa are consistent with Lyzenga and Ahrens (1980) data and show a low P-T slope consistent with a partial melting interval. Complete melting may occur, given sufficient time, at about 210 GPa. The experiment at 120-130 GPa is anomalous, showing two-wave structure and time- and wavelength-dependent scattering suggesting a subsolidus phase transition behind the shock front. The amount of super-heating, if any, is far smaller than claimed by Holland and Ahrens (1997). Steady radiation profiles, high emissivity, and consistency from channel to channel provide high precision (±40 K) in diopside-anorthite liquid shocked from just above the glass transition to high pressure. Temperatures are colder than expected for a model with constant heat capacity, providing direct evidence that multicomponent silicate liquids show a major increase in heat capacity in the P-T range appropriate to terrestrial magma oceans (<150 GPa, <5000 K).
NASA Astrophysics Data System (ADS)
Kang, Jin-Ting; Ionov, Dmitri A.; Liu, Fang; Zhang, Chen-Lei; Golovin, Alexander V.; Qin, Li-Ping; Zhang, Zhao-Feng; Huang, Fang
2017-09-01
To better constrain the Ca isotopic composition of the Bulk Silicate Earth (BSE) and explore the Ca isotope fractionation in the mantle, we determined the Ca isotopic composition of 28 peridotite xenoliths from Mongolia, southern Siberia and the Siberian craton. The samples are divided in three chemical groups: (1) fertile, unmetasomatized lherzolites (3.7-4.7 wt.% Al2O3); (2) moderately melt-depleted peridotites (1.3-3.0 wt.% Al2O3) with no or very limited metasomatism (LREE-depleted cpx); (3) strongly metasomatized peridotites (LREE-enriched cpx and bulk rock) further divided in subgroups 3a (harzburgites, 0.1-1.0% Al2O3) and 3b (fertile lherzolites, 3.9-4.3% Al2O3). In Group 1, δ44/40Ca of fertile spinel and garnet peridotites, which experienced little or no melting and metasomatism, show a limited variation from 0.90 to 0.99‰ (relative to SRM 915a) and an average of 0.94 ± 0.05‰ (2SD, n = 14), which defines the Ca isotopic composition of the BSE. In Group 2, the δ44/40Ca is the highest for three rocks with the lowest Al2O3, i.e. the greatest melt extraction degrees (average 1.06 ± 0.04 ‰, i.e. ∼0.1‰ heavier than the BSE estimate). Simple modeling of modal melting shows that partial melting of the BSE with 103 ln αperidotite-melt ranging from 0.10 to 0.25 can explain the Group 2 data. By contrast, δ44/40Ca in eight out of nine metasomatized Group 3 peridotites are lower than the BSE estimate. The Group 3a harzburgites show the greatest δ44/40Ca variation range (0.25-0.96‰), with δ44/40Ca positively correlated with CaO and negatively correlated with Ce/Eu. Chemical evidence suggests that the residual, melt-depleted, low-Ca protoliths of the Group 3a harzburgites were metasomatized, likely by carbonate-rich melts/fluids. We argue that such fluids may have low (≤0.25‰) δ44/40Ca either because they contain recycled crustal components or because Ca isotopes, similar to trace elements and their ratios, may be fractionated by kinetic and/or chromatographic effects of melt percolation in the mantle. The δ44/40Ca in Group 3b lherzolites (0.83-0.89‰) are lower than in the BSE as well, but the effects of metasomatism on δ44/40Ca are smaller, possibly because of the high Ca contents in their protoliths and/or smaller δ44/40Ca differences between the protoliths and metasomatic agents. The BSE estimates based on fertile peridotites in this study fall in the δ44/40Ca ranges for oceanic and continental basalts, various meteorites (achondrites; carbonaceous, ordinary and enstatite chondrites), Mars, and the Moon. These results provide benchmarks for the application of Ca isotopes to planet formation, mantle evolution, and crustal recycling.
Lunar igneous rocks and the nature of the lunar interior
NASA Technical Reports Server (NTRS)
Hays, J. F.; Walker, D.
1974-01-01
Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.
Lunar igneous rocks and the nature of the lunar interior
NASA Technical Reports Server (NTRS)
Hays, J. F.; Walker, D.
1977-01-01
Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.
NASA Astrophysics Data System (ADS)
Lo Cascio, M.; Liang, Y.
2006-12-01
Distinct geochemical and petrologic features of ocean floor basalts and mantle peridotites suggest that the upper mantle is lithologically heterogeneous, consisting predominantly of peridotite and a small amount of eclogite [1]. An important issue of this marble cake mantle, is the nature of the peridotite and pyroxenite interface during mantle melting. It has been suggested that during mantle melting eclogite and peridotite develop a reactive boundary layer composed of a second generation eclogite and a layer of orthopyroxenite [2]. The existence of such a boundary layer has also been used to explain the observation that oceanic basalts are extracted with only limited interaction with the surrounding peridotite [3]. In spite of recent progresses, the kinetics of peridotite and pyroxenite-derived melts reaction is still not well understood. It is likely that there are two regimes of peridotite-pyroxenite melt interaction: a high T/low P regime where both the peridotite and pyroxenite are partially molten; and a low T/high P regime where only pyroxenite is partially molten. In this study we explored the kinetics of such interactions in both regimes by conducting lherzolite dissolution experiments using a pyroxenite-derived melt at 1300°C and 1-2 GPa. Dissolution couples were formed by juxtaposing pre-synthesized rods of a basaltic andesite (54.6% SiO2, Mg# 0.42), whose composition is similar to pyroxenite derived liquid at 1300°C and 2 GPa [1,4], and a lherzolite (ol+opx+cpx) in a Pt and graphite lined Mo capsule. The lherzolite solidus is below 1300°C at 1 GPa [5], but above 1300°C at 2 GPa. Lherzolite hardly dissolves (~35 μm in 6 hours) into the melt at 2 GPa and a thin opx layer (<10 μm thick) decorated with a few garnet crystals is observed at the lherzolite-melt interface. From the concentration profiles of Al2O3 and MgO in the melt, we estimated the effective binary diffusion coefficient at 10^{-12}m2/s. Assuming an average mantle upwelling rate of ~50 mm/yr and peridotite solidus located ~50 km above that of the pyroxenite [5], it can be shown that partially molten pyroxenite veins that are less than 1 m wide are likely to be homogenized with the surrounding mantle before reaching the lherzolite solidus. Therefore, only pyroxenite veins on the order of a 1 m or more will remain isolate from the surrounding. When the solidus of lherzolite is crossed, a reactive boundary layer made of pyroxene and/or olivine develops and the style of peridotite-pyroxenite interaction changes from dissolution and assimilation to porous flow dominated melt-rock reaction. The latter can potentially spread the pyroxenite signature to a much large volume. Result of this study will have important implications for the size and distribution of heterogeneities in the mantle. [1] Petermann and Hirschmann, 2003, J. Pet., 44, doi: 10.1093/petrology/egg074; [2] Yaxley and Green, 1998, Schweiz. Mineral. Petrogr. Mitt., 78; [3] Hauri and Kurz, 1997, EPSL, 153; [4] Takahashi and Nakajima, 2002, Geoph. Mon. 128; [5] Morgan and Liang, 2005, CMP, 150, doi: 10.1007/s00410-005-0033-8; [6] Petermann and Hirschmann, 2003, JGR., 108, doi: 10.1029/2000JB000118.
Tholeiitic basalt magmatism of Kilauea and Mauna Loa volcanoes of Hawaii
Murata, K.J.
1970-01-01
The primitive magmas of Kilauca and Mauna Loa are generated by partial melting of mantle peridotite at depths of -60 km or more. Results of high-pressure melting experiments indicate that the primitive melt must contain at least 20% MgO in order to have olivine as a liquidus mineral. The least fractionated lavas of both volcanoes have olivine (Fa13) on the liquidus at 1 atmosphere, suggesting that the only substance lost from the primitive melt, during a rather rapid ascent to the surface, is olivine. This relation allows the primitive composition to be computed by adding olivine to the composition of an erupted lava until total MgO is at least 20 percent. Although roughly similar, historic lavas of the two volcanoes show a consistent difference in composition. The primitive melt of Mauna Loa contains 20% more dissolved orthopyroxene, a high-temperature melting phase in the mantle, and is deficient in elements such as potassium, uranium, and niobium, which presumably occur in minor low-melting phases. Mauna Loa appears to be the older volcano, deriving its magma at higher temperature and greater depth from a more depleted source rock. ?? 1970 Springer-Verlag.
Pseudotachylyte increases the post-slip strength of faults
Proctor, Brooks; Lockner, David A.
2016-01-01
Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander
Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less
Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander; ...
2016-02-23
Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less
Lipid melting and cuticular permeability: new insights into an old problem.
Gibbs, Allen G.
2002-04-01
The idea that the physical properties of cuticular lipids affect cuticular permeability goes back over 65 years. This proposal has achieved textbook status, despite controversy and the general lack of direct supporting evidence. Recent work supports the standard model, in which lipid melting results in increased cuticular permeability. Surprisingly, although all species studied to date can synthesize lipids that remain in a solid state at environmental temperatures, partial melting often occurs due to the deposition of lipids with low melting points. This will tend to increase water loss; the benefits may include better dispersal of lipids or other compounds across the cuticle or improved communication via cuticular pheromones. In addition, insects with high melting-point lipids are not necessarily less permeable at low temperatures. One likely reason is variation in lipid properties within the cuticle. Surface lipids differ from one region to another, and biophysical studies of model mixtures suggest the occurrence of phase separation between melted and solid lipid fractions. Lipid phase separation may have important implications for insect water balance and chemical communication.
NASA Astrophysics Data System (ADS)
Aléon, Jérôme; Marin-Carbonne, Johanna; McKeegan, Kevin D.; El Goresy, Ahmed
2018-07-01
Oxygen, magnesium, and silicon isotopic compositions in the mineralogically complex, ultrarefractory (UR) calcium-aluminum-rich inclusion (CAI) E101.1 from the reduced CV3 chondrite Efremovka confirm that E101.1 is a compound CAI composed of several lithological units that were once individual CAIs, free-floating in the solar protoplanetary disk. Each precursor unit was found to have had its own thermal history prior to being captured and incorporated into the partially molten host CAI. Four major lithological units can be distinguished on the basis of their isotopic compositions. (1) Al-diopside-rich sinuous fragments, hereafter sinuous pyroxene, are 16O-rich (Δ17O ≤ -20‰) and have light Mg and Si isotopic compositions with mass fractionation down to -3.5‰/amu for both isotopic systems. We attribute these peculiar isotopic compositions to kinetic effects during condensation out of thermal equilibrium. (2) Spinel clusters are 16O-rich (Δ17O ∼ -22‰) and have Mg isotope systematics consistent with extensive equilibration with the host melt. This includes (i) δ25Mg values varying between + 2.6‰ and + 6.5‰ close to the typical value of host melilite at ∼+5‰, and (ii) evidence for exchange of radiogenic 26Mg with adjacent melilite as indicated by Al/Mg systematics. The spinel clusters may represent fine-grained spinel-rich proto-CAIs captured, partially melted, and recrystallized in the host melt. Al/Mg systematics indicate that both the sinuous pyroxene fragments and spinel clusters probably had canonical or near-canonical 26Al contents before partial equilibration. (3) The main CAI host (Δ17O ≤ -2‰) had a complex thermal history partially obscured by subsequent capture and assimilation events. Its formation, referred to as the "cryptic" stage, could have resulted from the partial melting and crystallization of a 16O-rich precursor that underwent 16O-depletion and a massive evaporation event characteristic of F and FUN CAIs (Fractionated with Unknown Nuclear effects). Alternatively, a 16O-rich UR precursor may have coagulated with a 16O-poor FUN CAI having 48Ca anomalies, as indicated by perovskite, before subsequent extensive melting. The Al/Mg systematics (2.4 × 10-5 ≤ (26Al/27Al)0‧ ≤ 5.4 × 10-5, where (26Al/27Al)0‧ is a model initial 26Al/27Al ratio per analysis spot) are best understood if the FUN component was 26Al-poor, as are many FUN CAIs. (4) A complete Wark-Lovering rim (WLR) surrounds E101.1. Its Mg and Si isotopic compositions indicate that it formed by interaction of the evaporated interior CAI with an unfractionated 16O-rich condensate component. Heterogeneities in 26Al content in WLR spinels (3.7 × 10-5 ≤ (26Al/27Al)0‧ ≤ 5.7 × 10-5) suggest that the previously reported age difference of as much as 300,000 years between interior CAIs and their WLRs may be an artifact resulting from Mg isotopic perturbations, possibly by solid state diffusion or mixing between the interior and condensate components. The isotopic systematics of E101.1 imply that 16O-rich and 16O-poor reservoirs co-existed in the earliest solar protoplanetary disk and that igneous CAIs experienced a 16O-depletion in an early high temperature stage. The coagulation of various lithological units in E101.1 and their partial assimilation supports models of CAI growth by competing fragmentation and coagulation in a partially molten state. Our results suggest that chemical and isotopic heterogeneities of unclear origin in regular CAIs may result from such a complex aggregation history masked by subsequent melting and recrystallization.
The geometry and volume of melt beneath Ethiopia
NASA Astrophysics Data System (ADS)
Kendall, J. M.; Hammond, J. O. S.
2016-12-01
A range of seismic measurements can be used to map melt distribution in the crust and uppermost mantle. These include seismic P- and S-wave velocities derived from surface- and body-wave tomography, Vp/Vs ratios obtained from receiver functions, and estimates of seismic anisotropy and attenuation. The most obvious melt parameter that seismic data might be sensitive to is volume fraction. However, such data are more sensitive to the aspect ratio of melt inclusions, which is controlled by the melt wetting angle or in other words the shape of the melt inclusion. To better understand this we perform numerical modelling, varying the shape and amount of melt, to show how various seismic phases are effected by melt. To consider the effects on seismic anisotropy we assume that the melt can be stored in pockets of melt that are either horizontally or vertically aligned (e.g., sills versus dykes). We then consider a range of seismic observations from the rifting environment of Ethiopia. Recent studies of P- and S-wave tomography, Rayleigh and Love waves, and Pn or wide angle P-wave refractions provide provide complimentary constraints on melt volume, orientation and inclusion aspect ratio. Furthermore, receiver functions and shear-wave splitting in body waves show strong anisotropy in this region and can be used to constrain the strike of vertically-aligned partial melt. We show that melt in the mantle beneath Ethiopia is likely stored in low aspect ratio disk-like inclusions, suggesting melt is not in textural equilibrium. We estimate that 2-7% vertically aligned melt is stored beneath the Main Ethiopian Rift, >6% horizontally and vertically aligned melt is stored beneath the Afar-region of the Red Sea Rift and 1-6% horizontally aligned melt is stored beneath the Danakil microplate. This supports ideas of strong shear-derived segregation of melt in narrow parts of the rift and large volumes of melt beneath Afar.
Melt generation in the West Antarctic Rift System: the volatile legacy of Gondwana subduction?
NASA Astrophysics Data System (ADS)
Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Cabato, J.
2013-12-01
The West Antarctic Rift System (WARS) represents one of the largest extensional alkali volcanic provinces on Earth, yet the mechanisms responsible for driving rift-related magmatism remain controversial. The failure of both passive and active models of decompression melting to explain adequately the observed volume of volcanism has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by roughly 500 Ma of subduction along the paleo-Pacific margin of Gondwana, although both processes are capable of producing the broad seismic anomaly imaged beneath most of the Southern Ocean. Olivine-hosted melt inclusions from basanitic lavas provide a means to evaluate the volatile budget of the mantle responsible for active rifting beneath the WARS. We present H2O, CO2, F, S and Cl concentrations determined by SIMS and major oxide compositions by EMPA for olivine-hosted melt inclusions from lavas erupted in Northern Victoria Land (NVL) and Marie Byrd Land (MBL). The melt inclusions are largely basanitic in composition (4.05 - 17.09 wt % MgO, 37.86 - 45.89 wt % SiO2, and 1.20 - 5.30 wt % Na2O), and exhibit water contents ranging from 0.5 up to 3 wt % that are positively correlated with Cl and F. Coupling between Cl and H2O indicates metasomatic enrichment by subduction-related fluids produced during dehydration reactions; coupling between H2O and F, which is more highly retained in subducting slabs, may be related to partial melting of slab remnants [1]. Application of source lithology filters [2] to whole rock major oxide data shows that primitive lavas (MgO wt % >7) from the Terror Rift, considered the locus of on-going tectonomagmatic activity, have transitioned from a pyroxenite source to a volatilized peridotite source over the past ~4 Ma. Integrating the volatile data with the modeled characteristics of source lithologies suggests that partial melting of lithosphere modified by subduction processes is the source of pyroxenite and volatiles in the mantle beneath the present-day rift. The earliest magmatic activity preferentially removed the most readily fusible components from the mantle, resulting in transition to a metasomatized peridotite source over time. [1] Straub & Layne, 2003, GCA; [2] Herzberg & Asimow, 2008, G3; [3] Rilling et al., 2009, JGR.
Kinetic Controls on Formation of Textures in Rapidly Cooled Rocks
NASA Technical Reports Server (NTRS)
Lofgren, Gary E.
2006-01-01
The crystallization of silicate melts is a complex process involving melts usually produced by partial melting and cooling environments that are rapid in volcanic lavas or so slow as to be auto-metamorphic in plutonic regimes. The volcanic lavas are amenable to laboratory study as are chondrules that comprise the bulk of chondritic meteorites. Dynamic crystallization studies of basalt and chondrule melts have shown that nucleation has a more profound effect on the final texture than the cooling or crystal growth rates. The sequence of crystal shapes grown at increasing degrees of supercooling (DELTA T) or cooling rate demonstrates the effect of increasing growth rate. Equant or euhedral crystals become skeletal, then dendritic and ultimately spherulitic indicating the nucleation temperature and the DELTA T when growth began. Because crystals cannot grow until they nucleate, cooling rate does not always correlate with crystal growth rate and thus crystal shape. Silicate melts cooled at the same rate can have drastically different textures depending on the temperature of nucleation. A dynamic crystallization study of basaltic rocks shows that basaltic lavas must erupt with sufficient crystals present in the melt to act as nuclei and foster growth. With nuclei present, growth will begin when the temperature drops below the liquidus temperature and typical basaltic textures such as intersertal, intergranular or subophitic will form. If nuclei are not present, crystallization will not begin immediately and the DELTA T will increase until embryos in the melts become nuclei. The DELTA T present when grow begins dictates the growth rate and the crystal shapes and thus the rock texture. If nucleation is delayed, growth will take place at high DELTA T and the crystals will favor skeletal or dendritic shapes. Chondrules are usually considered crystallized melt droplets and clearly some are, but most are not. Most chondrules have porphyritic textures that cannot develop from totally melted droplets because nucleation is delayed during cooling and growth occurs at high DELTA T and the resulting textures are dendritic or spherulitic. The porphyritic textures will develop only if the chondrule is partially molten and begins to crystallize immediately upon cooling. Chondrule compositions are close to komatiites and these studies bear on the origin of their textures as well.
Supraglacial lakes on Himalayan debris-covered glacier (Invited)
NASA Astrophysics Data System (ADS)
Sakai, A.; Fujita, K.
2013-12-01
Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water currents driven by winds at the lake surface with a positive feedback process. The risk of GLOFs (glacial lake outburst flood) are analysed for Himalayan glacial lakes. We proposed an objective index for GLOF probability, based on depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). The index was verified by pre-GLOF topography derived by spy satellite imageries. We screened 2800 Himalayan glacial lakes and identified 49 lakes with potential flood volumes over 10 million m3.
Lipid tubules Formed by Flow-Controlled Hydration
NASA Astrophysics Data System (ADS)
Yuan, Jing; Hirst, Linda S.
2007-03-01
Self-assembled cylindrical tubules from lipid molecules have attracted considerable attention because of their interesting supramolecular structures and technological applications. Schnur et al. [1] reported the formation of tubular microstructures from a series of diacetylenic phospholipids after liposomes were cooled through their chain melting transition. After that, several methods have been developed to fabricate such unique microstructures mainly by means of deforming preformed Giant unilamellar vesicles. Here we present a simple strategy to construct lipid microtubules through a flow-controlled lipid hydration. Fluorescent microscopy and Confocal Laser Microscopy were used to visualize the formation and the structure of the lipid tubules. Tubules were found to develop following the direction of the dynamic flow with highly parallel alignment. At high flow speeds, partial cross-linking of the lipid tubules was observed. To demonstrate the generality of this method, different types of phospholipids, such as Phosphatidic Acid (PA), Phosphatidylserine (PS), Phosphatidylethanolamine (PE), and Phosphatidylglycerol (PG) were investigated. [1] J.M. Schnur et al, Science, 264, 945 (1994).
Remnants of Eoarchean continental crust derived from a subducted proto-arc
Ge, Rongfeng; Zhu, Wenbin; Wilde, Simon A.; Wu, Hailin
2018-01-01
Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth’s oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa−1) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei. PMID:29487901
Remnants of Eoarchean continental crust derived from a subducted proto-arc.
Ge, Rongfeng; Zhu, Wenbin; Wilde, Simon A; Wu, Hailin
2018-02-01
Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth's oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa -1 ) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei.
Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?
Meibom, A.; Anderson, D.L.; Sleep, Norman H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L.
2003-01-01
The existence of a primordial, undegassed lower mantle reservoir characterized by high concentration of 3He and high 3He/4He ratios is a cornerstone assumption in modern geochemistry. It has become standard practice to interpret high 3He/4He ratios in oceanic basalts as a signature of deep-rooted plumes. The unfiltered He isotope data set for oceanic spreading centers displays a wide, nearly Gaussian, distribution qualitatively similar to the Os isotope (187Os/188 Os) distribution of mantle-derived Os-rich alloys. We propose that both distributions are produced by shallow mantle processes involving mixing between different proportions of recycled, variably aged radiogenic and unradiogenic domains under varying degrees of partial melting. In the case of the Re-Os isotopic system, radiogenic mid-ocean ridge basalt (MORB)-rich and unradiogenic (depleted mantle residue) endmembers are constantly produced during partial melting events. In the case of the (U+Th)-He isotope system, effective capture of He-rich bubbles during growth of phenocryst olivine in crystallizing magma chambers provides one mechanism for 'freezing in' unradiogenic (i.e. high 3He/4He) He isotope ratios, while the higher than chondritic (U+Th)/He elemental ratio in the evolving and partially degassed MORB melt provides the radiogenic (i.e. low 3He/4He) endmember. If this scenario is correct, the use of He isotopic signatures as a fingerprint of plume components in oceanic basalts is not justified. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar
2018-05-01
Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, Akira
1997-12-31
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. In recent years, close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). However, there is no theoreticalmore » solution considering the inner wall temperature variation within cylindrical or spherical capsules. In this report close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations are presented, which facilitates designing of the practical capsule bed LHTES systems. The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition, the effects of variable inner wall temperature on molten mass fraction were investigated.« less
Three-dimensional control of crystal growth using magnetic fields
NASA Astrophysics Data System (ADS)
Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo
1993-07-01
Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.
NASA Astrophysics Data System (ADS)
Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.
2011-12-01
During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic chain, to provide under favorable conditions information down to a depth of 150 km. In particular the record of the natural seismicity and its distribution allows the three-dimensional imaging of the entire crust and lithosphere structure above the Wadati Benioff zone with the help of tomographic procedures, and therewith the entire ascent path region of the fluids and melts, which are responsible for volcanism. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. In the lecture findings of different subduction zones are compared and discussed.
NASA Astrophysics Data System (ADS)
Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros
2016-09-01
Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to be responsible for the increse in the K2O/Na2O, Ba/Sr and Rb/Sr ratios. This enrichment was associated with the relevant role of biotite breakdown in the assimilated host rock partial melts. The petrological model for the Ponte Nova massif is explained as repeated influxes of antecryst-laden basanite magmas that deposited most of their suspended crystals on the floor of the upper-crust magma chamber. Each intrusion is representative of relatively primitive olivine- and clinopyroxene-phyric basanites that had assimilated different degrees of partial melts of heterogeneous host rocks. This study reveals the relevant role of crustal assimilation processes in the magmatic evolution of nepheline-normative rocks, especially in upper-crust chamber environments.
NASA Astrophysics Data System (ADS)
Leuthold, Julien; Blundy, Jon; Holness, Marian
2014-05-01
We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt moving upwards and laterally through the cumulate pile. The Rum layered intrusion is an open intrusive complex, composed of individual partially molten zones, evolving independently. The Rum layered intrusion offers a direct overview of processes taking place in shallow intra-plate and ridge magma chambers. Intrusion of hot magma into a pre-existing cumulate pile results in the modification both the incoming liquid and the host-rock cumulates. Our study highlights the necessity of considering this type of process when modelling the geochemistry of lavas erupted from magma chambers subject to repeated replenishment.
NASA Astrophysics Data System (ADS)
Devès, Maud H.; Tait, Stephen R.; King, Geoffrey C. P.; Grandin, Raphaël
2014-05-01
Since the late 1970s, most earth scientists have discounted the plausibility of melting by shear-strain heating because temperature-dependent creep rheology leads to negative feedback and self-regulation. This paper presents a new model of distributed shear-strain heating that can account for the genesis of large volumes of magmas in both the crust and the mantle of the lithosphere. The kinematic (geometry and rates) frustration associated with incompatible fault junctions (e.g. triple-junction) prevents localisation of all strain on the major faults. Instead, deformation distributes off the main faults forming a large process zone that deforms still at high rates under both brittle and ductile conditions. The increased size of the shear-heated region minimises conductive heat loss, compared with that commonly associated with narrow shear zones, thus promoting strong heating and melting under reasonable rheological assumptions. Given the large volume of the heated zone, large volumes of melt can be generated even at small melt fractions.
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1996-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1996-01-09
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form. The method comprises: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
NASA Astrophysics Data System (ADS)
Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.
2018-05-01
In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.
NASA Astrophysics Data System (ADS)
Liu, Boda; Liang, Yan
2017-04-01
Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.
Layered graphene-mica substrates induce melting of DNA origami
NASA Astrophysics Data System (ADS)
Green, Nathaniel S.; Pham, Phi H. Q.; Crow, Daniel T.; Burke, Peter J.; Norton, Michael L.
2018-04-01
Monolayer graphene supported on mica substrates induce melting of cross-shaped DNA origami. This behavior can be contrasted with the case of origami on graphene on graphite, where an expansion or partially re-organized structure is observed. On mica, only well-formed structures are observed. Comparison of the morphological differences observed for these probes after adsorption on these substrates provides insights into the sensitivity of DNA based nanostructures to the properties of the graphene monolayer, as modified by its substrate.
Initial Transient in Zn-doped InSb Grown in Microgravity
NASA Technical Reports Server (NTRS)
Ostrogorsky, A G.; Marin, C.; Volz, M.; Duffar, T.
2009-01-01
Three Zn-doped InSb crystals were directionally solidified under microgravity conditions at the International Space Station (ISS) Alpha. The distribution of the Zn was measured using SIMS. A short diffusion-controlled transient, typical for systems with k greater than 1 was demonstrated. Static pressure of approximately 4000 N/m2 was imposed on the melt, to prevent bubble formation and dewetting. Still, partial de-wetting has occurred in one experiment, and apparently has disturbed the diffusive transport of Zn in the melt.
Electrolytic production of oxygen from lunar resources
NASA Technical Reports Server (NTRS)
Keller, Rudolf
1991-01-01
Some of the most promising approaches to extract oxygen from lunar resources involve electrochemical oxygen generation. In a concept called magma electrolysis, suitable oxides (silicates) which are molten at 1300 to 1500 C are then electrolyzed. Residual melt can be discarded after partial electrolysis. Alternatively, lunar soil may be dissolved in a molten salt and electrolyzed. In this approach, temperatures are lower and melt conductances higher, but electrolyte constituents need to be preserved. In a different approach ilmenite is reduced by hydrogen and the resulting water is electrolyzed.
Flow induced migration in polymer melts – Theory and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorgan, John Robert, E-mail: jdorgan@mines.edu; Rorrer, Nicholas Andrew, E-mail: nrorrer@mines.edu
2015-04-28
Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibitmore » similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.« less
Solid-liquid and liquid-solid transitions in metal nanoparticles.
Hou, M
2017-02-22
The melting and solidification temperatures of nanosystems may differ by several hundred Kelvin. To understand the origin of this difference, transitions in small metallic nanoparticles on the atomic scale were analyzed using molecular dynamics (MD). Palladium was used as a case study, which was then extended to a range of other elemental metals. It was argued that in realistic environments, such as gases at low pressure (of the order of 1 mbar), heat transfers allow the microcanonical thermal equilibrium evolution of the nanoparticles between successive collisions with gas atoms. This is shown to have no significant influence on the mechanism of melting, whereas in an isolated nanoparticle, solidification triggers a huge and rapid increase in temperature. A simple relationship between the melting and solidification temperatures was found, indicating that the magnitude of the latent heat of melting governs undercooling. Whereas melting occurs via heterogeneous nucleation, solidification displays characteristics of spinodal decomposition. Consistently, the melting temperature scales with the surface-to-volume ratio, whereas the solidification temperature displays no significant dependence on the particle size.
Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B.
2004-01-01
Scanning electron microscopy (SEM) was used to investigate grain texture and pore structure development within various compositions of pure sI and sII gas hydrates synthesized in the laboratory, as well as in natural samples retrieved from marine (Gulf of Mexico) and permafrost (NW Canada) settings. Several samples of methane hydrate were also quenched after various extents of partial reaction for assessment of mid-synthesis textural progression. All laboratory-synthesized hydrates were grown under relatively high-temperature and high-pressure conditions from rounded ice grains with geometrically simple pore shapes, yet all resulting samples displayed extensive recrystallization with complex pore geometry. Growth fronts of mesoporous methane hydrate advancing into dense ice reactant were prevalent in those samples quenched after limited reaction below and at the ice point. As temperatures transgress the ice point, grain surfaces continue to develop a discrete "rind" of hydrate, typically 5 to 30 ??m thick. The cores then commonly melt, with rind microfracturing allowing migration of the melt to adjacent grain boundaries where it also forms hydrate. As the reaction continues under progressively warmer conditions, the hydrate product anneals to form dense and relatively pore-free regions of hydrate grains, in which grain size is typically several tens of micrometers. The prevalence of hollow, spheroidal shells of hydrate, coupled with extensive redistribution of reactant and product phases throughout reaction, implies that a diffusion-controlled shrinking-core model is an inappropriate description of sustained hydrate growth from melting ice. Completion of reaction at peak synthesis conditions then produces exceptional faceting and euhedral crystal growth along exposed pore walls. Further recrystallization or regrowth can then accompany even short-term exposure of synthetic hydrates to natural ocean-floor conditions, such that the final textures may closely mimic those observed in natural samples of marine origin. Of particular note, both the mesoporous and highly faceted textures seen at different stages during synthetic hydrate growth were notably absent from all examined hydrates recovered from a natural marine-environment setting.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; di Toro, G.; Pollard, D. D.
2005-12-01
Exhumed faults cutting the Adamello batholith (Italian Alps) were active ca. 30 Ma at seismogenic depths of 9-11 km. The faults "exploited preexisting joints and can be classified into three groups containing: (A) only cataclasite (a fault rock with no evidence of melting), (B) cataclasite and pseudotachylyte (solidified friction-induced melts produced during earthquakes), and (C) only pseudotachylyte. The majority of pseudotachylyte-bearing faults in this outcrop overprint pre-existing cataclasites (Type B), suggesting a transition between slip styles; however, some faults exhibiting pseudotachylyte and no cataclasite (Type C) display evidence of only one episode of slip. Faults of Type A never transitioned to frictional melting. We attempt to compare faults of type A, B, and C in terms of a simple one-dimensional thermo-mechanical model introduced by Lachenbruch (1980) describing the interaction between frictional heating, pore fluid pressure, and shear resistance during slip. The interaction of these three parameters influences how much elastic strain is relieved during an earthquake. For a conceptualized fault zone of finite thickness, the interplay between the shear resistance, heat production, and pore fluid pressure can be expressed as a non-linear partial differential equation relating these processes to the strain rate acting within a fault zone during a slip event. The behavior of fault zones in terms of these coupled processes during an earthquake depends on a number of parameters, such as thickness of the principal slipping zone, net coseismic slip, fault rock permeability and thermal diffusivity. Ideally, the governing equations should be testable on real fault zones if the requisite parameters can be measured or reasonably estimated. The model can be further simplified if the peak temperature reached during slip and the coseismic slip rate can be constrained. The contrasting nature of slip on the three Adamello fault types highlights (1) important differences between slip processes on cataclastic and melt-producing faults at depth and (2) some limitations of applicability of such models to real faults.
NASA Astrophysics Data System (ADS)
Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; I. Y. Tok, A.; D. Siva Rama, Krishna
2009-04-01
The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.
Melting dynamics of ice in the mesoscopic regime
Citroni, Margherita; Fanetti, Samuele; Falsini, Naomi; Foggi, Paolo; Bini, Roberto
2017-01-01
How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice Ih or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics. PMID:28536197
Continuous melting through a hexatic phase in confined bilayer water
NASA Astrophysics Data System (ADS)
Zubeltzu, Jon; Corsetti, Fabiano; Fernández-Serra, M. V.; Artacho, Emilio
2016-06-01
Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems.